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Abstract. In this paper, we propose an embedded low-regularity integrator (ELRI) under a new framework
for solving the modified KdV (mKdV) equation under rough data. Different from the previous work [61],

the present ELRI scheme is constructed based on an approximation of a scaled Schrödinger operator and a

new strategy of iterative regularizing through the inverse Miura transform. Moreover, the ELRI scheme is
explicitly defined in the physical space, and it is efficient under the Fourier pseudo-spectral discretization.

By rigorous error analysis, we show that ELRI achieves first order accuracy by requiring the boundedness
of one additional spatial derivative of the solution. Numerical results are presented to show the accuracy

and efficiency of ELRI.

Keywords: mKdV equation, rough data, exponential-type integrator, Miura transform, iterative regu-

larizing, error estimate

AMS Subject Classification: 65L05, 65L20, 65L70, 65M12, 65M15.

1. Introduction

The following type of Korteweg-de Vries equation is of fundamental importance in mathematical studies:

∂tu+ ∂3
xu = µ∂x(F (u)), t > 0, x ∈ T, (1.1)

where T = (0, 2π) with periodic boundary condition, u = u(t, x) : R+ × T → R is the unknown, µ ∈ R is
a given parameter, and F (u) is a given polynomial of degree k. Typically, one would consider the power
function F (u) = uk for some integer k > 0. In this case, µ > 0 is referred to the defocusing and µ < 0 is
referred to the focusing. When k = 2, (1.1) is known as the classical KdV, and when k = 3, it is called the
modified KdV (mKdV for short) equation. The cases k ≥ 4 are classified as the generalized KdV equations.

The Cauchy problem of (1.1) on the torus has been extensively studied. In [5], Bourgain proved that
the Cauchy problem of the KdV equation is globally well-posed in Hs(T) for s ≥ 0, whereas the mKdV
equation is globally well-posed for s ≥ 1 and locally well-posed for s ≥ 1

2 . Kenig, Ponce and Vega [28]

improved the local well-posedness of KdV to s ≥ − 1
2 , and these local well-posedness results of KdV and

mKdV were then extended as the global well-posedness by Colliander, Keel, Takaoka, Staffilani and Tao
[10]. Later, Kappeler and Topalov [22, 23] showed that the KdV and the defocusing mKdV equations are
globally well-posed for s ≥ −1 and s ≥ 0, respectively. The cases k ≥ 3, the local and global well-posedess
were studied by Colliander, Keel, Takaoka, Staffilani and Tao [11] and Bao, Wu [1].

Numerically, when the solution of (1.1) is smooth enough, extensive studies have also been carried out
in the literature. Many different kinds of numerical methods have been proposed for solving (1.1), e.g.,
[2, 3, 4, 12, 15, 19, 20, 21, 25, 26, 27, 29, 34, 37, 38, 43, 49, 51, 52, 53, 54, 57, 62, 63]. We refer the readers to
[61] for a more detailed review. Some recent attentions and efforts have been made to consider the numerical
solution of some important dispersive models under rough data [30, 31, 33, 39, 40, 42, 44, 48, 59, 60, 61],
where the roughness could be introduced in reality by randomness or measurements [14]. The goal is to raise
the order of the temporal accuracy in Hγ-norm for solutions from Hγ+α-space, and meanwhile to reduce γ
and α. The index γ describes how rough the solution can be, and the index α denotes the order of spatial
derivatives of the solution that have been lost essentially in the numerical approximation.

For the classical KdV equation, i.e., (1.1) with F (u) = u2, [18, 60] proposed and analyzed a class of low-
regularity integrators which can reach the first and the second order accuracy by requiring the boundedness
of two and respectively four additional spatial derivatives of the solution. To further bring down such
regularity requirements, in our recent work [61], a new class of embedded low-regularity integrators have been
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proposed for the classical KdV equation, which reduces the requirements for the first and the second order
accuracy to only one and respectively three additional bounded derivatives. These low-regularity numerical
methods from [18, 60, 61] are proposed through Fourier frequency analysis, and they strongly rely on the
interaction and resonance structure from the quadratic nonlinearity in the classical KdV equation. However,
for higher order interactions, such as the cubic nonlinearity in the mKdV equation, i.e., (1.1) with F (u) = u3,
the resonance structure would become much more complicated, which makes it far from straightforward to
extend the existing low-regularity integrators. Let us mention the general framework introduced in [8, 46]
for low-regularity integration on general models, but for a precise model, there could still be much room of
improvement.

In this paper, we shall focus on the numerical solution of the following defocusing mKdV equation on
the torus with periodic boundary condition under rough data:{

∂tu+ ∂3
xu = 2∂x(u3), t > 0, x ∈ T,

u(0, x) = u0(x), x ∈ T,
(1.2)

∂φ

∂t
+ φ

∂φ

∂x
+
∂3φ

∂t3
= 0.

φ(t, x) =
c

2
sech2

[
1

2

√
c(x− ct)

]
φ(t, x) = eiωtf(x)

where u0 ∈ Hs(T) for some s ≥ 0 is a given initial data. We aim to propose the corresponding embedded
low-regularity integrator (ELRI) for solving the mKdV equation (1.2), where we are able to maintain the
usual convergence order and minimize the cost of derivatives as we could in the approximations. We shall
work under the exponential-type integration framework [17]. While, the difficulty is that now to deal with
the resonance structure from the cubic nonlinearity in Fourier space

ξ3 − ξ3
1 − ξ3

2 − ξ3
3 ,

the previous factorization technique for the classical KdV equation from [18, 60, 61] fails, which stops us from
getting a low-regularity integration closed in the physical space. Note that a closed form of approximation
in the physical space is very important for the efficiency of the scheme. What we propose as the first step
in this work, is to make a ‘coarse’ approximation by losing three spatial derivatives for a stable integration
scheme in the physical space. This is done by using a Schrödinger-type approximation to the model, which
could be of independent future interests for the numerics. Then, to reduce the cost of the derivatives, we note
that the mKdV equation can be transformed into the classical KdV equation through the Miura transform
[36, 56]: U = ∂xu+ u2, where U solves the KdV equation. By using the inverse of the Miura transform:

u = ∂−1
x U − ∂−1

x u2 +
1

2π

∫
T
u0(x)dx,

we shall propose an iterative regularizing framework for recovering the lost regularity from the coarse ap-
proximation. Our way to use the Miura transform is different from the existing works in the literature.
Theoretically, the Miura transform is usually used to turn mKdV to KdV and apply the methods and results
from KdV, e.g., [16, 36]. Here, we propose for the first time to consider the inverse of the Miura transform as
an iterative process for smoothing the numerical solution. We end up with an ELRI scheme which is explicit
in the physical space, and is efficient to program in practice incorporation with the Fourier pseudo-spectral
method [50]. As we shall prove rigorously, our ELRI scheme has the first order accuracy by requiring only
one additional spatial derivative, i.e.,

‖u(tn, ·)− un‖Hγ . τ,
with τ the time step and un the numerical solution, for any initial data u0 ∈ Hγ+1 with γ > 3

2 . Note γ > 3
2

is a technical condition in our proof that can be further released by more delicate analytical tools. In this
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direction, let us mention the great efforts made recently in [39, 40] on the Schrödinger equation by using the
discrete Strichartz estimates or discrete Bourgain spaces. In this work, we emphasize that our attention is
focused on saving the lost derivatives in the numerical scheme. Numerical experiments will be done in the
end to justify the error estimate and to illustrate the efficiency of ELRI for solving (1.2) under rough data.

The rest of the paper is organized as follows. In Section 2, we derive the ELRI scheme and present its
convergence theorem. In Section 3, we present some important formulas and lemmas as preparations for the
error analysis. Section 4 analyzes the coarse approximation for the mKdV equation. Section 5 exploits the
Miura transform and analyzes the improved scheme after the first regularizing and the second regularizing
iterations to reduce the regularity requirement. Numerical results will be given in Section 6, and some
conclusions will be drawn in Section 7.

2. Numerical method: derivation and main result

In this section, we shall firstly present the connection between the mKdV and KdV equations through
the Miura transform, and then based on which we shall derive our numerical approximation. The convergence
theorem will be given in the end. We denote τ > 0 as the time step and tn = nτ as the time grids. The
Fourier transform of a function f(x) on T is denoted by

f̂(ξ) =
1

2π

∫
T

e−ixξf(x) dx, ξ ∈ Z.

2.1. Connection with KdV equation. Let u = u(t, x) be the solution of the mKdV equation (1.2), then
by the Miura transformation [36]

U := M [u] = ∂xu+ u2, (2.1)

the function U = U(t, x) solves the following KdV equation:{
∂tU + ∂3

xU = 3∂x
(
U2
)
, t > 0, x ∈ T,

U(0, x) = ∂xu0 + u2
0, x ∈ T,

(2.2)

with u0 the initial data of the mKdV equation (1.2). By inverting the Miura transform (2.1), we find

u(t, x) = ∂−1
x U(t, x)− ∂−1

x u2(t, x) +
1

2π

∫
T
u(t, x)dx, t ≥ 0, x ∈ T.

Here and after, we define the operator ∂−1
x for some function f(x) on T as

̂(∂−1
x f)(ξ) =

{
(iξ)−1f̂(ξ), when ξ 6= 0,

0, when ξ = 0.

Note that the mKdV equation (1.2) preserves the mass:∫
T
u(t, x)dx ≡

∫
T
u0(x)dx =: 2πm0, t ≥ 0,

so we further get

u(t, x) = ∂−1
x U(t, x)− ∂−1

x u2(t, x) +m0, t ≥ 0, x ∈ T. (2.3)

Thanks to this connection, we are able to call the embedded low-regularity integrator from [61] for solving
the KdV equation (2.2) to get U(t, x), and meanwhile we can make some proper approximation for u(t, x).

