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ALMOST SURE WELL-POSEDNESS AND SCATTERING OF THE

3D CUBIC NONLINEAR SCHRODINGER EQUATION
JIA SHEN, AVY SOFFER, AND YIFEI WU

ABSTRACT. We study the random data problem for 3D, defocusing, cubic nonlin-
ear Schrodinger equation in HS(R3) with s < % First, we prove that the almost
sure local well-posedness holds when % <s < % in the sense that the Duhamel
term belongs to Ha/?(R3).

Furthermore, we prove that the global well-posedness and scattering hold for
randomized, radial, large data f € HS(R3) when % <s< % The key ingredient is
to control the energy increment including the terms where the first order derivative
acts on the linear flow, and our argument can lower down the order of derivative
more than 1. To our best knowledge, this is the first almost sure large data global

2
result for this model.
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1. INTRODUCTION

In this paper, we consider the nonlinear Schrodinger equations (NLS):
10 + Au = plulPu,
t plul (1.1)
u(0, ) = ug(x),

where p > 0, p = £1, and u(t,z) : R x R? — C is a complex-valued function.
The positive sign “+” in nonlinear term of (1.1) denotes defocusing source, and the
negative sign “—” denotes the focusing one.

The equation (1.1) has conserved mass

M(u(t)) == /Rd lu(t, z)|* dz = M(u), (1.2)

and energy

E(u(t)) = / ) ; [Vult, o))" do+p / pig

The class of solutions to equation (1.1) is invariant under the scaling

lu(t, )| do = E(u).  (1.3)

u(t,x) — uy(t,x) = )\%u()\Qt, Az) for A >0, (1.4)
which maps the initial data as
w(0) = ux(0) := Nrug(\x) for A > 0. (1.5)
Denote
d 2
Se =35~
2. p

then the scaling leaves H* norm invariant, that is,

[0 zrse = Nur(O)l e

This gives the scaling critical exponent s.. Let

4
2" =00, when d =1 or d = 2; 2*:m, when d > 3.

Therefore, according to the conservation law, the equation is called mass or L?

%, and energy or H}! critical when p = —-*;. Moreover, when

d—2
% < p < 2*, we say that the equation is inter-critical.

Let us now take a brief overview on the well-posedness and scattering theory of
NLS (1.1). Kato [46] first proposed a method based on the contraction mapping and
the Strichartz estimate, and obtained the local well-posedness when p < ﬁ in H!.

See also [72] by Tsutsumi for the L2-solution when p < %. Note that the above two
results concerned the sub-critical cases when s > s.. The local well-posedness in the
critical sense was solved by Cazenave and Weissler, see [22]. Moreover, we refer the
readers to Cazenave’s textbook [21] for more complete local results of NLS.

The global well-posedness and scattering are basic topics for the long time be-
haviour of NLS. Lin and Strauss [59] obtained the large data scattering for the 3D,
defocusing, cubic NLS with decaying data. Their argument relied on the Morawetz
estimate, which was first discovered by Morawetz [61] for the Klein-Gordon equa-
tions. The global well-posedness and scattering in energy space were solved by
Ginibre and Velo [42] in the defocusing inter-critical cases for d > 3. In this paper,

critical when p =
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we mainly focus on the results in L2-based Sobolev spaces, thus we do not mention
the vast scattering theory for NLS with decaying data.

The main breakthrough of the energy critical NLS was owed to Bourgain [10]. He
introduced the powerful induction-on-energy method and the localised Morawetz
estimate to study the defocusing equations with radial data for d = 3,4. Bourgain’s
method was then further exploited extensively: Nakanishi [62] introduced a modified
version of Morawetz estimate for low dimensions, and solved the energy scattering in
the inter-critical cases for d = 1, 2; Bourgain’s 3D result was extended to non-radial
by Colliander, Keel, Staffilani, Takaoka, and Tao [27], based on a localised version of
their interaction Morawetz estimate [26]. The results for defocusing energy critical
NLS in higher dimensions were obtained by Ryckman and Visan [66, 74].

For the focusing equations, Kenig and Merle [48] introduced the concentration
compactness method to give a complete dynamical characterization below the energy
of ground state, for the energy critical NLS in d = 3,4,5 with radial data. Their
study opened a way to study the scattering of focusing equations below the ground
state. Then, Duyckaerts, Holmer, and Roudenko [40, 45] gave the result for 3D,
focusing, cubic NLS, which is a typical model in the inter-critical cases. For the
non-radial focusing energy-critical NLS, Killip and Visan [52] solved the d > 5 case,
and Dodson [34] solved the 4D case. The scattering of 3D, focusing, energy-critical
NLS in the non-radial case remains open.

The concentration compactness method also enlighten the development of mass
critical NLS. Killip, Tao, Visan, and Zhang [53, 54, 71] studied the mass critical NLS
in the radial case. Dodson then remove the radial assumption, and completely solved
the global well-posedness and scattering of mass critical NLS in the defocusing case
[30, 32, 33], and in the focusing case below the mass of ground state [31].

Next, we focus on the well-posedness results of 3D, defocusing, cubic NLS, for
which the critical regularity exponent s. = 1/2. We have learned that the defocusing

equation is local well-posed in Hgl;/ 2, while the global well-posedness and scattering
hold in a smaller space H!. A natural question is to ask the weakest space X to

guarantee the global well-posedness in m’nX. Bourgain [9] used the high-low
decomposition method (introduced in [8]) to give X = H: with s > $1. The lower
bound was then improved by “I-method” gradually in [25, 26, 69], and so far, the
best result is s > % Under the radial assumption, Dodson [35] showed that the

result holds for almost critical space s > %

Note that X spaces in the above mentioned results are all HY? super-critical.
Recently, Dodson [36] gave a result in the critical space X = W, A 6, based on the
observation that linear solution becomes more regular with initial data in L? with
p < 2. Using this observation, the authors [67] obtained that X = W for s > %,
which is a sub-critical space with the order of derivative less than 1, by the method
in [1] .

