
An efficient adaptive multigrid method for the elasticity eigenvalue
problem

Fei Xu · Qiumei Huang · Manting Xie

Received: date / Accepted: date

Abstract This paper aims to introduce a novel adaptive multigrid method for the elastici-
ty eigenvalue problem and presents a rigorous theoretical analysis of its convergence. Dif-
ferent from the developing adaptive algorithms for the elasticity eigenvalue problem, the
proposed approach transforms the elasticity eigenvalue problem into a series of boundary
value problems in the adaptive spaces and some small-scale elasticity eigenvalue problems
in a low-dimensional space. As our algorithm avoids solving large-scale elasticity eigenvalue
problems, which is time-consuming, and the boundary value problem can be solved efficient-
ly by the adaptive multigrid method, our algorithm can evidently improve the overall solving
efficiency for the elasticity eigenvalue problem. Finally, some numerical experiments are
presented to validate the theoretical conclusions and verify the numerical efficiency of our
approach.
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method · convergence and optimal complexity.
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1 Introduction

The large-scale elasticity eigenvalue problem is a fundamental problem in the study of vibra-
tions in elastic structures. However, studies of efficient algorithms for solving this problem are
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scarce compared to those for solving other types of eigenvalue problems. The corresponding
conclusions can be found in [16,22,25,33,39,47,50] and the references therein. Therefore,
we investigate an efficient numerical algorithm for solving the elasticity eigenvalue problem
using a multigrid method and a mesh adaptive refinement technique.

In this paper, we consider the following elasticity eigenvalue problem:{
−divσ(u) = λu, in Ω ,

u = 0, on ∂Ω .
(1.1)

Here, u = (u1, · · · ,ud)
T is the desired vector function of displacement, and σ(u) is the sym-

metric Cauchy stress tensor satisfying

σ(u) = 2µε(u)+λ (∇ ·u)I,

where µ and λ denote Lamé constants, ε(u) = 1
2 (∇u+∇uT ) denotes the linear strain tensor,

and I denotes the identity matrix.
The multigrid method is a well-known optimal algorithm that can derive the optimal

error estimates with linear computational complexity. For elliptic boundary value problems,
the theoretical results are well developed. In [56], Xu presented a uniform framework for
analyzing the multigrid method, domain decomposition method, and other iteration methods.
Thus far, studies on the multigrid method have been mainly focused on boundary value
problems. For eigenvalue problems, there exists no corresponding multigrid method that can
obtain optimal solutions. In [57], a two-grid method was proposed for solving eigenvalue
problems by combining two meshes of different scales. The optimal error estimates could
be obtained by adjusting the mesh sizes appropriately. In [29,58], a multigrid method was
designed on the basis of the shift-inverse technique. The optimal approximations could be
obtained through solving a nearly singular boundary value problem in each multigrid space.
A recently designed multilevel correction method [13,27,30,34,35,52] extended the two-grid
method to multigrid method, which needs to solve only some boundary value problems in the
multigrid spaces and some small-scale eigenvalue problems in a low-dimensional space.

For the elasticity eigenvalue problem, we often derive a singular eigenfunction when the
computing domain is non-convex or the equation has a jump coefficient. In such cases, we
need to adopt the adaptive finite element method (AFEM) which has been widely used to
solve singular partial differential equations. The AFEM was first proposed by Babuška in [2,
3]. Since then, a mature theoretical system has been developed. In [46], Nochetto, Siebert,
and Veeser reviewed existing findings on adaptive algorithms. Cascon [10] proposed the most
widely used version of the adaptive algorithm. For further details on the AFEM for elliptic
boundary value problems, readers may refer to [17,24,26,44,43,45,48] and the references
therein. The AFEM is also an efficient technique for solving eigenvalue problems. Dai, Xu,
and Zhou [15] presented the convergence and optimal complexity analysis by establishing
connections between the boundary value problems and the eigenvalue problems. More details
about AFEM for eigenvalue problems can be found in [9,18,20,21,28,32,38,42] and the
references therein.

It is worth mentioning that the multigrid method and the AFEM have close connections,
as the adaptive mesh refinement technique has been confirmed to be fully compatible with
the multilevel mesh structure. On the basis of such connections, Brandt [4,7] designed a type
of multilevel adaptive technique (MLAT) and McCormick [40] further investigated the fast
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adaptive composite (FAC) grid method. For further details on the adaptive multigrid method,
readers may refer to [14,23,41,49,51] and the references therein. Many adaptive multigrid
algorithms have been developed for solving linear elasticity problems [5,8,31,37]. However,
studies on the elasticity eigenvalue problem are relatively scarce.

In this study, a new type of multilevel correction adaptive multigrid method is designed
for solving the elasticity eigenvalue problem on the basis of our recent advances in the mul-
tilevel correction method [27,30,35,54,59] and adaptive multigrid method. Different from
the developing AFEMs for eigenvalue problems, we do not need to solve eigenvalue prob-
lem directly in adaptive spaces in the new adaptive method, which is the key to improving
efficiency. The main strategy is to transform the elasticity eigenvalue problem into some e-
lasticity boundary value problems in the adaptive finite element spaces and some small-scale
elasticity eigenvalue problems in a low-dimensional space. Though the AFEM can generate
optimal mesh, we still need to solve the elasticity boundary value problem directly in each
adaptive space. Since there exist many repeated mesh elements between two adjacent mesh
levels, the actual computational work is still very large. To further improve efficiency, the
associated elasticity boundary value problems defined in the adaptive spaces are solved using
the adaptive multigrid method. Further, the dimension of the small-scale elasticity eigenvalue
problem is fixed and small in solving process; thus, the computation time is negligible if the
size of the mesh becomes increasingly smaller after some refinement steps. As our method
avoids solving large-scale elasticity eigenvalue problems, which is time-consuming, it im-
proves the overall solving efficiency of the elasticity eigenvalue problem. Finally, we also
present the rigorous theoretical analysis of its convergence.

The overall structure of this paper is as follows. In Section 2, we review the classical
AFEM for the elasticity boundary value problem. Section 3 introduces our novel adaptive
multigrid method for solving the elasticity eigenvalue problem. Section 4 presents the corre-
sponding convergence analysis. Section 5 describes some numerical experiments conducted
to verify the solving efficiency and validate the theoretical analysis of our approach. Finally,
Section 6 concludes the paper.

2 Preliminaries of classical AFEM for the elasticity boundary value problem

In this section, we review the classical adaptive finite element method for solving the elas-
ticity boundary value problem. The presented conclusions will be used in our analysis of the
elasticity eigenvalue problem. The standard notation for Sobolev space will be used in this
paper. Let Ω ⊂ Rd(d = 2,3) be a bounded domain with Lipschitz continuous boundary. The
symbol x . y means that x ≤Cy.

