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explanation of Zikanov et al(2013) who regard natural convection as a 
destabization 
mechanism. It is further revealed that with respect to the unstable 
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Linear stabilities of the liquid metal mixed convection in a horizontal pipe under bottom9
heating and transverse magnetic field are studied through linear global stability analyses.10
Three branches of the linear stability boundary curves are determined by the eigenvalue11
computation of most unstable modes. One branch is located in the region of large Hartmann12
number and determined by the linear unstable mode which was first revealed by numerical13
simulations of Zikanov et al (2013). This branch curve shows that the global unstable14
mode exists above a threshold of Hartmann number, which agrees with the experiment of15
Genin et al (2011). The other two branch curves determined by two different longwave16
unstable modes intersect with each other in the region of small Hartmann number. The17
critical Grashof number on these two curves increases exponentially with the increase of the18
Hartmann number. Through energy budget analyses at the critical threholds of these unstable19
modes, it is found that for the unstable mode at large Hartmann numbers buoyancy is the20
dominant destabilizing term which demonstrates the hypothetical explanation of Zikanov et21
al (2013) who regard natural convection as a destabization mechanism. It is further revealed22
that with respect to the unstable modes on the critical stability curves of small Hartmann23
numbers the dominant destabization comes from the streamwise shear of the basic flow.24
Finally, within the linear unstable region, fully developed nonlinear flow states of the mixed25
convection are investigated by direct numerical simulations with several sets of selected26
dimensionless parameters. The spatiotemporal structures of these nonlinear flow states are27
discussed in detail with comparison to the linear unstable global modes.28
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1. Introduction30

Liquid metal blankets have been believed to be the most promising candidates (Abdou et al31
2015) for the blanket design of future fusion reactors due to their three key functions with32
heat exchangers, radiation shields and tritium breeders at the same time. Liquid metals as33
tritium breeding or cooling would circulate in all kinds of pipes and ducts for different blanket34
designs such as the water cooled (WCLL), helium cooled (HCLL) lead lithium blankets (Ling35
et al 2020; Forest et al 2020) and the dual coolant lead lithium (DCLL) blanket (Smolentsev36
et al 2015). Magnetohydrodynamic (MHD) interactions (Molokov et al 2007) would occur37
when the electrically conducting liquid metal moves in the strongmagnetic field that confines38
the fusion plasma. One of the open issues in the liquid blanket development is to assess the39
influence ofMHD effects on the fluid dynamics and heat transfer mechanisms (Smolentsev et40
al 2010; Mistrangelo et al 2021). Under strong magnetic fields, MHD interactions generally41
result in significant anisotropy of flow distribution and complex hydrodynamic behavior.42
Without considering the thermal effect, on the one hand, the magnetic field can lead to a43
change of laminar-turbulent transition mechanism (Moffatt 1967; Davidson 1995; Zikanov44
et al 2014) in the MHD flows. The magnetic field usually tends to suppress the production45
of turbulence and make the transition from laminar flow to turbulence occur at much higher46
Reynolds number (Shatrov 2010). On the other hand, many specific spatial structures such47
as shear layers (Lehnert 1952), inflexion points (Kakutani 1964) and jets (Hunt 1965) may48
appear in the MHD flows due to the action of the magnetic field, and can produce instabilities49
of free shear flow type such as the sidewall jet induced instability (Priede et al 2010, 2012,50
2015). The critical Reynolds number of jet-induced instability has revealed significantly51
lower than the Reynolds numbers at which turbulence is observed in experiments (Moresco52
and Alboussire 2004) or direct numerical simulations (Kinet et al 2009).53

In liquidmetal blankets ofmagnetic-confinement nuclear fusion reactors,mixed convection54
of liquid metals in pipes or ducts is one of the most primary flows due to the extreme55
conditions of large heat flux and strongmagnetic field. Suchmixed convection flows have been56
revealed to be complex and counterintuitive in a lot of laboratory experiments and numerical57
simulations. In the normal cases of strong magnetic field without heat flux, there exists a58
laminar-turbulent transition (Zikanov et al 2014) with the known range 200 < '4/�0 < 40059
for the typical values of nondimensional parameters (the Reynolds ('4) and Hartmann60
(�0) numbers) with respect to isothermal duct, pipe, and channel flows of various liquid-61
metal blankets. However, in the experiments of Genin et al (2011) and Belyaev et al62
(2015) for liquid metal flows in the heated horizontal tube under a transverse horizontal63
magnetic field, the unexpected anomalous temperature fluctuations with low-frequency and64
high-amplitude are discovered at strong magnetic fields which make '4/�0 < 200 when65
the turbulence is ususally regarded to be fully suppressed. Large-amplitude low-frequency66
pulsations of temperature in the form of isolated bursts or quasi-regular fluctuations have also67
been observed in the experiments (Kirillov et al 2016; Listratov et al 2016; Melnikov et al68
2014, 2016; Belyaev et al 2020) of a downward flow in a vertical round pipe and rectangular69
duct with one wall heated and an imposed strong magnetic field. The high-amplitude low-70
frequency fluctuations of velocity and temperature that appear in flowswith strong convection71
and magnetic field effects are proposed to be called magnetoconvective fluctuations (Belyaev72
et al 2021). Magnetoconvective fluctuations obviously have a key impact on the design of73
the liquid-metal blankets of future nuclear fusion reactors and relevant magneto-convection74
flows have been recently reviewed by Zikanov et al (2021).75

To study hydrodynamical stabilities of the MHD mixed convections in the horizontal or76
vertical duct, the quasi-two-dimensional (Q2D) model proposed by Sommeria and Moreau77
(1982) is usually adopted. Through the Q2D model, Smolentsev et al (2012) firsr studied78
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instabilities and transitions in MHD duct flows with a symmetric "M-shaped" velocity79
profile by imposing an external flow-opposing force. Various instability modes and transition80
scenarios have been revealed by varying this external force and position of the inflection81
point. Vetcha et al (2013) considered the upward flows in a vertical rectangular duct subject82
to a volumetric heating and a strong transversemagnetic field. Both bulk instability associated83
with the inflection point and side-wall boundary layer instability are predicted by their linear84
stability analysis. Vo et al (2017) investigated the linear stability of horizontal Poiseuille-85
Rayleigh–Bénard flows subjected to a transverse magnetic field and a vertical temperature86
gradient. Liu and Zikanov (2015) further investigated the elevator convection mode for the87
vertical downward flow using the Q2D model. Furthermore, numerical simulations of the88
MHDmixed convection are performed on the Q2D model. For example, Zhang and Zikanov89
(2018) numerically investigated the stabilities of the downward flow in a vertical duct with90
one heated and three thermally insulated walls under a strong transverse magnetic field. The91
Q2D model is originally proposed in the limit of high interaction parameter (�02/'4 � 1)92
and Hartmann number (�0 � 1). Then it is not suitable to study hydrodynamic stabilities of93
MHDduct flows in full physical parameter space, especially to detect the instability boundary94
when the unstable threshold occurs at much lower interaction parameter and Hartmann95
number. Even at the high Hartmann number, for the mixed convection in a horizontal duct96
with imposed transverse horizontal magnetic field, the applicability of the Q2Dmodel is not a97
priori certain due to the numerical discovery of the large-scale coherent structure (Zhang and98
Zikanov 2014) which has significant flow and variations of temperature along the magnetic99
field lines at the high Grashof regime. Furthermore, the full linear stability analysis of the100
horizontal MHD mixed convection has revealed that the instability thresholds of the steady101
solutions with symmetrical or asymmetrical rolls occur at much lower Hartmann number and102
Grashof number (Hu 2020). This clearly shows that the Q2D model is not appropriate for103
the research on the occurence process or mechanism of stabilities of the mixed thermal MHD104
convections in the horizontal duct. Meanwhile, it is also noticed that the Q2D model is only105
suitable to the rectangle cross-sectional duct and then is not available to the circular cross-106
sectional pipe. These further shows its limitation of application for general cross-sectional107
geometry.108
Without using the Q2D model, there exist two other appoaches to study the MHD mixed109