To the aim of saving regularity, it is more convenient to work on the twisted variables

V = V (t, x) := et∂
3
xU(t, x) and v = v(t, x) := et∂

3
xu(t, x), t ≥ 0, x ∈ T, (2.4)

respectively for the KdV equation (2.2) and the mKdV equation (1.2). Then, (2.3) becomes

v(t, x) = ∂−1
x V (t, x)− ∂−1

x et∂
3
x

(
e−t∂

3
xv(t, x)

)2

+m0, t ≥ 0, x ∈ T, (2.5)

which is the key relation for us to design numerical scheme.
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2.2. Numerical approximation. For simplicity of notations, in the following we shall omit the spatial
variable x of the involved time-space dependent functions, e.g., u(t) = u(t, x). The framework of our
approximation for v consists of three steps. We shall first present a coarse approximation for v where some
regularity is lost, and then we perform two smoothing iterations based on (2.5) to get some regularity back.

Step 1. A coarse version. We begin by presenting a first coarse approximation for the solution of
the mKdV equation (1.2), which can be regarded as a prediction step.

In the spirit of exponential integrators [17], we apply the Duhamel formula to (1.2) in terms of the
twisted variable v:

v(tn+1) = v(tn) + 2

∫ τ

0

e(tn+s)∂3
x∂x

[
e−(tn+s)∂3

xv(tn + s)
]3
ds, n ≥ 0. (2.6)

It can be seen that here in Fourier space, the resonance structure of the phase function for the mKdV
equation is

ξ3 − ξ3
1 − ξ3

2 − ξ3
3 ,

which involves the interaction of three frequencies rather than two for the KdV equation. Due to this, the
factoring technique used for the KdV equation [18, 60] can not be applied here. Consequently in (2.6), if
one only takes the approximation

v(tn + s) ≈ v(tn), 0 ≤ s ≤ τ,
the rest of the integral cannot be evaluated explicitly in the physical space, and then the triple summation
left in the Fourier space would be very costly for computations. Thus, some approximation has to be further
made for the integral in (2.6), and unavoidably some more regularity will be lost. For example, one may
consider to take∫ τ

0

e(tn+s)∂3
x∂x

[
e−(tn+s)∂3

xv(tn + s)
]3
ds ≈

∫ τ

0

e(tn+s)∂3
x∂x

[
e−tn∂

3
xv(tn)

]3
ds, (2.7)

and then evaluate the rest exactly. While, this apparently would cost four spatial derivatives. What is worse
is that such simple approximation will also cause stability issue. Here, we make an effort to save as much
regularity as we could, and meanwhile pursue a stable approximation. We replace the Airy operator in (2.7)

with a Schrödinger operator, i.e., es∂
3
x ≈ eis∂

2
x . Then, we adopt the following approximation of (2.6) as our

first approximation for the mKdV equation:

v(tn+1) ≈v(tn) + 2Re

∫ τ

0

etn∂
3
x+is∂2

x∂x

[
e−tn∂

3
xv(tn)

]3
ds

=v(tn)− 2Re

[
ietn∂

3
x+iτ∂2

x∂−1
x

(
e−tn∂

3
xv(tn)

)3
]

=: ΦnI (v(tn)), n ≥ 0. (2.8)

This approximation here shares the same spirit as the work in the literature [7, 9, 47, 55] to approximate
the KdV equation by the Schrödinger equation.

In fact, by denoting the numerical solution vnI ≈ v(tn) for n ≥ 0, (2.8) defines the coarse version of our
algorithm for solving the mKdV equation (1.2):

vn+1
I = ΦnI (vnI ), with v0

I = u0. (2.9)

As we shall show rigorously in Section 4 that, up to any T > 0, for u0 ∈ Hγ+3 with γ > −1/2, there exists
a constant C > 0 such that

‖v(tn)− vnI ‖Hγ ≤ Cτ, 0 ≤ n ≤ T

τ
.

That is to say, the first order accurate approximation (2.8) costs three spatial derivatives of the solution of
the mKdV equation (1.2). Although this is a coarse version and the result obtained is much weaker than
what we aim for in this paper, we claim that the technique used here has independent interests, which could
be applied to other models with complicated resonance structure in the phase.

Step 2. Iterative regularizing: first layer. Now with the coarse approximation from the previous
step, we introduce an iterative regularizing strategy based on the inverse Miura transform (2.5) to gain the
regularity back. This step can be regarded as the first layer in our embedded scheme.
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Firstly, the inverse Miura transform (2.5) involves the solution of the KdV equation (2.2). To get this
part, we introduce the first order embedded low-regularity integrator from our work [61]. Denoting the
numerical solution of the KdV equation (2.2) as Un ≈ U(tn) for n ≥ 0 with U0 = U(0), then

Un = e−itn∂
3
xV n with V n(x) = Ṽ n

(
x+

3tn
π

∫
T
U0dx

)
+

1

2π

∫
T
U0dx, n ≥ 0, (2.10)

where Ṽ 0 = PU(0),

Ṽ n+1 =Ṽ n +An

(
tn+1, Ṽ

n
)
−An

(
tn, Ṽ

n
)
− 2τ∂−1

x etn∂
3
x

(
e−tn∂

3
x Ṽ n

)3

+
3τ

π
∂−1
x Ṽ n

∫
T

(
Ṽ n
)2

dx,

and

An(s, V ) =es∂
3
x

(
e−s∂

3
x∂−1
x V

)2

− 2

3
es∂

3
x∂−1
x

(
e−s∂

3
x∂−1
x V

)3

− 2P
[
etn+1∂

3
x

(
e−tn+1∂

3
x∂−1
x V · e−(s−tn)∂3

x∂−1
x

(
e(s−tn)∂3

xe−tn+1∂
3
x∂−1
x V

)2
)]

.

Here we denote the operator Pf := f − 1
2π

∫
T f(0)dx, for some f(x) on T. We refer the readers to [61] for

the detailed derivation of (2.10). The optimal convergence of this algorithm for solving the KdV equation
has been rigorously established in [61]. Here for the further use in our analysis, let us directly quote its
convergence result as the following proposition.

Proposition 2.1 ([61]). Let Un be the numerical solution of the KdV (2.2) obtained from (2.10) up to some
fixed time T > 0. If U(0) ∈ Hγ+1(T) for some γ > 1

2 , then there exist constants τ0 > 0 and C > 0 depending
only on T and ‖U‖L∞((0,T );Hγ+1), such that for any 0 < τ ≤ τ0,

‖U(tn)− Un‖Hγ ≤ Cτ, n = 0, 1, . . . ,
T

τ
.

Then, by plugging the numerical solution V n from (2.10) and the prediction algorithm ΦnI defined in
(2.8) into the right-hand-side of (2.5), we define an improved approximation for the mKdV equation (1.2):

vnII = ∂−1
x V n − etn∂

3
x∂−1
x

(
e−tn∂

3
xvnI

)2

+m0, n ≥ 1, v0
II = u0. (2.11)

By doing this, we are able to save one spatial derivative back compared with the coarse version obtained in
Step 1. This will be proved rigorously in Section 5. With this version, we only need two additional spatial
derivatives for the first order accuracy, while there is still a room for improvement.

Step 3. Iterative regularizing: second layer. With one more time of iteration where we now
embed vnII from the previous step (2.11) into the right-hand-side of the inverse Miura transform (2.5), we
are able to get one more derivative back. That is to say, we now define our final approximation as:

vn = ∂−1
x V n − ∂−1

x etn∂
3
x

(
e−tn∂

3
xvnII

)2

+m0, n ≥ 1, v0 = u0. (2.12)

It can be regarded as the second layer in our embedded scheme. We remark that more iterations will not
save any more spatial derivatives, because after the second layer, the regularity requirement of the KdV part
will become essential in (2.5). Thus, (2.12) completes our algorithm for solving the mKdV equation (1.2),
and its convergence result will be stated as the main theorem below which tells that only one additional
spatial derivative is needed for the first order accuracy.

2.3. Scheme and convergence result. We now summarize the scheme obtained from the above framework
and present its convergence result.

The detailed embedded exponential-type low-regularity integrator (ELRI) for solving the mKdV equation
(1.2) reads as follows. Denoting vn ≈ v(tn) as the numerical solution for the twisted variable of the mKdV
equation (1.2) for n ≥ 0 and taking v0 = u0, then for n ≥ 1,

vn = ∂−1
x V n − etn∂

3
x∂−1
x

(
e−tn∂

3
xvnII

)2

+m0, vnII = ∂−1
x V n − etn∂

3
x∂−1
x

(
e−tn∂

3
xvnI

)2

+m0, (2.13)



6 C. NING, Y. WU, AND X. ZHAO

where V n is defined in (2.10) and

vnI = vn−1
I − 2Re

[
ietn−1∂

3
x+iτ∂2

x∂−1
x

(
e−tn−1∂

3
xvn−1
I

)3
]
, n ≥ 1, v0

I = u0.

By inverting the twisted variable, it is equivalent to have the ELRI scheme for the original variable u(t) of
the mKdV equation (1.2): denoting un ≈ u(tn) for n ≥ 0 with u0 = u0, then for n ≥ 1,

un = ∂−1
x Un − ∂−1

x (unII)
2

+m0, unII = ∂−1
x Un − ∂−1

x (unI )
2

+m0, (2.14)

where Un is defined in (2.10) and unI = e−tn∂
3
xvnI .