In this study, we first consider the elasticity boundary value problem:{
−divσ(u) = f, in Ω ,

u = 0, on ∂Ω .
(2.1)

Here, f = ( f1, · · · , fd)
T is the vector function of mass forces. For linear plane strain, the Lamé

constants satisfy

λ =
Eν

(1+ν)(1−2ν)
and µ =

E
2(1+ν)

, (2.2)
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where ν and E denote the Poisson coefficient and the elasticity modulus, respectively.
For simplicity, we use the symbol (·, ·) to denote the L2-inner product in L2(Ω), [L2(Ω)]d ,

or [L2(Ω)]d×d , as required, and we use ∥ · ∥0,Ω to denote the norm induced by (·, ·) hereafter.
Then the weak form of the linear elasticity boundary value problem (2.1) is defined as

follows: Find u ∈V := (H1
0 (Ω))d such that

a(u,v) = (f,v), ∀v ∈V, (2.3)

where

a(u,v) = 2µ(ε(u),ε(v))+λ (∇ ·u,∇ ·v). (2.4)

In [19], it has been proven that a(·, ·) satisfies

a(v,v)≥ ca∥v∥2
1,Ω , a(u,v)≤Ca∥u∥1,Ω∥v∥1,Ω , ∀u,v ∈V, (2.5)

implying that we can define the energy norm as follows:

∥u∥a,Ω =
√

a(u,u), ∀u ∈V. (2.6)

Now, we introduce the classical AFEM for solving the elasticity boundary value problem
(2.3). First, let Tk be a regular mesh which is a decomposition of the computing domain Ω
([15,20]). Then we use Sk ⊂ H1

0 (Ω) to denote the corresponding finite element space, and
denote Vk = (Sk)

d .
Then, the classical finite element scheme is to solve the following discrete elasticity

boundary value problem: Find uk ∈Vk such that

a(uk,vk) = (f,vk), ∀vk ∈Vk. (2.7)

For the bilinear form a(·, ·), let us define a projection operator Pk : V →Vk by

a(u−Pku,vk) = 0, ∀vk ∈Vk. (2.8)

Then, we can obtain uk = Pku and

∥Pku∥a,Ω ≤ ∥u∥a,Ω , ∀u ∈V. (2.9)

To derive a new adaptive mesh after solving (2.7), we need to use the a posteriori error
estimator. Following the procedure of the classical AFEM (see, e.g. [10,43,44]), we first
define the element residual R̂T (uk) and the jump ĴE(uk) as follows

R̂T (uk) := f+divσ(u), for T ∈ Tk,

ĴE(uk) := −σ(u+
k ) ·ν

+−σ(u−
k ) ·ν

− := [σ(uk) ·νE ], for E ∈ Ek,

where Ek denote the set of interior faces for d = 3 (edges for d = 2) of Tk, νE = ν−, E denotes
the common side of elements T+ and T− with outward normals ν+ and ν−, respectively.

On the basis of the two definitions, the local error estimators on each mesh element
T ∈ Tk are defined by:

η̂2
k (uk;T ) := h2

T∥R̂T (uk)∥2
0,T + ∑

E∈Ek,E⊂∂T
hE∥ĴE(uk)∥2

0,E ,

ôsc2
k(uk;T ) := h2

T∥(I −PT )R̂T (uk)∥2
0,T + ∑

E∈Ek,E⊂∂T
hE∥(I −PE)ĴE(uk)∥2

0,E ,
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where PT and PE denote the L2-projections to polynomials of some degree on T and E.
Next, for a submesh T ′ ⊂ Tk, the global error estimators are defined by:

η̂2
k (uk;T ′) := ∑

T∈T ′
η̂2

k (uk;T ) and ôsc2
k(uk;T ′) := ∑

T∈T ′
ôsc2

k(uk;T ).

The procedure of the adaptive finite element method can be described as follows:

Solve → Estimate → Mark → Refine.

Specifically, to obtain a new mesh Tk+1 from Tk, we first need to deal with the elasticity
boundary value problem (2.7) on Tk to derive an approximation. Then, we calculate the local
error estimators for all mesh elements. Next, we mark some mesh elements on the basis of
the values of local error estimators. We use the bisection of elements for the marked mesh
elements in this paper. Finally, we refine the marked elements such that the new mesh is still
shape-regular and conforming.

To simplify the description of the classical adaptive finite element method to solve elas-
ticity boundary value problem, we introduce the following notations:

– uk = EBVP−SOLVE(f,Vk): Solve the elasticity boundary value problem (2.3) in Vk and
return the finite element solution uk ∈Vk.

– uk = MGEBVP−SOLVE(f,u0,Vk): Solve the elasticity boundary value problem (2.3) by
the multigrid method with initial value u0 ∈Vk in Vk and return the multigrid approxima-
tion uk ∈Vk.

– {η̂k(uk;T )}T∈Tk = EBVP−ESTIMATE(uk,Tk): Compute η̂k(uk;T ) on each mesh ele-
ment T ∈ Tk.

– Mk = EBVP−MARK(θ , η̂k(uk;T ),Tk): Select a subset Mk using Dörfler’s marking s-
trategy defined in [17]; in other words, choose a minimal subset Mk from Tk satisfying

η̂k(uk;Mk)≥ θη̂k(uk;Tk).

– (Tk+1,Vk+1) = REFINE(Tk,Mk): Generate a new mesh Tk+1 and finite element space
Vk+1 according to Mk where at least all element of Mk are refined.

The classical AFEM for the elasticity boundary value problem (2.3) is summarized in
Algorithm 2.1.

Algorithm 2.1 Adaptive Finite Element Method.
Given an initial mesh T1 and a refinement parameter θ ∈ (0,1). Set k := 1 and execute the
following loops:

1. uk = EBVP−SOLVE(f,Vk);

2. {η̂k(uk;T )}T∈Tk = EBVP−ESTIMATE(uk,Tk);

3. Mk = EBVP−MARK(θ , η̂k(uk;T ),Tk);

4. (Tk+1,Vk+1) = REFINE(Tk,Mk);

5. Set k := k+1 and proceed to step 1.
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The theoretical conclusions for the elasticity boundary value problem follow the classical
adaptive finite element theory. Finally, we recall some conclusions on the AFEM for the elas-
ticity boundary value problem in the following lemmas. The detailed proofs of the following
lemmas are simple extensions of the corresponding results in subsection 2.1 of [15] by some
simple operations.

Lemma 2.1 The following reliability and efficiency of the a posteriori error estimator hold:

∥u−uk∥2
a,Ω ≤ Ĉuη̂2

k (uk;Tk) (2.10)

and

Ĉℓη̂2
k (uk;Tk)≤ ∥u−uk∥2

a,Ω + ôsc2
k(uk;Tk), (2.11)

where the coefficients depend only on the shape-regularity of Tk.

Lemma 2.2 The following estimate about the projection and the oscillation holds

∥u−Pku∥2
a,Ω + ôsc2

k(Pku;Tk)≤ Ĉ inf
vk∈Vk

(
∥u−vk∥2

a,Ω + ôsc2
k(vk;Tk)

)
,

where Ĉ depends only on the shape regularity of the initial mesh T1.

Lemma 2.3 The finite element approximate solutions derived from Algorithm 2.1 satisfy the
following convergence:

∥u−uk+1∥2
a,Ω + γ̂ η̂2

k+1(uk+1;Tk+1)≤ ξ̂ 2(∥u−uk∥2
a,Ω + γ̂ η̂2

k (uk;Tk)
)
, (2.12)

where γ̂ > 0 and ξ̂ ∈ (0,1) are two constants that depend only on the shape regularity of
meshes and marking parameter θ .

In this paper, we assume that the marking parameter θ satisfies θ ∈ (0,θ∗) with θ∗ being
defined in Assumption 5.8 of [10].

Lemma 2.4 Suppose that Tk,∗ is derived by refining Tk, and the two projections Pk,∗u and
Pku satisfy

∥u−Pk,∗u∥2
a,Ω + ôsc2

k,∗(Pk,∗u;Tk,∗)≤ ξ̃ 2
0
(
∥u−Pku∥2

a,Ω + ôsc2
k(Pku;Tk)

)
with ξ̃ 2

0 ∈ (0, 1
2 ). Denote θ̃ = θ∗(1−2ξ̃ 2

0 )
1
2 , Then, we can derive the following estimate

η̂k(Pku;Tk\(Tk,∗∩Tk))≥ θ̃ η̂k(Pku;Tk).
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3 Multilevel correction adaptive multigrid method for the elasticity eigenvalue
problem

This section is devoted to proposing a novel multilevel correction adaptive multigrid method
for the elasticity eigenvalue problem (1.1).