convections in the horizontal or vertical channels (duct or pipe). One is the direct numerical110
simulation (Ni et al 2007), the other is the linear global stability analysis (Theofilis 2011).111
In order to explain the slow high-amplitude fluctuations of temperature appeared in the112
experiment of Genin et al (2011), Zikanov et al (2013) conducted a linear stability analysis113
with direct numerical simulations for the liquid metal mixed convection in a horizontal pipe114
which is subject to constant flux heating in the lower halfwith and an imposed transverse115
magnetic field. Coherent quasi-two-dimensional rolls aligned with the magnetic field are116
successfully found at the magnetic field strength far exceeding the laminarization threshold,117
and transport of the rolls by the mean flow can be used to explain the experimental118
phenomenon of low-frequency high-amplitude fluctuations of temperature. Through the119
similar numerical approaches, Zhang and Zikanov (2014) further analysed the liquid metal120
mixed convection in a horizontal duct with bottom heating and transverse magnetic field.121
The same coherent quasi-two-dimensional rolls are found in the “low-�A” regime, while a122
combination of the spanwise rolls and streamwise-oriented rolls is revealed in the “high-123
�A” regime. The linear exponential growth rates are computed as functions of stream-124
wise wavelength for both symmetrical and asymmetrical steady rolls, meanwhile the spatial125
structure of instability modes is exhibited during the stage of exponential growth. Then their126
main conclusion is that the instability leading to the formation of convection rolls aligned127
with the magnetic field is a common feature of the flow invariably observed at �0 > 200 and128
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sufficiently high�A. Zikanov and Listratov (2016) further performed numerical simulations129
of the downward flow of a liquid metal in a vertical pipe and attributed the large-amplitude130
fluctuations of temperature to the growth and quasi-periodic breakdown of the pairs of131
ascending and descending jets related to the elevator modes. Based on the approach of linear132
global stability analysis, Hu (2020) first studied the linear stabilities of the symmetrical and133
asymmetrical steady solutions of a similar MHD mixed convection as Zhang and Zikanov134
(2014) in a horizontal duct. It is much easier to obtain the linear critical stability boundary135
curves for both symmetrical and asymmetrical steady solutions. Through these boundary136
curves, it is revealed that their three-dimensional oscillatory instabilities occur at large137
magnetic fields and buoyancy is the dominant destabilizing term from the energy budget138
analyses. These can explain the results of the experiments of Belyaev et al (2015) that139
temperature fluctuations disappear under moderately strong magnetic fields, while high-140
amplitude low-frequency oscillations reappear under a much stronger magnetic field through141
a linear instability transition process. Recently, Hu (2021) further analyzed linear global142
stabilities of a downward flow of liquid metal in a vertical duct under strong wall heating and143
a transverse magnetic field. Three-dimensional elevator and oscillatory unstable modes are144
revealed through the eigenspetrum computation. The elevator mode is found to be always145
unstable and independent of the basic flow profile. The unstable oscillatory mode is directly146
related to the basic upward reverse flow and first occurs at the specific flow structurewhich has147
an upward reverse flow near the heating wall and a downward flow near the opposite wall. The148
shear Kelvin-Helmholtz instability due to the existence of an inflection point is found to be149
the key instability mechanism of the three-dimensional oscillatory mode through the energy150
budget analyses. Then it is concluded that the appearance of the unstable oscillatory mode151
may be regarded as an alternative physical explanation of the high-amplitude, low-frequency152
pulsations of temperature in the experiments and related numerical simulations.153
Direct numerical simulations have been demonstrated to be an important approach for the154

hydrodynamical stability of the liquid metal MHD mixed convection in a horizontal pipe155
(Zikanov et al 2013). However, on one hand, it is difficult to determine the stability boundary156
of the MHD mixed convection for large Hartmann numbers through direct numerical157
simulations due to considerable computational overhead for each set of parameters. On158
the other hand, it is not clear why the natural thermogravitational convection becomes159
a dominant destabilization mechanism which only is regarded as a hypothesis through a160
flow visualization of physical experiments or numerical simulations. It is easy to solve161
above two difficulties through the linear global stability analysis which has been reviewed162
comprehensively by Theofilis (2011). Linear global stability analysis is mainly based on the163
solution of the multidimensional eigenvalue and has many successful applications especially164
for nonparallel and three-dimensional flows (Theofilis 2003). In this paper, full linear global165
stability analyses without using the Q2D approximation for theMHDmixed convection flows166
in a circular pipe have been performed successfully. Through the eigenvalue computation167
of linear global stability equations with finite element method, the critical linear stability168
boundaries of the MHD mixed convection can be plotted in the parameter plane of the169
Hartmann number and Grashof number. The critical boundary for the moderate Hartmann170
number is determined by the unstable mode which is first found by Zikanov et al (2013)171
through direct numberical simulations. The other critical boundaries for the small Hartmann172
number are also given and determined by different most unstable modes. At the critical173
points on these stability boundaries, the energy budget analyses are further performed to174
study the destabilization mechanism of the corresponding unstable modes. In order to study175
the spatiotemporal structures of nonlinear MHD mixed convection close to the stability176
boundary curves, direct numerical simulationswith Fourier-spectral-finite-differencemethod177
are performed using a modified Openpipeflow Navier-Stokes solver. It will be seen from178
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these simulations that much more complex spatiotemporal structures would appear when179
the simulation parameters are getting farther and farther away from the stability boundary.180
Furthermore, initial condition dependence of numerical simulations is also considered for181
these complex nonlinear states.182

2. Physical model and governing equations183

2.1. Physical model184

The physical model comes from Genin’s experiment and considers a liquid metal flow along185
a horizontal electrically insulating pipe subject to bottom uniform heating with heat flux186
intensity @ and an external constant transverse magnetic field B0, as shown in Figure 1.187
Mixed convection flow would be produced by a combined action of a pressure driven flow188
and thermal buoyancy due to huge temperature gradients with strong magnetic fields, then189
such a flow is usually called MHD mixed convection. The liquid metal is not magnetizable190
liquid and is considered as an incompressible, electrically conducting Newtonian viscous191
fluid with constant kinematic viscosity a, electric conductivity f and thermal conductivity ^.192
The pipe wall is assumed to be electrically insulating, the upper half of the wall is assumed to193
be thermally insulating and the lower half of the wall is imposed with constant and uniform194
heat flux.195
The Oberbeck-Boussinesq approximation is applied for the buoyancy force and the quasi-196

static model is adopted for the electromagnetic interactions. Then the dimensional governing197
equations for the liquid metal pipe flow can be described by the Navier-Stokes system198

∇ · v = 0, (2.1)199
200

d0

[
mv
mC
+ v · ∇v

]
= −∇? + d0a∇2v + F1 + F; , (2.2)201

202

d02?

[
m)

mC
+ v · ∇)

]
= ∇ · (^∇)) + 1

f
j2 +Φ +&. (2.3)203

Here, v, ?, and ) are the fields of velocity, pressure and temperature, d0 is the reference value204
of the fluid mass density, 2? is the specific heat capacity, 1

f
j2 is the loss of magnetic energy205

due to Joule dissipation, Φ is the loss of kinetic energy due to viscous dissipation, and & is206
other sources of volumetric energy release like nuclear radiation or chemical reactions. The207
buoyancy force F1 with the Oberbeck-Boussinesq approximation is assumed to vary linearly208
with temperature and represented as209

F1 = (d − d0)g, d = d0 [1 − V() − )0)] , (2.4)210

where V is the thermal expansion coefficient, g is the gravity acceleration in the negative211
vertical direction. The Lorentz force F; with the quasi-static model is represented as212

F; = j × B0, (2.5)213
214

j = f (−∇q + v × B0) , (2.6)215

where j is the induced electric current density, q is the electrostatic potential. It is clearly216
seen that using the quasi-static model the induced magnetic field can be neglected and the217
magnetic field remains undisturbed in the expressions of the Lorentz force (2.5) and the218
Ohm’s law (2.6). The quasi-static model has been proven to be enough accurate when the219
magnetic Reynolds and Prandtl numbers are both small (Roberts 1967; Davidson 2001).220
In most laboratory experiments, the magnetic Reynolds number is relatively small and the221
induced magnetic field is much weaker than the imposed field.222
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Figure 1: The flow configuration. The pipe is placed horizontally and heated from below with a constant
heat flux @, and the upper half of the pipe wall is assumed to be insulated. Uniform magnetic field B is
imposed in the transverse horizontal direction and gravity field g has a vertical downward direction.

The current density can be considered to be solenoidal by neglecting displacement currents223
and assuming the fluid to be electrically neutral, i.e.224

∇ · j = 0. (2.7)225

Then by substititing the Ohm’s law into above solenoidal relation, a Poisson equation for the226
electrostatic potential is obtained as follows227

∇2q = ∇ · (v × B0). (2.8)228

By neglecting all energy dissipation and other energy sources except the Fourier diffusion229
term, the temperature equation (2.3) is reduced into230

m)

mC
+ v · ∇) = j∇2). (2.9)231

Here, j = ^/d02? is the thermal diffusivity.232
The boundary conditions on the lower half of the wall include non-slip condition for the233

velocity and the constant heat flux for the temperature, i.e.234

^
m)

m=
= @, (2.10)235

and the boundary conditions on the upper half of wall are non-slip and thermal insulated, i.e.236

m)

m=
= 0. (2.11)237

2.2. Model nondimensionalization and reduction238

The dimensional governing equations can be further non-dimensionalized by using the pipe239
diameter 3 as the length scale, mean streamwise velocity *< as the velocity scale, @3/^ as240
the temperature scale, �0 as the scale of the magnetic field strength and 3�0*< as the scale241
of electric potential. Then the dimensionless governing equations can be written as242

mv
mC
+ v · ∇v = −∇? + 1

'4
∇2v + f1 + f; , (2.12)243
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∇ · v = 0, (2.13)244245
m)

mC
+ v · ∇) = 1

%4
∇2). (2.14)246

The buoyancy and Lorentz forces are dimensionalized as247

f1 =
�A

'42)eH and f; =
�02

'4
j × eG , (2.15)248

where the dimensionless parameters including the Reynolds number, Prandtl number, Péclet249
number, Grashof number and Hartmann number are defined as250