The proposed scheme of ELRI (2.13) or (2.14) is fully explicit. In practice, it can be implemented
efficiently under the Fourier pseudo-spectral method [50, 58] via the fast Fourier transform. The spatial
shifting in (2.10) can be done efficiently by the non-uniform fast Fourier transform [13]. In total, the
computational cost per time step is O(N logN) with N > 0 the number of grids points in space.

Now we state our main result for the convergence of the proposed ELRI scheme.

Theorem 2.2. Let un be the numerical solution of the mKdV (1.2) obtained from the ELRI scheme (2.14)
up to some fixed time T > 0. Under the assumption that u0 ∈ Hγ+1(T) with γ > 3

2 , there exist constants
τ0 > 0 and C > 0 depending only on T and ‖u‖L∞((0,T );Hγ+1), such that for any 0 < τ ≤ τ0,

‖u(tn, ·)− un‖Hγ ≤ Cτ, n = 0, 1, . . . ,
T

τ
.

If one is only interested in the solution u(t, x) of the mKdV equation at the final time t = T > 0, the
two stages of regularizing at the intermediate time level can be skipped. That is to compute with unI all the
way to n = T/τ , and then obtain un as (2.14). This could accelerate the practical computations, and the
convergence result in Theorem 2.2 holds at the final time grid. The rest of the paper is devoted to rigorously
proving Theorem 2.2.

Remark 1. The condition γ > 3
2 is a technical condition for the simplicity of our rigorous error analysis. As

indicated by our numerical result in Section 6, it could be improved by more delicate analytical technique,
e.g., [39, 40, 41, 45]. This will be left for the future study.

Remark 2. (Second order accuracy) The ELRI method to the second order accuracy can be obtained in
the same framework as above. For instance, one can get a simple second order coarse scheme by the
approximation v(tn + s) ≈ v(tn) + s∂tv(tn) in (2.6), and the regularity can then be recovered by applying
the iterative regularizing strategy for several times. In this work, let us focus on the first order scheme to
present and study the proposed framework.

3. Preliminaries

This section is devoted to some preparations for analyzing the numerical schemes. We shall first intro-
duce some notations and then present some tool lemmas.

3.1. Notations. We employ some useful notations from [10]. Firstly, we use A . B, B & A or A = O(B)
to denote the statement that A ≤ CB for some large absolute constant C > 0 which may vary from line to
line but independent of τ or n. We denote A ∼ B for A . B . A. Moreover, we use A � B or B � A to
denote the statement A ≤ C−1B.

We denote (dξ) to be the normalized counting measure on Z and then the inverse Fourier transform
reads

f(x) =

∫
eixξ f̂(ξ) (dξ) =

∑
ξ∈Z

eixξ f̂(ξ), x ∈ T.
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The following usual properties of the Fourier transform hold:

‖f‖L2(T) =
√

2π
∥∥f̂∥∥

L2((dξ))
(Plancherel);

〈f, g〉 =

∫
T
f(x)g(x) dx = 2π

∫
f̂(ξ)ĝ(ξ) (dξ) (Parseval);

(̂fg)(ξ) =

∫
f̂(ξ − ξ1)ĝ(ξ1) (dξ1) (Convolution).

We define the operator
Js := (1− ∂xx)

s
2 ,

for some s ∈ R, and the Sobolev space Hs(T) has the equivalent norm

‖f‖Hs(T) = ‖Jsf‖L2(T) =
√

2π
∥∥∥(1 + ξ2

) s
2 f̂(ξ)

∥∥∥
L2((dξ))

.

Moreover, we denote a± for a± ε with any small ε > 0, and we denote the bracket 〈·〉 = (1 + | · |2)1/2.

3.2. Some tool lemmas. To overcome the absence of the algebraic property of Hs when s /∈ Z+, we will
frequently use the following basic Kato-Ponce inequality, which was originally proved in [24], and recent
important progress in the endpoint case was made in [6, 32].

Lemma 3.1. (Kato-Ponce inequality) The following inequalities hold:

(i) For any γ ≥ 0, γ1 >
1
2 , f, g ∈ Hγ ∩Hγ1 ,

‖Jγ(fg)‖L2 . ‖f‖Hγ‖g‖Hγ1 + ‖f‖Hγ1 ‖g‖Hγ .

In particular, if γ > 1
2 , then,

‖Jγ(fg)‖L2 . ‖f‖Hγ‖g‖Hγ .

(ii) For any γ ≥ 0, γ1 >
1
2 , f ∈ Hγ+γ1 , g ∈ Hγ ,

‖Jγ(fg)‖L2 . ‖f‖Hγ+γ1‖g‖Hγ .

We also need the following specific Kato-Ponce inequality with negative derivatives.

Lemma 3.2. For any s0 >
1
2 , s ∈ [−s0, s0], f ∈ Hs, g ∈ Hs0 , the following inequality holds:

‖Js(fg)‖L2 ≤ C‖Jsf‖L2‖Js0g‖L2 ,

where the constant C > 0 depends on s, s0.

Proof. When s ≥ 0, it is followed from Lemma 3.1 and Sobolev’s inequality. Hence, we may assume that
s < 0. To do this, denote h2 = Jsf, h3 = Js0g, then by duality and Parseval’s identity, it is sufficient to
show that for any hj ∈ L2(T), j = 1, 2, 3,∣∣∣∣∫

ξ1+ξ2+ξ3=0

M(ξ1, ξ2, ξ3)ĥ1(ξ1)ĥ2(ξ2)ĥ3(ξ3) dσ

∣∣∣∣ . 3∏
j=1

‖hj‖L2 , (3.1)

where dσ = (dξ1)(dξ2) and the multiplier

M(ξ1, ξ2, ξ3) = 〈ξ1〉s〈ξ2〉−s〈ξ3〉−s0 .

Moreover, we may assume that ĥj , for j = 1, 2, 3 are positive, otherwise one may replace them by |ĥj |. Now
to prove (3.1), we split the left-hand-side of (3.1) into the following two parts:

I1 =

∫
Ω1

M(ξ1, ξ2, ξ3)ĥ1(ξ1)ĥ2(ξ2)ĥ3(ξ3) dσ, I2 =

∫
Ω2

M(ξ1, ξ2, ξ3)ĥ1(ξ1)ĥ2(ξ2)ĥ3(ξ3) dσ,

where

Ω1 = {(ξ1, ξ2, ξ3) : ξ1 + ξ2 + ξ3 = 0, |ξ2| . |ξ1|}, Ω2 = {(ξ1, ξ2, ξ3) : ξ1 + ξ2 + ξ3 = 0, |ξ2| � |ξ1|}.

For I1, we note that in Ω1,
M(ξ1, ξ2, ξ3) . 〈ξ3〉−s0 .
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Thus by Parseval’s identity again, we get

I1 .
∫
T
h1(x) h2(x) J−s0h3(x) dx .

∥∥h1

∥∥
L2

∥∥h2

∥∥
L2

∥∥J−s0h3

∥∥
L∞
.

3∏
j=1

‖hj‖L2 .

For I2, we have |ξ2| ∼ |ξ3| in Ω2. We claim that in this case,

M(ξ1, ξ2, ξ3) . 〈ξ1〉−
1
2−. (3.2)

Indeed, if s ≥ − 1
2 , then for any s0 >

1
2 ,

M(ξ1, ξ2, ξ3) . 〈ξ1〉−
1
2−〈ξ3〉−s0+ 1

2 + . 〈ξ1〉−
1
2−.

If s < − 1
2 , then for any s ≥ −s0,

M(ξ1, ξ2, ξ3) . 〈ξ1〉s〈ξ3〉−s0−s . 〈ξ1〉−
1
2−.

Hence, we have (3.2). Similarly as above, we get that

I2 .
∫
T
J−

1
2−h1(x) h2(x) h3(x) dx .

∥∥J− 1
2−h1

∥∥
L∞

∥∥h2

∥∥
L2

∥∥h3

∥∥
L2 .

3∏
j=1

‖hj‖L2 .

This finishes the proof of the lemma. �

3.3. Some useful estimates with time integration. In this subsection, we introduce some estimates
with time integration that is crucial for the proof of stability. They are given as the following proposition.

The main difficulty in establishing it is that the operator eis∂
2
x∂x in the following breaks the structure for

integration-by-parts, and so the usual commutator estimate fails. Here we must take some delicate effect on
the time integration into consideration, and the symmetric argument plays an important role in the proof of
the proposition.

Proposition 3.3 (Estimates with time integration). The following estimates hold.

(i) Let γ ≥ −1, γ0 = max{ 3
2+, γ + 1}. Then, for any real-valued functions f1 ∈ Hγ and f3, f4 ∈ Hγ0 ,∣∣∣∣∫ τ

0

〈
eis∂

2
x∂xJ

γ
(
f1f3f4

)
, Jγf1

〉
ds

∣∣∣∣ . τ‖f1‖2Hγ‖f3‖Hγ0‖f4‖Hγ0 .

(ii) Let γ > 3
2 , γ0 = max{ 3

2+, γ + 1}. Then, for any real-valued functions f1 ∈ Hγ , f4 ∈ Hγ0 ,∣∣∣∣∫ τ

0

〈
eis∂

2
x∂xJ

γ
(
f2

1 f4

)
, Jγf1

〉
ds

∣∣∣∣ . τ‖f1‖3Hγ‖f4‖Hγ0 .

(iii) Let γ > 3
2 . Then, for any real-valued functions f ∈ Hγ ,∣∣∣∣∫ τ

0

〈
eis∂

2
x∂xJ

γ
(
f3
)
, Jγf

〉
ds

∣∣∣∣ . τ‖f‖4Hγ .
Proof. (i) We may assume that f̂j for j = 1, 3, 4 are positive, otherwise one may replace them by |f̂j |. For
short, we denote

Γ =
{

(ξ1, ξ2, ξ3, ξ4) : ξ1 + ξ2 + ξ3 + ξ4 = 0
}

and dσ = (dξ1)(dξ2)(dξ3).