Currently, there is no result for the global well-posedness of 3D defocusing cubic
NLS merely in HY? or HY*. Kenig and Merle [49] initiated an another approach to-
wards this problem. They proposed the concept of “conditional scattering”, namely
the global well-posedness and scattering hold for the solution that is uniformly
bounded in the critical space on the maximal existence interval. Generally for the
inter-critical NLS, no global well-posed result is known in the critical space. See
[2, 36] for some related results.
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Now, we turn to the probability theory of NLS. Although there are ill-posedness
results below the critical regularity for NLS due to the result of Christ, Collian-
der, and Tao [24], Bourgain [6, 7] first introduced a probabilistic method to study
the well-posedness problem for periodic NLS for “almost” all the initial data in
super-critical spaces. The probabilistic well-posedness result for super-critical wave
equations on compact manifolds was also studied by Burq and Tzvetkov [16, 17].
There have been extensive studies about such subject since then, and we refer the
readers to [5] for more complete overviews.

Next, we only review the study of random data theory for NLS on R?. There are
several ways of randomization for the initial data. We recall the one relying on the
unit-scale decomposition in frequency, which is named as the Wiener randomization,
appeared first in [78]. Then, under the Wiener randomization, Bényi, Oh, and
Pocovnicu [3] studied the cubic NLS when d > 3. They proved the almost sure
local well-posedness, small data scattering, and a “conditional” global well-posedness
under some a priori hypothesis. Afterwards, the almost sure local results were
improved by Bényi-Oh-Pocovnicu [4] and Pocovnicu-Wang [65]. The random data
well-posedness for quintic NLS was studied by Brereton [11]. Later, Oh, Okamoto,
and Pocovnicu [64] studied the almost sure global well-posedness (with no a priori
assumptions) for energy critical NLS on d = 5, 6.

The large data almost sure scattering was first obtained by Dodson, Lithrmann,
and Mendelson [37] in the context of 4D, defocusing, energy-critical, nonlinear wave
equation with randomized radial data, using a double bootstrap argument combining
the energy and Morawetz estimates. The result was extended by Bringmann to non-
radial 4D case [13], and to radial 3D case [12]. The related results on non-radial
energy-critical nonlinear Klein-Gordon equations were studied by Chen and Wang
[23]. The first almost sure scattering result for NLS was given by Killip, Murphy,
and Visan [51]. They proved the result for 4D, defocusing, energy-critical case with
almost all the radial initial data in H3 for 2 < s < 1. This result was then improved
to 3+ < s <1 by Dodson, Lithrmann, and Mendelson [38].

We remark that the Wiener randomization is closely related to the modulation
space introduced by Feichtinger [41]. Such space has been applied to non-linear
evolution equations before the development of Wiener randomization, dating back
to the results of Wang, Zhao, Guo, and Hudzik [75, 76].

There are also other kinds of randomization for NLS on R?. Burq, Thomann, and
Tzvetkov [15] constructed a Gibbs measure for NLS with harmonic potential, and
proved almost sure L2-scattering for 1D, defocusing NLS with p > 5, after changing
the Schrodinger equations into the ones with harmonic oscillator potential by lens
transform. Recently, Burq and Thomann [14] improved the result to all the short
range exponents p > 3. See also [58] for higher dimensional extensions.

In addition, Murphy [60] introduced a new kind of randomization based on the
physical space unit-scale decomposition, and studied the almost sure existence and
uniqueness of wave operator for L? sub-critical NLS above the Strauss exponent.
Then, Nakanishi and Yamamoto [63] extended the result below Strauss exponent,
and applied the method on some quadratic Schrodinger models. We also mention
that Bringmann’s almost sure scattering results [12, 13] include other kinds of ran-
domization for nonlinear wave equations on R?, involving the micro-local and the
annuli decompositions of initial data.
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To the best of our knowledge, the only study by far of global well-posedness
and scattering for inter-critical NLS seems Burq, Thomann, and Tzvetkov’s 1D L>2-
scattering result [15], based on the Gibbs measure for the Schriodinger equations
with harmonic potential. Very recently, we learnt that Duerinckx [39] also studied
the global well-posedness of cubic NLS adding a tiny dissipation with spatial inho-
mogeneous random initial data. In this paper, we intend to study a typical model
of inter-critical NLS, namely the 3D, defocusing, cubic NLS under the Wiener ran-
domization, at super-critical regularity.

Before stating the main result, we give the definition of the randomization:

Definition 1.1 (Wiener randomization). Let Ve C5°(R3) be a real-valued function
such that ¥ > 0, (=€) = (&) for all ¢ € R® and
11
- 1, wh g
) wnen 6 e [ 27 2] )

() =
0, when & ¢ [—1,1]%.

Let
(3
D kezs V(€ — k)
Then, ¥ € C°(R?) is a real-valued function, satisfying for all € € R3, 0 < ¢ < 1,

Supp w C [_17 1]37 1/’(‘5) = w(£)7 and Zk€Z3 ’l/}<§ - k) =1.
For any k € 72, define V(&) = (& — k). Denote the Fourier transform by F.
Then, we define

P(8) -

Okf = FH(nFf).