'4 =
*<3

a
, %A =

a

j
%4 =

*<3

j
= '4 · %A, (2.16)251

�A =
6V@34

a2^
, �0 = �03

(
f

da

)1/2
. (2.17)252

In order to compare our results with those of Zikanov et al (2013), the same dimensionless253
parameters for the Reynolds number and Prandtl number are selected with '4 = 9046 and254
%A = 0.022 in this work.255
The boundary conditions at the pipe wall include the no-slip conditions for velocity and256

the condition of perfect electric insulation257

v = 0,
mq

mA
= 0, at A =

√
G2 + H2 = 1/2. (2.18)258

Here, G and H are horizontal and vertical coordinates in the cross section respectively. For259
the temperature, the condition on the lower half of the wall is260

m)

mA
= 1, at A = 1/2, (2.19)261

while for the upper thermally insulating half of the wall we have262

m)

mA
= 0, at A = 1/2. (2.20)263

The temperature field can be further decomposed as a sum of the mean mixed temperature264
and the resulting temperature deviation265

) (x, C) = )<(I) + \ (x, C). (2.21)266

The mean mixed temperature is assumed to be a linear function of the streamwise coordinate267
I which makes the overall energy balance between the heat transfer across the lower half268
of the wall with constant heat flux and the streamwise convection heat transfer. Then its269
streamwise gradient is given by270

3)<

3I
=

P

� · %4 (2.22)271

where P = c/2 is the perimeter of the heated portion of the wall and � = c/4 is the272
cross-sectional area of the pipe. Then the temperature governing equation is written as273

m\

mC
+ v · ∇\ = 1

%4
∇2\ − F 3)<

3I
. (2.23)274

The pressure can also be decomposed into three parts as follows275

? = ?̃(I) + ?̆(H, I) + ?(x, C). (2.24)276
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The first part is a linear function of I corresponding to a spatially uniform streamwise gradient277
3 ?̃/3I which pushes the pipe flow. The second part is used to balance with the buoyancy278
force from the mean mixed temperature279

?̆(H, I) = �A

'42 H )< + 2>=B. (2.25)280

Also, the forcing in the streamwise direction from the second part is deduced with281

m ?̆

mI
=
�A

'42
3)<

3I
H. (2.26)282

We look for the two-dimenisonal steady-state solutions in which the velocity, pressure,283
temperature (excluding the linear part coming from the bottom heating) and electrostatic284
potential are independent of streamwise coordinate, as follows285

v1 = V(G, H) =
(−→
* (G, H),, (G, H)

)
, (2.27)286

? = %(G, H), \ = Θ(G, H), q = Φ(G, H). (2.28)287

Here, −→* = (*,+) is the cross-sectional velocity, and, is the streamwise velocity. Thus the288
two-dimensional steady governing systems for the steady flow state are obtained as follows289

(−→* · ∇B), = −3 ?̃/3I − �A

'42
3)<

3I
H + 1

'4
∇2
B, +

�02

'4
�I , (2.29)290

291

(−→* · ∇B)
−→
* = −∇B% +

1
'4
∇2
B

−→
* + �A

'42ΘeH +
�02

'4

−→
5 , (2.30)292

293

(−→* · ∇B)Θ =
1
%4
∇2
BΘ −,

3)<

3I
, (2.31)294

295

∇B ·
−→
* = 0, (2.32)296

297
−→
� = (−∇Φ + v1 × eG) × eG , (2.33)298

299

∇2Φ = ∇ · (v1 × eG). (2.34)300

Here, ∇B = (mG , mH),
−→
� = (−→5 , �I) and

−→
5 = (�G , �H). The corresponding boundary301

conditions on the walls are non-slip condition for the velocity,302

v1 = 0, at A = 1/2, (2.35)303

fixed heat flux for constant-rate heating on the lower half of the wall and thermal insulation304
on the upper half of the wall,305

mΘ

mA
= 1, at A = 1/2, H < 0, (2.36)306

307
mΘ

mA
= 0, at A = 1/2, H > 0, (2.37)308

as well as zero current flux due to electrically insulating walls,309

mΦ

mA
= 0, at A = 1/2. (2.38)310
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3. Numerical methods311

3.1. Finite element method for linear global stability analysis312

For linear global stability analysis of the MHD mixed convection in a circular pipe, the313
two-dimensional steady-state solutions of the governing equations should be computed. The314
Taylor–Hood finite element method is used for spatial discretization for the steady governing315
equations, and the Newtonmethod is adopted to solve the derived non-linear systemwhen the316
cross-section velocity is not zero. A high-level integrated software FreeFem++ (Pironneau et317
al 2013) for the numerical solution of nonlinear multiphysics partial differential equations is318
adopted for the computation of the steady-state solutions. A bidimensional anisotropic mesh319
generator BAMGbuilt into FreeFem++ is used to define the circular cross-sectional geometry320
and generate the two-dimensional triangular meshes. Three borders are first defined for the321
two-dimensional mesh generation, one is the outer wall boundary with A = 0.5, the other322
two are internal circles with A = 0.4 and A = 0.3. Then discrete mesh points are uniformly323
distributed on these borders with different numbers. The numbers of mesh points can be used324
to control the mesh resolution and futher be defined as =A , 0.5=A and 0.3=A respectively. This325
will produce much larger mesh size for the border with smaller circle radius. It is easily seen326
from figure 1 that the triangular mesh with =A = 100 has much smaller mesh size near the327
pipe wall. Obviously, finer mesh resolution near the pipe wall is realized and beneficial to328
improve the numerical accuracy.329

Because the mean streamwise velocity is adopted as the velocity scale, it should be noted330
that the uniform streamwise pressure gradient 3 ?̃/3I should be adjusted to make the average331
streamwise velocity to be positive one, i.e.332

1
�

∫
�

, d� = 1. (3.1)333

Simplely, a simple bisection process can be used to make the relation (3.1) satisfied. Newton334
iterative method needs a good initial guess, then the steady-state solutions are computed335
continuously from small dimensionless parameters to large ones. In order to verify the336
correctness of the two-dimensional steady-state solutions, the same cases as Zikanov et al337
(2013) for '4 = 9046, %A = 0.022, �A = 8.298 × 107 with different Hartmann numbers are338
considered. Base flow solution of the streamwise velocity and temperature field along the339
cross-section for �0 = 102 is first plotted in figure 2 which has the same spatial distibution340
as Zikanov et al (2013). A detailed comparison for the profiles of the streamwise velocity,341
of the base flow along horizontal and vertical lines drawn through the pipe axis is presented342
in figure 3. It is clearly seen from these figures that the steady-state solutions obtained by the343
finite element method agree very well with those by direct numerical simulations of Zikanov344
et al (2013).345

In order to study the asymptotic behaviour in time of generic small-amplitude perturbations346
of (V ′, %′,Θ′,Φ′) imposed on the steady-state mixed convection, these perturbations can be347
expanded as normal modes in the streamwise direction as follows348

(V ′, %′,Θ′,Φ′) =
(
v̂, ?̂, \̂, q̂

)
exp(8:I + WC), (3.2)349

where : is the wave number in the streamwise direction, and W = WA +8W8 is the corresponding350
complex growth rate. By substituting the expressions of the disturbed flow field V + V ′, % +351
%′,Θ + Θ′,Φ + Φ′ into the governing system, the full global linear stability equations are352
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Figure 2: Base flow solution of the streamwise velocity (a) and temperature (b) field along the cross-section;
'4 = 9046, %A = 0.022, �A = 8.298 × 107 and �0 = 102.
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Figure 3: Profiles of the streamwise velocity , of the base flow along horizontal (a) and vertical (b)
lines drawn through the pipe axis; solid line is obtained by the finite element method with FreeFem++
software, while triangle symobol is from direct numerical simulations of Zikanov et al (2013); '4 = 9046,
%A = 0.022, �A = 8.298 × 107 and �0 = 102.

obtained as follows354

WD̂ +
(−→
* · ∇B + 8:,

)
D̂ +

(−→̂
D · ∇B

)
* = −m ?̂

mG

+ 1
'4

(
∇2
B − :2

)
D̂,

(3.3)355

WÊ +
(−→
* · ∇B + 8:,

)
Ê +

(−→̂
D · ∇B

)
+ = −m ?̂

mH

+ 1
'4

(
∇2
B − :2

)
Ê + �0

2

'4

(
−8: q̂ − Ê

)
,

(3.4)357
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WF̂ +
(−→
* · ∇B + 8:,

)
F̂ +

(−→̂
D · ∇B

)
, = −8: ?̂

+ 1
'4

(
∇2
B − :2

)
F̂ + �A

'42 \̂ +
�02

'4

(
mq̂

mH
− F̂

)
,

(3.5)359

W\̂ +
(−→
* · ∇B + 8:,

)
\̂ +

(−→̂
D · ∇B

)
Θ

=
1
%4

(
∇2
B − :2

)
\̂ − F̂ 3)<

3I
,

(3.6)361

mD̂

mG
+ mÊ
mH
+ 8:F̂ = 0, (3.7)362 (

∇2
B − :2

)
q̂ −

(
mF̂

mH
− 8: Ê

)
= 0. (3.8)363

Here, v̂ = (−→̂D , F̂) = (D̂, Ê, F̂). And the boundary conditions are given with364

v̂ = m\̂
mA

=
mq̂

mA
= 0, at A = 1/2. (3.9)365

The spatial discretization of Taylor-Hood finite element can also be used for the global366
linear stability equations. After the spatial discretization of the linear stability equations, a367
generalized eigenvalue problem has to be solved in the matrix form as follows368