The weak form of the elasticity eigenvalue problem (1.1) can be written as follows: Find
(λ ,u) ∈ R×V such that

a(u,v) = λ (u,v), ∀v ∈V. (3.1)

From [1,11], the elasticity eigenvalue problem (3.1) has eigenvalues:

0 < λ1 ≤ λ2 ≤ ·· · ≤ λi ≤ ·· · , lim
i→∞

λi = ∞

and the corresponding eigenfunctions:

u1,u2, · · · ,ui, · · · ,

where (ui,u j) = δi j.
The standard finite element method for (3.1) is to solve the following discrete elasticity

eigenvalue problem: Find (λ̄k, ūk) ∈ R×Vk such that

a(ūk,vk) = λ̄k(ūk,vk), ∀vk ∈Vk. (3.2)

From [1,11], the discrete elasticity eigenvalue problem (3.2) has eigenvalues:

0 < λ̄k,1 ≤ λ̄k,2 ≤ ·· · ≤ λ̄k,Nk

and the corresponding eigenfunctions:

ūk,1, ūk,2, · · · , ūk,Nk ,

where (ūk,i, ūk, j) = δi, j,1 ≤ i, j ≤ Nk (Nk is the dimension of the finite element space Vk).
Denote M(λ ) as the eigenspace corresponding to λ as follows:

M(λ ) = {w ∈V : w is an eigenfunction of (3.1) corresponding to λ , ∥w∥0,Ω = 1}.

Let us define

δk(λ ) = sup
w∈M(λ )

inf
vk∈Vk

∥w−vk∥a,Ω

and

ηa(Vk) = sup
f∈(L2(Ω))d ,∥f∥0,Ω=1

inf
vk∈Vk

∥T f−vk∥a,Ω ,

where T : (L2(Ω))d →V is defined as

a(T f,v) = (f,v), ∀f ∈ (L2(Ω))d and ∀v ∈V. (3.3)

For the standard finite element approximate eigenvalue and approximate eigenfunction,
we can obtain (see [1,11]):
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Lemma 3.1 An exact eigenpair (λ ,u) of (3.1) exists such that each approximation (λ̄k, ūk)
has the following estimates

∥u− ūk∥a,Ω . δk(λ ), (3.4)
∥u− ūk∥0,Ω . ηa(Vk)∥ū− ūk∥a,Ω , (3.5)

|λ − λ̄k| . ∥u− ūk∥2
a,Ω , (3.6)

where the hidden coefficient depends on the desired eigenvalue but is independent of mesh
size.

3.1 Multilevel correction adaptive multigrid method

A novel adaptive multigrid method is designed in this subsection for the elasticity eigenval-
ue problem (3.1) on the basis of our recent advances in the multilevel correction method,
multigrid iteration and adaptive refinement technique.

Following the definition of the element residual R̂T (uk) and jump ĴE(uk) for the elas-
ticity boundary value problem, for the elasticity eigenvalue problem (3.2), we define:

RT (λk,uk) := divσ(uk)+λkuk, for T ∈ Tk,

JE(uk) := −σ(u+
k ) ·ν

+−σ(u−
k ) ·ν

− := [σ(uk) ·νE ], for E ∈ Ek.

On the basis of the two definitions above, we define the local error estimator for the
elasticity eigenvalue problem (3.2) on each mesh element T inTk by:

η2
k (λk,uk;T ) := h2

T∥RT (λk,uk)∥2
0,T + ∑

E∈Ek,E⊂∂T
hE∥JE(uk)∥2

0,E ,

osc2
k(λk,uk;T ) := h2

T∥(I −PT )RT (λk,uk)∥2
0,T + ∑

E∈Ek,E⊂∂T
hE∥(I −PE)JE(uk)∥2

0,E .

Then for a subset T ′ ⊂ Tk, the global error estimators are defined by

η2
k (λk,uk;T ′) := ∑

T∈T ′
η2

k (λk,uk;T ), osc2
k(λk,uk;T ′) := ∑

T∈T ′
osc2

k(λk,uk;T ).

Similarly, we introduce the following notations for the elasticity eigenvalue problem:

– (λk,uk) = EEG−SOLVE(Vk): Solve the elasticity eigenvalue problem in Vk and return the
finite element solution (λk,uk) ∈ R×Vk for the desired eigenpair.

– {ηk(λk,uk;T )}T∈Tk =EEG−ESTIMATE(λk,uk,Tk): Compute ηk(λk,uk;T ) on each mesh
element T ∈ Tk.

– Mk = EEG−MARK(θ ,ηk(λk,uk;T ),Tk): Choose a minimal subset Mk from Tk satis-
fying

ηk(λk,uk;Mk)≥ θηk(λk,uk;Tk). (3.7)

Subsequently, we design the novel adaptive multigrid method for the elasticity eigenvalue
problem (3.2) in Algorithm 3.1, which is the main component of this paper.
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Algorithm 3.1 Multilevel Correction Adaptive Multigrid Method
Construct a coarse mesh TH and a coarse finite element space VH on the computing domain
Ω . Select an initial mesh T1 and an initial finite element space V1 through refining TH using
the regular method such that VH ⊆V1. Set k := 1 and execute the following loops:

1. (λk,uk) =

{
EEG−SOLVE(V1), when k = 1;
EEG−SOLVE(VH ⊕ span{ŭk}), when k > 1;

2. {ηk(λk,uk;T )}T∈Tk = EEG−ESTIMATE(λk,uk,Tk);

3. Mk = EEG−MARK(θ ,ηk(λk,uk;T ),Tk);

4. (Tk+1,Vk+1) = REFINE(Tk,Mk);

5. (a) set u(0)
k+1 = uk;

(b) For ℓ= 0, · · · , p−1:

u(ℓ+1)
k+1 = MGEBVP−SOLVE(λkuk,u

(ℓ)
k+1,Vk+1),

End For.

(c) Set ŭk+1 = u(p)
k+1;

6. Set k := k+1 and proceed to step 1.

Remark 3.1 In Algorithm 3.1, we need to solve p-times the elasticity boundary value prob-
lem and a small-scale elasticity eigenvalue problem during each iteration. The key point of
Algorithm 3.1 is the addition of a correction step after solving the elasticity boundary value
problems in adaptive spaces. In fact, if we remove these correction steps, the algorithm will
become an inverse power method and the corresponding convergence rate will then depend
on the eigenvalue gaps (see e.g. [1,12]). Therefore, such a strategy is not sufficiently stable
and may fail to converge to the desired solutions when the eigenvalue gap is small. In this
case, the correction step can help to guarantee the convergence. Thus we actually obtain t-
wo drivers for the convergence in Algorithm 3.1 by adding the correction step; thus a good
convergence rate can be achieved even when the eigenvalue gap is small.

Although we need to additionally solve an elasticity eigenvalue problem in VH ⊕span{ŭk},
the dimension and sparsity of such elasticity eigenvalue problem will remain unchanged; thus
the computational time is negligible compared to that of elasticity boundary value problem
defined in adaptive space.