Let (2, A,IP) be a probability space. Let {gi},czs be a sequence of zero-mean,
complez-valued Gaussian random variables on ), where the real and imaginary parts
of gr. are independent. Then, for any function f, we define its randomization f by

F2 =" ge(w)Okf. (1.6)
keZ3
In the following, we use the statement “almost every w € €, PC(w) holds” to
mean that
P({weQ: PCw) holds}) = 1.
Now, we study the 3D, defocusing, cubic NLS with randomized initial data:
10 + Au = |ulu,
u(0, ) = f*(x).
For this model under the probabilistic setting, the local well-posedness, small data
scattering, and conditional global well-posedness results have been established be-
fore.
We first recall the local results for (1.7). Bényi, Oh, and Pocovnicu [4] proved the
local result with f € H; when %a <s < % in the sense that Duhamel term belongs
to C(I; H?) for any fixed % < 0 < 1. They also proved the improved local result

when % < s < 1 (except for the lower endpoint) by weakening the definition of local
solution:

(1.7)

UW— 2] — 23—+ — Zop_1 EC(I;HII/z),
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where the function z;, € C(I; H:*) is defined by iteration with some s;, < 1. Pocov-
nicu and Wang [65] also proved the local result in L2 with Duhamel term in C'(I; L2).

There are also global results of (1.7), either with small data restriction or with
suitable a priori assumptions. Bényi, Oh, and Pocovnicu [3] proved the almost sure
small data global well-posedness and scattering for i <5< % Furthermore, they
[3] also proved the random data global well-posedness when i <s< % under two a
priori assumptions:

e The Duhamel term is uniformly bounded in the critical space H* in the
probabilistic setting.

e The 3D, defocusing, cubic NLS is globally well-posed with deterministic ini-
tial data in H./>.

Each of the above two a priori assumptions seems very difficult to verify.

In this paper, we improve the previous local results and give an optimal local
result for (1.7). Moreover with the radial data, we prove the global well-posedness
as well as scattering, without imposing any a priori assumption or size restriction,
where the scattering result holds in the energy space.

1.1. Almost sure local well-posedness. The first main result in this paper con-
cerns the almost sure local well-posedness. Previously for the random data local
result, Bényi, Oh, and Pocovnicu [4] introduced the higher order expansion method;
Pocovnicu and Wang’s argument [65] is based on the dispersive inequality; Dod-
son, Lithrmann, and Mendelson [38] used the high dimensional version of smoothing
effect and maximal function estimates. In this paper, we give some simple new ap-
proaches combining the atom space method by Koch-Tataru [55] and the variants
of bilinear Strichartz estimate.

Theorem 1.2 (Local well-posedness). Let f € HS(R3). Then, for almost every
w € 1, it holds that:
(1) If + < s < %, then there exists T > 0 and a solution u of (1.7) on [0,T] such
that
u— e ¢ e C([0,T]; Hi (RY)).
(2) If 3 < s < 3, then there exists T > 0 and a solution u of (1.7) on [0,T] such
that
u— "% € 00, 7): HAR),

Our result improves the local results in [4], where Bényi, Oh, and Pocovnicu [4]
proved the same results in Theorem 1.2 (1) for 1 < s < 1 and Theorem 1.2 (2) for
2<s<3

The following are some remarks concerning the theorem.

Remark 1.3. (1) We believe that the first result in Theorem 1.2 is optimal in the
following sense. In fact, we need to control the term

(1 /_A)% (|€itAfw‘2€itAfw)’

and there is at least %—order derivative acting on each f“.
(2) It seems very difficult to extend the local solution obtained in Theorem 1.2
(1) to global directly. Therefore, we establish the local solution with higher
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regularity in Theorem 1.2 (2). As remarked before, the lower bound £ seems
also sharp in this case.

(3) Our second result can be compared to Dodson, Lithrmann, and Mendelson’s
local result [38] for 4D, cubic NLS, which is energy critical, since both results
put the Duhamel term in C'([0, T]; H}). They proved local well-posedness for
é < s < 1, also except the endpoint exponent é

(4) Apparently, the local results in Theorem 1.2 also hold for focusing equations.

The proof of Theorem 1.2 (2) is more difficult than the first local result. We
postponed here to illustrate the main idea. It reduces to consider the term

v(|eitAfw|26itAfw)

1
with f merely in H3. The task is how to allocate the first order derivative to each
A f¥. However, the use of bilinear Strichartz estimate or local smoothing can only
lower down semi-derivative. Then, we overcome the difficulty by following two tools:
e We employ the UP-V? method introduced by Koch-Tataru [55] to exploit the
duality structure.
e We also apply the bilinear Strichartz estimate in the form of

I [e" 2 g][e=" )] HL?L;(RX]RS) (1.8)

with 1 < ¢, 7 < 2, see Candy’s result [18]. Particularly, the use of (1.8) with
q < 2 and r = 2 can reduce the loss of derivative, at the cost of lower time
integration exponents.

Let v = e™® f, and it suffices to control

T
/ / ghinhivfow dx dt,
0 JRr3

where e="2¢g € V%(R; L?), and “hi”, “low” represent the size of frequency. Heuris-
tically, by Holder’s inequality,

T
/ / Vol dz dt < [l gaivion
0 JR3 L

This can cut down the order of high-frequency derivative to é for wvy;, with a total
loss of low-frequency derivative of order %, which can be assigned to each vyyy.
Note that the above observation is sharp with respect to the regularity. Further-
more, we have a logarithmic loss of derivative when passing ¢ into V2 by interpola-
tion. That is the main reason why we need s > % to acquire additional regularity
for summation.
Moreover, if we only requires

u—e"f e C([0,T]; HY (R?))