Aq̂ = WBq̂, (3.10)369

where q̂ = (v̂, ?̂, \̂, q̂) is the eigenvector collecting the velocity components, pressure,370
temperature and electrostatic potential on each degree of freedom of the discrete problem, A371
and B are large sparse complex matrices. In order to facilitate the extraction of the desired372
eigenvalues for unstable modes, spectral transformations should be introduced into the gen-373
eralized eigenvalue problem. Theofilis (2011) has reviewed a lot of spectral transformations374
commonly utilized in global instability analysis of fluid flows. Most commonly used is shift-375
and-invert strategy which transforms the generalized eigenvalue problem into a standard376
eigenvalue problem as follows377

(A − `B)−1Bq̂ = (W − `)−1q̂. (3.11)378

The shift matrix can be solved by UMFPACK or MUMPS sparse LU solver and the standard379
eigenvalue problem solved with an implicitly restarted Arnoldi algorithm as provided in380
the ARPACK software library (Lehoucq et al 1998). Thus, the largest eigenvalues of381
the transformed matrix now correspond to those eigenvalues of the original generalized382
eigenvalue equation which are the closest to the shift value `.383
In order to validate the computation of the eigenspectrum, linear growth rate and phase384

velocity of most unstable mode as a function of wavenumber are plotted in figure 4 for385
'4 = 9046, %A = 0.022, �A = 8.298 × 107 and �0 = 306. Compared with numerical386
simulation results of Zikanov et al (2013), it is easily found that the linear growth rates we387
get from FreeFem++ software are a little higher than their results, especially obvious near the388
maximum growth rate. It is noticed that Zikanov et al (2013) used two different streamwise389
grid number, larger one (# = 64) is for long wave perturbations while smaller one (# = 32)390
is for short wave perturbations. Under these two mesh resolutions, their phase velocity results391
of most unstable mode are obviously different, aslo specifically for moderate wave numbers392
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Figure 4: Linear growth rate (a) and phase velocity (b) of most unstable mode as a function of wavenumber;
solid line is obtained by the finite element method with FreeFem++ software, while rectangle and triangle
symobols are from direct numerical simulations of Zikanov et al (2013) with respect to the streamwise grid
number # = 32 and # = 64; '4 = 9046, %A = 0.022, �A = 8.298 × 107 and �0 = 306.

(: = 5 ∼ 7) where the large exponential growth occurs. Then it is interestingly found that a393
good agreement between our eigenspectrum results and numerical simulations of Zikanov et394
al (2013) occurs when the exponential perturbation growth is not very strong.395

3.2. Fourier-spectral-finite-difference method for direct numerical simulation396

For direct numerical simulations, we solve the dimensionless governing equations in397
cylindrical coordinates where A, V,I denote the radial (i.e. wall-normal), azimuthal and axial398
directions, respectively. Then the velocity field would be denoted with v=(DA , DV , DI). We use399
a Fourier-spectral-finite-difference method for discretizing the equations. Field variables, i.e.400
v, ?, q and \, are expanded with a two-fold Fourier expansion401

�(A, V, I, C) =
 ∑

:=− 

"∑
<=−"

�̂(A, C):,< exp {8:UI + 8<V}, (3.12)402

in which �̂(A, C):,< is the Fourier coefficient of the (:, <) Fourier mode and is a function403
of A and C, U would determine spatial periodicity. In the radial direction, we use a 9-stencil404
high-order finite difference method for the discretization. The nonlinear terms are calculated405
using the pseudo-spectral technique with the 3/2-rule for dealiasing. 2 and 2" give the406
total number of Fourier modes used in the axial and azimuthal directions, respectively. We407
use the finite difference scheme, the singularity-removal technique at the pipe axis and the408
MPI parallelization strategy ofOPENPIPEFLOW(Willis 2017). Particularly, the singularity-409
removal is achieved by avoiding a grid point at the pipe axis A = 0 and imposing proper410
parity conditions on velocity, electric potential and temperature in the neighborhood of the411
pipe axis. To be clear, near the pipe axis DA and DV are odd for even < and even for odd412
<, whereas DI , q and \ are even for even < and are odd for odd <. Technically, the parity413
condition is implemented by imposing homogeneous Dirichlet condition for odd functions414
and homogeneous Neumann condition for even functions at A = 0. The details can be found415
in the documentation of OPENPIPEFLOW (Willis 2017).416
For the time-integration of Navier-Stokes equations and the heat equation, a semi-implicit417

three-level Admas-Bashforth time-integration scheme is adopted. Linear terms are treated418
implicitly and the nonlinear term is treated explicitly using a backward differentiation419
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Figure 5: The distribution of the heat flux around the whole pipe wall used for direct numerical simulations
with the spetral finite-difference method.

scheme. The incompressibility condition is imposed using a projection method (Hugues420
and Randriamampianina 1998). Since only lower half pipe wall is heated and upper half421
pipe wall is thermally insulated, there will exist a discontinuity with respect to the heat flux422
m)
mA

at the boundary between the heated and insulated parts of the pipe wall. In order to use the423
Fourier spectral method, we adopt a steep tanh function to approximate this discontinutity.424
Assuming the heated part is located at V ∈ [ c2 ,

3c
2 ], then the distribution of the heat flux425

around the whole pipe wall is given by426

@ =
m\

mA
(V) = 0.5 − 0.5 tanh

|V − c | − c
2

X
, (3.13)427

where the parameter X is a control parameter which determines the steepness at the428
approximated discontinuity boundary. As shown in figure 5, it is clearly seen that smaller429
parameter X gives rise to steeper boundary for the heat flux. However, much smaller parameter430
X would need more azimuthal collocation points near the approximated discontinuity431
boundary and then should be properly chosen to balance the accuracy and computational432
cost.433
As the steady base flow is streamwise invariant,we can choose to only solve the : = 0modes434

to obtain the base flow. It is obvious that the base flow would have two-dimensional stability435
in the cross-section. As a validation, we compare our calculations using the spectral method436
with the results using finite element method in the previous subsection. The flow parameters437
of the test case are �0 = 204, '4 = 9046, �A = 8.298 × 107, %A = 0.022. The resolution438
of the spectral simulation is # = 144 and " = 96 (i.e. 144 grid points on the radius and439
2" = 192 grid points in the azimuthal direction before dealiasing). The steepness parameter440
X = 0.05 and this azimuthal resolution gives about 6 grid points within the smoothing region441
of the approximated discontinuity of heat flux. Figure 6(a,b) shows the visualization of the442
base flow in our spetral simulations for the streamwise velocity and temperature field in443
the cross-section. It is seen that the basic streamwise velocity becomes uniform along the444
magnetic field direction in the bulk of the circular pipe for large Hartmann numbers. In figure445
6(c,d), the streamwise velocity and temperature distributions along the vertical and horizontal446
lines of the cross-section are compared between our spectral simulation and finite-element447
calculation. The agreement between the two sets of results is excellent with an deviation448
below 0.5%. This agreement validates our methods and particularly the smoothing of the449
heat flux in our spectral methods, at least for the base flow calculation.450
After obtaining the base flow, we can perturb the base flow with small perturbations in the451

spectral space, i.e. small Fourier coefficient of a given mode with the wavenumber (:U, <)452
is set to give the initial condition of direct numerical simulations. Then the linear growth453
rate of the unstable mode at a fixed wavenumber can be calculated from the modal kinetic454
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Figure 6: The base flow calculated using spectral method and finite elementmethod. Contours of temperature
(a) and streamwise velocity (b) on the pipe cross-section. Data is from our spectral method simulation. (c)
Comparison of temperature distribution on the vertical and horizontal lines through the pipe center. (d)
Comparison of streamwise velocity on the vertical and horizontal lines trhough the pipe center. In (c,d),
symbols are data from our spectral method simulation and lines are from the finite element simulation.

energy variation between two different time instances, i.e.455

W =
1
2

log � (C2) − log � (C1)
C2 − C1

, (3.14)456

where W denotes the linear growth rate,  � =
∫
+
(v − v1) 3+ is the modal kinetic energy,457

and C1 and C2 are two time instants in the exponentially growing stage. The phase speed of458
the leading eigenmode can be calculated as459

2 =
_

)
(3.15)460

with the streamwise wavelength _ and the period of oscillation ) which can be measured by461
monitoring the velocity at a fixed point in the flow domain. For the same case with �0 = 306,462
'4 = 9046, �A = 8.298 × 107 and %A = 0.022 as Zikanov et al (2013), the linear growth463
rates and phase speeds with respect to different wave numbers can be computed through464
both the eigenvalue computation of linear stability equations and the numerical simulations465
with the spectral method, as shown in figure 7. Though the two approaches are different and466
performed independently, it is clearly seen that a good agreement is obatined and can be467
used as a cross validation of these two approaches. A further convergence test for the linear468
growth rate with respect to the steepness parameter X is given in table 1 which shows X = 0.5469
with " = 96 can obtain a good calculation accuracy. An additional validation of our spectral470
method against an asymptotic solution of the basic flow for the MHD pipe flow (without the471
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Figure 7: The linear growth rate (a) and the phase speed (b) of the leading eigenmode with respect to
different wave numbers. Here, the solid line is obtained with the eigenvalue computation of the linear
stability equations while dicrete circles symbols are the results by direct numerical simulations using the
spectral method. The dimensionless parameters �0 = 306, '4 = 9046, �A = 8.298 × 107 and %A = 0.022
are adopted, while the steepness parameter X = 0.05 is used for direct numerical simulations.