The main computational work of Algorithm 3.1 is spent on the elasticity boundary value
problems. However, it should be noted that the optimal complexity of adaptive finite element
method means only that the discretization scale is optimal but not that the computational work
is optimal. This is because we still need to solve the elasticity boundary value problem in each
level of the adaptive finite element space. To improve the efficiency of the elasticity boundary
value problem in each adaptive space, the adaptive multigrid method is further involved in
our algorithm which can solve the boundary value problem with linear computational work
in adaptive finite element space.
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3.2 The efficiency and reliability of the a posteriori error estimator

In this section, we prove that the a posteriori error estimator defined for the elasticity eigenval-
ue problem has the efficiency and reliability property. The proof is mainly based on the con-
nections between the elasticity boundary value problem and the elasticity eigenvalue problem.
Such connections will also play an important role in the proof of the convergence property.
For simplicity, we only consider the simple eigenvalue in this paper. But it may be not the
smallest one.

For the purpose of theoretical analysis, let us define an elasticity boundary value problem
as follows: Find wk ∈V such that

a(wk,v) = (λkuk,v) ∀v ∈V. (3.8)

Denote

ũk = Pkwk−1. (3.9)

Then, we can establish the following connections between the elasticity boundary value prob-
lem and the elasticity eigenvalue problem.

Theorem 3.1 Assume that the adaptive multigrid iteration for the elasticity boundary value
problem

u(ℓ+1)
k = MGBVP−SOLVE(λk−1uk−1,u

(ℓ)
k ,Vk) (3.10)

satisfies the following reduction property:

∥ũk −u(ℓ+1)
k ∥a,Ω ≤ ν∥ũk −u(ℓ)

k ∥a,Ω . (3.11)

Let u be the exact solution of (3.1), and uk be approximate solution produced by Algorithm
3.1. Then, the following connections between the elasticity boundary value problem and the
elasticity eigenvalue problem hold:

∥u−uk∥a,Ω = ∥wk −Pkwk∥a,Ω +O(r(VH ,ν))(∥u−uk−1∥a,Ω +∥u−uk∥a,Ω ), (3.12)

∥u−uk∥a,Ω = ∥wk−1 −Pkwk−1∥a,Ω +O(r(VH ,ν))(∥u−uk−1∥a,Ω +∥u−uk∥a,Ω ),(3.13)

where r(VH ,ν)=ηa(VH)+ν p and the symbol a= b+O(r(VH ,ν))c means |a−b|. r(VH ,ν)c.

Proof u−uk can be decomposed into the following four parts

u−uk = (u−wk)+(wk −Pkwk)+(Pkwk −Pkwk−1)+(Pkwk−1 −uk). (3.14)

For the first part of (3.14), we have the following estimates by using (3.1), Lemma 3.1
and (3.8):

∥u−wk∥2
a,Ω = a(u−wk,u−wk)

=
(
λu−λkuk,u−wk)

≤ ∥λu−λkuk∥0,Ω∥u−wk∥0,Ω

= ∥(λ −λk)uk +λ (u−uk)∥0∥u−wk∥0

. (|λ −λk|+∥u−uk∥0,Ω )∥u−wk∥0,Ω

. (|λ −λk|+∥u−uk∥0,Ω )∥u−wk∥a,Ω

. ηa(VH)∥u−uk∥a,Ω∥u−wk∥a,Ω , (3.15)
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which leads to

∥u−wk∥a,Ω . ηa(VH)∥u−uk∥a,Ω . (3.16)

The third part of (3.14) can be estimated as follows by using (2.9) and the proved result
(3.16)

∥Pk(wk −wk−1)∥a,Ω ≤ ∥u−wk∥a,Ω +∥u−wk−1∥a,Ω

. ηa(VH)
(
∥u−uk∥a,Ω +∥u−uk−1∥a,Ω

)
. (3.17)

For the last part of (3.14), because ŭk −uk ∈VH ⊕ span{ŭk}, we can derive

∥Pkwk−1 −uk∥2
a,Ω

= a(Pkwk−1 −uk,Pkwk−1 −uk)

= a(Pkwk−1 −uk,Pkwk−1 − ŭk)+a(Pkwk−1 −uk, ŭk −uk)

= a(Pkwk−1 −uk,Pkwk−1 − ŭk)+(λk−1uk−1 −λkuk, ŭk −uk)

. ∥Pkwk−1 −uk∥a,Ω∥Pkwk−1 − ŭk∥a,Ω

+ηa(VH)(∥u−uk∥a,Ω +∥u−uk−1∥a,Ω )∥ŭk −uk∥a,Ω

. ∥Pkwk−1 −uk∥a,Ω∥Pkwk−1 − ŭk∥a,Ω +ηa(VH)(∥u−uk∥a,Ω +

∥u−uk−1∥a,Ω )(∥Pkwk−1 − ŭk∥a,Ω +∥uk −Pkwk−1∥a,Ω ). (3.18)

From (3.11), Pkwk−1 − ŭk can be estimated as follows

∥Pkwk−1 − ŭk∥a,Ω

≤ ν p∥Pkwk−1 −uk−1∥a,Ω

≤ ν p(∥Pkwk−1 −Pku∥a,Ω +∥Pku−u∥a,Ω +∥u−uk−1∥a,Ω )

≤ ν p(∥u−wk−1∥a,Ω +∥u−uk∥a,Ω +∥u−uk−1∥a,Ω )

≤ ν p(1+Cηa(VH))(∥u−uk∥a,Ω +∥u−uk−1∥a,Ω ). (3.19)

Combining (3.18) and (3.19) leads to the following estimate

∥Pkwk−1 −uk∥2
a,Ω

. (ν p +ηa(VH))
(
∥u−uk∥a,Ω +∥u−uk−1∥a,Ω

)
∥Pkwk−1 −uk∥a,Ω

+ν pηa(VH)
(
∥u−uk∥a,Ω +∥u−uk−1∥a,Ω

)2
, (3.20)

which further yields

∥Pkwk−1 −uk∥a,Ω . (ν p +ηa(VH))
(
∥u−uk∥a,Ω +∥u−uk−1∥a,Ω

)
. (3.21)

Based on (3.16), (3.17) and (3.21), we can obtain the desired result (3.12).
The second connection (3.13) can be proved in the same way by decomposing u−uk into

the following three parts

u−uk = (u−wk−1)+(wk−1 −Pkwk−1)+(Pkwk−1 −uk).

Then we complete the proof.



12 Fei Xu et al.

Remark 3.2 To improve the efficiency of the elasticity boundary value problem in each adap-
tive space, the adaptive multigrid method is adopted in Algorithm 3.1, and we can get a
convergence rate for the adaptive multigrid iteration which only depends on the multilevel
mesh sequence [14,51].

In Theorem 3.1, we have established connections between the elasticity boundary value
problem and the elasticity eigenvalue problem, which implies that the difference is a high-
order term. Therefore, we can prove the theoretical conclusions for the elasticity eigenvalue
problem by following the procedure for the elasticity boundary value problem.

Similarly, the following two theorems can be proved in the same way as Theorem 3.1 by
combining the definitions of the error estimators, inverse inequality and trace theorem.