1 2 2
Brs vahivlow”ztlL% HVvhingfz HIU]OWHE?OL% ,

for % < 0 < 1, the approach in above observation can provide enough additional

regularity for summation. Thus, we expect that the argument works for the optimal

lower endpoint, namely éa <s < %, which clearly includes the result in Theorem
1

1.2 (1). However, in this paper, we only consider two endpoint cases when o = 3
or 0 = 1, and present two different methods, respectively. For Theorem 1.2 (1), we

provide another proof without exploiting the duality structure. In fact, there is only
%-order derivative acting on the nonlinear term, and we can transfer it simply using

the bilinear Strichartz estimate.
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1.2. Almost sure scattering. Now we turn to our second main result for the
global well-posedness and scattering:

Theorem 1.4 (Global well-posedness and scattering). Let % < s < % and [ €
H:(R®) be radial. Then, for almost every w € 0, there erists a solution u of (1.7)
on R such that

u— ™ f¢ e C(R; HE(R?)).
Moreover, the solution u scatters, in the sense that there exist ux € H} such that

tkinoo Hu o eztAfw o eZtAu:I:HH; =0.

The most significant point of this result is that we are able to control the energy
increment containing the term Ve f¢, under the assumption that f merely belongs
to H: with some s < 3.

Comparing to the energy-critical results in [38, 51], for 3D, defocusing, cubic
NLS, it is easier to derive space-time estimates, since the Morawetz type estimates
are energy sub-critical. On the other hand, however, this problem seems more
difficult, in the sense that we need to reduce the order of derivative more than %
for Ve2 f¢. while the current results for energy-critical NLS lower down at most
s-order derivative, in the view of local smoothing effect.

Our method is different from the recent results on the almost sure scattering of
nonlinear Schrédinger and wave equations [12, 13, 37, 38, 51]. To establish the al-
most energy conservation of u—e™® f*. we make a high-low frequency decomposition
of the initial data, and keep track of the explicit increase of energy bound. Then, we
implement a bootstrap argument for the energy, building upon a perturbed inter-
action Morawetz estimate, various nonlinear estimates and the bilinear Strichartz
estimate.

Lastly, we remark that the lower bound of regularity % is not sharp. Here, we do
not achieve this optimality, and only give a well-presented result. However, it is of

great interest to improve the regularity’s lower bound down to %, or even %.

1.2.1. Sketch the proof of Theorem 1.4. The main ingredient of the proof is summa-
rized as follows.

e High-low frequency decomposition in the probabilistic setting.

In probabilistic setting, we only have the boundedness in the almost every sense.
Roughly speaking, in order to quantify the size of energy, we decompose the proba-
bility space €2 by setting

Qur = {w € Q [fllms + Ny M IPano [Nl + |2 £

Y5 (R) < M| fll g },

where the Y*-norm is some required space-time norm defined by (3.13) and (5.1)
below, and Ny € 2V depends only on M and || f| ;.. See (5.4) for the precise

definition of € - Then it follows from the Borel-Cantelli Lemma that
]P( UM>1 QM) — 1

According to the decomposition above, we may consider w € (EM for each M
separately. Now, we give the high-low frequency decomposition v = ¢4 P, y, f and
w = u — v. Then, for any w € {2y, there exists a constant C'(M) > 0 such that

E(w(0)) < C(M, || f]l o) Ng "™
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The application of Bourgain’s high-low decomposition method [8] to random
Cauchy problem was first made by Colliander and Oh [28] for 1D NLS on T. How-
ever, in this paper, we do not intend to carry out Bourgain’s iteration procedure.
We only make the decomposition in order for two benefits:

(1) v is supported on {[{] = No}.
(2) We can explicitly keep track of the energy increment of Nj.

e Strichartz estimates with %—derivative gain.
Note that v is not radial anymore under the Wiener randomization. However, due
to the pioneer works [37, 38|, we can prove that for the radial f,

H|V|S+%vHLng° < 00, (1-9)

which is followed by combining a “radialish” Sobolev inequality for the square func-
tion and the local smoothing estimate. Note that the estimate (1.9) gains i-order
derivative.

e Global space-time bound for the nonlinear solution.

From the perturbed interaction Morawetz estimates, we can derive the bound of

el

which is H i—critical, under the a priori hypothesis of H'-bound. The high-low fre-
quency decomposition also plays a crucial role for controlling the remainder. How-
ever, this is far from sufficient for the estimates of energy bound.

Then, an observation is that combining the above L;“,x—estimate and the integral
equation, we can further control

(32 NlIPvwlla g)),

Ne2N

which is Hz-critical space-time estimates invoking the UP-V? method, on suitable
long-time interval. Keeping in mind that the equation is H %-critical, the space-
time estimates under the same scaling play an important role throughout the whole
argument.

Furthermore, applying the above H3-critical estimates, we can update the scaling
up to H:

() N ||PNw||?Jg(L§) )1/2, for any [ € (%, 1].
Ne2N
For this purpose, we also need to use the maximal function techniques to deal with
some critical cases.

In the above argument, the use of UZ-space has two advantages: we can transfer
the derivative by duality formula, and the UZ-space allows estimates on any long-
time interval.

e Energy bound.

