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Linear stabilities of the liquid metal mixed convection in a horizontal pipe under bottom
heating and transverse magnetic field are studied through linear global stability analyses.
Three branches of the linear stability boundary curves are determined by the eigenvalue
computation of most unstable modes. One branch is located in the region of large Hartmann
number and determined by the linear unstable mode which was first revealed by numerical
simulations of Zikanov et al (2013). This branch curve shows that the global unstable
mode exists above a threshold of Hartmann number, which agrees with the experiment of
Genin et al (2011). The other two branch curves determined by two different longwave
unstable modes intersect with each other in the region of small Hartmann number. The
critical Grashof number on these two curves increases exponentially with the increase of the
Hartmann number. Through energy budget analyses at the critical threholds of these unstable
modes, it is found that for the unstable mode at large Hartmann numbers buoyancy is the
dominant destabilizing term which demonstrates the hypothetical explanation of Zikanov et
al (2013) who regard natural convection as a destabization mechanism. It is further revealed
that with respect to the unstable modes on the critical stability curves of small Hartmann
numbers the dominant destabization comes from the streamwise shear of the basic flow.
Finally, within the linear unstable region, fully developed nonlinear flow states of the mixed
convection are investigated by direct numerical simulations with several sets of selected
dimensionless parameters. The spatiotemporal structures of these nonlinear flow states are
discussed in detail with comparison to the linear unstable global modes.
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1. Introduction

Liquid metal blankets have been believed to be the most promising candidates (Abdou et al

2015) for the blanket design of future fusion reactors due to their three key functions with
heat exchangers, radiation shields and tritium breeders at the same time. Liquid metals as
tritium breeding or cooling would circulate in all kinds of pipes and ducts for different blanket
designs such as the water cooled (WCLL), helium cooled (HCLL) lead lithium blankets (Ling
et al 2020; Forest et al 2020) and the dual coolant lead lithium (DCLL) blanket (Smolentsev
etal 2015). Magnetohydrodynamic (MHD) interactions (Molokov et al 2007) would occur
when the electrically conducting liquid metal moves in the strong magnetic field that confines
the fusion plasma. One of the open issues in the liquid blanket development is to assess the
influence of MHD effects on the fluid dynamics and heat transfer mechanisms (Smolentsev et
al 2010; Mistrangelo et al 2021). Under strong magnetic fields, MHD interactions generally
result in significant anisotropy of flow distribution and complex hydrodynamic behavior.
Without considering the thermal effect, on the one hand, the magnetic field can lead to a
change of laminar-turbulent transition mechanism (Moffatt 1967; Davidson 1995; Zikanov
et al 2014) in the MHD flows. The magnetic field usually tends to suppress the production
of turbulence and make the transition from laminar flow to turbulence occur at much higher
Reynolds number (Shatrov 2010). On the other hand, many specific spatial structures such
as shear layers (Lehnert 1952), inflexion points (Kakutani 1964) and jets (Hunt 1965) may
appear in the MHD flows due to the action of the magnetic field, and can produce instabilities
of free shear flow type such as the sidewall jet induced instability (Priede et al 2010, 2012,
2015). The critical Reynolds number of jet-induced instability has revealed significantly
lower than the Reynolds numbers at which turbulence is observed in experiments (Moresco
and Alboussire 2004) or direct numerical simulations (Kinet et al 2009).

Inliquid metal blankets of magnetic-confinement nuclear fusion reactors, mixed convection
of liquid metals in pipes or ducts is one of the most primary flows due to the extreme
conditions of large heat flux and strong magnetic field. Such mixed convection flows have been
revealed to be complex and counterintuitive in a lot of laboratory experiments and numerical
simulations. In the normal cases of strong magnetic field without heat flux, there exists a
laminar-turbulent transition (Zikanov et al 2014) with the known range 200 < Re/Ha < 400
for the typical values of nondimensional parameters (the Reynolds (Re) and Hartmann
(Ha) numbers) with respect to isothermal duct, pipe, and channel flows of various liquid-
metal blankets. However, in the experiments of Genin et al (2011) and Belyaev et al
(2015) for liquid metal flows in the heated horizontal tube under a transverse horizontal
magnetic field, the unexpected anomalous temperature fluctuations with low-frequency and
high-amplitude are discovered at strong magnetic fields which make Re/Ha < 200 when
the turbulence is ususally regarded to be fully suppressed. Large-amplitude low-frequency
pulsations of temperature in the form of isolated bursts or quasi-regular fluctuations have also
been observed in the experiments (Kirillov et al 2016; Listratov et al 2016; Melnikov et al
2014, 2016; Belyaev et al 2020) of a downward flow in a vertical round pipe and rectangular
duct with one wall heated and an imposed strong magnetic field. The high-amplitude low-
frequency fluctuations of velocity and temperature that appear in flows with strong convection
and magnetic field effects are proposed to be called magnetoconvective fluctuations (Belyaev
et al 2021). Magnetoconvective fluctuations obviously have a key impact on the design of
the liquid-metal blankets of future nuclear fusion reactors and relevant magneto-convection
flows have been recently reviewed by Zikanov et al (2021).

To study hydrodynamical stabilities of the MHD mixed convections in the horizontal or
vertical duct, the quasi-two-dimensional (Q2D) model proposed by Sommeria and Moreau
(1982) is usually adopted. Through the Q2D model, Smolentsev et al (2012) firsr studied
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79 instabilities and transitions in MHD duct flows with a symmetric "M-shaped" velocity
80 profile by imposing an external flow-opposing force. Various instability modes and transition
81 scenarios have been revealed by varying this external force and position of the inflection
82 point. Vetcha et al (2013) considered the upward flows in a vertical rectangular duct subject
83 toavolumetric heating and a strong transverse magnetic field. Both bulk instability associated
84 with the inflection point and side-wall boundary layer instability are predicted by their linear
85 stability analysis. Vo et al (2017) investigated the linear stability of horizontal Poiseuille-
86 Rayleigh-Bénard flows subjected to a transverse magnetic field and a vertical temperature
87 gradient. Liu and Zikanov (2015) further investigated the elevator convection mode for the
88 vertical downward flow using the Q2D model. Furthermore, numerical simulations of the
89  MHD mixed convection are performed on the Q2D model. For example, Zhang and Zikanov
90  (2018) numerically investigated the stabilities of the downward flow in a vertical duct with
91 one heated and three thermally insulated walls under a strong transverse magnetic field. The
92 Q2D model is originally proposed in the limit of high interaction parameter (Ha?/Re > 1)
93 and Hartmann number (Ha > 1). Then it is not suitable to study hydrodynamic stabilities of
94 MHD duct flows in full physical parameter space, especially to detect the instability boundary
95 when the unstable threshold occurs at much lower interaction parameter and Hartmann
96 number. Even at the high Hartmann number, for the mixed convection in a horizontal duct
97 with imposed transverse horizontal magnetic field, the applicability of the Q2D model is not a
98 priori certain due to the numerical discovery of the large-scale coherent structure (Zhang and
99 Zikanov 2014) which has significant flow and variations of temperature along the magnetic
100 field lines at the high Grashof regime. Furthermore, the full linear stability analysis of the
101 horizontal MHD mixed convection has revealed that the instability thresholds of the steady
102 solutions with symmetrical or asymmetrical rolls occur at much lower Hartmann number and
103 Grashof number (Hu 2020). This clearly shows that the Q2D model is not appropriate for
104 the research on the occurence process or mechanism of stabilities of the mixed thermal MHD
105 convections in the horizontal duct. Meanwhile, it is also noticed that the Q2D model is only
106 suitable to the rectangle cross-sectional duct and then is not available to the circular cross-
107 sectional pipe. These further shows its limitation of application for general cross-sectional
108 geometry.

109 Without using the Q2D model, there exist two other appoaches to study the MHD mixed
110 convections in the horizontal or vertical channels (duct or pipe). One is the direct numerical
111 simulation (Ni et al 2007), the other is the linear global stability analysis (Theofilis 2011).
112 In order to explain the slow high-amplitude fluctuations of temperature appeared in the
113 experiment of Genin et al (2011), Zikanov et al (2013) conducted a linear stability analysis
114 with direct numerical simulations for the liquid metal mixed convection in a horizontal pipe
115 which is subject to constant flux heating in the lower halfwith and an imposed transverse
116 magnetic field. Coherent quasi-two-dimensional rolls aligned with the magnetic field are
117 successfully found at the magnetic field strength far exceeding the laminarization threshold,
118 and transport of the rolls by the mean flow can be used to explain the experimental
119 phenomenon of low-frequency high-amplitude fluctuations of temperature. Through the
120 similar numerical approaches, Zhang and Zikanov (2014) further analysed the liquid metal
121 mixed convection in a horizontal duct with bottom heating and transverse magnetic field.
122 The same coherent quasi-two-dimensional rolls are found in the “low-Gr” regime, while a
123 combination of the spanwise rolls and streamwise-oriented rolls is revealed in the “high-
124  Gr” regime. The linear exponential growth rates are computed as functions of stream-
125 wise wavelength for both symmetrical and asymmetrical steady rolls, meanwhile the spatial
126 structure of instability modes is exhibited during the stage of exponential growth. Then their
127 main conclusion is that the instability leading to the formation of convection rolls aligned
128 with the magnetic field is a common feature of the flow invariably observed at Ha > 200 and
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sufficiently high Gr. Zikanov and Listratov (2016) further performed numerical simulations
of the downward flow of a liquid metal in a vertical pipe and attributed the large-amplitude
fluctuations of temperature to the growth and quasi-periodic breakdown of the pairs of
ascending and descending jets related to the elevator modes. Based on the approach of linear
global stability analysis, Hu (2020) first studied the linear stabilities of the symmetrical and
asymmetrical steady solutions of a similar MHD mixed convection as Zhang and Zikanov