Theorem 3.2 Let u be the exact solution of (3.1), and uk be approximate solution produced by
Algorithm 3.1. Then, we have the following connections for the a posteriori error estimators
between the elasticity boundary value problem and the elasticity eigenvalue problem:

ηk(λk,uk;Tk) = η̂k(Pkwk−1;Tk)+O
(
r(VH ,ν)

)
(∥u−uk−1∥a,Ω +∥u−uk∥a,Ω ),(3.22)

ηk(λk,uk;Tk) = η̂k(Pkwk;Tk)+O
(
r(VH ,ν)

)
(∥u−uk−1∥a,Ω +∥u−uk∥a,Ω ). (3.23)

Proof Using the triangle inequality and the definition of error estimators leads to

|ηk(λk,uk;T )− η̂k(Pkwk−1;T )|

=
∣∣∣(h2

T∥λkuk +divσ(uk)∥2
0,T + ∑

E∈Ek,E⊂∂T
hE∥[divσ(uk)] ·νE∥2

0,E

)1/2

−
(

h2
T∥λk−1uk−1 +divσ(ũk)∥2

0,T + ∑
E∈Ek,E⊂∂T

hE∥[divσ(ũk)] ·νE∥2
0,E

)1/2∣∣∣
≤

{(
h2

T∥λkuk −λk−1uk−1 +divσ(uk − ũk)∥0,T

)2

+hE ∑
E∈Ek,E⊂∂T

(
∥[divσ(uk)] ·νE − [divσ(ũk)] ·νE∥0,E

)2
}1/2

. (3.24)

From the inverse estimate, we have

∥divσ(vk)∥0,T . h−1
T ∥σ(vk)∥0,T , ∀T ∈ Th, vk ∈Vk. (3.25)

From the inverse estimate and the trace inequality

∥v∥0,∂T . h−1/2
T ∥v∥0,T +hs−1/2

T ∥v∥s,T ∀s > 1/2, v ∈ Hs(T ), T ∈ Tk,

we have

hE∥[divσ(vk)] ·νE∥2
0,E . ∥σ(vk)∥2

0,T , ∀vk ∈Vk. (3.26)

Using (3.24)–(3.26), we can derive

|ηk(λk,uk;T )− η̂k(Pkwk−1;T )|. hT∥λkuk −λk−1uk−1∥0,T +∥σ(uk − ũk)∥0,T . (3.27)
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From Lemma 3.1, (3.21) and (3.27), there holds

|ηk(λk,uk;Tk)− η̂k(Pkwk−1;Tk)| =
∣∣( ∑

T∈Tk

η2
k (λk,uk;T )

)1/2 −
(

∑
T∈Tk

η̂2
k (Pkwk−1;T )

)1/2∣∣
.

(
∑

T∈Tk

(
ηk(λk,uk;T )− η̂k(Pkwk−1;T )

)2)1/2

. r(VH ,ν)(∥u−uk∥a,Ω +∥u−uk−1∥a,Ω ).

This is the desired result (3.22). The second result (3.23) can be derived similarly.

Theorem 3.3 Let u be the exact solution of (3.1), and uk be approximate solution produced by
Algorithm 3.1. Then, we have the following connections for oscillations between the elasticity
boundary value problem and the elasticity eigenvalue problem:

osck(λk,uk;Tk) = ôsck(Pkwk−1;Tk)+O
(
r(VH ,ν)

)
(∥u−uk−1∥a,Ω +∥u−uk∥a,Ω ),(3.28)

osck(λk,uk;Tk) = ôsck(Pkwk;Tk)+O
(
r(VH ,ν)

)
(∥u−uk−1∥a,Ω +∥u−uk∥a,Ω ). (3.29)

Based on Theorems 3.1–3.3, we can prove the efficiency and reliability for the elasticity
eigenvalue problem through Lemma 2.1.

Theorem 3.4 Let u be the exact solution of (3.1), and uk be approximate solution produced
by Algorithm 3.1. Then, two constants Cu and Cℓ that are independent of the mesh size exist
such that, when r(VH ,ν) is sufficiently small, the following efficiency and reliability hold:

∥u−uk∥2
a,Ω ≤Cuη2

k (λk,uk;Tk)+O(r2(VH ,ν))∥u−uk−1∥2
a,Ω

and

Cℓη2
k (λk,uk;Tk)≤ ∥u−uk∥2

a,Ω +osc2
k(λk,uk;Tk)+O(r2(VH ,ν))∥u−uk−1∥2

a,Ω .

Proof Since wk−1 is the exact solution of the elasticity boundary value problem, we can
derive the following reliability and efficiency by using Lemma 2.1

∥wk−1 −Pkwk−1∥a,Ω ≤ Ĉuη̂k(Pkwk−1,Tk)

and

Ĉℓη̂2
k (Pkwk−1,Tk)≤ ∥wk−1 −Pkwk−1∥2

a,Ω + ôsc2
k(Pkwk−1,Tk).

Then we can get the desired results by combining the above estimates and Theorems 3.1–3.3.

4 Convergence of multilevel correction adaptive multigrid algorithm for the elasticity
eigenvalue problem

4.1 Convergence of multilevel correction adaptive multigrid algorithm

This section provides the convergence estimates of Algorithm 3.1 on the basis of existing
results for the elasticity boundary value problem presented in Section 2 and the connections
presented in Theorems 3.1– 3.3.
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Theorem 4.1 When r(VH ,ν) is sufficiently small, there exist constants γ, α0 > 0 and α ∈
(0,1) which depend only on the mesh refinement parameter θ and the shape regularity of the
mesh, such that the approximate solution (λk,uk) produced by Algorithm 3.1 satisfies

∥u−uk∥2
a,Ω + γη2

k (λk,uk;Tk) ≤ α2(∥u−uk−1∥2
a,Ω + γη2

k−1(λk−1,uk−1;Tk−1)
)

+α2
0 r2(VH ,ν)∥u−uk−2∥2

a,Ω . (4.1)

Proof From (3.7) and Theorem 3.2, there holds

η̂k−1(Pk−1wk−1;Mk−1) ≥ θη̂k−1(Pk−1wk−1;Tk−1)

−Cη r(VH ,ν)(∥u−uk−1∥a,Ω +∥u−uk−2∥a,Ω ). (4.2)

Then using (4.2) and the proof procedure of Lemma 2.3 in [10], there exist constants
γ̂ > 0 and ξ̂ ∈ (0,1) such that

∥wk−1 −Pkwk−1∥2
a,Ω + γ̂ η̂2

k (Pkwk−1;Tk)

≤ ξ̂ 2(∥wk−1 −Pk−1wk−1∥2
a,Ω + γ̂ η̂2

k−1(Pk−1wk−1;Tk−1)
)

+Cr2(VH ,ν)
(
∥u−uk−1∥2

a,Ω +∥u−uk−2∥2
a,Ω

)
. (4.3)

On the one hand, from (3.13), (3.22), (4.3) and Young inequality, we can derive

∥u−uk∥2
a,Ω + γ̂η2

k (λk,uk;Tk)

≤ (1+δ1)
(
∥wk−1 −Pkwk−1∥2

a,Ω + γ̂ η̂2
k (Pkwk−1;Tk)

)
+Cδ−1

1 r2(VH ,ν)
(
∥u−uk∥2

a,Ω +∥u−uk−1∥2
a,Ω

)
≤ (1+δ1)ξ̂ 2(∥wk−1 −Pk−1wk−1∥2

a,Ω + γ̂ η̂2
k−1(Pk−1wk−1;Tk−1)

)
+Cδ−1

1 r2(VH ,ν)
(
∥u−uk∥2

a,Ω + γ̂η2
k (λk,uk;Tk)

)
+Cδ−1

1 r2(VH ,ν)
(
∥u−uk−1∥2

a,Ω +∥u−uk−2∥2
a,Ω

)
,

which yields the following estimates

∥u−uk∥2
a,Ω + γ̂η2

k (λk,uk;Tk)

≤ (1+δ1)ξ̂ 2

1−Cδ−1
1 r2(VH ,ν)

(
∥wk−1 −Pk−1wk−1∥2

a,Ω + γ̂ η̂2
k (Pk−1wk−1;Tk−1)