The main goal is to prove

<m NGO,

~Y

sup E(w(t))

teR

It suffices to prove the bootstrap inequality

sup E(w(t)) Su NO_O‘NS(PS),
tel
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for some a > 0 under the assumption sup,.; E(w(t)) Swm NOZ(l_S). Under this
bootstrap hypothesis, we can also give the precise increase of Ny for the various
global space-time estimates on I obtained in the previous step, which are very useful
for the control of energy increment. Now, the main term in the energy estimate is

} / thinhiwaW dz dt}, (1.10)
1 JR3

where “hi” and “low” represent the size of frequency.
4
We remark that the Morawetz estimate of the form [[ % dx dt plays an im-

portant role in the former energy-critical results [37, 38, 51|, but it is not sufficient
for the 3D cubic case. First, the Morawetz estimate cannot yield the global space-
time bounds, as in the previous step. That is the reason why the use of interaction
Morawetz estimate is necessary. Second, using their method, (1.10) can be controlled
by

4 1
IVl VTV ([ Woul g ar)?.

]
Then, the energy bound can be followed by the “radialish” Sobolev inequality, local
smoothing effect, and Morawetz estimate when s > % Unfortunitely, this argument
does not work here, since we are lack of Vv-estimates in the view of (1.9), when
s < % in our situation.
To overcome the difficulty, we observe that there is still some gap in the estimate

(1.10) < IVewnill oo 2 1 V0ill 2 NwionllZs

towards the desired bound Ng (=) This gives us the room to use the global space-
time estimates obtained above and the bilinear Strichartz estimate, which can fur-
ther lower down the derivative for Vuy;.

1.3. Organization of the paper. In Section 2, we give some notation and useful
results. In Section 3, we prove the almost sure space-time estimates for the linear
solution. Then, we prove the local results in Theorem 1.2 in Section 4, and prove
the global well-posedness and scattering results in Theorem 1.4 in Section 5.

2. PRELIMINARY

2.1. Notation. For any a € R, at+ := a + € for arbitrary small ¢ > 0. For any
z € C, we define Rez and Imz as the real and imaginary part of z, respectively.

Let C' > 0 denote some constant, and write C'(a) > 0 for some constant depending
on coefficient a. If f < Cg, we write f < g. If f < Cgand g < Cf, we write f ~ g.
Suppose further that C' = C'(a) depends on a, then we write f <, g and f ~, g,
respectively. If f < 275g, we denote f < g or g > f.

Moreover, we write “a.e. w € 2”7 to mean “almost every w € €17

We use f or Ff to denote the Fourier transform of f:

-~

(&) =Ff(&) = /R ¢TI () dx.
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We also define

1 .
-1 — ia-g d
Using the Fourier transform, we can define the fractional derivative |V| := F1¢|F

and |V|* := F1¢]5 F.

We next recall the unit-scale frequency decomposition in Definition 1.1. Let ¢ €
Cs°(RY) is a real-valued function, satisfying for all € € R% 0 < ¢ < 1, supp ¢ C
[—1,1]%, (=€) = ¥(&), and Y, 50 (€ — k) = 1. For any k € Z%, define () =
(£ — k). Then, we define

fro = 0pf = F (W Ff).

We also define a fattening version
Ocf = FH (0271 (€~ k)F ),

with the property [, = OO

We also need the usual inhomogeneous Littlewood-Paley decomposition for the
dyadic number. Take a cut-off function ¢ € C§°(0,00) such that ¢(r) =1if r < 1
and ¢(r) = 0if r > 2.

Then, we introduce the spatial cut-off function. Denote xo(r) = ¢(r), and x;(r) =
P(277r) for j € N*. We also define a fattening version y; := ¢(27771¢]) with the

property Xx; = X;X;-
For dyadic N € 2V, when N > 1, let ¢<n(r) = ¢(N~1r) and on(r) = den(r) —
d<ns2(r). We define the Littlewood-Paley dyadic operator

fen = Penf = F (0 (€D F(€)),
and
fv = Pnf=F (on(E])f(E))-

We also define that fony = Ponf = f — Panf, fan = Panf, fon = Pan/,
f<v = P<nf,and fun = Py

Let S(R?) be the Schwartz space, S'(R?) be the tempered distribution space, and
C5°(R?) be the space of all the smooth compact-supported functions.

Given 1 < p < oo, LP(R?) denotes the usual Lebesgue space. We define the
Sobolev space

WoPR?) = {f € S'®R) : | flpn@ay = V" fllpogray < +o0}.
We denote that H*(R?) := W*2(R%). The inhomogeneous spaces are defined by
WeP(RY) = WP N LP(RY), and H*(R?) = H* N L*(RY).

We often use the abbreviations H* = H*(R?) and LP = LP(R?). We also define (-, -)
as real L? inner product:

(f.9) = Re/f(l’)?(x) dz.

For any 1 < p < oo, define I}, = I

lewlly = lexl”

Ne2N

by its norm
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The space I} =¥ __, is defined in a similar way. In this paper, we use the following

kezd
abbrev1at10ns
)DIRSID DR RSN
N:N<N1  Ne2V:N<N, N<N1  N,N;e2V:N<N;
We then define the mixed norms: for 1 < ¢ < 0o, 1 < r < 00, and the function

u(t, z), we define

”“”LQU (RxR9) -:/RHU@a')HqL; dt,

and for the function uy(x), we define
HUNH?;JVL;(QNde) = Z HUN<')”q; :
N

The g = oo case can be defined similarly.

For any 0 < v < 1, we call that the exponent pair (¢,7) € R? is H-admissible,
if 2 +— 4 _~,2<q<00,2<r < o0, and (g, 1,d) # (2,00,2). If v =0, we say
that (q,7) is L*-admissible.