(2014) in a horizontal duct. It is much easier to obtain the linear critical stability boundary
curves for both symmetrical and asymmetrical steady solutions. Through these boundary
curves, it is revealed that their three-dimensional oscillatory instabilities occur at large
magnetic fields and buoyancy is the dominant destabilizing term from the energy budget
analyses. These can explain the results of the experiments of Belyaev et al (2015) that
temperature fluctuations disappear under moderately strong magnetic fields, while high-
amplitude low-frequency oscillations reappear under a much stronger magnetic field through
a linear instability transition process. Recently, Hu (2021) further analyzed linear global
stabilities of a downward flow of liquid metal in a vertical duct under strong wall heating and
a transverse magnetic field. Three-dimensional elevator and oscillatory unstable modes are
revealed through the eigenspetrum computation. The elevator mode is found to be always
unstable and independent of the basic flow profile. The unstable oscillatory mode is directly
related to the basic upward reverse flow and first occurs at the specific flow structure which has
an upward reverse flow near the heating wall and a downward flow near the opposite wall. The
shear Kelvin-Helmholtz instability due to the existence of an inflection point is found to be
the key instability mechanism of the three-dimensional oscillatory mode through the energy
budget analyses. Then it is concluded that the appearance of the unstable oscillatory mode
may be regarded as an alternative physical explanation of the high-amplitude, low-frequency
pulsations of temperature in the experiments and related numerical simulations.

Direct numerical simulations have been demonstrated to be an important approach for the
hydrodynamical stability of the liquid metal MHD mixed convection in a horizontal pipe
(Zikanov et al 2013). However, on one hand, it is difficult to determine the stability boundary
of the MHD mixed convection for large Hartmann numbers through direct numerical
simulations due to considerable computational overhead for each set of parameters. On
the other hand, it is not clear why the natural thermogravitational convection becomes
a dominant destabilization mechanism which only is regarded as a hypothesis through a
flow visualization of physical experiments or numerical simulations. It is easy to solve
above two difficulties through the linear global stability analysis which has been reviewed
comprehensively by Theofilis (2011). Linear global stability analysis is mainly based on the
solution of the multidimensional eigenvalue and has many successful applications especially
for nonparallel and three-dimensional flows (Theofilis 2003). In this paper, full linear global
stability analyses without using the Q2D approximation for the MHD mixed convection flows
in a circular pipe have been performed successfully. Through the eigenvalue computation
of linear global stability equations with finite element method, the critical linear stability
boundaries of the MHD mixed convection can be plotted in the parameter plane of the
Hartmann number and Grashof number. The critical boundary for the moderate Hartmann
number is determined by the unstable mode which is first found by Zikanov et al (2013)
through direct numberical simulations. The other critical boundaries for the small Hartmann
number are also given and determined by different most unstable modes. At the critical
points on these stability boundaries, the energy budget analyses are further performed to
study the destabilization mechanism of the corresponding unstable modes. In order to study
the spatiotemporal structures of nonlinear MHD mixed convection close to the stability
boundary curves, direct numerical simulations with Fourier-spectral-finite-difference method
are performed using a modified Openpipeflow Navier-Stokes solver. It will be seen from
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179 these simulations that much more complex spatiotemporal structures would appear when
180 the simulation parameters are getting farther and farther away from the stability boundary.
181 Furthermore, initial condition dependence of numerical simulations is also considered for
182 these complex nonlinear states.

183 2. Physical model and governing equations
184 2.1. Physical model

185 The physical model comes from Genin’s experiment and considers a liquid metal flow along
186 a horizontal electrically insulating pipe subject to bottom uniform heating with heat flux
187 intensity g and an external constant transverse magnetic field By, as shown in Figure 1.
188 Mixed convection flow would be produced by a combined action of a pressure driven flow
189 and thermal buoyancy due to huge temperature gradients with strong magnetic fields, then
190 such a flow is usually called MHD mixed convection. The liquid metal is not magnetizable
191 liquid and is considered as an incompressible, electrically conducting Newtonian viscous
192 fluid with constant kinematic viscosity v, electric conductivity o and thermal conductivity «.
193 The pipe wall is assumed to be electrically insulating, the upper half of the wall is assumed to
194 be thermally insulating and the lower half of the wall is imposed with constant and uniform
195 heat flux.

196 The Oberbeck-Boussinesq approximation is applied for the buoyancy force and the quasi-
197 static model is adopted for the electromagnetic interactions. Then the dimensional governing
198 equations for the liquid metal pipe flow can be described by the Navier-Stokes system

199 V.v=0, (2.1)
200

ov 2
201 £0 i +v-Vv| =-Vp+povVv+F, +Fy, (2.2)
202 !

oT 1,
203 PoCp E+v.VT =V-(KVT)+;_] +®+ Q. (2.3)

204 Here, v, p, and T are the fields of velocity, pressure and temperature, pg is the reference value
205  of the fluid mass density, ¢, is the specific heat capacity, oijz is the loss of magnetic energy
206 due to Joule dissipation, @ is the loss of kinetic energy due to viscous dissipation, and Q is
207 other sources of volumetric energy release like nuclear radiation or chemical reactions. The
208 buoyancy force F;, with the Oberbeck-Boussinesq approximation is assumed to vary linearly
209 with temperature and represented as

210 Fp=(p-po)g p=poll-pB(T-To], (2.4)

211 where S is the thermal expansion coefficient, g is the gravity acceleration in the negative
212 vertical direction. The Lorentz force F; with the quasi-static model is represented as

213 F; =j x By, (2.5)
214
215 Jj=0(-V¢+vxBy), (2.6)

216 where j is the induced electric current density, ¢ is the electrostatic potential. It is clearly
217 seen that using the quasi-static model the induced magnetic field can be neglected and the
218 magnetic field remains undisturbed in the expressions of the Lorentz force (2.5) and the
219 Ohm’s law (2.6). The quasi-static model has been proven to be enough accurate when the
220 magnetic Reynolds and Prandtl numbers are both small (Roberts 1967; Davidson 2001).
221 In most laboratory experiments, the magnetic Reynolds number is relatively small and the
222 induced magnetic field is much weaker than the imposed field.
Cambridge University Press
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Figure 1: The flow configuration. The pipe is placed horizontally and heated from below with a constant
heat flux g, and the upper half of the pipe wall is assumed to be insulated. Uniform magnetic field B is
imposed in the transverse horizontal direction and gravity field g has a vertical downward direction.

The current density can be considered to be solenoidal by neglecting displacement currents
and assuming the fluid to be electrically neutral, i.e.

V.j=0. 2.7)

Then by substititing the Ohm’s law into above solenoidal relation, a Poisson equation for the
electrostatic potential is obtained as follows

V2=V - (vxBy). (2.8)

By neglecting all energy dissipation and other energy sources except the Fourier diffusion
term, the temperature equation (2.3) is reduced into

T
+v- VT = yV°T. (2.9)

ar
Here, y = k/poc), is the thermal diffusivity.
The boundary conditions on the lower half of the wall include non-slip condition for the
velocity and the constant heat flux for the temperature, i.e.

oT
— =g, 2.10
Ko =4 (2.10)
and the boundary conditions on the upper half of wall are non-slip and thermal insulated, i.e.
oT
— =0. 2.11
o 2.11)

2.2. Model nondimensionalization and reduction

The dimensional governing equations can be further non-dimensionalized by using the pipe
diameter d as the length scale, mean streamwise velocity U, as the velocity scale, gd/« as
the temperature scale, By as the scale of the magnetic field strength and dByU,,, as the scale
of electric potential. Then the dimensionless governing equations can be written as

oy

o (2.12)

1
+v-Vy=-Vp+ —Vi+f, +1),
Re
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344 V.-v=0, (2.13)
246 9 +v-VT = ! VT (2.14)
ot ~ Pe ' '
247 The buoyancy and Lorentz forces are dimensionalized as
Gr Ha? .
248 f, = @Tey and f; = R_eJ X €y, (2.15)

249 where the dimensionless parameters including the Reynolds number, Prandtl number, Péclet
250 number, Grashof number and Hartmann number are defined as

Upnd Und

251 Re = , Pr= Y Pe = —— = Re - Pr, (2.16)
v X X
d4 1/2
252 Gr = gﬁ;’ . Ha=Byd (1) . 2.17)
V2K pv

253 In order to compare our results with those of Zikanov et al (2013), the same dimensionless
254 parameters for the Reynolds number and Prandtl number are selected with Re = 9046 and
255 Pr =0.022 in this work.