Then, by Parseval’s identity, we get∫ τ

0

〈
eis∂

2
x∂xJ

γ
(
f1f3f4

)
, Jγf1

〉
ds = 2π

∫ τ

0

∫
Γ

e−iξ
2
1siξ1〈ξ1〉2γ f̂1(ξ1)f̂1(ξ2)f̂3(ξ3)f̂4(ξ4)dσds.

We divide Γ into the following parts:

Γ1 = {(ξ1, ξ2, ξ3, ξ4) ∈ Γ : |ξ1| ≥ |ξ2|, |ξ3| ≥ |ξ4|, |ξ2| ≥ 10|ξ3|},
and

Γ2 = {(ξ1, ξ2, ξ3, ξ4) ∈ Γ : |ξ1| ≥ |ξ2|, |ξ3| ≥ |ξ4|, |ξ2| < 10|ξ3|}.
In addition, we denote

M(s; ξ1, · · · , ξ4) = e−iξ
2
1siξ1〈ξ1〉2γ + e−iξ

2
2siξ2〈ξ2〉2γ . (3.3)
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By symmetries, there exists some absolute constant C > 0 such that

F
(∫ τ

0

〈
eis∂

2
x∂xJ

γ
(
f1f3f4

)
, Jγf1

〉
ds

)
=π

∫ τ

0

∫
Γ

M(s; ξ1, · · · , ξ4)f̂1(ξ1)f̂1(ξ2)f̂3(ξ3)f̂4(ξ4)dσds

=C

∫ τ

0

∫
Γ1∪Γ2

M(s; ξ1, · · · , ξ4)f̂1(ξ1)f̂1(ξ2)f̂3(ξ3)f̂4(ξ4)dσds =: CI1 + CI2,

where

I1 =

∫ τ

0

∫
Γ1

M(s; ξ1, · · · , ξ4)f̂1(ξ1)f̂1(ξ2)f̂3(ξ3)f̂4(ξ4)dσds,

and

I2 =

∫ τ

0

∫
Γ2

M(s; ξ1, · · · , ξ4)f̂1(ξ1)f̂1(ξ2)f̂3(ξ3)f̂4(ξ4)dσds.

For I1, we claim that in Γ1, ∫ τ

0

∣∣M(s; ξ1, · · · , ξ4)
∣∣ ds . τ〈ξ1〉γ〈ξ2〉γ〈ξ3〉. (3.4)

Indeed, according to the definition of M , we have

M(s; ξ1, · · · , ξ4) =e−iξ
2
2s
(
iξ1〈ξ1〉2γ + iξ2〈ξ2〉2γ

)
+
(
e−iξ

2
1s − e−iξ

2
2s
)
iξ1〈ξ1〉2γ

=:M1(s; ξ1, · · · , ξ4) +M2(s; ξ1, · · · , ξ4).

Thanks to the restriction on Γ1, we have |ξ1| ∼ |ξ2| and |ξ1 + ξ2| ≤ 2|ξ3|. Hence, for any γ ∈ R,∣∣ξ1〈ξ1〉2γ + ξ2〈ξ2〉2γ
∣∣ . 〈ξ1〉γ〈ξ2〉γ〈ξ3〉,

and so we have ∫ τ

0

∣∣M1(s; ξ1, · · · , ξ4)
∣∣ ds . τ〈ξ1〉γ〈ξ2〉γ〈ξ3〉.

For M2, we find that∫ τ

0

(e−iξ
2
1s − e−iξ

2
2s)ds =

1

iξ2
1

(
1− e−iξ

2
1τ
)
− 1

iξ2
2

(
1− e−iξ

2
2τ
)

=
1

iξ2
1

(
e−iξ

2
2τ − e−iξ

2
1τ
)

+

(
1

iξ2
2

− 1

iξ2
1

)(
e−iξ

2
2τ − 1

)
,

and so ∣∣∣∣∫ τ

0

(e−iξ
2
1s − e−iξ

2
2s) ds

∣∣∣∣ ≤ 2τ

|ξ1|2
∣∣ξ2

1 − ξ2
2

∣∣ . τ |ξ3|
|ξ1|

.

This gives ∫ τ

0

∣∣M2(s; ξ1, · · · , ξ4)
∣∣ ds . τ〈ξ1〉γ〈ξ2〉γ〈ξ3〉,

and so in total we get (3.4). Therefore, we get for any γ ∈ R,

|I1| =
∣∣∣∣∫

Γ1

∫ τ

0

M(s; ξ1, · · · , ξ4)ds f̂1(ξ1)f̂1(ξ2)f̂3(ξ3)f̂4(ξ4)dσ

∣∣∣∣
≤τ
∫

Γ1

〈ξ1〉γ〈ξ2〉γ〈ξ3〉f̂1(ξ1)f̂1(ξ2)f̂3(ξ3)f̂4(ξ4)dσ . τ‖f1‖2Hγ‖f3‖
H

3
2
+‖f4‖

H
3
2
+ . (3.5)

For I2, according to the parameter γ, we can split it into several cases as well.

If −1 ≤ γ ≤ 0, noting that |ξ2| ≤ |ξ1| . |ξ3| on Γ2, we have∣∣M(s; ξ1, · · · , ξ4)
∣∣ . 〈ξ1〉γ〈ξ2〉γ〈ξ3〉,

which implies

|I2| .τ‖f1‖2Hγ‖f3‖
H

3
2
+‖f4‖

H
3
2
+ .
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If 0 < γ < 1
2 , then ∣∣M(s; ξ1, · · · , ξ4)

∣∣ . 〈ξ1〉γ〈ξ3〉1+γ .

Moreover, since f̂j , j = 1, 3, 4 are positive, we find

|I2| .
∫ τ

0

∫
Γ2

〈ξ1〉γ〈ξ3〉1+γ f̂1(ξ1)f̂1(ξ2)f̂3(ξ3)f̂4(ξ4)dσds ≤ τ
∫
T
Jγf1(x) f1(x) J1+γf3(x) f4(x) dx.

Hence, by the Hölder and Sobolev inequalities, we get

|I2| .τ
∥∥Jγf1

∥∥
L2

∥∥f1

∥∥
L

2
1−2γ

∥∥J1+γf3

∥∥
L

1
γ

∥∥f4

∥∥
L∞
. τ‖f1‖2Hγ‖f3‖

H
3
2
+‖f4‖

H
3
2
+ .

If γ = 1
2 , then ∣∣M(s; ξ1, · · · , ξ4)

∣∣ . 〈ξ1〉γ〈ξ2〉0−〈ξ3〉 32 +.

Similarly as above, we can find

|I2| .τ
∥∥Jγf1

∥∥
L2

∥∥J0−f1

∥∥
L∞

∥∥J 3
2 +f3

∥∥
L2

∥∥f4

∥∥
L∞
. τ‖f1‖2Hγ‖f3‖

H
3
2
+‖f4‖

H
3
2
+ .

Therefore, we get that for any −1 ≤ γ ≤ 1
2 ,

|I2| .τ‖f1‖2Hγ‖f3‖
H

3
2
+‖f4‖

H
3
2
+ . (3.6)

If γ > 1
2 , then ∣∣M(s; ξ1, · · · , ξ4)

∣∣ . 〈ξ1〉γ〈ξ3〉1+γ ,

and similarly as above, we can get

|I2| .τ
∥∥Jγf1

∥∥
L2

∥∥f1

∥∥
L∞

∥∥J1+γf3

∥∥
L2

∥∥f4

∥∥
L∞
. τ‖f1‖2Hγ‖f3‖H1+γ‖f4‖H1+γ .

This last estimate together with (3.5) and (3.6) give the desired estimate (i).

(ii) The proof is similar as (i), and so we only give its sketch here for brevity. We denote

Γ̃ = {(ξ1, ξ2, ξ3, ξ4) : ξ1 + ξ2 + ξ3 + ξ4 = 0, |ξ1| ≥ |ξ2| ≥ |ξ3|}.

In addition, we denote

M̃(s; ξ1, · · · , ξ4) =

3∑
j=1

e−iξ
2
j siξj〈ξj〉2γ .

Then, by symmetry, there exists some absolute constant C > 0 such that∫ τ

0

〈
eis∂

2
x∂xJ

γ
(
f2

1 f4

)
, Jγf1

〉
ds = C

∫ τ

0

∫
Γ̃

M̃(s; ξ1, · · · , ξ4)f̂1(ξ1)f̂1(ξ2)f̂1(ξ3)f̂4(ξ4)dσds.

We claim that in Γ̃,∫ τ

0

∣∣M̃(s; ξ1, · · · , ξ4)
∣∣ ds . τ〈ξ1〉γ〈ξ2〉γ〈ξ3〉+ τ〈ξ1〉γ〈ξ2〉γ〈ξ4〉+ τ〈ξ1〉γ〈ξ4〉γ+1. (3.7)

Indeed, in Γ̃ we can write

M̃(s; ξ1, · · · , ξ4) = M(s; ξ1, · · · , ξ4) +O
(
〈ξ1〉γ〈ξ2〉γ〈ξ3〉

)
,

where M is defined in (3.3). We consider the following two cases separately:

Case 1, |ξ2| ≥ 10|ξ4|; Case 2, |ξ2| ≤ 10|ξ4|.