2.2. Atom space and bounded variation space. We recall the definitions of
UP and VP, and some properties used in this paper. The UP-V? method was first
introduced by Koch-Tataru [55], and we also refer the readers to [20, 44, 56, 57| for

their complete theories.

Definition 2.1. Let Z be the set ofﬁmte partitions —oo < tp < t; < ... <tlg = 0.
(1) For {ti}1—, € Z and {¢1}1—, C L2 with S r ||gi>k||p2 =1, we call the func-

tion a : R—L2 given by a = Zk:l
we define the atomic space

[t 1,tk) gbk_l a UP-atom. Furthermore,

Up = {u = Z)\JCL] : CL]' Up—atom, )\] € (C wzth Z |)\J‘ < OO}, (21)
j=1 J=1

with norm
||u||Up(R;L2) = inf { Z At u = Z Ajaj, a; UP-atom, N\ € (C}. (2.2)
P =1

(2) We define VP as the normed space of all functions v : R—L? such that

"
ol = s (3 o) — wltnlEs ) 23)
{tk}k 0€Z k=1

is finite, where we use the convention v(tx) = v(oo) = 0. V2 denotes the
closed subspace of all right-continuous V? functions with lim,_, ., v(t) = 0.
(3) We define UX(R; L?) as the adapted normed space:

UR(R; L2) == {u: ||u||U2(R;L%) = He*itAuHUQ(R;L%) < oo}

Similarly, V2(R; L2) denotes the adapted normed space

VAQ(R; Li) = {u : ||u||VA2(R;L%) = He‘imun(R;L%) < 00, e My € V;,Qc}
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In this paper, we will use restriction spaces to some interval I C R: UP(I; L?),
VP(I; L2), UR(I; L2), and VX(I; L?). See Remark 2.23 in [44] for more details.
Note that for 1 < p < ¢ < oo, the embeddings

UP(R; L) =Ly (R; L), V2(R; L3)— L (R; L),
and UP—VP—U? are continuous.
We need the following classical linear estimate and duality formula:

Lemma 2.2 ([44]). Let I be an interval such that 0 = inf I. Then, for any f € L2,
itA
He fHUi(I;Lg) f, ”fHL?cu

and for F(t,x) € L}LA(I x RY),
// g(t) dx dt‘
R3

H/ AP (s dSHUi(I;L%) -

We also need the following interpolation result to transfer from U3 into V2.

Lemma 2.3 ([44]). Let ¢ > 1, E be a Banach space and T : U{—E be a bounded,
linear operator with ||Tu|, < C, HUHUZ' In addition, assume that for some 1 < p <

q, there exists C, € (0,C,] such that the estimate ||Tul|; < C, HUHUZ holds true for
allw € UX. Then, T satisfies the estimate for u € V},

||9||V2(1 L2)71

4 C

Tu|p, < ————C, (1 +2(1 — In2+1In -2 p. .

Tl € Ty o1+ 20 = p/ 2+ b g fullg . (24)
2.3. Useful lemmas. In this subsection, we gather some useful results.
Lemma 2.4 (Schur’s test). For any a > 0, let sequences {an}, {bn} € (3o, then
we have

Nl a
> (57) anbw S llanllg, 10wl - (2.5)

N1<N
Lemma 2.5 (Hardy’s inequality). For 1 < p < d, we have that
H\x|‘1UHL5(Rd) S IVull e gy -
Lemma 2.6 (Local smoothing, [29, 43, 50]). We have that

-1 itA -1
sup R72 (|| gz o SIIVIT2S ]|

Lemma 2.7 (Strichartz estimate, [47, 57]). Let I C R. Suppose that (q,r) and

(q,7) are L2-admissible. Then,

H ZtASOHLqu (RxR4) ~ ”90”L2 ) (2.6)

and

t
i(t—s)A
H/o e TIRE(s) dSHLgL;(Rde) S HF”L?L;’(RXW)' (2.7)
Moreover, if we assume further 2 < q < oo, then
||u||L§Lg(1xR3) S ||u||Ug(1;Lg) < ||U||v§(1;Lg)- (2.8)

In this paper, we need the the following multi-scale bi-linear Strichartz estimate
for Schrodinger equation, which is a particular case of Theorem 1.2 in [18]:
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Lemma 2.8. Let 1 < ¢g,r < 2, % + % < 2, and suppose that M, N € 27 satisfy
M < N. Then for any ¢, € L2(R3),
A . M s
H[G“APNﬁb] [eiZmPMw]HLgL;(RXW) SF ||PN¢||L3 ||PM¢||L3 : (2.9)

The bilinear Strichartz estimate was first introduced by Bourgain [8], and further
extended in [27, 74], when ¢ = r = 2. The ¢, < 2 case was referred to bilinear
restriction estimates for paraboloid, first obtained by Tao [70], based on the method
developed by Wolff [77].