256 The boundary conditions at the pipe wall include the no-slip conditions for velocity and
257 the condition of perfect electric insulation

258 v =0, g—¢=0, at r=4x2+y2=1/2. (2.18)
r

259 Here, x and y are horizontal and vertical coordinates in the cross section respectively. For
260 the temperature, the condition on the lower half of the wall is

T
261 a—=1, at r=1/2, (2.19)
or
262 while for the upper thermally insulating half of the wall we have
oT
263 — =0, at r=1/2. (2.20)
or

264 The temperature field can be further decomposed as a sum of the mean mixed temperature
265 and the resulting temperature deviation

266 T(x,1) =T, (2) +0(x,1). (2.21)

267 The mean mixed temperature is assumed to be a linear function of the streamwise coordinate
268 z which makes the overall energy balance between the heat transfer across the lower half
269 of the wall with constant heat flux and the streamwise convection heat transfer. Then its
270 streamwise gradient is given by

dl,, P
dz  A-Pe
272 where P = n/2 is the perimeter of the heated portion of the wall and A = n/4 is the
273 cross-sectional area of the pipe. Then the temperature governing equation is written as

00 dT,,

1
+v-VO= —V20-—w—", 2.23
ot Y Pe W dz ( )

275 The pressure can also be decomposed into three parts as follows

271

(2.22)

274

276 p=p2)+p(y.2)+px1). (2.24)
Cambridge University Press



Page 9 of 33

277
278
279

280

281
282

283
284
285
286
287

288
289

290
291

292
293

294
295

296
297

298
299
300

301
302

303

304
305

306
307

308

309

310

Journal of Fluid Mechanics

8

The first part is a linear function of z corresponding to a spatially uniform streamwise gradient
dp/dz which pushes the pipe flow. The second part is used to balance with the buoyancy
force from the mean mixed temperature

Gr
pP(y,z) = 2o2”) Tm T, + cons. (2.25)

Also, the forcing in the streamwise direction from the second part is deduced with
op _ Gr dTly,
9z Re? dz

We look for the two-dimenisonal steady-state solutions in which the velocity, pressure,

temperature (excluding the linear part coming from the bottom heating) and electrostatic
potential are independent of streamwise coordinate, as follows

(2.26)

v = Vixy) = (Teny) W), 2.27)
p=Pxy), 0=0(xy), ¢=o(xy). (2.28)

_)
Here, U = (U, V) is the cross-sectional velocity, and W is the streamwise velocity. Thus the
two-dimensional steady governing systems for the steady flow state are obtained as follows

Gr dT,, Ha?

_)
.V —-dp/d —V2W —F, 2.2
(U S)W p/ roa R 2 d y + — Re 2 ( 9)
Y — 1 —  Gr Ha’—
VU = -V P+ —V? —_— — 7, 2.
(U )14 +Re U+ R62®ey+ Re f (2.30)
1 dT,,
(U -V,)0 = —V0 - W, (2.31)
Pe ° dz’
_)
vV, -U =0, (2.32)
q
F =(-VO+v, xey) Xe,, (2.33)
V2D =V (v, X ey). (2.34)

Here, Vi = (0x,0y), F = (7,FZ) and 7) = (Fy,Fy). The corresponding boundary
conditions on the walls are non-slip condition for the velocity,

vp =0, at r=1/2, (2.35)

fixed heat flux for constant-rate heating on the lower half of the wall and thermal insulation
on the upper half of the wall,

00
— =1, at r=1/2, y<0, (2.36)
or
00
— =0, at r=1/2,y>0, (2.37)
or
as well as zero current flux due to electrically insulating walls,
0d
=0, at r=1/2. (2.38)
or

Cambridge University Press
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311 3. Numerical methods
312 3.1. Finite element method for linear global stability analysis

313 For linear global stability analysis of the MHD mixed convection in a circular pipe, the
314 two-dimensional steady-state solutions of the governing equations should be computed. The
315 Taylor-Hood finite element method is used for spatial discretization for the steady governing
316 equations, and the Newton method is adopted to solve the derived non-linear system when the
317 cross-section velocity is not zero. A high-level integrated software FreeFem++ (Pironneau et
318 al 2013) for the numerical solution of nonlinear multiphysics partial differential equations is
319 adopted for the computation of the steady-state solutions. A bidimensional anisotropic mesh
320 generator BAMG built into FreeFem++ is used to define the circular cross-sectional geometry
321 and generate the two-dimensional triangular meshes. Three borders are first defined for the
322 two-dimensional mesh generation, one is the outer wall boundary with r = 0.5, the other
323 two are internal circles with » = 0.4 and r = 0.3. Then discrete mesh points are uniformly
324 distributed on these borders with different numbers. The numbers of mesh points can be used
325 to control the mesh resolution and futher be defined as n,., 0.5n, and 0.3n, respectively. This
326 will produce much larger mesh size for the border with smaller circle radius. It is easily seen
327 from figure 1 that the triangular mesh with n,, = 100 has much smaller mesh size near the
328 pipe wall. Obviously, finer mesh resolution near the pipe wall is realized and beneficial to
329 improve the numerical accuracy.

330 Because the mean streamwise velocity is adopted as the velocity scale, it should be noted
331 that the uniform streamwise pressure gradient d j/dz should be adjusted to make the average
332 streamwise velocity to be positive one, i.e.

1
333 —/WdAzl. 3.1)
AJa

334 Simplely, a simple bisection process can be used to make the relation (3.1) satisfied. Newton
335 iterative method needs a good initial guess, then the steady-state solutions are computed
336 continuously from small dimensionless parameters to large ones. In order to verify the
337 correctness of the two-dimensional steady-state solutions, the same cases as Zikanov et al
338 (2013) for Re = 9046, Pr = 0.022, Gr = 8.298 x 107 with different Hartmann numbers are
339 considered. Base flow solution of the streamwise velocity and temperature field along the
340 cross-section for Ha = 102 is first plotted in figure 2 which has the same spatial distibution
341 as Zikanov et al (2013). A detailed comparison for the profiles of the streamwise velocity W
342 of the base flow along horizontal and vertical lines drawn through the pipe axis is presented
343 infigure 3. It is clearly seen from these figures that the steady-state solutions obtained by the
344 finite element method agree very well with those by direct numerical simulations of Zikanov
345 etal (2013).

346 In order to study the asymptotic behaviour in time of generic small-amplitude perturbations
347 of (V', P/,®,®’) imposed on the steady-state mixed convection, these perturbations can be
348 expanded as normal modes in the streamwise direction as follows

349 (V,P',0,®) = (9, p,0,d) exp(ikz + yt), (3.2)

350 where k is the wave number in the streamwise direction, and y = 7y, +1y; is the corresponding

351 complex growth rate. By substituting the expressions of the disturbed flow field V + V', P +

352 P/,0+ 0,0 + @ into the governing system, the full global linear stability equations are
Cambridge University Press
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Figure 2: Base flow solution of the streamwise velocity (a) and temperature (b) field along the cross-section;
Re = 9046, Pr = 0.022, Gr = 8.298 x 107 and Ha = 102.
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Figure 3: Profiles of the streamwise velocity W of the base flow along horizontal (a) and vertical (b)
lines drawn through the pipe axis; solid line is obtained by the finite element method with FreeFem++
software, while triangle symobol is from direct numerical simulations of Zikanov et al (2013); Re = 9046,
Pr=0.022, Gr = 8.298 x 107 and Ha = 102.

354 obtained as follows

N _)' . . - =_@
15 vi + (U Vs +1kW) i+ (lu Vs) U o o
= (V2-42)a,
Yo + (TJ’.VS+ikW)9+ (_ﬁ>.VS)V: _?
” 1 Hd? R g 3.4
4o (VIR 0+ 2 (ikd = 7).
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— —
yW+(U-VS+ikW)W+(ﬁ -VS)Wz—ikﬁ
359 1 Gr . Ha? (9(;3 3.5
— Vz—kQ)A Lo+ 2 (22w,
+Re(s W+Re2 " Re dy "
N — N —>
79+(U-Vs+ikW)9+(ﬁ -VS)®
361 1 4T (3.6)
:—(V%—kz)e—W—’",
Pe \ dz
on ov
362 —+ —+ikw =0, 3.7
ox 0Oy e 3-7)
2y o\ a (B0
363 (Vs—k )¢— M _ikd| =o0. (3.8)
dy
364 Here, v = (_z{, W) = (@, v, w). And the boundary conditions are given with
06  9¢
365 §=90_9 o a r=1p2 (3.9)
or Or

366 The spatial discretization of Taylor-Hood finite element can also be used for the global
367 linear stability equations. After the spatial discretization of the linear stability equations, a
368 generalized eigenvalue problem has to be solved in the matrix form as follows

369 Aq = yBgq, (3.10)

370 where § = (9, p,0,$) is the eigenvector collecting the velocity components, pressure,
371 temperature and electrostatic potential on each degree of freedom of the discrete problem, A
372 and B are large sparse complex matrices. In order to facilitate the extraction of the desired
373 eigenvalues for unstable modes, spectral transformations should be introduced into the gen-
374 eralized eigenvalue problem. Theofilis (2011) has reviewed a lot of spectral transformations
375 commonly utilized in global instability analysis of fluid flows. Most commonly used is shift-
376 and-invert strategy which transforms the generalized eigenvalue problem into a standard
377 eigenvalue problem as follows

378 (A-uB)'Bi=(y-w'q. (3.11)

379  The shift matrix can be solved by UMFPACK or MUMPS sparse LU solver and the standard
380 eigenvalue problem solved with an implicitly restarted Arnoldi algorithm as provided in
381 the ARPACK software library (Lehoucq et al 1998). Thus, the largest eigenvalues of
382 the transformed matrix now correspond to those eigenvalues of the original generalized
383 eigenvalue equation which are the closest to the shift value pu.