)
+

Cδ−1
1

1−Cδ−1
1 r2(VH ,ν)

r2(VH ,ν)
(
∥u−uk−1∥2

a,Ω +∥u−uk−2∥2
a,Ω

)
. (4.4)

On the other hand, using the similar technique on the right side of (4.4), we can obtain

∥wk−1 −Pk−1wk−1∥2
a,Ω + γ̂ η̂2

k−1(Pk−1wk−1;Tk−1)

≤
(
1+δ1

)(
∥u−uk−1∥2

a,Ω + γ̂η2
k−1(λk−1,uk−1;Tk−1)

)
+Cδ−1

1 r2(VH ,ν)
(
∥u−uk−1∥2

a,Ω +∥u−uk−2∥2
a,Ω

)
. (4.5)
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Finally, combining (4.4) and (4.5) leads to

∥u−uk∥2
a,Ω + γη2

k (λk,uk;Tk) ≤ α2(∥u−uk−1∥2
a,Ω + γη2

k−1(λk−1,uk−1;Tk−1)
)

+α2
0 r2(VH ,ν)∥u−uk−2∥2

a,Ω .

with

α2 :=
(1+δ1)(1+δ1 +Cδ−1

1 r2(VH ,ν))ξ̂ 2 +Cδ−1
1 r2(VH ,ν)

1−Cδ−1
1 r2(VH ,ν)

,

α2
0 :=

(1+δ1)Cδ−1
1 ξ̂ 2 +Cδ−1

1

1−Cδ−1
1 r2(VH ,ν)

, γ := γ̂ .

The contraction property (4.1) can be proved through choosing δ1 small enough such that
α < 1. Then we complete the proof.

Based on Theorem 4.1, the final convergence result is provided in Theorem 4.2.

Theorem 4.2 When r(VH ,ν) is sufficiently small, two constants β > 0 and α̂ ∈ (0,1) exist,
that depend only on the parameter θ and the shape regularity of the mesh, such that

E2
k +β 2r2(VH ,ν)E2

k−1 ≤ α̂2(E2
k−1 +β 2r2(VH ,ν)E2

k−2), (4.6)

where E2
k = ∥u−uk∥2

a,Ω + γη2
k (λk,uk;Tk).

Proof From Theorem 4.1, it is obvious that the following estimate holds

E2
k ≤ α2E2

k−1 +α2
0 r2(VH ,ν)∥u−uk−2∥2

a,Ω .

Chosen α̂ and β such that

α̂2 −β 2r2(VH ,ν) = α2, α̂2β 2 = α2
0 ,

which leads to

α̂2 =
α2 +

√
α4 +4α2

0 r2(VH ,ν)

2
and β 2 =

2α2
0

α2 +
√

α4 +4α2
0 r2(VH ,ν)

.

Thus, there holds α̂ < 1 when r(VH ,ν) is small enough. Then we complete the proof.
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4.2 Optimal complexity

In the last of this section, we also would like to briefly analyze the complexity of Algorithm
3.1 as [15]. Similar to the normal analysis of AFEM, to analyze the optimal complexity of
Algorithm 3.1, we study a class of functions:

A s :=
{

v ∈V : |v|s < ∞
}
,

where
|v|s = sup

ε>0
ε inf
{T1≤Tε : inf

(λε ,uε )
(∥v−uε∥2

a,Ω+osc2
ε (λε ,uε ;Tε ))1/2≤ε}

(#Tε −#T1)
s.

Herein, T1 ≤ Tε implies that Tε is refined from T1, and #T denotes the number of mesh
elements of T . Hence the functions belong to A s can be approximated to a tolerance ε by
piecewise polynomials on Tε with #Tε −#T1 . ε−1/s|v|1/s

s .
First, the initial mesh size is assumed to be sufficiently small such that

r(VH ,ν)∥u−uk∥2
a,Ω ≤ ∥u−uk+1∥2

a,Ω , for k ≥ 2. (4.7)

Then, the following convergence can be deduced from Theorem 4.1:

∥u−uk∥2
a,Ω + γη2

k (λk,uk;Tk)≤ ᾱ2(∥u−uk−1∥2
a,Ω + γη2

k−1(λk−1,uk−1;Tk−1)
)
,

with ᾱ2 = α2 +α2
0 r(VH ,ν).

Remark 4.1 It is worth mentioning that the assumption (4.7) implies the initial mesh should
be fine enough such that the consecutive approximate solution doesn’t change significantly.
If u is not a piecewise linear polynomial, a sharp lower and upper bound exist for ∥u−uk∥a,Ω
(see [36], etc). Then the assumption (4.7) is reasonable generally.

In (4.7) and the convergence analysis, we all give some constraints on TH and the multi-
grid iteration time p to derive the theoretical conclusions. But we will observe from the nu-
merical experiments that a coarse mesh TH and two or three times multigrid iteration steps
are enough to derive the optimal numerical results.

Lemma 4.1 ([10]) Let Ts and Tt be two conforming refinements of T1. Then, the smallest
common refinement of two meshes Ts and Tt , in other words, T := Ts ⊕Tt , is conforming
and satisfies

#T ≤ #Ts +#Tt −#T1. (4.8)

Lemma 4.2 Let (λk,uk) ∈ R×Vk be the approximate eigenpair produced by Algorithm 3.1.
Let Tk ≤ Tk,∗, and (λk,∗,uk,∗) = EEG−SOLVE(VH ⊕ span{Pk,∗wk}). Suppose that we have:

∥u−uk,∗∥2
a,Ω +osc2

k,∗(λk,∗,uk,∗;Tk,∗)≤ β 2
∗
(
∥u−uk∥2

a,Ω +osc2
k(λk,uk;Tk)

)
.

Then the following relationship about the projections Pkwk and Pk,∗wk holds:

∥wk −Pk,∗wk∥2
a,Ω + ôsc2

k,∗(Pk,∗wk;Tk,∗)≤ β̂ 2
∗
(
∥wk −Pkwk∥2

a,Ω + ôsc2
k(Pkwk;Tk)

)
(4.9)

with

β̂ 2
∗ :=

(1+δ2)
(
(1+δ2 +C∗δ−1

2 r2(VH ,ν))β 2
∗ +C∗δ−1

2 r2(VH ,ν)
)

1−C2δ−1
2 r(VH ,ν)

. (4.10)
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Proof From Theorem 3.1 and 3.3, there exists a constant C∗ > 0 such that

∥wk −Pk,∗wk∥2
a,Ω + ôsc2

k,∗(Pk,∗wk;Tk,∗)

≤ (1+δ2)
(
∥u−uk,∗∥2

a,Ω +osc2
k,∗(λk,∗,uk,∗;Tk,∗)

)
+C∗δ−1

2 r2(VH ,ν)
(
∥u−uk,∗∥2

a,Ω +∥u−uk∥2
a,Ω

)
≤ (1+δ2)β 2

∗
(
∥u−uk∥2

a,Ω +osc2
k(λk,uk;Tk)

)
+C∗δ−1

2 r2(VH ,ν)β 2
∗
(
∥u−uk∥2

a,Ω +osc2
k(λk,uk;Tk)

)
+C∗δ−1

2 r2(VH ,ν)∥u−uk∥2
a,Ω

≤ Cr
(
∥u−uk∥2

a,Ω +osc2
k(λk,uk;Tk)

)
, (4.11)

where Cr =
(
1+δ2 +C∗δ−1

2 r2(VH ,ν)
)
β 2
∗ +C∗δ−1

2 r2(VH ,ν).
Similarly, we have the following estimates for the right side of (4.11)

∥u−uk∥2
a,Ω +osc2

k(λk,uk;Tk)≤
(1+δ2)

(
∥wk −Pkwk∥2

a,Ω + ôsc2
k(Pkwk;Tk)

)
1−C2δ−1

2 r(VH ,ν)
. (4.12)

Combining (4.11) and (4.12) leads to the desired result (4.9).