Using the same argument by Visan [74], and combining the result by Candy [18],
we can transfer the linear solutions in bi-linear estimate of Lemma 2.8 into general
functions:

Lemma 2.9. Let | CR,aec,1<q,r <2, %+% < 2, and suppose that M, N € 2%
satisfy M < N. Moreover, for any t € I, u(t,-) is supported on {& : || ~ N}, and
v(t,-) is supported on {& : |£| ~ M}. Then,
Api i

(2.10)
Nl

Hu

”uv”LgL;(IXRC“) S S*(IxR3) [v]| g *(IxR3) 1

where for any L?-admissible (q,7),

S*(IxR3) *— mm{Hu( )”L2 + |[(i0; + A)U”Lq L (IxR3) ”U”Ug(I;Lg(RS))}- (2.11)

2.4. Maximal function estimates and Littlewood-Paley theory. Let M be
the Hardy-Littlewood maximal operator‘

Mf(z) :=su / )| dy,
f(z) r>%)|BOr| o y)| dy

where B(0,r) = {z € R*: || <r}. M is bounded on L? for 1 < p < co. Further-
more, we have the vector-valued version of the boundedness:

[u

Lemma 2.10 (L”[*>-boundedness for maximal function, see [68]). Let 1 < p < oo
and {f;},en+ be a sequence of functions such that || fil|,. € LE. Then, we have
JENT

MUz S Wil

We also gather some useful classical results about the Littlewood-Paley projection
operator.

Lemma 2.11 (Maximal Littlewood-Paley estimates). Let 1 < p < oo and f €
LP(RY). Then, we have

Proof. Note that F~'(¢y) is a L'-renormalised, radial Schwartz function, we have
that for any z € R,

|Prf(2)| = [F~H(on) * f2)] S M(f)(@),
where M is the Hardy-Littlewood maximal operator. Then, by the L? boundedness
of M,
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The proof for Py f follows similarly. U
Lemma 2.12 (Littlewood-Paley estimates). Let 1 < p < oo and f € LE(R?). Then,
we have
I fnllize o~ L lle -
Ne2

2.5. Probabilistic theory. We recall the large deviation estimate, which holds for
the random variable sequence {Regy, Imgy} in the Definition 1.1.

Lemma 2.13 (Large deviation estimate, [16]). Let (€2, A,P) be a probability space.
Let {gn},en+ e a sequence of real-valued, independent, zero-mean random variables
with associated distributions {fin}, e+ on Q. Suppose {pin},cn+ Satisfies that there
exists ¢ > 0 such that for ally € R and n € Nt

’/e“’md,un(a:)’ < e,
R

then there exists o > 0 such that for any A > 0 and any complex-valued sequence
{en}nen+ € 12, we have

P({w: | chgn(w)’ >A}) <2exp{ —a\ chHl_%Q }.

Furthermore, there exists C' > 0 such that for any 2 < p < co and complez-valued
sequence {¢p},cn+ € 12, we have

n’

13" eaon(@)ll iy < VB lealy (2.12)
n=1

The following lemma can be proved by the method in [73], see also [37, 38].

Lemma 2.14. Let F' be a real-valued measurable function on a probability space
(Q, A, P). Suppose that there exists Co > 0, K > 0 and py = 1 such that for any
p = po, we have

120y < v/PCOK.

Then, there exist ¢ > 0 and Cy > 0, depending on Cy and py but independent of K,
such that for any A\ > 0,

P{weQ:|Fw)] >A}) < Chre~ VK™
Particularly, we have

P({weQ:|F(w)] <oo}) =1.

3. ALMOST SURE STRICHARTZ ESTIMATES

3.1. Non-radial data.

Lemma 3.1. Let s € R and f € H;. Suppose that the randomization f“ is defined
in Definition 1.1. Then, we have the following estimates:
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(1) For any 2 < q,r < oo with % +32 <2, and for any p > max{q,r},
s itA w
H<v> € PNf HLZZ?\,L;]LQ(QXQNXRXR?’) 5 \/1_) ”f| Hg - (31)
(2) For any p > 2,
s it w
H<V> "l f HLgl?\,LQX’L%(QXQNXRXR?’) S \/Z_) HfHHi ’ <32)
or any 2 < q < 00, there exists pg = 2 such that for any p = po,
3) F 2 < th St > 2 h that >
s— _itA w
H(V> " Pyf HLZl?VLngO(QXQNXRXRC*) S VP 1/ Hz - (3:3)
(4) For any 2 < r < oo, there exists py = 2 such that for any p = po,
s— _itA w
H<V> € PNf HLf,l?VL;’OLg(QXQNXRXRC“) S \/Z_) HfHHgS; ’ <34)

Remark 3.2. We remark that for example, by Minkowski’s inequality and Lemma
2.12, (3.1) also gives that

(VY€ 2] 1 pary @xrxms) S VP IS

Proof. In the proof of this lemma, we restrict the variables on w € Q, N € 2, t € R,
r € R? and k € Z3.
We first prove (3.1). By Minkowski’s inequality and Lemma 2.13, we have

VY e Pl g gy, SICVYE P sy
SV H<V>s€itADkPNle§ngL;lg (3.5)
SvVp H<V>SeimPNDkaz§vl§Lng :

Now, let 2 < ry < r such that (q,70) is L2-admissible. For any k € Z2, by the
support property of v, and Bernstein’s inequality, we have

[ <V>SeitAPN|:|k;fHL§L; <l (V>Se“APNDkaLgL;0 - (3.6)
Then, by (3.5), (3.6), Lemma 2.7, and orthogonality, we have
H<v>seitAPwaHL£l§VL§L; 5\/]_? H<v>86itAPNDkal%V1§L§L;0
SVP IV PROefllz 22 S VP I Nl -

This gives (3.1).
Next, we prove (3.2). By Plancherel’s identity, we have

| <V>56itAPwaHLgl§ngoLg S IV Pyl e S TV Nl p e - (3.7)
Then, by Minkowski’s inequality and Lemma 2.13,
VY e SICVY Nl 2
SVP IV Bz S VeI lgs -
Then, (3.7) and (3.8) imply (3.2).