384 In order to validate the computation of the eigenspectrum, linear growth rate and phase
385 velocity of most unstable mode as a function of wavenumber are plotted in figure 4 for
386 Re = 9046, Pr = 0.022, Gr = 8.298 x 107 and Ha = 306. Compared with numerical
387 simulation results of Zikanov et al (2013), it is easily found that the linear growth rates we
388 get from FreeFem++ software are a little higher than their results, especially obvious near the
389 maximum growth rate. It is noticed that Zikanov et al (2013) used two different streamwise
390 grid number, larger one (N = 64) is for long wave perturbations while smaller one (N = 32)
391 is for short wave perturbations. Under these two mesh resolutions, their phase velocity results
392 of most unstable mode are obviously different, aslo specifically for moderate wave numbers
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Figure 4: Linear growth rate (a) and phase velocity (b) of most unstable mode as a function of wavenumber;
solid line is obtained by the finite element method with FreeFem++ software, while rectangle and triangle
symobols are from direct numerical simulations of Zikanov et al (2013) with respect to the streamwise grid
number N = 32 and N = 64; Re = 9046, Pr = 0.022, Gr = 8.298 x 107 and Ha = 306.

(k =5 ~ 7) where the large exponential growth occurs. Then it is interestingly found that a
good agreement between our eigenspectrum results and numerical simulations of Zikanov et
al (2013) occurs when the exponential perturbation growth is not very strong.

3.2. Fourier-spectral-finite-difference method for direct numerical simulation

For direct numerical simulations, we solve the dimensionless governing equations in
cylindrical coordinates where r, 8,z denote the radial (i.e. wall-normal), azimuthal and axial
directions, respectively. Then the velocity field would be denoted with v=(u,, ug, u;). We use
a Fourier-spectral-finite-difference method for discretizing the equations. Field variables, i.e.
v, p, ¢ and 6, are expanded with a two-fold Fourier expansion

K M
A Bz = Y > A(r0)kmexp {ikaz+imp}, (3.12)

k=—K m=—M

in which A(r, t)k.m is the Fourier coefficient of the (k,m) Fourier mode and is a function
of r and ¢, @ would determine spatial periodicity. In the radial direction, we use a 9-stencil
high-order finite difference method for the discretization. The nonlinear terms are calculated
using the pseudo-spectral technique with the 3/2-rule for dealiasing. 2K and 2M give the
total number of Fourier modes used in the axial and azimuthal directions, respectively. We
use the finite difference scheme, the singularity-removal technique at the pipe axis and the
MPI parallelization strategy of OPENPIPEFLOW (Willis 2017). Particularly, the singularity-
removal is achieved by avoiding a grid point at the pipe axis » = 0 and imposing proper
parity conditions on velocity, electric potential and temperature in the neighborhood of the
pipe axis. To be clear, near the pipe axis u, and ug are odd for even m and even for odd
m, whereas u, ¢ and 6 are even for even m and are odd for odd m. Technically, the parity
condition is implemented by imposing homogeneous Dirichlet condition for odd functions
and homogeneous Neumann condition for even functions at » = 0. The details can be found
in the documentation of OPENPIPEFLOW (Willis 2017).

For the time-integration of Navier-Stokes equations and the heat equation, a semi-implicit
three-level Admas-Bashforth time-integration scheme is adopted. Linear terms are treated
implicitly and the nonlinear term is treated explicitly using a backward differentiation

Cambridge University Press



Journal of Fluid Mechanics Page 14 of 33

13

—=S

oc0.5 -

0 L ’} I I L

0 1 2 3 4

Figure 5: The distribution of the heat flux around the whole pipe wall used for direct numerical simulations
with the spetral finite-difference method.

420 scheme. The incompressibility condition is imposed using a projection method (Hugues
421 and Randriamampianina 1998). Since only lower half pipe wall is heated and upper half
422 pipe wall is thermally insulated, there will exist a discontinuity with respect to the heat flux
423 ‘3—{ at the boundary between the heated and insulated parts of the pipe wall. In order to use the
424 Fourier spectral method, we adopt a steep tanh function to approximate this discontinutity.
425 Assuming the heated part is located at 8 € [7, 37”], then the distribution of the heat flux

426 around the whole pipe wall is given by

00 -n-Z
427 q= E(,B) =0.5-0.5tanh %, (3.13)

428 where the parameter ¢ is a control parameter which determines the steepness at the
429 approximated discontinuity boundary. As shown in figure 5, it is clearly seen that smaller
430 parameter ¢ gives rise to steeper boundary for the heat flux. However, much smaller parameter
431 ¢ would need more azimuthal collocation points near the approximated discontinuity
432 boundary and then should be properly chosen to balance the accuracy and computational
433 cost.

434 As the steady base flow is streamwise invariant, we can choose to only solve the £ = 0 modes
435 to obtain the base flow. It is obvious that the base flow would have two-dimensional stability
436 in the cross-section. As a validation, we compare our calculations using the spectral method
437 with the results using finite element method in the previous subsection. The flow parameters
438  of the test case are Ha = 204, Re = 9046, Gr = 8.298 x 107, Pr = 0.022. The resolution
439 of the spectral simulation is N = 144 and M = 96 (i.e. 144 grid points on the radius and
440 2M = 192 grid points in the azimuthal direction before dealiasing). The steepness parameter
441 & = 0.05 and this azimuthal resolution gives about 6 grid points within the smoothing region
442 of the approximated discontinuity of heat flux. Figure 6(a,b) shows the visualization of the
443 base flow in our spetral simulations for the streamwise velocity and temperature field in
444  the cross-section. It is seen that the basic streamwise velocity becomes uniform along the
445 magnetic field direction in the bulk of the circular pipe for large Hartmann numbers. In figure
446  6(c,d), the streamwise velocity and temperature distributions along the vertical and horizontal
447 lines of the cross-section are compared between our spectral simulation and finite-element
448 calculation. The agreement between the two sets of results is excellent with an deviation
449 below 0.5%. This agreement validates our methods and particularly the smoothing of the
450 heat flux in our spectral methods, at least for the base flow calculation.

451 After obtaining the base flow, we can perturb the base flow with small perturbations in the
452 spectral space, i.e. small Fourier coefficient of a given mode with the wavenumber (ka, m)
453 is set to give the initial condition of direct numerical simulations. Then the linear growth
454 rate of the unstable mode at a fixed wavenumber can be calculated from the modal kinetic
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Figure 6: The base flow calculated using spectral method and finite element method. Contours of temperature
(a) and streamwise velocity (b) on the pipe cross-section. Data is from our spectral method simulation. (c)
Comparison of temperature distribution on the vertical and horizontal lines through the pipe center. (d)
Comparison of streamwise velocity on the vertical and horizontal lines trhough the pipe center. In (c.d),
symbols are data from our spectral method simulation and lines are from the finite element simulation.

energy variation between two different time instances, i.e.

_ llogKE(t;) —log KE(t)
2 h—n ’

(3.14)

where y denotes the linear growth rate, KE = fv (v = vp) dV is the modal kinetic energy,
and #; and ¢, are two time instants in the exponentially growing stage. The phase speed of
the leading eigenmode can be calculated as
A

c=rx (3.15)
with the streamwise wavelength A and the period of oscillation 7 which can be measured by
monitoring the velocity at a fixed point in the flow domain. For the same case with Ha = 306,
Re = 9046, Gr = 8.298 x 107 and Pr = 0.022 as Zikanov et al (2013), the linear growth
rates and phase speeds with respect to different wave numbers can be computed through
both the eigenvalue computation of linear stability equations and the numerical simulations
with the spectral method, as shown in figure 7. Though the two approaches are different and
performed independently, it is clearly seen that a good agreement is obatined and can be
used as a cross validation of these two approaches. A further convergence test for the linear
growth rate with respect to the steepness parameter ¢ is given in table 1 which shows ¢ = 0.5
with M = 96 can obtain a good calculation accuracy. An additional validation of our spectral
method against an asymptotic solution of the basic flow for the MHD pipe flow (without the
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Figure 7: The linear growth rate (a) and the phase speed (b) of the leading eigenmode with respect to
different wave numbers. Here, the solid line is obtained with the eigenvalue computation of the linear
stability equations while dicrete circles symbols are the results by direct numerical simulations using the
spectral method. The dimensionless parameters Ha = 306, Re = 9046, Gr = 8.298 x 107 and Pr = 0.022
are adopted, while the steepness parameter § = 0.05 is used for direct numerical simulations.

o M b%

0.1 48 0.2470
0.05 96 0.2492
0.025 192 0.2496

Table 1: Convergence of the linear growth rate about the smoothing width ¢. The flow parameters are
Ha = 306, Re = 9046, Gr = 8.298 x 107 and Pr = 0.022, and the streamwise wavelength of 1 = 1.0 is
consdered for this convergence test.