Case 1: |ξ2| ≥ 10|ξ4|. By the same treatment as for (3.4), we have∫ τ

0

∣∣M(s; ξ1, · · · , ξ4)
∣∣ ds . τ〈ξ1〉γ〈ξ2〉γ〈ξ3 + ξ4〉 . τ〈ξ1〉γ〈ξ2〉γ〈ξ3〉+ τ〈ξ1〉γ〈ξ2〉γ〈ξ4〉.

Case 2: |ξ2| ≤ 10|ξ4|. Note |ξ1| ∼ |ξ4|, and so∣∣M(s; ξ1, · · · , ξ4)
∣∣ . 〈ξ1〉2γ+1 . 〈ξ1〉γ〈ξ4〉γ+1.
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Hence, we get ∫ τ

0

∣∣M(s; ξ1, · · · , ξ4)
∣∣ ds . τ〈ξ1〉γ〈ξ4〉γ+1.

Combining the findings in Case 1 and Case 2, we get (3.7) which further shows that for any γ > 3
2 ,∣∣∣∣∫ τ

0

〈
eis∂

2
x∂xJ

γ
(
f2

1 f4

)
, Jγf1

〉
ds

∣∣∣∣ .τ∥∥Jγf1

∥∥2

L2

∥∥J1f1

∥∥
L∞

∥∥f4

∥∥
L∞

+ τ
∥∥Jγf1

∥∥2

L2

∥∥f1

∥∥
L∞

∥∥J1f4

∥∥
L∞

+ τ
∥∥Jγf1

∥∥
L2

∥∥f1

∥∥2

L∞

∥∥Jγ+1f4

∥∥
L2 . τ‖f1‖3Hγ‖f4‖Hγ0 .

(iii) Again, we denote

Γ̆ = {(ξ1, ξ2, ξ3, ξ4) : ξ1 + ξ2 + ξ3 + ξ4 = 0, |ξ1| ≥ |ξ2| ≥ |ξ3| ≥ |ξ4|},

and

M̆(s; ξ1, · · · , ξ4) =
4∑
j=1

e−iξ
2
j siξj〈ξj〉2γ .

Then, by symmetry, there exists some absolute constant C > 0 such that∫ τ

0

〈
eis∂

2
x∂xJ

γ
(
f3
)
, Jγf

〉
ds = C

∫ τ

0

∫
Γ̆

M̆(s; ξ1, · · · , ξ4)f̂(ξ1)f̂(ξ2)f̂(ξ3)f̂(ξ4)dσds.

We claim that in Γ̆, ∫ τ

0

∣∣∣M̆(s; ξ1, · · · , ξ4)
∣∣∣ ds . τ〈ξ1〉γ〈ξ2〉γ〈ξ3〉. (3.8)

With (3.8) in hand, similarly as the above, we can get for any γ > 3
2 ,∣∣∣∣∫ τ

0

〈
eis∂

2
x∂xJ

γ
(
f3
)
, Jγf

〉
ds

∣∣∣∣ .τ∥∥Jγf∥∥L2

∥∥Jγf∥∥
L2

∥∥J1f
∥∥
L∞

∥∥f∥∥
L∞

.τ‖f‖2Hγ‖f‖H 3
2
+‖f‖H 1

2
+ . τ‖f‖4Hγ .

Now it is left to prove the claim (3.8). In the case of |ξ2| � |ξ3|, we write

M̆(s; ξ1, · · · , ξ4) =
[
e−iξ

2
2s
(
ξ1〈ξ1〉2γ + ξ2〈ξ2〉2γ

)]
+
[(

e−iξ
2
1s − e−iξ

2
2s
)
iξ1〈ξ1〉2γ

]
+
[
e−iξ

2
3siξ3〈ξ3〉2γ + e−iξ

2
4siξ4〈ξ4〉2γ

]
.

For the first two terms, as proved before in (i), we have∣∣∣e−iξ22s(ξ1〈ξ1〉2γ + ξ2〈ξ2〉2γ
)∣∣∣ . 〈ξ1〉γ〈ξ2〉γ〈ξ3〉,

and ∣∣∣∣∫ τ

0

[(
e−iξ

2
1s − e−iξ

2
2s
)
iξ1〈ξ1〉2γ

]
ds

∣∣∣∣ . τ〈ξ1〉γ〈ξ2〉γ〈ξ3〉.
For the third term, since |ξ4| ≤ |ξ3| ≤ |ξ2| ∼ |ξ1|, we have∣∣∣e−iξ23siξ3〈ξ3〉2γ + e−iξ

2
4siξ4〈ξ4〉2γ

∣∣∣ . 〈ξ1〉γ〈ξ2〉γ〈ξ3〉.
Hence, we get (3.8) in this case. In the case of |ξ2| . |ξ3|, we have |ξ1| ∼ |ξ2| ∼ |ξ3|, and so∣∣∣M̆(s; ξ1, · · · , ξ4)

∣∣∣ . 〈ξ1〉γ〈ξ2〉γ〈ξ3〉.
This again shows (3.8), and thus completes the proof of (iii). �
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4. Exponential scheme: the coarse version

With the preparations from the previous section, we now build the convergence result for the coarse
version scheme (2.8) introduced as the first step in Section 2.2. Recall

vn+1
I = ΦnI (vnI ) = vnI − 2Re

[
ietn∂

3
x+iτ∂2

x∂−1
x

(
e−tn∂

3
xvnI

)3
]
, v0

I = u0, n = 0, . . . ,
T

τ
− 1, (4.1)

up to some fixed final time T > 0. The convergence result of the coarse scheme (4.1) is stated as follows.

Proposition 4.1 (Convergence of coarse scheme). Assume that u0 ∈ Hγ1+3(T) with γ1 > − 1
2 . There exist

constants τ0 > 0 and C > 0 depending only on T and ‖v‖L∞((0,T );Hγ1+3), such that for any 0 < τ ≤ τ0,

‖v(tn)− vnI ‖Hγ1 ≤ Cτ, n = 0, 1, . . . ,
T

τ
.

This result serves as an intermediate step for proving our main theorem, and meanwhile it could be of
independent interest as we explained in Section 2.2. To prove Proposition 4.1, we first consider the following
local error estimate.

Lemma 4.2 (Local error estimate). Let η ≥ −1, β ∈ [0, 1] and γ̃ = max{1 + η + 2β, β + 1
2+}. Assume that

u0 ∈ H γ̃(T), then, there exist constants τ0 > 0 and C > 0 depending only on T and ‖v‖L∞((0,T );Hγ̃), such
that for any 0 < τ ≤ τ0,

‖v(tn+1)− ΦnI (v(tn))‖Hη ≤ Cτ
1+β , n = 0, 1, . . . ,

T

τ
− 1.

Proof. Using (2.6) yields for 0 ≤ n < T/τ ,

ζn :=v(tn+1)− ΦnI (v(tn))

=2

∫ τ

0

e(tn+s)∂3
x∂x

(
e−(tn+s)∂3

xv(tn + s)
)3

ds− 2Re

∫ τ

0

etn∂
3
x+is∂2

x∂x

(
e−tn∂

3
xv(tn)

)3

ds.

Since et∂
3
xf ∈ R, if f ∈ R, and so by taking the Fourier transform, we have

ζ̂n(ξ) = 2iξ

∫ τ

0

∫
ξ=ξ1+ξ2+ξ3

[
e−i(tn+s)αv̂(tn + s, ξ1)v̂(tn + s, ξ2)v̂(tn + s, ξ3)

− e−itnαRe(e−isξ
2

)v̂(tn, ξ1)v̂(tn, ξ2)v̂(tn, ξ3)
]
dσds.

Here we denote dσ = (dξ1)(dξ2) and α = ξ3 − ξ3
1 − ξ3

2 − ξ3
3 for short. Now we split the expression above into

two pieces:

ζ̂n(ξ) := Î1(ξ) + Î2(ξ),

where

Î1(ξ) =2iξ

∫ τ

0

∫
ξ=ξ1+ξ2+ξ3

e−itnα
(

e−isα − Re
(

e−isξ
2
))

v̂(tn + s, ξ1)v̂(tn + s, ξ2)v̂(tn + s, ξ3)dξ1dξ2ds,

Î2(ξ) =2iξ

∫ τ

0

∫
ξ=ξ1+ξ2+ξ3

e−itnαRe
(

e−isξ
2
) [
v̂(tn + s, ξ1)v̂(tn + s, ξ2)v̂(tn + s, ξ3)

− v̂(tn, ξ1)v̂(tn, ξ2)v̂(tn, ξ3)
]
dσds.

We then estimate I1 and I2 in a sequel. Without loss of generality, we assume |ξ1| ≥ |ξ2| ≥ |ξ3|, and then
we have

|α| = |3(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)| . |ξ2
1ξ2|.

Thus, for any η ≥ −1,

|ξ|〈ξ〉η
∣∣e−isα − Re(e−isξ

2

)
∣∣ ≤ 〈ξ〉1+η(s|α|+ s|ξ|2)β ≤ sβ〈ξ1〉1+η+2β〈ξ2〉β , β ∈ [0, 1].

This implies that

〈ξ〉η|Î1(ξ)| .
∫ τ

0

∫
ξ=ξ1+ξ2+ξ3

sβ〈ξ1〉1+η+2β〈ξ2〉β |v̂(tn + s, ξ1)v̂(tn + s, ξ2)v̂(tn + s, ξ3)|dσds,
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and so we have

‖I1‖Hη ≤ Cτ1+β‖v‖L∞((0,T );H1+η+2β)‖v‖L∞((0,T );Hβ+
1
2
+)
‖v‖

L∞((0,T );H
1
2
+)
≤ Cτ1+β‖v‖3L∞((0,T );Hγ̃).