X " W

0.1 48 0.2470
0.05 96 0.2492
0.025 192 0.2496

Table 1: Convergence of the linear growth rate about the smoothing width X. The flow parameters are
�0 = 306, '4 = 9046, �A = 8.298 × 107 and %A = 0.022, and the streamwise wavelength of _ = 1.0 is
consdered for this convergence test.

heating and buoyancy) can be found in Appendix A. All these tests confirm the correctness472
of our basic flow calculations.473

4. Linear stability analysis474

Though the linear growth rate and phase speed of most unstable mode have been computed475
and agreewith the results of Zikanov et al (2013), there exist twomain flow stability questions476
to answer. The first one is the linear stability boundary of the MHD mixed convection, while477
the other one is the flow destabilization mechanism which can deepen the understanding of478
the underlying physical mechanism.479

4.1. Linear stability boundary of the MHD mixed convection480

Linear stability boundary of the MHD mixed convection is determined by the most unstable481
mode which can be easily computed if there exists only one unstable mode for the parameters482
under investigation. However, if there exist more than one unstable modes and especially they483
have close linear growth rates, then linear stability boundary may become complex and is484
difficult to obtain. The critical curves for the linear stability of theMHDmixed convection are485
first plotted in the�A −�0 parameter space with '4 = 9046 and %A = 0.022 as shown figure486
8. It is clearly seen that there exist three critical curves located at small and large Hartmann487
numbers respectively. All the critical curves have been validated by our direct numerical488
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Figure 8: The critical curves of most unstable modes in the �A − �0 parameter space with '4 = 9046 and
%A = 0.022.

simulations. The critical curve for the large Hartmann number is determined by the only489
unstable mode denoted with Mode I which is first revealed by the numerical simulations of490
Zikanov et al (2013). It is easily found that the unstable Mode I occurs above a threshold491
of the Hartmann number about �0 = 136.33. Across the threhold, the unstable region for492
the Grashof number becomes larger and larger with the increase of the Hartmann number.493
The upper boundary of the unstable region increases nearly exponentially while the lower494
boundary decreases very slowly. The other two critical curves are located at small Hartmann495
numbers and determined by different unstable modes. They intersect at �0 = 37.46 and496
are denoted with Mode II and Mode III respectively. The critical Grashof number on these497
two critical curves increases nearly exponentially with the increase of the Hartmann number,498
from �A2 ∼ 1.2 × 106 at �0 = 20 to �A2 ∼ 1.8 × 108 at �0 = 80. Within the unstable499
region bounded by the critical curves for the small Hartmann number, there exist many other500
unstable modes which are not presented here.501
Along all the critical curves of the most unstable modes in the �A − �0 parameter space,502

the corresponding wave number and phase speed as a function of Hartmann number can be503
plotted as shown in figure 9. It is clearly seen that both critical wave number and phase velocity504
for small Hartmann numbers are much smaller than those for large Hartmann numbers. Then505
for small Hartmann numbers long wave instabilities first occur at the threhold, and the critical506
wave number is found to increases with the increase of the Hartmann number. Meanwhile,507
the phase velocity of these long wave instabilities even decreases with the increase of the508
Hartmann number for unstable Mode II. It is also seen that at �0 = 67.7 there exists a jump509
of the critical wave number and phase velocity of Mode II. It is carefully checked that this510
jump is not due to eigenmode transiton, but a rapid change of the critical parameters for the511
same unstable mode.512
Spatial structure of the three-dimensional unstable mode for the perturbations of tempera-513

ture and vertical velocity in the horizontal cross-section passing through the axis of the pipe514
is presented in figure 10 and 11 at two critical points with large and small Hartmann numbers515
respectively. It is easily seen that the spatial structure for the critical case of �0 = 136.33516
is very similar to the simulation result by Zikanov et al (2013) for �0 = 306 and _ = 1.0.517
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Figure 9: Critical wave number (left) and phase velocity (right) of most unstable modes along all the critical
curves as a function of Hartmann number with '4 = 9046 and %A = 0.022.
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Figure 10: Spatial structure of the three-dimensional unstable mode for the perturbations of temperature
(left) and vertical velocity (right) in the horizontal cross-section passing through the axis of the pipe at a
critical point of :2 = 5.8, �0 = 136.33, �A = 5.14 × 107, '4 = 9046 and %A = 0.022.

Specifically, the simulation result for large Hartmann number has more uniform distribution518
of vertical velocity along themagnetic field direction.Obviously, it is that there exists only one519
unstable mode which results in such a similar spatial structure for different large Hartmann520
number. However, the spatial structure for the critical case of �0 = 50 is very different as521
shown in figure 11. It is easily seen that the temperature perturbation is distributed near the522
lateral walls and in the central region, while the perturbations of three velocity components523
concentrate in the central region. Different spatial structures of different critical eigenmodes524
imply different destabilizationmechanismswhich are further studied in following subsection.525

4.2. Energy budget analyses at the critical unstable threholds526

In order to obtain the physical destabilization mechanism, it is usual to perform energy527
budget analyses at the critical thresholds for the most unstable mode. First, the linear stability528
equations (3.3)-(3.5) are multiplied by the complex conjugate of the velocity perturbation v̂∗529
and then integrated on the cross-section �. After some simplifications, an equation giving530
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Figure 11: Spatial structure of the three-dimensional unstable mode for the perturbations of temperature
(upper), vertical velocity (middle) and streamwise velocity (bottom) in the horizontal cross-section passing
through the axis of the pipe at a critical point of :2 = 1.69, �0 = 50, �A = 2.898 × 107, '4 = 9046 and
%A = 0.022.

the rate of change of the fluctuating kinetic energy can be derived. At the critical threshold531
(Re(_) = 0) for any unstable mode, kinetic energy budgets can be further obtained as532

�BD + �BE + �BF + �1 + �< + �3 = 0, (4.1)533

where �BD , �BE and �BF are the productions of fluctuating kinetic energy by shear of the basic534
flow, �1 is the production of fluctuating kinetic energy by buoyancy, �< is the dissipation535
of fluctuating kinetic energy by magnetic forces, �3 is the viscous dissipation of fluctuating536
kinetic energy. They are defined as follows537

�BD = −Re
(∫
�

[
D̂
m*

mG
D̂∗ + Ê m*

mH
D̂∗

]
3G3H

)
, (4.2)538

539

�BE = −Re
(∫
�

[
D̂
m+

mG
Ê∗ + Ê m+

mH
Ê∗

]
3G3H

)
, (4.3)540
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541

�BF = −Re
(∫
�

[
D̂
m,

mG
F̂∗ + Ê m,

mH
F̂∗

]
3G3H

)
, (4.4)542

543

�1 = Re
(∫
�

�A

'42 \̂Ê
∗ 3G3H

)
, (4.5)544

545

�< = Re
(∫
�

�02

'4

[
(−∇q̂ + v̂ × eG) × eG

]
v̂∗ 3G3H

)
, (4.6)546

547

�3 = −Re
(∫
�

1
'4

mÊ8

mG 9

mÊ∗
8

mG 9
3G3H

)
. (4.7)548

All these terms can be further normalized by the viscous dissipation of fluctuating kinetic549
energy �3 , then a normalized kinetic energy budget equation is written as550

� ′BD + � ′BE + � ′BF + � ′1 + �
′
< = 1, (4.8)551

where � ′BD = �BD/|�3 |, � ′BE = �BE/|�3 |, � ′BF = �BF/|�3 |, � ′1 = �1/|�3 |, �
′
< = �</|�3 |.552

The kinetic energy budgets by shear of the basic flow, buoyancy, and magnetic forces553
at the critical points of the least stable three-dimensional modes are presented for different554
Hartmann numbers in Table 2. For all cases of Mode I, It is easily seen that the production of555
fluctuating kinetic energy by buoyancy � ′

1
is the dominant destabilizing term, the production556

of fluctuating kinetic energy by the streamwise shear of the basic flow � ′BF gives significant557
stabilization effect, and the production of fluctuating kinetic energy by the cross-sectional558
shear of the basic flow � ′BD and � ′BE is very small and then has little effect on the flow559
stability. According to the values of stabilizing term � ′<, the cases on the lower boundary of560
Mode I have much weaker stabilization effect due to magnetic forces than those on the upper561
boundary of Mode I. For the cases of Mode II and Mode III, it is found that the streamwise562
shear of the basic flow gives the dominant production of fluctuating kinetic energy due to563
positive large values of � ′BF . Then the dominant destabilization mechanism is the streamwise564
shear of the basic flow instead of buoyancy with negligible terms � ′

1
. It is also found that565

with the increase of Hartmann number along the critical curves of Mode II and Mode III, the566
values of destabilization term � ′BD as well as stabilization terms � ′BE and � ′< become larger567
and larger.568
Now the dominant destabilization mechanism is revealed to be buoyancy for Mode I as569

well as streamwise shear of basic flow for Mode II and Mode III. It is necessary to plot the570
spatial distribution of local buoyancy and the local streamwise shear of basic flow i.e. the571
integral terms in the integral formula (4.4) and (4.5) at the critical points for these modes.572
As shown in figure 12a, it is clearly seen that the local buoyancy �1 for the production of573
fluctuating kinetic energy is mainly located in the middle and lower part of the pipe for Mode574
I. However, the local streamwise shear of the basic flow �BF for Mode II is situated at the575
upper part of the pipe as seen in figure 12b.576