472 heating and buoyancy) can be found in Appendix A. All these tests confirm the correctness
473 of our basic flow calculations.

474 4. Linear stability analysis

475 Though the linear growth rate and phase speed of most unstable mode have been computed
476 and agree with the results of Zikanov et al (2013), there exist two main flow stability questions
477 to answer. The first one is the linear stability boundary of the MHD mixed convection, while
478 the other one is the flow destabilization mechanism which can deepen the understanding of
479 the underlying physical mechanism.

480 4.1. Linear stability boundary of the MHD mixed convection

481 Linear stability boundary of the MHD mixed convection is determined by the most unstable
482 mode which can be easily computed if there exists only one unstable mode for the parameters
483 under investigation. However, if there exist more than one unstable modes and especially they
484 have close linear growth rates, then linear stability boundary may become complex and is
485 difficult to obtain. The critical curves for the linear stability of the MHD mixed convection are
486 first plotted in the Gr — Ha parameter space with Re = 9046 and Pr = 0.022 as shown figure
487 8. It is clearly seen that there exist three critical curves located at small and large Hartmann
488 numbers respectively. All the critical curves have been validated by our direct numerical
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Figure 8: The critical curves of most unstable modes in the Gr — Ha parameter space with Re = 9046 and
Pr=0.022.

simulations. The critical curve for the large Hartmann number is determined by the only
unstable mode denoted with Mode I which is first revealed by the numerical simulations of
Zikanov et al (2013). It is easily found that the unstable Mode I occurs above a threshold
of the Hartmann number about Ha = 136.33. Across the threhold, the unstable region for
the Grashof number becomes larger and larger with the increase of the Hartmann number.
The upper boundary of the unstable region increases nearly exponentially while the lower
boundary decreases very slowly. The other two critical curves are located at small Hartmann
numbers and determined by different unstable modes. They intersect at Ha = 37.46 and
are denoted with Mode II and Mode III respectively. The critical Grashof number on these
two critical curves increases nearly exponentially with the increase of the Hartmann number,
from Gr. ~ 1.2 x 10° at Ha = 20 to Gr. ~ 1.8 x 10® at Ha = 80. Within the unstable
region bounded by the critical curves for the small Hartmann number, there exist many other
unstable modes which are not presented here.

Along all the critical curves of the most unstable modes in the Gr — Ha parameter space,
the corresponding wave number and phase speed as a function of Hartmann number can be
plotted as shown in figure 9. It is clearly seen that both critical wave number and phase velocity
for small Hartmann numbers are much smaller than those for large Hartmann numbers. Then
for small Hartmann numbers long wave instabilities first occur at the threhold, and the critical
wave number is found to increases with the increase of the Hartmann number. Meanwhile,
the phase velocity of these long wave instabilities even decreases with the increase of the
Hartmann number for unstable Mode II. It is also seen that at Ha = 67.7 there exists a jump
of the critical wave number and phase velocity of Mode II. It is carefully checked that this
jump is not due to eigenmode transiton, but a rapid change of the critical parameters for the
same unstable mode.

Spatial structure of the three-dimensional unstable mode for the perturbations of tempera-
ture and vertical velocity in the horizontal cross-section passing through the axis of the pipe
is presented in figure 10 and 11 at two critical points with large and small Hartmann numbers
respectively. It is easily seen that the spatial structure for the critical case of Ha = 136.33
is very similar to the simulation result by Zikanov et al (2013) for Ha = 306 and 1 = 1.0.

Cambridge University Press



518
519
520
521
522
523
524
525

526

527
528
529
530

Journal of Fluid Mechanics Page 18 of 33

17

Upper boundary
Upper boundary

Mode |

Mode |

Lower boundary Lower boundary

0.8 |~ Mode lil

Mode Il I
06+ Mode Il

ol T ISR 1 | OA\\\\I\\\\I\\\\I\\\
150 200 250 300 0 50 100 150

Ha Ha

3 /Mode n

Owwwwlwwwwlw
0 50 100

n n 1
200

n n 1
250

.
300

Figure 9: Critical wave number (left) and phase velocity (right) of most unstable modes along all the critical
curves as a function of Hartmann number with Re = 9046 and Pr = 0.022.

Figure 10: Spatial structure of the three-dimensional unstable mode for the perturbations of temperature
(left) and vertical velocity (right) in the horizontal cross-section passing through the axis of the pipe at a
critical point of k. = 5.8, Ha = 136.33, Gr =5.14 X 107, Re = 9046 and Pr = 0.022.

Specifically, the simulation result for large Hartmann number has more uniform distribution
of vertical velocity along the magnetic field direction. Obviously, it is that there exists only one
unstable mode which results in such a similar spatial structure for different large Hartmann
number. However, the spatial structure for the critical case of Ha = 50 is very different as
shown in figure 11. It is easily seen that the temperature perturbation is distributed near the
lateral walls and in the central region, while the perturbations of three velocity components
concentrate in the central region. Different spatial structures of different critical eigenmodes
imply different destabilization mechanisms which are further studied in following subsection.

4.2. Energy budget analyses at the critical unstable threholds

In order to obtain the physical destabilization mechanism, it is usual to perform energy

budget analyses at the critical thresholds for the most unstable mode. First, the linear stability

equations (3.3)-(3.5) are multiplied by the complex conjugate of the velocity perturbation p*

and then integrated on the cross-section A. After some simplifications, an equation giving
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Figure 11: Spatial structure of the three-dimensional unstable mode for the perturbations of temperature
(upper), vertical velocity (middle) and streamwise velocity (bottom) in the horizontal cross-section passing
through the axis of the pipe at a critical point of k. = 1.69, Ha = 50, Gr = 2.898 x 107, Re = 9046 and
Pr =0.022.

the rate of change of the fluctuating kinetic energy can be derived. At the critical threshold
(Re(Q) = 0) for any unstable mode, kinetic energy budgets can be further obtained as

Eg.+Ey +Es, +Ep, +E,,+E;=0, “4.1)

where E,,, E, and E,, are the productions of fluctuating kinetic energy by shear of the basic
flow, E}, is the production of fluctuating kinetic energy by buoyancy, E,, is the dissipation
of fluctuating kinetic energy by magnetic forces, E; is the viscous dissipation of fluctuating
kinetic energy. They are defined as follows

E., = Re / a2 5% | axay) . 4.2)
Al Ox ay
ov ov

E,, = -Re / ASSRNLAES PN 43)
Al Ox Jy
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ow ow
542 Ew = —Re (/ i—w* + 9—@*] dxdy) , 4.4)
Al Ox dy
543
Gr ,
544 E, = Re / 2L 6o dxdy|, (4.5)
A Rez
545
Ha? A o%
546 Em = Re _— [(—V¢ +v X ex) X ex] 14 dxdy 5 (46)
A Re
547
1 9, o9
3 E,=-R — — L dxd 4.7
4 d e(AReaxjaxj xy) @7

549  All these terms can be further normalized by the viscous dissipation of fluctuating kinetic
550 energy E 4, then a normalized kinetic energy budget equation is written as

551 E,,+E;, +E, +E +E, =1, (4.8)

ss2 where Ef,, = Eu/|Eal, Ely = Eqv/|Eal, E}yy, = Egw/|Eal, E} = Ep/|Eal, E}y = En/|Eal.
553 The kinetic energy budgets by shear of the basic flow, buoyancy, and magnetic forces
554 at the critical points of the least stable three-dimensional modes are presented for different
555 Hartmann numbers in Table 2. For all cases of Mode I, It is easily seen that the production of
556 fluctuating kinetic energy by buoyancy E; is the dominant destabilizing term, the production
557 of fluctuating kinetic energy by the streamwise shear of the basic flow EZ,, gives significant
558 stabilization effect, and the production of fluctuating kinetic energy by the cross-sectional
559 shear of the basic flow E}, and E;, is very small and then has little effect on the flow
560 stability. According to the values of stabilizing term E;,, the cases on the lower boundary of
561 Mode I have much weaker stabilization effect due to magnetic forces than those on the upper
562 boundary of Mode 1. For the cases of Mode II and Mode 111, it is found that the streamwise
563 shear of the basic flow gives the dominant production of fluctuating kinetic energy due to
564 positive large values of Ef,, . Then the dominant destabilization mechanism is the streamwise
565 shear of the basic flow instead of buoyancy with negligible terms E,. It is also found that
566 with the increase of Hartmann number along the critical curves of Mode II and Mode III, the
567 values of destabilization term E7,, as well as stabilization terms E;, and E;, become larger
568 and larger.