For I2, by symmetry we have

|Î2(ξ)| .
∣∣∣∣ξ ∫ τ

0

∫
ξ=ξ1+ξ2+ξ3

[
v̂(tn + s, ξ1)v̂(tn + s, ξ2)v̂(tn + s, ξ3)− v̂(tn, ξ1)v̂(tn, ξ2)v̂(tn, ξ3)

]
dσds

∣∣∣∣
.
∫ τ

0

∫
ξ=ξ1+ξ2+ξ3

|ξ| · |v̂(tn + s, ξ1)− v̂(tn, ξ1)| ·
(
|v̂(tn + s, ξ2)v̂(tn + s, ξ3)|+ |v̂(tn, ξ2)v̂(tn, ξ3)|

)
dσds.

Then, by Lemma 3.1 we have∥∥I2∥∥Hη .τ sup
s∈[0,τ ]

∥∥v(tn + s)− v(tn)
∥∥
H1+η

∥∥v∥∥2

L∞((0,T );H
1
2
+)

+ τ sup
s∈[0,τ ]

∥∥v(tn + s)− v(tn)
∥∥
H

1
2
+

∥∥v∥∥
L∞((0,T );H1+η)

∥∥v∥∥
L∞((0,T );H

1
2
+)

.τ sup
s∈[0,τ ]

∥∥v(tn + s)− v(tn)
∥∥
H1+η

∥∥v∥∥2

L∞((0,T );Hγ̃)
+ τ sup

s∈[0,τ ]

∥∥v(tn + s)− v(tn)
∥∥
H

1
2
+

∥∥v∥∥2

L∞((0,T );Hγ̃)
.

(4.2)

From (2.6), we have ∂tv = et∂
3
x∂x

(
e−t∂

3
xv
)3

. This fact yields

v(tn + s)− v(tn) =

∫ s

0

∂tv(tn + t)dt = 2

∫ s

0

e(tn+t)∂3
x∂x

(
e−(tn+t)∂3

xv(tn + t)
)3

dt.

Hence, by Lemma 3.1 we obtain∥∥v(tn + s)− v(tn)
∥∥
H1+η ≤ Cτ

∥∥v∥∥
L∞((0,T );H2+η)

∥∥v∥∥2

L∞((0,T );H
1
2
+)
. (4.3)

Moreover, we have the direct estimate∥∥v(tn + s)− v(tn)
∥∥
H1+η ≤ 2

∥∥v∥∥
L∞((0,T );H1+η)

. (4.4)

Interpolating (4.3) and (4.4) gives ∥∥v(tn + s)− v(tn)
∥∥
H1+η ≤ Cτβ ,

where C depends on ‖v‖
L∞((0,T );H1+η+β∩H

1
2
+)

. Similarly, we have
∥∥v(tn + s)− v(tn)

∥∥
H

1
2
+ ≤ Cτβ , where C

depends on ‖v‖
L∞((0,T );H

1
2
+β+)

. Inserting the last two estimates above into (4.2), we find

‖I2‖Hη ≤ Cτ1+β ,

where C depends on ‖v‖L∞((0,T );Hγ̃). Consequently, combining with the estimates on I1 and I2, we obtain

‖v(tn+1)− ΦnI (v(tn))‖Hη ≤ Cτ1+β , β ∈ [0, 1].

This finishes the proof of the lemma. �

To build the stability result, we need the following lemma.

Lemma 4.3. Let u0 ∈ Hγ0+1(T) with γ0 >
3
2 . There exist constants τ0 > 0 and C > 0 depending only on

T and ‖v‖L∞((0,T );Hγ0+1), such that for any 0 < τ ≤ τ0,

‖ΦnI (v(tn))− ΦnI (vnI )‖Hγ0 ≤ (1 + Cτ)‖v(tn)− vnI ‖Hγ0 + Cτ‖v(tn)− vnI ‖3Hγ0 , n = 0, . . . ,
T

τ
− 1.

Proof. According to the definition of ΦnI , we have

ΦnI (v(tn))− ΦnI (vnI )

=v(tn) + 2Re

∫ τ

0

etn∂
3
x+is∂2

x∂x

(
e−tn∂

3
xv(tn)

)3

ds− vnI − 2Re

∫ τ

0

etn∂
3
x+is∂2

x∂x

(
e−tn∂

3
xvnI

)3

ds

=v(tn)− vnI + 2Re

∫ τ

0

etn∂
3
x+is∂2

x∂x

[(
e−tn∂

3
xv(tn)

)3

−
(

e−tn∂
3
xvnI

)3
]
ds =: hn + Ψn,
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where we denote

hn = v(tn)− vnI , Ψn = 2Re

∫ τ

0

etn∂
3
x+is∂2

x∂x

[(
e−tn∂

3
xv(tn)

)3

−
(

e−tn∂
3
xvnI

)3
]
ds.

Using this equality, we have∥∥ΦnI (v(tn))− ΦnI (vnI )
∥∥2

Hγ0
=〈Jγ0

(
ΦnI (v(tn))− ΦnI (vnI )

)
, Jγ0

(
ΦnI (v(tn))− ΦnI (vnI )

)
〉

=
∥∥hn∥∥2

Hγ0
+ 2〈Jγ0hn, Jγ0Ψn〉+ 〈Jγ0Ψn, Jγ0Ψn〉. (4.5)

Note that(
e−tn∂

3
xv(tn)

)3

−
(

e−tn∂
3
xvnI

)3

=
(

e−tn∂
3
xhn

)3

− 3
(

e−tn∂
3
xhn

)2

e−tn∂
3
xv(tn) + 3e−tn∂

3
xhn

(
e−tn∂

3
xv(tn)

)2

,

so we can write

Ψn =2Re

∫ τ

0

etn∂
3
x+is∂2

x∂x

[(
e−tn∂

3
xhn

)3
]
ds− 6Re

∫ τ

0

etn∂
3
x+is∂2

x∂x

[(
e−tn∂

3
xhn

)2

e−tn∂
3
xv(tn)

]
ds

+ 6Re

∫ τ

0

etn∂
3
x+is∂2

x∂x

[
e−tn∂

3
xhn

(
e−tn∂

3
xv(tn)

)2
]
ds.

Hence, we have

〈Jγ0hn, Jγ0Ψn〉 =2Re

∫ τ

0

〈
Jγ0hn, etn∂

3
x+is∂2

xJγ0∂x

[(
e−tn∂

3
xhn

)3
]〉

ds

− 6Re

∫ τ

0

〈
Jγ0hn, etn∂

3
x+is∂2

xJγ0∂x

[(
e−tn∂

3
xhn

)2

e−tn∂
3
xv(tn)

]〉
ds

+ 6Re

∫ τ

0

〈
Jγ0hn, etn∂

3
x+is∂2

xJγ0∂x

[
e−tn∂

3
xhn

(
e−tn∂

3
xv(tn)

)2
]〉

ds.

Then, using Proposition 3.3, we obtain∣∣〈Jγ0hn, Jγ0Ψn〉
∣∣ .τ(‖hn‖4Hγ0 + ‖hn‖3Hγ0 ‖v(tn)‖Hγ0+1 + ‖hn‖2Hγ0‖v(tn)‖2Hγ0+1

)
≤Cτ

(
‖hn‖2Hγ0 + ‖hn‖4Hγ0

)
, (4.6)

where C depends on ‖v‖L∞((0,T );Hγ0+1).

Now we consider the term 〈Jγ0Ψn, Jγ0Ψn〉. By (4.1), it is equal to

− 4Re

∫ τ

0

〈
Jγ0Re

[
ietn∂

3
x+iτ∂2

x∂−1
x

((
e−tn∂

3
xv(tn)

)3

−
(

e−tn∂
3
xvnI

)3
)]

,

etn∂
3
x+is∂2

xJγ0∂x

(
e−tn∂

3
xhn

)3 〉
ds (4.7a)

+ 12Re

∫ τ

0

〈
Jγ0Re

[
ietn∂

3
x+iτ∂2

x∂−1
x

((
e−tn∂

3
xv(tn)

)3

−
(

e−tn∂
3
xvnI

)3
)]

,

etn∂
3
x+is∂2

x∂x

[(
e−tn∂

3
xhn

)2

e−tn∂
3
xv(tn)

]〉
ds (4.7b)

− 12Re

∫ τ

0

〈
Jγ0Re

[
ietn∂

3
x+iτ∂2

x∂−1
x

((
e−tn∂

3
xv(tn)

)3

−
(

e−tn∂
3
xvnI

)3
)]

,

etn∂
3
x+is∂2

x∂x

[
e−tn∂

3
xhn

(
e−tn∂

3
xv(tn)

)2
]〉

ds. (4.7c)

The three terms can be treated in the same way, and so we only consider (4.7a). By integration-by-parts
and Lemma 3.1, it follows that

|(4.7a)| =
∣∣∣∣4 ∫ τ

0

〈
Jγ0Re

[
ietn∂

3
x+iτ∂2

x

((
e−tn∂

3
xv(tn)

)3

−
(

e−tn∂
3
xvnI

)3
)]

, etn∂
3
x+is∂2

xJγ0
(

e−tn∂
3
xhn

)3 〉
ds

∣∣∣∣
.τ

∥∥∥∥Jγ0 [(e−tn∂
3
xv(tn)

)3

−
(

e−tn∂
3
xvnI

)3
]∥∥∥∥

L2

∥∥∥∥Jγ0 (e−tn∂
3
xhn

)3
∥∥∥∥
L2

≤ Cτ
(
‖hn‖4Hγ0 + ‖hn‖6Hγ0

)
.