The following corollary is a direct consequence of Lemmas 2.4 and 4.2.

Corollary 4.1 Let (λk,uk) ∈ R×Vk and (λk,∗,uk,∗) ∈ R×Vk,∗ be as in Lemma 4.2. Suppose
that the following estimate holds

∥u−uk,∗∥2
a,Ω +osc2

k,∗(λk,∗,uk,∗;Tk,∗)≤ β 2
∗
(
∥u−uk∥2

a,Ω +osc2
k(λk,uk;Tk)

)
,

where the constant β 2
∗ ∈ (0,1/2). Then there holds:

ηk(λk,uk;Tk\(Tk,∗∩Tk))≥ θ̂ηk(λk,uk;Tk),

where θ̂ = θ∗(1−2β̂ 2
∗ )

1
2 −Cr

1
2 (VH ,ν), and θ∗ and β̂∗ are defined in Lemmas 2.4 and 4.2.

Lemma 4.3 Let the exact eigenfunction u ∈ A s and Tk be the mesh produced by Algorithm
3.1 with the refinement parameter θ ∈

(
0,θ∗

)
. Then the marked set Mk satisfies

#Mk .
(
∥u−uk∥2

a,Ω +osc2
k(λk,uk;Tk)

)−1/(2s)|u|1/s
s , (4.13)

where the hidden coefficient depends on the discrepancy between θ and θ∗.

Proof Let ε be a small constant which will be defined later and let Tε be the refinement from
the initial mesh T1 which has the minimum mesh elements satisfying

∥u−uε∥2
a,Ω +osc2

ε(λε ,uε ;Tε)≤ ε2, (4.14)

where (λε ,uε) is the standard finite element solution for the elasticity eigenvalue problem
on Tε . Then based on the definition of A s, there holds

#Tε −#T1 . ε−1/s|u|1/s
s .
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Let Tk,+ = Tk ⊕Tε . Then from Lemma 4.1, we can derive

#Tk,+−#Tk ≤ #Tε −#T1.

Follow the definition (3.8), we denote wε as the exact solution of the elasticity boundary
value problem with the right hand term λε uε , then from Lemma 2.2, we have

∥wε −Pk,+wε∥2
a,Ω + ôsc2

k,+(Pk,+wε ;Tk,+)≤ Ĉ
(
∥wε −Pε wε∥2

a,Ω + ôsc2
ε(Pε wε ;Tε)

)
.(4.15)

Set (λk,+,uk,+) = EEG−SOLVE(VH ⊕ span{Pk,+wk,Pk,+wε}). Perform the similar pro-
cedure for (4.15) as that for Theorem 4.1, we can obtain

∥u−uk,+∥2
a,Ω +osc2

k,+(λk,+,uk,+;Tk,+)

≤ β 2
0
(
∥u−uε∥2

a,Ω +osc2
ε(λε ,uε ;Tε)

)
≤ β 2

0 ε2, (4.16)

where

β 2
0 =

(1+δ1)
(
1+δ1 +Cδ−1

1 r(VH ,ν)
)
Ĉ

1−Cδ−1
1 r(VH ,ν)

.

Let β∗ that appears in Corollary 4.1 be small enough such that θ̂ ≥ θ and set

ε =
β∗
β0

(
∥u−uk∥2

a,Ω +osc2
k(λk,uk;Tk)

) 1
2 .

Then from (4.16) and Corollary 4.1, we can obtain that Tk,+ satisfies

ηk(λk,uk;Tk\(Tk,+∩Tk))≥ θηk(λk,uk;Tk). (4.17)

Because Dörfler’s marking strategy chooses a minimum set Mk satisfying

ηk(λk,uk;Mk)≥ θηk(λk,uk;Tk),

thus Mk satisfies

#Mk ≤ #
(
Tk\(Tk,+∩Tk)

)
≤ #Tk,+−#Tk ≤ #Tε −#T1

.
(

β∗
β0

)−1/s (
∥u−uk∥2

a,Ω +osc2
k(λk,uk;Tk)

)−1/(2s)|u|1/s
s ,

which is (4.13) with the coefficient depending on the discrepancy between θ and θ∗.

From Lemma 4.3, we can obtain the optimal complexity analysis of Algorithm 3.1. Ac-
tually, we derive the same upper bound in Lemma 4.3 as that in [15]; hence, we can obtain
the optimal complexity of Algorithm 3.1 using the same method.Herein, we only present the
conclusion in the following theorem.

Theorem 4.3 Let u ∈ A s be the exact eigenfunction of (3.1) and {(λk,uk)} be the approx-
imate eigenpairs produced by Algorithm 3.1. Then, the ℓ-th approximate eigenpair satisfies
the following optimal bound:

∥u−uℓ∥2
a,Ω +osc2

ℓ(λℓ,uℓ;Tℓ). (#Tℓ−#T1)
−2s.
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Remark 4.2 We want to emphasize that Theorem 4.3 gives the optimal complexity of Algo-
rithm 3.1, which is the same the classical AFEM for eigenvalue problems. But the optimal
complexity means the discretization scale (or adaptive mesh) is optimal, not the computation-
al work is optimal. Actually, the computational work directly reflects the solving efficiency.
Now, we make a brief estimate about the computational work of Algorithm 3.1. which has
an essential difference from that of the classical AFEM and multilevel AFEM for eigenvalue
problems. Herein, we need to use additionally, that the sequence of unknowns belongs to a
geometric progression (see e.g. [6]):

Nk < σ0Nk ≤ Nk+1 < σ1Nk, k = 1,2, · · · (4.18)

Theorem 4.4 Assume the computational work for the elasticity eigenvalue problem in VH
and V1 is MH and M1, and the computational work of the adaptive multigrid iteration for e-
lasticity boundary value problem in Vk is O(Nk) for k = 2, · · · ,n. Then the total computational
work of Algorithm 3.1 is O

(
M1 +MH log(Nn)+Nn). Further, if MH and M1 is small enough,

a linear computational work O
(
Nn) can be derived.

Proof Let Wk denote the computational work of Algorithm 3.1 on Vk, and W denote the whole
computational work. Then we have

W =
n

∑
k=1

Wk = O
(
M1 +

n

∑
k=2

(Nk +MH)
)

= O
(
M1 +MH(n−1)+Nn

n

∑
k=2

σ (k−n)
0

)
= O

(
M1 +MH log(Nn)+Nn

)
. (4.19)

Further, a linear computational work O(Nn) for Algorithm 3.1 can be derived from (4.19) if
MH and M1 are small enough.

5 Numerical experiments

In this section, we present some numerical experiments conducted using Algorithm 3.1 for the
elasticity eigenvalue problem. In these numerical experiments, we set the parameter p = 2,
and each adaptive multigrid method involved in Algorithm 3.1 for the elasticity boundary
value problems is executed by performing one multigrid V-cycle iteration using the conjugate
gradient smoother twice [14]. For the small-scale elasticity eigenvalue problems, we adopt
the implicitly restarted Lanczos method, which is included in the popular package ARPACK.
The adaptive finite element spaces are constructed by the linear finite element space on the
meshes through adaptive refinement.