569 Now the dominant destabilization mechanism is revealed to be buoyancy for Mode I as
570 well as streamwise shear of basic flow for Mode II and Mode III. It is necessary to plot the
571 spatial distribution of local buoyancy and the local streamwise shear of basic flow i.e. the
572 integral terms in the integral formula (4.4) and (4.5) at the critical points for these modes.
573 As shown in figure 12a, it is clearly seen that the local buoyancy E; for the production of
574 fluctuating kinetic energy is mainly located in the middle and lower part of the pipe for Mode
575 1. However, the local streamwise shear of the basic flow Ej,, for Mode II is situated at the
576 upper part of the pipe as seen in figure 12b.

577 5. Nonlinear flow states

578 According to the stability boundary curves obtained in the previous section, we can further

579 study the nonlinear flow states within the linearly unstable parameter regions through direct

580 numerical simulations. Simulation parameters (Ha, Gr) selected for this study are shown in

581 figure 13 as symbols, while other parameters are fixed as Re = 9046 and Pr = 0.022.
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582

583
584
585
586

587

588
589

20

Ha Gre E}, El, El., E;

b En

280 31837073  0.00639 -0.00066 -2.91333 4.78354 -0.87594
200 35398415  0.02200 -0.00319 -3.40215 5.29818 -0.91484

Mode 136.33 51400000 0.18356 -0.03819 -3.35641 6.59764 -2.38610
200 203162419 0.22068  0.03611  -3.92439  7.56521 -2.89763

280 500712609 0.14744  0.10784  -3.61460 7.37147 -3.01260

80 179660228 0.57890 -0.15466  2.24933  -0.00942 -1.66412

70 109500660 0.43082 -0.12390  2.28102 -0.00662 -1.58129

Mode II 60 60497994  0.26298 -0.07942  2.38255  0.00016  -1.56627
50 28979058  0.14054 -0.04603 221279  0.00300 -1.31030

40 11842819  0.05804 -0.02030 1.93550  0.00308 -0.89650

Mode I 30 3716334  0.01484 -0.00621  2.13360  0.00048  -1.14272

20 1182757  0.00245 -0.00059 1.56199  0.00016  -0.56398

Table 2: Kinetic energy budgets by shear of the basic flow Ej,,, E;,,, Ef,,, buoyancy E;, and magnetic

forces E;, at the critical point of the most unstable three-dimensional mode for different Hartmann numbers
with Re = 5000 and Pr = 0.0321.

Figure 12: Spatial distribution of (a) the local buoyancy Ej and (b) local streamwise shear of the basic
flow Eg,, at the critical points of the three-dimensional unstable modes for (a) Mode I with k. = 5.8,

Ha = 136.33, Gr = 5.14 x 107 and (b) Mode II with k. = 1.69, Ha = 50, Gr = 2.898 x 107; where
Re = 9046 and Pr = 0.022.

5.1. Low-Ha branch
Starting from a point close to the neutral stability boundary at (Ha, Gr) = (45,2 x 107), we
explore horizontally at (Ha, Gr) = (40,2 x 107) and (30,2 x 107). For all simulations in
this subsection, the pipe length is chosen to be 12.2 pipe diameters, which is three times the
wavelength of the most unstable mode at (Ha, Gr) = (45,2 x 107).

5.1.1. (Ha,Gr) = (45,2 x 107)

The streamwise velocity fields for the nonlinear flow state and the most unstable mode are

both computed by direct numerical simulations and shown in figure 14. It is clearly seen
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Figure 13: The points in the Ha — Gr plane considered for DNS analysis: (Ha, Gr) = (45,2x 107) (circle),
(40,2 % 107) (up-triangle), (30,2 x 107) (diamond), (150, 8.298 x 107) (square), (180, 8.298 x 107) (plus)
and (306, 8.298 x 107) (right-triangle).

@ () @ o
0.04 ”~ -
~ R LA d 2
o ,,
-0.02
S -0.04 .

(h) os

! K\ﬁ !
I == ---

0 4 8 12 4 8 12 0
£ z z

4\ ({

IS

Figure 14: The streamwise velocity on the pipe cross-sections at (Ha, Gr) = (45,2x 107). The full velocity
is plotted in the r — B cross-section (a), vertical r — z cross-section (i.e. the y — z plane through the pipe
axis) (b) and horizontal r — z cross-section (i.e. the x — z plane through the pipe axis) (c). The deviation with
respect to the basic laminar flow is shown in (d-f) and the most unstable linear mode is visualized in (g-i).
The location of the maximum deviation of u, from the basic laminar flow is shitted to the left end of the
pipe in all the plots in the r — z cross-sections. Panels (a, d, g) are plotted at the left-end of the pipe.

590 that the nonlinear saturated flow exhibits a traveling wave structure that is symmetric about
591 the vertical plane through the pipe axis. The spatial distributions of the streamwise velocity
592 in all cross-sections are very similar with respect to both the saturated flow state and the
593 most unstable mode. Obviously, the reason is that the nonlinear effect is very weak and the
594 nonlinear flow state is thus dominated by the most unstable mode when the parameters are
595 very close to the linear stability boundary.

596 5.1.2. (Ha,Gr) = (40,2 x 107)

597 Atthis parameter point, we find that the saturated flow state seems to have a strong dependence
598 on the initial condition. Direct numerical simulations for this case are performed with two
599 different initial conditions. The temporal evolution of the flow is monitored using the kinetic
600 energy KE3p = fv (v— < v >,)dV associated with the streamwise dependent velocity
601 components, see figure 15.
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Figure 15: The kinetic energy of the 3D flow components (streamwise dependent ones), KE3p, of two
simulations starting from different initial conditions at (Ha, Gr) = (40,2 x 107). One starts from a fully
turbulent flow simulated at Ha = 30 and the other from a slightly perturbed laminar basic flow, see the blue
and red curves, respectively.

The first simulation begins with a fully turbulent state and the kinetic energy KE3p is
plotted as the blue curve in figure 15. The flow keeps turbulent for several hundred time
units, and then seems to approach a periodic state with large kinetic energy oscillations.
Flow fields for the streamwise velocity at four time instants (marked with four symbols in
figure 15) are visualized in figure 16. The first two columns correspond to the time instants
marked with red circle and green triangle, respectively. Although both of them are at the
peaks of the oscillation in K E3p, the flow field is not identical seen in the r — 8 cross-section.
Nevertheless, by looking at the flow fields in the vertical and horizontal r — z cross-sections,
it can be observed that the two flow fields are nearly identical up to a phase shift. Therefore,
the period of the oscillation of K E3p is not equal to the period of the flow field. Furthermore,
we compare the flow fields of the first column and the fourth column corresponding to the
two time instants marked with the red circle and blue square (both are at peaks). These
two flow fields seem identical up to a reflection about the vertical plane through the pipe
axis. This means that the two flow fields are separated by half a period in phase. Then, it
can be inferred that the period of the flow field should correspond to four periods of the
oscillation in K E3p, which is nearly 380 time units. The third column corresponding to the
black diamond in figure 15 shows the flow field at the trough of the oscillation in KE3p,
where the velocity perturbations are much weaker than those at other three peak instants.
It seems that the periodic state only maintains one cycle, and then the flow begins to leave
the periodic orbit after # = 1400 because the oscillation becomes irregular at later times.
The temporal evolution of this nonlinear flow state indicates that there exists an unstable
nonlinear periodic solution at the given flow parameters.

The second simulation starts from random small perturbations and is shown as the red
curve in figure 15. It is clearly seen that there is no high amplitude periodic oscillation up to
1100 time units. The flow field is visualized at t = 966 in figure 17. Compared with the first
simulation, although there are some similarities in the spatial distributions of the flow fields
in the cross-sections, there dose not exist any regular or periodic structure in either the signal
of KE3p or the flow fields visualized in the pipe cross-sections. However, it should be noted
that we cannot rule out the possibility that the non-periodic state would also approach some
periodic orbits at some time in the future. Both nonlinear states show little similarity in flow
structure with the linear eigenmode (which is similar to figure 14g-i).

5.1.3. (Ha,Gr) = (30,2 x 107)

When Ha is further decreased to 30, several different initial conditions are used for direct

numerical simulations and the flow evolves into a fully turbulent state in all the cases. The

turbulent flow field is visualized in figure 18. The first column shows an instantaneous u,
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Figure 16: The quasi-periodic flow state at (Ha, Gr) = (40,2 x 107). The visualization of the streamwise
velocity field at the four time instants marked by the four symbols on the blue curve in figure 15. Each
column corresponds to a time instant. All panels share the same color scale. From top row to the bottom,
r — 3 cross-section at the left-end of the pipe, vertical » — z cross-section and horizontal » — z cross-section.
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Figure 17: Visualization of the flow field of the non-periodic flow state at (Ha, Gr) = (40,2 x 107), which
was started from a small random perturbation, see the red curve in figure 15. Data are taken at ¢ = 966.
From left to right, columns show full u., full 8, u; deviation and 6 deviation, respectively.