Combining it with the analogous estimates for the terms (4.7b) and (4.7c), we get∣∣〈Jγ0Ψn, Jγ0Ψn〉
∣∣ ≤Cτ‖hn‖2Hγ0 + Cτ‖hn‖6Hγ0 . (4.8)
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Together with (4.5), (4.6), (4.8), Hölder’s and Cauchy-Schwartz’s inequalities, we get

‖ΦnI (v(tn))− ΦnI (vnI )‖2Hγ0 ≤(1 + Cτ)‖hn‖2Hγ0 + Cτ‖hn‖6Hγ0 .

Since
√

1 + Cτ ∼ 1 + Cτ when τ is small enough, this implies that

‖ΦnI (v(tn))− ΦnI (vnI )‖Hγ0 ≤ (1 + Cτ)‖v(tn)− vnI ‖Hγ0 + Cτ‖v(tn)− vnI ‖3Hγ0 ,
and the lemma is proved. �

With the prepared lemmas before, we can obtain the a priori estimate of the numerical solution vnI ,
which is done by establishing a weaker convergence rate of the scheme as in [35].

Lemma 4.4 (A priori estimate). Let vnI be defined in (4.1) and u0 ∈ Hγ1+3(T) with γ1 > − 1
2 . Then, there

exist constants τ0 > 0 and C > 0 depending only on ε, T and ‖v‖L∞((0,T );Hγ1+3), such that for any 0 < τ ≤ τ0
and any ε > 0, ∥∥vnI ∥∥Hγ1+2−ε ≤ C, n = 0, 1, . . . ,

T

τ
.

Proof. Denote η1 = γ1 + 2− ε and we consider only η1 >
3
2 by choosing ε > 0 small enough. We write

v(tn+1)− vn+1
I = v(tn+1)− ΦnI (v(tn)) + ΦnI (v(tn))− ΦnI (vnI ).

Then, we have

‖v(tn+1)− vn+1
I ‖Hη1 ≤ ‖v(tn+1)− ΦnI (v(tn))‖Hη1 + ‖ΦnI (v(tn))− ΦnI (vnI )‖Hη1 .

According to Lemma 4.2, we choose η = η1 and β = ε
2 to obtain

‖v(tn+1)− ΦnI (v(tn))‖Hη1 ≤ Cτ1+ ε
2 , (4.9)

where C depends on ‖v‖L∞((0,T );Hγ1+3).

Using Lemma 4.3 and (4.9) yields that there exist some positive constants Cj , j = 1, 2, 3 such that

‖v(tn+1)− vn+1
I ‖Hη1 ≤ C1τ

1+ ε
2 + (1 + C2τ)‖v(tn)− vnI ‖Hη1 + C3τ‖v(tn)− vnI ‖3Hη1 . (4.10)

We claim that there exists some τ0 > 0 (to be determined) such that for any τ ∈ (0, τ0],

‖v(tn)− vnI ‖Hη1 ≤ C1τ
1+ ε

2

n∑
j=0

(1 + 2C2τ)j , n = 0, 1, . . . ,
T

τ
. (4.11)

We prove it by the induction. Note that (4.11) clearly holds for n = 0. Now we assume that it holds till
some n0 : 0 ≤ n0 ≤ T

τ − 1, i.e.,

‖v(tn)− vnI ‖Hη1 ≤ C1τ
1+ ε

2

n∑
j=0

(1 + 2C2τ)j , for any 0 ≤ n ≤ n0. (4.12)

From (4.12), we have that for any 0 ≤ n ≤ n0,

‖v(tn)− vnI ‖Hη1 ≤ C5τ
ε
2 , (4.13)

where C5 = C1(2C2)−1e2C2T . Then by (4.10), we find∥∥v(tn0+1)− vn0+1
I

∥∥
Hη1
≤C1τ

1+ ε
2 +

(
1 + C2τ + C3C

2
5τ

1+ε
)
· C1τ

1+ ε
2

n0∑
j=0

(1 + 2C2τ)j .

Choose τ0 > 0 such that C3C
2
5τ

ε
0 ≤ C2, then for any τ ∈ (0, τ0], we obtain that∥∥v(tn0+1)− vn0+1

I

∥∥
Hη1
≤C1τ

1+ ε
2 + (1 + 2C2τ) · C1τ

1+ ε
2

n0∑
j=0

(1 + 2C2τ)j

=C1τ
1+ ε

2 + C1τ
1+ ε

2

n0∑
j=0

(1 + 2C2τ)j+1 = C1τ
1+ ε

2

n0+1∑
j=0

(1 + 2C2τ)j .

This finishes the induction and proves (4.11). Hence, we get (4.13) for any n = 0, 1, . . . , Tτ . Therefore,

‖vnI ‖Hη1 ≤ ‖v(tn)− vnI ‖Hη1 + ‖v(tn)‖Hη1 ≤ C,
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where C > 0 depends only on ε, T and ‖v‖L∞((0,T );Hγ1+3). This gives the desired estimate. �

The stability result is given as the following lemma.

Lemma 4.5 (Stability). Let u0 ∈ Hγ1+3(T) with γ1 > − 1
2 . Then, there exist constants τ0 > 0 and C > 0

depending only on γ1, T and ‖v‖L∞((0,T );Hγ1+3), such that for any 0 < τ ≤ τ0,

‖ΦnI (v(tn))− ΦnI (vnI )‖Hγ1 ≤ (1 + Cτ)‖v(tn)− vnI ‖Hγ1 , n = 0, 1, . . . ,
T

τ
− 1.

Proof. As in the proof of Lemma 4.3, we write

‖ΦnI (v(tn))− ΦnI (vnI )‖2Hγ1 = 〈Jγ1hn, Jγ1hn〉+ 2〈Jγ1hn, Jγ1Ψn〉+ 〈Jγ1Ψn, Jγ1Ψn〉. (4.14)

Here we use the same notations as in Lemma 4.3. We will estimate each term in (4.14) individually. For the
second term, we rewrite Ψn as

Ψn = Re

∫ τ

0

etn∂
3
x+is∂2

x∂x

[
e−tn∂

3
xhn · Fn

(
v(tn), vnI

)]
ds,

where

Fn
(
v(tn), vnI

)
= 2

(
e−tn∂

3
xv(tn)

)2

+ 2
(

e−tn∂
3
xv(tn)

)(
e−tn∂

3
xvnI

)
+ 2

(
e−tn∂

3
xvnI

)2

.

Hence, we get that

〈Jγ1hn, Jγ1Ψn〉 = Re

∫ τ

0

〈
Jγ1hn, etn∂

3
x+is∂2

xJγ1∂x

[
e−tn∂

3
xhn · Fn

(
v(tn), vnI

)] 〉
ds.

Then, by Proposition 3.3 (i) (in which γ = γ1, γ0 = γ1 + 2− ε) and Lemma 4.4 (in which ε ≤ γ1
2 + 1

4 is small
enough), we get ∣∣〈Jγ1hn, Jγ1Ψn〉

∣∣ ≤ Cτ‖hn‖2Hγ1 , (4.15)

where C depends only on γ1, T and ‖v‖L∞((0,T );Hγ1+3).

Now we consider the term 〈Jγ1Ψn, Jγ1Ψn〉. Using the formula (4.1), we have

Ψn = −2Re

[
ietn∂

3
x+iτ∂2

x∂−1
x

((
e−tn∂

3
xv(tn)

)3

−
(

e−tn∂
3
xvnI

)3
)]

.

Then by integration-by-parts, we have

〈Jγ1Ψn, Jγ1Ψn〉 = −2Re

∫ τ

0

〈
ietn∂

3
x+iτ∂2

xJγ1∂−1
x

((
e−tn∂

3
xv(tn)

)3

−
(

e−tn∂
3
xvnI

)3
)
,

etn∂
3
x+is∂2

xJγ1∂x

[
e−tn∂

3
xhn · Fn

(
v(tn), vnI

)] 〉
ds

=2Re

∫ τ

0

〈
ieiτ∂

2
xJγ1

((
e−tn∂

3
xv(tn)

)3

−
(

e−tn∂
3
xvnI

)3
)
, eis∂

2
xJγ1

[
e−tn∂

3
xhn · Fn

(
v(tn), vnI

)] 〉
ds.

Therefore, by Hölder’s inequality, we get

|〈Jγ1Ψn, Jγ1Ψn〉| . τ
∥∥∥(e−tn∂

3
xv(tn)

)3

−
(

e−tn∂
3
xvnI

)3 ∥∥∥
Hγ1

∥∥∥e−tn∂
3
xhn · Fn

(
v(tn), vnI

)∥∥∥
Hγ1

.

Now by Lemma 3.2 and Lemma 4.4, we obtain∣∣〈Jγ1Ψn, Jγ1Ψn〉
∣∣ ≤ Cτ‖hn‖2Hγ1 . (4.16)

Inserting (4.15) and (4.16) into (4.14), it follows that

‖ΦnI (v(tn))− ΦnI (vnI )‖2Hγ1 ≤ (1 + Cτ)‖hn‖2Hγ1 .

This proves the lemma. �

Now we are ready to prove Proposition 4.1.
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Proof of Proposition 4.1. From Lemma 4.2 (choosing β = 1), we obtain

‖v(tn+1)− ΦnI (v(tn))‖Hγ1 ≤ Cτ
2.

Furthermore, from Lemma 4.5, we have∥∥v(tn+1)− vn+1
I

∥∥
Hγ1
≤ ‖v(tn)− ΦnI (v(tn))‖Hγ1 + ‖ΦnI (v(tn))− ΦnI (vnI )‖Hγ1
≤ Cτ2 + (1 + Cτ)‖v(tn)− vnI ‖Hγ1 .