5. Nonlinear flow states577

According to the stability boundary curves obtained in the previous section, we can further578
study the nonlinear flow states within the linearly unstable parameter regions through direct579
numerical simulations. Simulation parameters (�0, �A) selected for this study are shown in580
figure 13 as symbols, while other parameters are fixed as '4 = 9046 and %A = 0.022.581
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�0 �A2 � ′BD � ′BE � ′BF � ′

1
� ′<

Mode I

280 31837073 0.00639 -0.00066 -2.91333 4.78354 -0.87594
200 35398415 0.02200 -0.00319 -3.40215 5.29818 -0.91484

136.33 51400000 0.18356 -0.03819 -3.35641 6.59764 -2.38610
200 203162419 0.22068 0.03611 -3.92439 7.56521 -2.89763
280 500712609 0.14744 0.10784 -3.61460 7.37147 -3.01260

Mode II

80 179660228 0.57890 -0.15466 2.24933 -0.00942 -1.66412
70 109500660 0.43082 -0.12390 2.28102 -0.00662 -1.58129
60 60497994 0.26298 -0.07942 2.38255 0.00016 -1.56627
50 28979058 0.14054 -0.04603 2.21279 0.00300 -1.31030
40 11842819 0.05804 -0.02030 1.93550 0.00308 -0.89650

Mode III 30 3716334 0.01484 -0.00621 2.13360 0.00048 -1.14272
20 1182757 0.00245 -0.00059 1.56199 0.00016 -0.56398

Table 2: Kinetic energy budgets by shear of the basic flow � ′BD , � ′BE , � ′BF , buoyancy � ′1 , and magnetic
forces � ′< at the critical point of the most unstable three-dimensional mode for different Hartmann numbers
with '4 = 5000 and %A = 0.0321.
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Figure 12: Spatial distribution of (a) the local buoyancy �1 and (b) local streamwise shear of the basic
flow �BF at the critical points of the three-dimensional unstable modes for (a) Mode I with :2 = 5.8,
�0 = 136.33, �A = 5.14 × 107 and (b) Mode II with :2 = 1.69, �0 = 50, �A = 2.898 × 107; where
'4 = 9046 and %A = 0.022.

5.1. Low-�0 branch582

Starting from a point close to the neutral stability boundary at (�0, �A) = (45, 2 × 107), we583
explore horizontally at (�0, �A) = (40, 2 × 107) and (30, 2 × 107). For all simulations in584
this subsection, the pipe length is chosen to be 12.2 pipe diameters, which is three times the585
wavelength of the most unstable mode at (�0, �A) = (45, 2 × 107).586

5.1.1. (�0, �A) = (45, 2 × 107)587

The streamwise velocity fields for the nonlinear flow state and the most unstable mode are588
both computed by direct numerical simulations and shown in figure 14. It is clearly seen589
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Figure 13: The points in the �0−�A plane considered for DNS analysis: (�0, �A) = (45, 2×107) (circle),
(40, 2 × 107) (up-triangle), (30, 2 × 107) (diamond), (150, 8.298 × 107) (square), (180, 8.298 × 107) (plus)
and (306, 8.298 × 107) (right-triangle).

Figure 14: The streamwise velocity on the pipe cross-sections at (�0, �A) = (45, 2×107). The full velocity
is plotted in the A − V cross-section (a), vertical A − I cross-section (i.e. the H − I plane through the pipe
axis) (b) and horizontal A − I cross-section (i.e. the G − I plane through the pipe axis) (c). The deviation with
respect to the basic laminar flow is shown in (d-f) and the most unstable linear mode is visualized in (g-i).
The location of the maximum deviation of DI from the basic laminar flow is shitted to the left end of the
pipe in all the plots in the A − I cross-sections. Panels (a, d, g) are plotted at the left-end of the pipe.

that the nonlinear saturated flow exhibits a traveling wave structure that is symmetric about590
the vertical plane through the pipe axis. The spatial distributions of the streamwise velocity591
in all cross-sections are very similar with respect to both the saturated flow state and the592
most unstable mode. Obviously, the reason is that the nonlinear effect is very weak and the593
nonlinear flow state is thus dominated by the most unstable mode when the parameters are594
very close to the linear stability boundary.595

5.1.2. (�0, �A) = (40, 2 × 107)596

At this parameter point, we find that the saturated flow state seems to have a strong dependence597
on the initial condition. Direct numerical simulations for this case are performed with two598
different initial conditions. The temporal evolution of the flow is monitored using the kinetic599
energy  �3� =

∫
+
(v− < v >I) 3+ associated with the streamwise dependent velocity600

components, see figure 15.601

Page 22 of 33

Cambridge University Press

Journal of Fluid Mechanics



22

0 200 400 600 800 1000 1200 1400 1600

t

0

0.005

0.01

0.015

0.02

K
E

3
D

Figure 15: The kinetic energy of the 3D flow components (streamwise dependent ones),  �3� , of two
simulations starting from different initial conditions at (�0, �A) = (40, 2 × 107). One starts from a fully
turbulent flow simulated at �0 = 30 and the other from a slightly perturbed laminar basic flow, see the blue
and red curves, respectively.

The first simulation begins with a fully turbulent state and the kinetic energy  �3� is602
plotted as the blue curve in figure 15. The flow keeps turbulent for several hundred time603
units, and then seems to approach a periodic state with large kinetic energy oscillations.604
Flow fields for the streamwise velocity at four time instants (marked with four symbols in605
figure 15) are visualized in figure 16. The first two columns correspond to the time instants606
marked with red circle and green triangle, respectively. Although both of them are at the607
peaks of the oscillation in  �3� , the flow field is not identical seen in the A − V cross-section.608
Nevertheless, by looking at the flow fields in the vertical and horizontal A − I cross-sections,609
it can be observed that the two flow fields are nearly identical up to a phase shift. Therefore,610
the period of the oscillation of  �3� is not equal to the period of the flow field. Furthermore,611
we compare the flow fields of the first column and the fourth column corresponding to the612
two time instants marked with the red circle and blue square (both are at peaks). These613
two flow fields seem identical up to a reflection about the vertical plane through the pipe614
axis. This means that the two flow fields are separated by half a period in phase. Then, it615
can be inferred that the period of the flow field should correspond to four periods of the616
oscillation in  �3� , which is nearly 380 time units. The third column corresponding to the617
black diamond in figure 15 shows the flow field at the trough of the oscillation in  �3� ,618
where the velocity perturbations are much weaker than those at other three peak instants.619
It seems that the periodic state only maintains one cycle, and then the flow begins to leave620
the periodic orbit after C = 1400 because the oscillation becomes irregular at later times.621
The temporal evolution of this nonlinear flow state indicates that there exists an unstable622
nonlinear periodic solution at the given flow parameters.623
The second simulation starts from random small perturbations and is shown as the red624

curve in figure 15. It is clearly seen that there is no high amplitude periodic oscillation up to625
1100 time units. The flow field is visualized at C = 966 in figure 17. Compared with the first626
simulation, although there are some similarities in the spatial distributions of the flow fields627
in the cross-sections, there dose not exist any regular or periodic structure in either the signal628
of  �3� or the flow fields visualized in the pipe cross-sections. However, it should be noted629
that we cannot rule out the possibility that the non-periodic state would also approach some630
periodic orbits at some time in the future. Both nonlinear states show little similarity in flow631
structure with the linear eigenmode (which is similar to figure 14g-i).632

5.1.3. (�0, �A) = (30, 2 × 107)633

When �0 is further decreased to 30, several different initial conditions are used for direct634
numerical simulations and the flow evolves into a fully turbulent state in all the cases. The635
turbulent flow field is visualized in figure 18. The first column shows an instantaneous DI636
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Figure 16: The quasi-periodic flow state at (�0, �A) = (40, 2 × 107). The visualization of the streamwise
velocity field at the four time instants marked by the four symbols on the blue curve in figure 15. Each
column corresponds to a time instant. All panels share the same color scale. From top row to the bottom,
A − V cross-section at the left-end of the pipe, vertical A − I cross-section and horizontal A − I cross-section.

Figure 17: Visualization of the flow field of the non-periodic flow state at (�0, �A) = (40, 2 × 107), which
was started from a small random perturbation, see the red curve in figure 15. Data are taken at C = 966.
From left to right, columns show full DI , full \, DI deviation and \ deviation, respectively.

field, and the second column shows the corresponding temperature \ field. One can see637
that although the turbulent DI fluctuations (turbulent fluctuation refers to the deviation from638
the turbulent mean flow, where the turbulent mean flow refers to the flow averaged in time639
and streamwise direction) seem to be homogeneous in the vertical A − I cross-section, the640
turbulent temperature \ fluctuations seem to be significant only close to the bottom heated641
wall. The third column shows the deviation of the mean flow from the basic laminar flow. It642
can be seen that the mean streamwise velocity is faster than the basic flow mainly close to643
the top wall, and is slower than the basic flow in the middle, and only slightly deviates from644
the basic flow near the bottom wall. The mean temperature is higher than the basic laminar645
flow mainly near the bottom wall, and only slightly deviates from the basic laminar flow in646
the upper part of the pipe.647
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Figure 18: Visualization of the fully turbulent flow field at (�0, �A) = (30, 2 × 107). The first column
shows the full DI in the A− V cross-section (top), in the vertical A− I cross-section (middle), and the turbulent
fluctuations of DI in the vertical A − I cross-section (bottom). The second column shows the full \ field in the
same cross-sections. The third column shows the deviation of the turbulent mean of DI and \ with respect
to their basic laminar counterparts, respectively.