637 field, and the second column shows the corresponding temperature 8 field. One can see
638 that although the turbulent u, fluctuations (turbulent fluctuation refers to the deviation from
639 the turbulent mean flow, where the turbulent mean flow refers to the flow averaged in time
640 and streamwise direction) seem to be homogeneous in the vertical » — z cross-section, the
641 turbulent temperature 6 fluctuations seem to be significant only close to the bottom heated
642 wall. The third column shows the deviation of the mean flow from the basic laminar flow. It
643 can be seen that the mean streamwise velocity is faster than the basic flow mainly close to
644 the top wall, and is slower than the basic flow in the middle, and only slightly deviates from
645 the basic flow near the bottom wall. The mean temperature is higher than the basic laminar
646 flow mainly near the bottom wall, and only slightly deviates from the basic laminar flow in
647 the upper part of the pipe.
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5.2. High-Ha branch

Within the unstable region of Mode I at large Ha as seen in figure 13, three Hartmann numbers
Ha = 150, 180 and 306 with a fixed Grashof number Gr = 8.298 x 107 are considered to
investigate the nonlinear flow states. Obviously, nonlinear flow states are responsible for
the low-frequency high-amplitude fluctuations of temperature appeared in the experiment of
Geninetal (2011). In order to explain that the high-amplitude fluctuations originally coming
from global instability mode, it is necessary to compare the nonlinear flow states with the
global unstable eigenmode with respect to the spatial structure of the flow field.

5.2.1. (Ha,Gr) = (150,8.298 x 107)

This set of parameters is close to the linear stability boundary, and the saturated nonlinear
flow state exhibits a nonlinear traveling wave as shown in figure 19. From the second column
of this figure, the amplitude of the deviation u, is relatively small and thus indicates that
the nonlinear flow field is only slightly deviated from the basic laminar flow. Comparing the
deviation of u, with the most unstable linear eigenmode (Mode 1) in all cross-sections, as
shown in the second and third columns, one can see that their spatial distributions are very
similar. Therefore, the saturated nonlinear flow is mainly dominated by the most unstable
eigenmode and the nonlinearity is too weak to change the spatial structure significantly.
This observation is similar to the case with (Ha, Gr) = (45,2 x 107) which is close to the
linear stability boundary curves of the low-Ha branch. However, noticeable differences in
the flow field from the case with (Ha, Gr) = (45,2 x 107) can be observed. Firstly, the
dominant flow structures of the large-Ha case have a much larger streamwise wavenumber,
i.e smaller streamwise wavelength. Secondly, the flow structures in the r — 8 cross-section
show much simpler symmetrical structures, which are nearly aligned with the magnetic
field. Thirdly, the flow structures extend the whole horizontal pipe cross-section, rather than
be localized in a narrow region around the vertical r — z cross-section as in the case with
(Ha,Gr) = (45,2 x 107).

5.2.2. (Ha,Gr) = (180,8.298 x 107)

The case with Ha = 180 is farther from the linear stability boundary compared with the
Ha = 150 case. The simulation is started with small random perturbations, and strong
Cambridge University Press



Journal of Fluid Mechanics Page 26 of 33

25

@ 0.02 () 31

e

-0.02
(e)

- " 05—
PR - o
) ] uxa\) 1\;\'4\»\»\»\»\)) m’
0 4 8 12 0 1
- - 0 (0] 0.5

BRI
-05 0.5 — o5
0 4 8 12 0 4 8 12 0 1

z z z

Figure 19: Visualization of the streamwise velocity field at (Ha, Gr) = (150, 8.298 x 107). From left to
right, columns show the full u, u, deviation, and u, of the most unstable eigenmode. From top row to the
bottom, r — 3, vertical r — z, and horizontal » — z cross-sections.

0.012
0.01 e
0.008 - i
(=]
ui” 0.006 .
X
0.004 E

0.002 - n

0 Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 500

t

Figure 20: The K E3p of the case at (Ha, Gr) = (180, 8.298 x 107). The symbols mark three time instants
at which the flow is visualized in figure 21.

677 temporal oscillations in KE3p are observed when the flow develops into nonlinear state,
678 as shown in figure 20. The flow fields at three time instants between the trough and peak
679 of an oscillation (see the symbols in figure 20) are visualized in figure 21. While the
680 high amplitude oscillation of KE3p is temporally quasi-periodic, the spatial structure of
681 flow flied is also quasi-periodic as shown in the second row for u, deviation. The most
682 unstable linear eigenmode is visualized in the rightmost column for comparison. It can be
683 seen that the spatial structure of the flow at the trough of the oscillation is similar to the
684 linear eigenmode, whereas deviates noticeably from the linear eigenmode at the other two
685 time instants, especially at the peak of the oscillation. Besides, the dominant streamwise
686 wavelength of the quasi-periodic structures seems to slightly differ from that of the most
687 unstable eigenmode. It can be considered that the quasi-periodic spatio-temporal structure
688 result from nonlinear modulations of the linear global eigenmode and may be described by
689 a weak nonlinear analysis. Compared with the Ha = 150 case, the flow structures become
690 more uniform along the direction of the magnetic field due to the larger Hartmann number.

691 5.2.3. (Ha,Gr) = (306,8.298 x 107)

692 Compared with the (Ha, Gr) = (180, 8.298 x 107) case as seen in figure 21 and figure 22,

693 the flow for this case show a much stronger streamwise modulation such that the velocity

694 fluctuations nearly form localized clusters interspersed with quiescent flow regions. Inside
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Figure 21: The frist three columns show the visualisation of the streamwise velocity field at the three time
instants marked in figure 20. The forth column shows the velocity field of the most unstable linear eigenmode
in the pipe. From top row to the bottom are r — (3, vertical r — z, and horizontal » — z cross-sections. In all
panels, only u, deviation is plotted.

the clusters, the flow shows some similarities with the flow at the peak of the oscillation
for the (Ha, Gr) = (180, 8.298 x 107) case as shown in the third columns of both figures.
However, the flow field does not oscillate in time as in the Ha = 180 case. Moreover, the
velocity and temperature structures are nearly uniform along the magnetic field.

The most unstable linear global mode for this case is plotted in figure 23 to compare with
the deviations from the basic flow in the nonlinear state as seen from the third and forth
columns of figure 22. It can be seen that the linear flow structures are also nearly uniform
along the magnetic field. However, there are noticeable differences in the distribution of
streamwise velocity and temperature in the vertical r — z plane. From the forth column
in figure 22 and figure 23(e), the temperature fluctuations are mainly located close to the
centerline of the vertical r — z plane in the linear mode, whereas are mainly located close
to the top and bottom pipe walls for the nonlinear state. Besides, in the linear case, the high
and low temperature regions are arranged alternately along the pipe axis, whereas for the
nonlinear case, the temperature in the lower half of the pipe is always lower than that of the
basic laminar flow while is always higher than the latter in the upper half of the pipe. These
obvious differences of the flow field structure indicate strong nonlinear effects.

This case has been studied by Zikanov et al (2013) also, and the authors reported nonlinear
flow structures in form of convection roll-cells. They concluded that the flow structure of
the nonlinear state is very similar to that of the linear unstable mode. However, as explained
above, the structure of the fully developed nonlinear state greatly deviates from that of
the linear mode, although the flow still forms convection roll-cell structures. The principal
reason for the difference is that the setting of their numerical simulations is different from
ours. They adopted a computational domain of 50 pipe diameters with only a part (about
40 diameters) subject to a uniform bottom heating and transverse magnetic field, without a
periodic boundary condition in the streamwise direction, in order to mimic the experiments
of Genin et al (2011). Therefore, what they obtained is a nonlinear flow developing from the
linear instability instead of a fully developed nonlinear state. Our simulations adopt a much
shorter (47 diameters) periodic pipe but with a longer evolution time for the flow, and the
target is the fully developed nonlinear flow state, which has not been reached in the setup of
Zikanov et al (2013).
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Figure 22: Visualisation of the streamwise velocity and temperature at (Ha, Gr) = (306,8.298 x 107).
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Figure 23: The most unstable mode in the pipe shown in figure 22 at (Ha, Gr) = (306, 8.298 x 107). (a-c)
The streamwise velocity in the r — 3, vertical r — z and horizontal r — z cross-sections. (d-f) Temperature in
the » — 3, vertical r — z and horizontal » — z cross-sections.

6. Concluding remarks

Linear hydrodynamic stability of the liquid metal MHD mixed convection in a horizontal pipe
under bottom heating and transverse magnetic field have been investigated by linear global
stability analyses. First, linear stability boundary curves are given through the eigenvalue
computations of linear global stability equations with the finite-element method. For large
Hartmann numbers, the linear stability boundary is determined by only one most unstable
mode (Mode I) which has been first found by the numerical simulations of Zikanov et al

(2013). From the stability boundary curve of the unstable Mode I, there exists a threshold
of the Hartmann number across which the unstable region for the Grashof number becomes
larger and larger with the increase of the Hartmann number. For small Hartmann numbers, in
the range of investigated Grashof numbers (10° — 4 x 10%) two intersecting critical curves of
linear stability are found to be determined by two different unstable modes (Mode II and III).
For these two stability boundary curves, the critical Grashof number becomes larger with
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the increase of the Hartmann number. Second, destabilization mechanisms of these unstable
modes are revealed through an energy budget analyses at their critical unstable thresholds.
It is interesting to find that there are two different instability mechanisms for large and
small Hartmann numbers. With respect to the unstable Mode I for large Hartmann number,
buoyancy is the dominant destabilizing term which agrees with the hypothetical explanation
of Zikanov et al (2013) who regard natural convection as a destabilization mechanism.
However, for small Hartmann numbers the dominant destabilization of unstable Mode II and
III comes from the streamwise shear of the basic flow. This indicates that shear instabilities
still play a leading role under weak magnetic field.