Then, the claimed result is followed from the iteration and Gronwall’s inequality. �

5. Exponential scheme with iterative regularizing

In this section, we analyze the scheme after the first and the second regularizing iterations in Section
2.2. The technique based on the Miura transform turns out to reduce the loss of regularity. Recall our
scheme in the second step of Section 2.2:

vn+1
II = ∂−1

x V n+1 − etn+1∂
3
x∂−1
x

(
e−tn+1∂

3
xvn+1
I

)2

+m0, n ≥ 0, v0
II = u0.

With the analysis of the coarse scheme, we have the following error estimate for this first regularizing.

Proposition 5.1. Assume that u0 ∈ Hγ+1(T) with γ > 3
2 . Then, there exist positive constants τ0, C, C̃

which depend only on γ, T and ‖v‖L∞((0,T );Hγ+1), such that for any 0 < τ ≤ τ0,

|vnII‖Hγ ≤ C̃ and ‖v(tn)− vnII‖Hγ−1 ≤ Cτ, 0 ≤ n ≤ T

τ
. (5.1)

Proof. By Lemma 4.4 (where γ1 = γ − 2) and Proposition 2.1, we have that for any arbitrarily small ε > 0,∥∥vnI ∥∥Hγ−ε ≤ C, ∥∥V n∥∥
Hγ−1 ≤ C. (5.2)

Here and after in this proof, the constant C depends only on T and ‖v‖L∞((0,T );Hγ+1) that may vary line by
line. Therefore, by Lemma 3.1 we get that∥∥vnII∥∥Hγ .∥∥V n∥∥Hγ−1 +

∥∥∥∥(e−tn∂
3
xvnI

)2
∥∥∥∥
Hγ−1

.
∥∥V n∥∥

Hγ−1 +
∥∥vnI ∥∥2

Hγ−1 ≤ C̃.

This proves the first part of (5.1).

Now we consider the second assertion in (5.1). According to (2.5), we have that

v(tn)− vnII =∂−1
x [V (tn)− V n]− etn∂

3
x∂−1
x

[(
e−tn∂

3
xv(tn)

)2

−
(

e−tn∂
3
xvnI

)2
]
.

Hence, by the Kato-Ponce inequality in Lemma 3.2, we obtain

‖v(tn)− vnII‖Hγ−1 .‖V (tn)− V n‖Hγ−2 +
∥∥∥e−tn∂

3
x(v(tn)− vnI ) · e−tn∂

3
x(v(tn) + vnI )

∥∥∥
Hγ−2

.‖V (tn)− V n‖Hγ−2 + ‖v(tn)− vnI ‖Hγ−2‖v(tn) + vnI ‖Hγ̃ , (5.3)

where γ̃ = max{ 1
2+, γ − 2}. Since u0 ∈ Hγ+1(T) and U(0) = ∂xu0 + u2

0, we get U(0) ∈ Hγ(T). Therefore,
from Proposition 2.1, we have

‖V (tn)− V n‖Hγ−1 ≤ Cτ. (5.4)

Moreover, by Proposition 4.1 (in which γ1 = γ − 2), we have

‖v(tn)− vnI ‖Hγ−2 ≤Cτ. (5.5)

Furthermore, by (5.2), we get

‖v(tn) + vnI ‖Hγ̃ ≤ C. (5.6)

Inserting (5.4), (5.5) and (5.6) into (5.3), the proof is finished. �
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In the continuation of the iterative regularizing process, recall from Section 2.2 that after the second
regularizing, the scheme reads

vn+1 = ∂−1
x V n+1 − etn+1∂

3
x∂−1
x

(
e−tn+1∂

3
xvn+1
II

)2

+m0, n ≥ 0, v0 = u0.

Its convergence is stated as Theorem 2.2, and the proof is given below with the help of the previous estimates.

Proof of Theorem 2.2. Due to (2.5), we get

v(tn)− vn =∂−1
x [V (tn)− V n]− etn∂

3
x∂−1
x

[(
e−tn∂

3
xv(tn)

)2

−
(

e−tn∂
3
xvnII

)2
]
.

Since γ > 3
2 , using the Kato-Ponce inequality in Lemma 3.1, we get

‖v(tn)− vn‖Hγ ≤‖V (tn)− V n‖Hγ−1 +
∥∥∥etn∂

3
x (v(tn)− vnII) · etn∂

3
x (v(tn) + vnII)

∥∥∥
Hγ−1

≤‖V (tn)− V n‖Hγ−1 + ‖v(tn)− vnII‖Hγ−1 ‖v(tn) + vnII‖Hγ−1 .

Since u0 ∈ Hγ+1, so we have U(0) ∈ Hγ . Hence by Proposition 2.1, we know that

‖V (tn)− V n‖Hγ−1 ≤ Cτ.

Moreover, by Proposition 5.1, we have ‖vnII‖Hγ ≤ C and ‖v(tn) − vnII‖Hγ−1 ≤ Cτ, where C depends on
‖v‖L∞((0,T );Hγ+1). Consequently, we get

‖v(tn)− vn‖Hγ ≤ Cτ.

Since the twisting of variable (2.4) is isometric, so the proof is complete. �

6. Numerical result

In this section, we shall present the numerical results of the proposed ELRI scheme (2.14) for solving
the mKdV equation (1.2) under rough initial data. For comparisons, the results of the coarse version scheme
(2.9) and the classical Strang splitting scheme [20, 21] will be presented as well.

To construct the initial data u0(x) with the desired regularity, we adopt the following strategy as used
in [42, 48, 60, 61]. Choose N > 0 as an even integer and discretize the spatial domain T with grid points
xj = j 2π

N for j = 0, . . . , N . Take a uniformly distributed random vector rand(N, 1) ∈ [0, 1]N and define

u0(x) :=
|∂x,N |−θUN

‖|∂x,N |−θUN‖L∞
, x ∈ T, UN = rand(N, 1), (6.1)

where the pseudo-differential operator |∂x,N |−θ for θ ≥ 0 reads: for Fourier modes l = −N/2, . . ., N/2− 1,

(
|∂x,N |−θ

)
l

=

{
|l|−θ, if l 6= 0,

0, if l = 0.

Thus, we can get u0 ∈ Hθ(T) for any θ ≥ 0. We implement the spatial discretizations of the aforementioned
numerical methods by the Fourier pseudo-spectral method [50, 58] with a fixed large number of grid points
N = 213 in T so that the spatial error is rather negligible in the test below.

We compute the error u(tn, x) − un(x) of the numerical methods at the final time tn = T = 0.5 under
the smooth initial data case

u0(x) =
cos(x)

2 + sin(x)
, x ∈ T,

and under the non-smooth initial data case (6.1) for θ = 2, 3 or 5. The reference solutions are obtained
numerically for the smooth case and the non-smooth case of θ = 5 by the Strang splitting scheme [20, 21]
with τ = 10−4. The Strang splitting scheme is implemented similarly as in [60]. For the non-smooth case of
θ = 2 or 3, the reference solution is computed by the ELRI (2.14) with τ = 10−4. The errors of the ELRI
scheme (2.14), the coarse version scheme (2.9) and the Strang splitting scheme in the H2-norm are plotted
in Figure 1 for the smooth initial data and for the non-smooth data with θ = 3 or 5. The error of ELRI in
the H1-norm is plotted in Figure 2 for the non-smooth initial data with θ = 2.
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Figure 1. Convergence of the ELRI (2.14), the coarse scheme (2.9) and the Strang splitting:
the relative error ‖u − un‖H2/‖u‖H2 at tn = T = 0.5 for smooth initial data (upper left),
H5-initial data (upper right) and H3-initial data (2nd row).

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

O( )

Figure 2. Convergence of the ELRI (2.14): the relative error ‖u − un‖H1/‖u‖H1 at tn =
T = 0.5 for H2-initial data.

From the numerical results, we can see that under the smooth data case, all the three methods can
reach their own optimal convergence rates (Figure 1: upper left). While, for the non-smooth solution case,
the classical Strang splitting scheme becomes much less accurate and the error barely converges (Figure 1:
upper right and 2nd row). The ELRI scheme (2.14) always works well in the test, and it is always more
accurate than the coarse version scheme (2.9). Under the non-smooth data case, the ELRI (2.14) only needs
one additional bounded spatial derivative of the solution to reach its optimal first order accuracy (Figure
1: 2nd row). In contrast, the coarse version (2.9) needs three additional spatial derivatives to get the first
order accuracy (Figure 1: upper right), otherwise it significantly loses convergence rate (Figure 1: 2nd row).
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This verifies our theoretical results in Proposition 4.1 and Theorem 2.2. The technique condition γ > 3
2 in

Theorem 2.2 might be improved (based on the result in Figure 2) by more technical analysis in future. Thus,
the proposed ELRI method is more efficient and accurate for solving the mKdV equation under rough data.

7. Conclusion

We considered the numerical solution of the periodic mKdV equation under rough data. Under the
framework of exponential integration, previous low-regularity integration technique on the classical KdV
equation failed on the mKdV equation, and some derivatives of the solution were unavoidably lost when
integrating the cubic nonlinear interaction. By means of the Miura transform, we introduced a strategy of
iterative regularizing for recovering the regularity of the numerical approximation. Under the new framework,
an embedded exponential-type low-regularity integrator (ELRI) was proposed. The scheme is explicitly
defined in the physical space and is efficient to implement under the Fourier pseudo-spectral method. We
proved rigorously that the ELRI has first order accuracy in Hγ for the initial data from Hγ+1 under technical
condition γ > 3

2 . Though we focused on the first order scheme, higher order methods can be derived under
the same framework. Numerical experiments were done to confirm the theoretical result and show the
accuracy of ELRI, where comparisons with Strang splitting scheme were made.
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