5.1 Example 1

In the first example, we solved the elasticity eigenvalue problem with Lamé constants µ =

1 and λ = 1 in the three dimensional non-convex domain Ω = (−1,1)3\[0,1)3. Owing to
the non-convex property, singularity of the eigenfunction is expected. Therefore, we used
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the multilevel correction adaptive multigrid method presented in Algorithm 3.1 to solve the
smallest eigenvalue of this example with the refinement parameter θ = 0.4.

As the exact eigenpair is unknown, an approximate solution derived on a fine mesh is
selected as the exact solution in our numerical experiments. In this example, we set H = h1 =
1/8 and V1 = VH . Figure 5.1 shows the initial mesh and the mesh after 10 adaptive refine-
ments. For the adaptive mesh, the convergence rate is described according to the number of
degrees of freedom because the local refinement leads to different mesh sizes. The mesh size
h is equivalent to N−1/d for uniform refinement, where d denotes the dimension of the space.
Then the optimal convergence rate of adaptive finite element method for eigenfunction and
eigenvalue can reach N−1/d and N−2/d , respectively, and the same conclusions can be found
in [9,48], etc. Figure 5.2 shows the errors of the approximate solutions derived by Algorithm
3.1. From Figure 5.2, we found that the approximate solutions derived by Algorithm 3.1 have
the optimal convergence rate.

In addition, we analyzed the CPU times of Algorithm 3.1 and the standard AFEM (i.e., the
elasticity eigenvalue problem is solved directly in each adaptive space) to verify the efficiency
of Algorithm 3.1. The corresponding results are presented in Figure 5.3, which shows that
Algorithm 3.1 is more efficient than the standard AFEM.

Fig. 5.1 Initial mesh and the adaptive mesh of Algorithm 3.1 for Example 1

Besides, we also test Algorithm 3.1 for the 10 smallest eigenvalues. Figures 5.4 and 5.5
demonstrate the corresponding error estimates and computational time. From Figure 5.4, we
can still find that the approximate solutions derived by Algorithm 3.1 have the optimal con-
vergence rate. From Figure 5.5, we can still find that Algorithm 3.1 is more efficient than the
standard AFEM.

5.2 Example 2

In the second example, we solved the elasticity eigenvalue problem on the domain Ω =(0,1)3

with Lamé constants µ = 1 and λ = 1 on Ω = (0,1)3\[1/2,1)3, µ = 1 and λ = 100 on
Ω = (1/2,1)3. Since the discontinuity of the Lame constants also leads to low regularity of
eigenfunctions, so we use the multilevel correction adaptive multigrid method presented in
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Fig. 5.2 Errors of Algorithm 3.1 for Example 1
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Fig. 5.3 Computational time (in seconds) of Algorithm 3.1 for Example 1
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Fig. 5.4 Errors of the ten smallest eigenvalues for Example 1

Algorithm 3.1 to solve the smallest eigenvalue of this example with refinement parameter
θ = 0.4.

As the exact eigenpair is unknown, an approximate solution derived on a finer mesh is
selected as the exact solution in our numerical experiments. In this example, we set H = h1 =
1/16 and V1 = VH . Figure 5.6 shows the initial mesh. Figure 5.7 shows adaptive mesh and
the cross section of the adaptive mesh after 10 adaptive refinements. Figure 5.8 depicts the
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Fig. 5.5 Computational time (in seconds) of the ten smallest eigenvalues for Example 1

error of the approximate solution derived by Algorithm 3.1. From Figure 5.8, we found that
the approximate solution derived by Algorithm 3.1 has the optimal convergence rate.

In addition, we also analyzed the CPU times of Algorithm 3.1 and the standard AFEM to
show the efficiency of Algorithm 3.1. The corresponding results are presented in Figure 5.9,
which shows that Algorithm 3.1 is more efficient than the standard AFEM.

Fig. 5.6 Initial mesh and the adaptive mesh of Algorithm 3.1 for Example 2

Fig. 5.7 The cross section along coordinate axis and xy plane of the adaptive mesh for Example 2
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Fig. 5.8 Errors of Algorithm 3.1 for Example 2
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Fig. 5.9 Computational time (in seconds) of Algorithm 3.1 for Example 2

6 Concluding remarks

In this paper, we proposed a novel multilevel correction adaptive multigrid method for solving
the elasticity eigenvalue problem on the basis of the adaptive multigrid method and our recent
advances in the multilevel correction method. The key point of our approach is to transform
the elasticity eigenvalue problem into a series of elasticity boundary value problems in a se-
quence of adaptive finite element spaces and some small-scale elasticity eigenvalue problems
in a low-dimensional space. Further, the involved elasticity boundary value problems were
solved using the adaptive multigrid method. In addition, we proved the convergence of the
proposed algorithm rigorously. In the future, we plan to extend the proposed algorithm to
other linear and nonlinear eigenvalue problems.

As we can see from numerical examples, the adaptive multigrid method can also used for
the ten smallest eigenvalues. In practice, people often care about the smallest eigenvalues or
the eigenvalues closest to a desired value. For completeness, the adaptive multigrid method
is presented as follows which can be used to solve the q smallest eigenvalues or the q eigen-
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values closest to a desired value. The corresponding approximate eigenpairs are denoted by
{(λk,i,uk,i)}q

i=1.
For any T ∈ Tk, we define

η2
k ({(λk,i,uk,i)}q

i=1;T ) =
q

∑
i=1

η2
k (λk,i,uk,i;T ). (6.1)

Then for a subset T ′ ⊂ Tk, the global error estimators are defined by

η2
k ({(λk,i,uk,i)}q

i=1;T ′) := ∑
T∈T ′

η2
k {(λk,i,uk,i)}q

i=1;T ).

Similarly, we also introduce the following notations:

– {(λk,i,uk,i)}q
i=1 = MulEEG−SOLVE(Vk): Solve the elasticity eigenvalue problem in Vk

and return the finite element solutions (λk,i,uk,i) ∈ R×Vk, i = 1, · · · ,q for the desired
eigenpairs.

– {ηk({(λk,i,uk,i)}q
i=1;T )}T∈Tk =MulEEG−ESTIMATE({(λk,i,uk,i)}q

i=1,Tk): Compute the
error estimator η2

k ({(λk,i,uk,i)}q
i=1;T ) on each mesh element T ∈ Tk.

Then the detailed algorithm are presented as follows:

Algorithm 6.1 Multilevel Correction Adaptive Multigrid Method
Construct a coarse mesh TH and a coarse finite element space VH on the computing domain
Ω . Select an initial mesh T1 and an initial finite element space V1 through refining TH using
the regular method such that VH ⊆V1. Set k := 1 and execute the following loops:

1. {(λk,i,uk,i)}q
i=1 =

{
MulEEG−SOLVE(V1), when k = 1;
MulEEG−SOLVE(VH ⊕ span{ŭk,1, · · · , ŭk,q}), when k > 1;

2. {ηk({(λk,i,uk,i)}q
i=1;T )}T∈Tk = MulEEG−ESTIMATE({(λk,i,uk,i)}q

i=1,Tk);

3. Mk = EEG−MARK(θ ,ηk({(λk,i,uk,i)}q
i=1;T ),Tk);

4. (Tk+1,Vk+1) = REFINE(Tk,Mk);

5. (a) set u(0)
k+1,i = uk,i, i = 1, · · · ,q;

(b) For ℓ= 0, · · · , p−1:

u(ℓ+1)
k+1,i = MGEBVP−SOLVE(λk,iuk,i,u

(ℓ)
k+1,i,Vk+1), i = 1, · · · ,q,

End For.

(c) Set ŭk+1,i = u(p)
k+1,i, i = 1, · · · ,q;

6. Set k := k+1 and proceed to step 1.
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