Fully developed nonlinear flow states of the MHD mixed convection are studied through
direct numerical simulations. Sufficiently close to the linear stability boundary, the nonlinear
effect is so weak that the spatial structure of the flow is very similar to the structure of
the linear global eigenmode that determines the stability boundary. When the simulation
parameters are farther away from the linear stability boundary, the nonlinear effect becomes
increasingly pronounced. Within the linear unstable region of small Ha, in which the flow
instability is shear-dominated, the spatio-temporal evolution of the nonlinear flow states may
sensitively depend on the initial conditions. In case of (Ha, Gr) = (40,2 x 107), it is found
that, depending on the initial condition, the flow may develop into either a chaotic state
with relatively small fluctuations in the kinetic energy or a nearly periodic state with large
oscillations in the kinetic energy. The latter suggests the existence of an unstable nonlinear
periodic solution of the governing equations at the investigated parameters. Both nonlinear
states show little similarity with the linear eigenmode, indicating strong nonlinear effects.
This result implies a possibility that, these nonlinear flow states may not necessarily bifurcate
from the basic flow via the linear instability, rather they could bifurcate directly from some
nonlinear exact coherent states, as the nearly periodic state shown in figure 16 suggests. In
fact, this is the scenario for the transition to turbulence in the linearly stable hydrodynamic
pipe flow, which may also be expected for the flow here at small Ha and Gr. However, the
nonlinear flow states are not fully turbulent at (Ha, Gr) = (40,2 x 107), exhibiting large
streamwise structures that don’t fill the whole pipe cross-sections. In the unstable region at
large Ha, asthe (Ha, Gr) = (180, 8.298x107) case shows, the nonlinear effect may cause the
fully developed nonlinear state to oscillate quasi-periodically over time with large amplitude,
but the quasi-periodic spatial structure still maintains high similarity with the linear unstable
eigenmode. This suggests that, although the nonlinear effect becomes stronger, the final
nonlinear states still originate from the linear instability. When the parameters are far away
from the linear stability boundary, the flow would develop into fully turbulent flow in the
small-Ha regime, as the (Ha, Gr) = (30,2 x 107) case show. Whereas, in the large-Ha
regime, the flow would develop into some nonlinear dynamical states (but not turbulence)
with convection cells aligned with the magnetic field in the large-Ha unstable region, which
however deviate significantly from the linear unstable eigenmode by showing strong nonlinear
modulations in streamwise direction and in the vertical r — z cross-section as well.

Determining the stability boundary for a single Re requires scanning through the Ha — Gr
plane, and a two-dimensional base flow needs to be calculated by Newton iteration at each
point of (Ha, Gr), followed by an eigenvalue analysis scanning through the streamwise
wavenumber k. These calculations are already very expensive, and therefore, the current
study has only considered a single Reynolds number. Certainly, providing the dependence of
the linear stability boundary on the Reynolds number is desirable, which will involve a great
amount of computation and will be our future work. Besides, the linear stability boundary in
large-Gr regime maybe complicated (see Appendix B) and our study has only covered the
regime up to O(10%). Exploring the large-Gr regime may be of interest for some extreme
heating conditions. Similarly, the stability boundary at larger Ha could be complicated also.
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Figure 24: Streamwise velocity of the base flow along the vertical line through the pipe axis.

788  Whether or not there would exist another stability boundary at larger Ha above which the
789 flow becomes stable again remains unknown and is interesting to find out. However, as the
790 thickness of the Hartmann layer is O (Ha™"), larger Ha poses severe challenges for numerical
791 analysis. Further studies are needed to address the stability of the flow in a larger parameter
792 space.
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797 Appendix A. Velocity profile of MHD pipe flow

798 Here, as an additional validation of our numerical methods, we show our calculation of the
799 base flow for the MHD pipe flow, i.e. the pipe flow subject to a transverse magnetic field
800 without the bottom heating and buoyancy force, for which asymptotic solutions are available.
801 According to Vantieghem et al (2009), the streamwise velocity normalized by its value
802 at the pipe axis is 4/1 — y? outside of the Roberts layers (Roberts layers are close to the
803 top and bottom pipe walls in our setup) for electrically insulating pipe wall. We performed
804 simulations by setting Gr = 0 in our simulation at Ha = 102 and 1000. For Ha = 1000,
805 we needed 256 Chebyshev points on the pipe radius for obtaining a converged base flow
806 given the very thin Hartmann layer. The results are compared with the asymptotic solution
807 in figure 24. It is obvious that our velocity profile coincide with the asymptotic solution
808 /1 — y2 close to the pipe center (which is outside of the Roberts layers), and as Ha increases
809 so that the Roberts layer becomes thinner, the agreement is obtained in a wider region. This
810 test shows that our base flow is accurately calculated.

g1t Appendix B. Unstable region at high Gr for large Ha

812 Our stability boundary at large Ha shows that the flow is stable above the boundary at large

813 Gr. However, one may expect that, at a fixed Ha, as the bottom heating keeps increasing, i.e.

814 as Gr increases, the flow would become unstable again. Indeed, the boundary we computed is

815 by no means complete due to the vast parameter space so that the high computation cost. It is
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Figure 25: The unstable region at large Gr. In panel (a), symbols show unstable points that are close to
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Panels (b), (c) and (d) correspond to the points marked as (b-d) in panel (a), for which the specific parameters
can be found in table 3.
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certainly possible that there are unstable regions at higher Gr than we considered in figure 8.
By DNS, we explored briefly in the large-Gr regime and indeed observed linear instability,
as expected, see figure 25 . In table 3, we list the data corresponding to the parameter points
(Ha, Gr) plotted as symbols in figure 25. At these parameters, however, we didn’t scan
through the streamwise wavenumber but selected a single wavenumber close to the upper
end of the critical wavenumber curve for Mode I, see figure 9(a). The growth rate y of small
disturbances are calculated. The flow is unstable at these parameters but the growth rates are
very small, implying that that they are close to a stability boundary that encloses an unstable
region in the large-Gr regime.

The most unstable eigenmode at the three parameter points marked as (b-d) in figure 25(a)
is visualized in figure 25 (b-d), respectively. Comparing panels (b) and (c) with the unstable
eigenmode at lower Gr as shown in figure 19(g), one can notice that the flow structures
are quite different. At lower Gr, the flow structures are located close to the pipe center
and nearly aligned with the magnetic field, whereas the flow structures at larger Gr are
concentrated close to the heated bottom wall and no obvious alignment with the magnetic
field can be observed. From figure 25(b-d), it can be seen that the flow structures are gradually
elevated toward the pipe center and seem to be approaching those shown in figure 19(g) as
the parameters change along the stability boundary. This change is likely a result of the
competition between the effects from buoyancy and magnetic field as the parameters change.

The saturated nonlinear flow state developed from the linear instability is computed at
the point (Ha, Gr) = (150, 5 x 10%) (marked by a x symbol in figure 25). The pipe length
is set to 6.8 pipe diameters, which is ten times of the wavelength of the unstable mode of
k = 9.24. The flow is visualized in figure 26. It can be seen from the figure that the fully
developed flow exhibits a spatially periodic structure, which is clearly not turbulent (the flow
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Ha Gr Y |Ha Gr Y

150 8.3 x 108 0.00059588 174 3.4 % 108 0.00135764

140 6.0 x 108 0.00078862 200 4.35% 108 0.00076262

134 45x108 0.00123070 224 5.4 % 108 0.00223940

130 3.3 x 108 0.00110420 250 6.52 % 108 0.00062116

130 2.8 x 108 0.00013601 280 7.6 x 108 0.00008076

134 2.6 x 108 0.00047236 290 7.8 x 108 0.00126316

140 2.6 x 108 0.00095078 296 7.8 x 108 0.00238920

150 2.75% 108 0.00114538

Table 3: The data (Ha, Gr, ) for the symbols shown in figure 25. A fixed streamwise wavenumber k = 9.24
is considered for these calculations. This streamwise wavenumber is close to the upper end of the critical

wavenumber curve for Mode I as shown in figure 9.
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Figure 26: The saturated nonlinear flow state at (Ha, Gr) = (150,5 X 103). Panel (a) and (b) show the
velocity 1, and temperature 6 deviations with respect to the basic flow, respectively, in the 7 — 3 cross-section.
Panel (c) and (d) show u, and @ deviations in the vertical z — y cross-section through the pipe axis.

is in fact a nonlinear traveling wave). The flow shown in figure 26(a) is very similar to the
unstable eigenmode shown in figure 25 (b,c), indicating that the saturated nonlinear flow
state is dominated by the linear instability and the nonlinearity is weak. The nonlinear flow
state is also computed at the point (Ha, Gr) = (200, 6 x 10%) and the situation is very similar
and thus not shown. That the fully developed nonlinear flow is non-turbulent is similar to the
case in the unstable region at lower Gr for large Ha (see figure 19, 21 and 22).
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