5.2. High-�0 branch648

Within the unstable region ofMode I at large�0 as seen in figure 13, threeHartmann numbers649
�0 = 150, 180 and 306 with a fixed Grashof number �A = 8.298 × 107 are considered to650
investigate the nonlinear flow states. Obviously, nonlinear flow states are responsible for651
the low-frequency high-amplitude fluctuations of temperature appeared in the experiment of652
Genin et al (2011). In order to explain that the high-amplitude fluctuations originally coming653
from global instability mode, it is necessary to compare the nonlinear flow states with the654
global unstable eigenmode with respect to the spatial structure of the flow field.655

5.2.1. (�0, �A) = (150, 8.298 × 107)656

This set of parameters is close to the linear stability boundary, and the saturated nonlinear657
flow state exhibits a nonlinear traveling wave as shown in figure 19. From the second column658
of this figure, the amplitude of the deviation DI is relatively small and thus indicates that659
the nonlinear flow field is only slightly deviated from the basic laminar flow. Comparing the660
deviation of DI with the most unstable linear eigenmode (Mode I) in all cross-sections, as661
shown in the second and third columns, one can see that their spatial distributions are very662
similar. Therefore, the saturated nonlinear flow is mainly dominated by the most unstable663
eigenmode and the nonlinearity is too weak to change the spatial structure significantly.664
This observation is similar to the case with (�0, �A) = (45, 2 × 107) which is close to the665
linear stability boundary curves of the low-�0 branch. However, noticeable differences in666
the flow field from the case with (�0, �A) = (45, 2 × 107) can be observed. Firstly, the667
dominant flow structures of the large-�0 case have a much larger streamwise wavenumber,668
i.e smaller streamwise wavelength. Secondly, the flow structures in the A − V cross-section669
show much simpler symmetrical structures, which are nearly aligned with the magnetic670
field. Thirdly, the flow structures extend the whole horizontal pipe cross-section, rather than671
be localized in a narrow region around the vertical A − I cross-section as in the case with672
(�0, �A) = (45, 2 × 107).673

5.2.2. (�0, �A) = (180, 8.298 × 107)674

The case with �0 = 180 is farther from the linear stability boundary compared with the675
�0 = 150 case. The simulation is started with small random perturbations, and strong676

Page 25 of 33

Cambridge University Press

Journal of Fluid Mechanics



25

Figure 19: Visualization of the streamwise velocity field at (�0, �A) = (150, 8.298 × 107). From left to
right, columns show the full DI , DI deviation, and DI of the most unstable eigenmode. From top row to the
bottom, A − V, vertical A − I, and horizontal A − I cross-sections.
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Figure 20: The  �3� of the case at (�0, �A) = (180, 8.298 × 107). The symbols mark three time instants
at which the flow is visualized in figure 21.

temporal oscillations in  �3� are observed when the flow develops into nonlinear state,677
as shown in figure 20. The flow fields at three time instants between the trough and peak678
of an oscillation (see the symbols in figure 20) are visualized in figure 21. While the679
high amplitude oscillation of  �3� is temporally quasi-periodic, the spatial structure of680
flow flied is also quasi-periodic as shown in the second row for DI deviation. The most681
unstable linear eigenmode is visualized in the rightmost column for comparison. It can be682
seen that the spatial structure of the flow at the trough of the oscillation is similar to the683
linear eigenmode, whereas deviates noticeably from the linear eigenmode at the other two684
time instants, especially at the peak of the oscillation. Besides, the dominant streamwise685
wavelength of the quasi-periodic structures seems to slightly differ from that of the most686
unstable eigenmode. It can be considered that the quasi-periodic spatio-temporal structure687
result from nonlinear modulations of the linear global eigenmode and may be described by688
a weak nonlinear analysis. Compared with the �0 = 150 case, the flow structures become689
more uniform along the direction of the magnetic field due to the larger Hartmann number.690

5.2.3. (�0, �A) = (306, 8.298 × 107)691

Compared with the (�0, �A) = (180, 8.298 × 107) case as seen in figure 21 and figure 22,692
the flow for this case show a much stronger streamwise modulation such that the velocity693
fluctuations nearly form localized clusters interspersed with quiescent flow regions. Inside694
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Figure 21: The frist three columns show the visualisation of the streamwise velocity field at the three time
instants marked in figure 20. The forth column shows the velocity field of the most unstable linear eigenmode
in the pipe. From top row to the bottom are A − V, vertical A − I, and horizontal A − I cross-sections. In all
panels, only DI deviation is plotted.

the clusters, the flow shows some similarities with the flow at the peak of the oscillation695
for the (�0, �A) = (180, 8.298 × 107) case as shown in the third columns of both figures.696
However, the flow field does not oscillate in time as in the �0 = 180 case. Moreover, the697
velocity and temperature structures are nearly uniform along the magnetic field.698
The most unstable linear global mode for this case is plotted in figure 23 to compare with699

the deviations from the basic flow in the nonlinear state as seen from the third and forth700
columns of figure 22. It can be seen that the linear flow structures are also nearly uniform701
along the magnetic field. However, there are noticeable differences in the distribution of702
streamwise velocity and temperature in the vertical A − I plane. From the forth column703
in figure 22 and figure 23(e), the temperature fluctuations are mainly located close to the704
centerline of the vertical A − I plane in the linear mode, whereas are mainly located close705
to the top and bottom pipe walls for the nonlinear state. Besides, in the linear case, the high706
and low temperature regions are arranged alternately along the pipe axis, whereas for the707
nonlinear case, the temperature in the lower half of the pipe is always lower than that of the708
basic laminar flow while is always higher than the latter in the upper half of the pipe. These709
obvious differences of the flow field structure indicate strong nonlinear effects.710
This case has been studied by Zikanov et al (2013) also, and the authors reported nonlinear711

flow structures in form of convection roll-cells. They concluded that the flow structure of712
the nonlinear state is very similar to that of the linear unstable mode. However, as explained713
above, the structure of the fully developed nonlinear state greatly deviates from that of714
the linear mode, although the flow still forms convection roll-cell structures. The principal715
reason for the difference is that the setting of their numerical simulations is different from716
ours. They adopted a computational domain of 50 pipe diameters with only a part (about717
40 diameters) subject to a uniform bottom heating and transverse magnetic field, without a718
periodic boundary condition in the streamwise direction, in order to mimic the experiments719
of Genin et al (2011). Therefore, what they obtained is a nonlinear flow developing from the720
linear instability instead of a fully developed nonlinear state. Our simulations adopt a much721
shorter (4c diameters) periodic pipe but with a longer evolution time for the flow, and the722
target is the fully developed nonlinear flow state, which has not been reached in the setup of723
Zikanov et al (2013).724
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Figure 22: Visualisation of the streamwise velocity and temperature at (�0, �A) = (306, 8.298 × 107).
From left to right, columns show the full DI , full \, DI deviation, and \ deviation, respectively. From top
row to the bottom are A − V, vertical A − I, and horizontal A − I cross-sections.

Figure 23: The most unstable mode in the pipe shown in figure 22 at (�0, �A) = (306, 8.298 × 107). (a-c)
The streamwise velocity in the A − V, vertical A − I and horizontal A − I cross-sections. (d-f) Temperature in
the A − V, vertical A − I and horizontal A − I cross-sections.

6. Concluding remarks725

Linear hydrodynamic stability of the liquidmetalMHDmixed convection in a horizontal pipe726
under bottom heating and transverse magnetic field have been investigated by linear global727
stability analyses. First, linear stability boundary curves are given through the eigenvalue728
computations of linear global stability equations with the finite-element method. For large729
Hartmann numbers, the linear stability boundary is determined by only one most unstable730
mode (Mode I) which has been first found by the numerical simulations of Zikanov et al731
(2013). From the stability boundary curve of the unstable Mode I, there exists a threshold732
of the Hartmann number across which the unstable region for the Grashof number becomes733
larger and larger with the increase of the Hartmann number. For small Hartmann numbers, in734
the range of investigated Grashof numbers (106 − 4× 108) two intersecting critical curves of735
linear stability are found to be determined by two different unstable modes (Mode II and III).736
For these two stability boundary curves, the critical Grashof number becomes larger with737
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the increase of the Hartmann number. Second, destabilization mechanisms of these unstable738
modes are revealed through an energy budget analyses at their critical unstable thresholds.739
It is interesting to find that there are two different instability mechanisms for large and740
small Hartmann numbers. With respect to the unstable Mode I for large Hartmann number,741
buoyancy is the dominant destabilizing term which agrees with the hypothetical explanation742
of Zikanov et al (2013) who regard natural convection as a destabilization mechanism.743
However, for small Hartmann numbers the dominant destabilization of unstable Mode II and744
III comes from the streamwise shear of the basic flow. This indicates that shear instabilities745
still play a leading role under weak magnetic field.746
Fully developed nonlinear flow states of the MHD mixed convection are studied through747

direct numerical simulations. Sufficiently close to the linear stability boundary, the nonlinear748
effect is so weak that the spatial structure of the flow is very similar to the structure of749
the linear global eigenmode that determines the stability boundary. When the simulation750
parameters are farther away from the linear stability boundary, the nonlinear effect becomes751
increasingly pronounced. Within the linear unstable region of small �0, in which the flow752
instability is shear-dominated, the spatio-temporal evolution of the nonlinear flow states may753
sensitively depend on the initial conditions. In case of (�0, �A) = (40, 2 × 107), it is found754
that, depending on the initial condition, the flow may develop into either a chaotic state755
with relatively small fluctuations in the kinetic energy or a nearly periodic state with large756
oscillations in the kinetic energy. The latter suggests the existence of an unstable nonlinear757
periodic solution of the governing equations at the investigated parameters. Both nonlinear758
states show little similarity with the linear eigenmode, indicating strong nonlinear effects.759
This result implies a possibility that, these nonlinear flow states may not necessarily bifurcate760
from the basic flow via the linear instability, rather they could bifurcate directly from some761
nonlinear exact coherent states, as the nearly periodic state shown in figure 16 suggests. In762
fact, this is the scenario for the transition to turbulence in the linearly stable hydrodynamic763
pipe flow, which may also be expected for the flow here at small �0 and �A . However, the764
nonlinear flow states are not fully turbulent at (�0, �A) = (40, 2 × 107), exhibiting large765
streamwise structures that don’t fill the whole pipe cross-sections. In the unstable region at766
large�0, as the (�0, �A) = (180, 8.298×107) case shows, the nonlinear effect may cause the767
fully developed nonlinear state to oscillate quasi-periodically over time with large amplitude,768
but the quasi-periodic spatial structure still maintains high similarity with the linear unstable769
eigenmode. This suggests that, although the nonlinear effect becomes stronger, the final770
nonlinear states still originate from the linear instability. When the parameters are far away771
from the linear stability boundary, the flow would develop into fully turbulent flow in the772
small-�0 regime, as the (�0, �A) = (30, 2 × 107) case show. Whereas, in the large-�0773
regime, the flow would develop into some nonlinear dynamical states (but not turbulence)774
with convection cells aligned with the magnetic field in the large-�0 unstable region, which775
however deviate significantly from the linear unstable eigenmode by showing strong nonlinear776
modulations in streamwise direction and in the vertical A − I cross-section as well.777
Determining the stability boundary for a single '4 requires scanning through the �0−�A778

plane, and a two-dimensional base flow needs to be calculated by Newton iteration at each779
point of (�0, �A), followed by an eigenvalue analysis scanning through the streamwise780
wavenumber : . These calculations are already very expensive, and therefore, the current781
study has only considered a single Reynolds number. Certainly, providing the dependence of782
the linear stability boundary on the Reynolds number is desirable, which will involve a great783
amount of computation and will be our future work. Besides, the linear stability boundary in784
large-�A regime maybe complicated (see Appendix B) and our study has only covered the785
regime up to O(108). Exploring the large-�A regime may be of interest for some extreme786
heating conditions. Similarly, the stability boundary at larger �0 could be complicated also.787
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Figure 24: Streamwise velocity of the base flow along the vertical line through the pipe axis.

Whether or not there would exist another stability boundary at larger �0 above which the788
flow becomes stable again remains unknown and is interesting to find out. However, as the789
thickness of the Hartmann layer is O(�0−1), larger�0 poses severe challenges for numerical790
analysis. Further studies are needed to address the stability of the flow in a larger parameter791
space.792
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Appendix A. Velocity profile of MHD pipe flow797

Here, as an additional validation of our numerical methods, we show our calculation of the798
base flow for the MHD pipe flow, i.e. the pipe flow subject to a transverse magnetic field799
without the bottom heating and buoyancy force, for which asymptotic solutions are available.800
According to Vantieghem et al (2009), the streamwise velocity normalized by its value801

at the pipe axis is
√

1 − H2 outside of the Roberts layers (Roberts layers are close to the802
top and bottom pipe walls in our setup) for electrically insulating pipe wall. We performed803
simulations by setting �A = 0 in our simulation at �0 = 102 and 1000. For �0 = 1000,804
we needed 256 Chebyshev points on the pipe radius for obtaining a converged base flow805
given the very thin Hartmann layer. The results are compared with the asymptotic solution806
in figure 24. It is obvious that our velocity profile coincide with the asymptotic solution807 √

1 − H2 close to the pipe center (which is outside of the Roberts layers), and as �0 increases808
so that the Roberts layer becomes thinner, the agreement is obtained in a wider region. This809
test shows that our base flow is accurately calculated.810

Appendix B. Unstable region at high �A for large �0811

Our stability boundary at large �0 shows that the flow is stable above the boundary at large812
�A. However, one may expect that, at a fixed �0, as the bottom heating keeps increasing, i.e.813
as�A increases, the flowwould become unstable again. Indeed, the boundary we computed is814
by no means complete due to the vast parameter space so that the high computation cost. It is815
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Figure 25: The unstable region at large �A . In panel (a), symbols show unstable points that are close to
a linear stability boundary. The region enclosed by the points is an unstable region. (b-d) The streamwise
velocity of the most unstable eigenmodes for the wavenumber : = 9.24 visualized in the A − V cross-section.
Panels (b), (c) and (d) correspond to the points marked as (b-d) in panel (a), for which the specific parameters
can be found in table 3.

certainly possible that there are unstable regions at higher�A than we considered in figure 8.816
By DNS, we explored briefly in the large-�A regime and indeed observed linear instability,817
as expected, see figure 25 . In table 3, we list the data corresponding to the parameter points818
(�0, �A) plotted as symbols in figure 25. At these parameters, however, we didn’t scan819
through the streamwise wavenumber but selected a single wavenumber close to the upper820
end of the critical wavenumber curve for Mode I, see figure 9(a). The growth rate W of small821
disturbances are calculated. The flow is unstable at these parameters but the growth rates are822
very small, implying that that they are close to a stability boundary that encloses an unstable823
region in the large-�A regime.824
The most unstable eigenmode at the three parameter points marked as (b-d) in figure 25(a)825

is visualized in figure 25 (b-d), respectively. Comparing panels (b) and (c) with the unstable826
eigenmode at lower �A as shown in figure 19(g), one can notice that the flow structures827
are quite different. At lower �A , the flow structures are located close to the pipe center828
and nearly aligned with the magnetic field, whereas the flow structures at larger �A are829
concentrated close to the heated bottom wall and no obvious alignment with the magnetic830
field can be observed. From figure 25(b-d), it can be seen that the flow structures are gradually831
elevated toward the pipe center and seem to be approaching those shown in figure 19(g) as832
the parameters change along the stability boundary. This change is likely a result of the833
competition between the effects from buoyancy and magnetic field as the parameters change.834

835
The saturated nonlinear flow state developed from the linear instability is computed at836

the point (�0, �A) = (150, 5 × 108) (marked by a × symbol in figure 25). The pipe length837
is set to 6.8 pipe diameters, which is ten times of the wavelength of the unstable mode of838
: = 9.24. The flow is visualized in figure 26. It can be seen from the figure that the fully839
developed flow exhibits a spatially periodic structure, which is clearly not turbulent (the flow840
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�0 �A W �0 �A W

150 8.3 × 108 0.00059588 174 3.4 × 108 0.00135764
140 6.0 × 108 0.00078862 200 4.35 × 108 0.00076262
134 4.5 × 108 0.00123070 224 5.4 × 108 0.00223940
130 3.3 × 108 0.00110420 250 6.52 × 108 0.00062116
130 2.8 × 108 0.00013601 280 7.6 × 108 0.00008076
134 2.6 × 108 0.00047236 290 7.8 × 108 0.00126316
140 2.6 × 108 0.00095078 296 7.8 × 108 0.00238920
150 2.75 × 108 0.00114538

Table 3: The data (�0,�A , W) for the symbols shown in figure 25. A fixed streamwise wavenumber : = 9.24
is considered for these calculations. This streamwise wavenumber is close to the upper end of the critical
wavenumber curve for Mode I as shown in figure 9.

Figure 26: The saturated nonlinear flow state at (�0, �A) = (150, 5 × 108). Panel (a) and (b) show the
velocity DI and temperature \ deviations with respect to the basic flow, respectively, in the A−V cross-section.
Panel (c) and (d) show DI and \ deviations in the vertical I − H cross-section through the pipe axis.

is in fact a nonlinear traveling wave). The flow shown in figure 26(a) is very similar to the841
unstable eigenmode shown in figure 25 (b,c), indicating that the saturated nonlinear flow842
state is dominated by the linear instability and the nonlinearity is weak. The nonlinear flow843
state is also computed at the point (�0, �A) = (200, 6×108) and the situation is very similar844
and thus not shown. That the fully developed nonlinear flow is non-turbulent is similar to the845
case in the unstable region at lower �A for large �0 (see figure 19, 21 and 22).846
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