3
We then prove (3.3). Let 0 < ¢ < 1. Using the Sobolev’s embedding W56’5<—>L;°
in x, we have

H <V>sf2€eitAPwa HLZI?VLngo g H <V>s€itAPwa H

(3.8)

(3.9)

3 .
L3 LILE
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Let pg = max {q, 3} and 2 < rp < 2 such that (g, o) is L2-admissible. Then, similar
as above, by Minkowski’s, Bernstein’s inequalities, Lemmas 2.7, and 2.13, for any
P = po, we have

(V) e P Slvyet b |

3
L2, LiLg ™

S\/Z_?H V seitAPNDka

3
13 LILE LY

3
12, LILE 12

VP (V) e POkt s (3.10)

(V)

(V) 12 2LILE
SvVp H<V>S€ZtAPNDkal§Vl§L§L;0
<PV POl s S v

By (3.9) and (3.10), we have that (3.3) holds.
Finally, we prove (3.4). We only consider the r = oo case. In fact, when r < oo,
we can prove it using interpolation between (3.2) and the r = oo case. Let 0 <

s
x

1
e < 1. Using Minkowski’s inequality, the Sobolev’s embedding ng’g —Lg° in t and
3
Wje’f‘;)LgO in x, we have

H <v>s—666itAPwa H

N

e SIHV)TEEEP JMHL”F 1L

SV =@ Pt o

S [[(vyet | S
(V)

LPlQ L%L%
NHT Ht

N

TPyl 4 s,
LB LELE

Let py = % and 2 < ry < % such that (é,ro) is L2-admissible. Then, similar as

above, for any p > pg, we have

[(v)e S | slvr

133
LI LELE
< H s JitA ’
N\/Z_? V € PNDk‘f 12 L%L%IQ
Nt ZT g

(V)
SVD (V)™ PyOf|
(V)

itAPwa H

g

1 3
13, LELELE

zgvszt%LE (3.12)
SRV e S PO ],  r
JRLE L
SVP IV PrOxfllizie e S VP Il
By (3.11) and (3.12), we have that (3.4) holds. O

Next, we gather all the space-time norms that will be used below. Let é <s< i

and € > 0 be absolutely small. Define the Y*(I) space by its norm
vey =1V Ion]|

[\

”U 2, L4L2 (2Nx I xR3) + H‘VPUNHP LY ,(2NXIxR3)

+ H|V| UNHIQ 2 LELLB (2N X I xR3) + H N||l2 L, Z L10(2Nx I xR3)

ol zapizaxre) + 10z oo xrey + 10l 2aze (rxrey + 101 3o rxme)

+ ||,U|| 1 ELI 36 (IXRS) + ||v||L;g54+_Ti‘s)L?f__T3‘:)(lXR3) ’

(3.13)



18 JIA SHEN, AVY SOFFER, AND YIFEI WU

and the Z-norm by

H'U| zs(I) = H<v>87PNUHl%VL?oLgo(QNX[XRB) + ”<V>SPNU”1?\,L§°L%(2N><IXR3) : (314)

Then, by Lemmas 3.1 and 2.14, we have

Corollary 3.3. Let % <s < % and f € H?. Then, there exist constants C,c > 0
such that for any \,

P({w e Q: Heimf”‘

et

Zo@®) > A}) < Cexp{ —cN|f] ;{g(Rg) }.

Ys(R)
Moreover,

e 4

Y5(R) + HeitAfw} 7Z5(R) < +00, a.e. w € .

3.2. Radial data. Here, we derive a super-critical estimate for the randomized
radial data that can acquire %—derivative. Such class of estimates was first proved
by Dodson, Lithrmann, and Mendelson [38] in 4D case, based on their “radialish”
Sobolev’s inequality [37]. We adapt their method to the 3D case:

Proposition 3.4. Let 4 < r < 00, so € R. Suppose that f € H:(R3) is radial.
Then for any s < so + %, there exist constants C,c > 0 such that for any A > 0,

P{we: H |v|8€itAwaL§L;(RxR3) >A}) < Cexp{—c\ HfHI}Eo(Rs) b (3.15)

Moreover,

H |V\Seimf“’HL?L;(RxRS) <00, a.e weEf (3.16)

To prove Proposition 3.4, we need the following 3D version of radial Sobolev
estimate for the square function.

Lemma 3.5. Suppose that the function f is radial and that 2 < r < oo. Then, for
any € > 0, there exists C. > 0 such that,

_2
el 1 fils |

LQ(RS) < CE ||f|

e ) - (3.17)

Proof. 1t suffices to prove the r = oo case, since the general case can be obtained
by interpolation with

H ka”lﬁ HL%(R?’) ~ ||f||Lg(R3)-

~ ~

Since f is radial, we can write f(x) = f(|z|). Assume without loss of generality
that = = (0,0, |z|). Then, by integration-by-parts and the spherical coordinate

&(p,0,a) = (psinf cosa, psinfsina, pcosh),
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we have

Ji =// A N

1 oo p2m pm ' .
:—m/o /0 /0 U (E(p, 0, ) Dy (e"x‘pwse) (p)pdfdadp
oo 2w pm =N
:L/ / / ag(wk(g(p,e,a)))ei|$|pcosef(p)pd@dadp (3.18a)

il]

le\/ / E(p.m,a))e ™ f(p)pdadp (3.18b)

Zm / Ur(E(p,0, )™ F(p)p dadp. (3.180)
Denote that

k = (k1, ko, k3) = (|k|sin Oy cos ay, |k| sin 0y, sin a, |k| cos by.).

By the support of ¥, we have that p is supported on the set {p: |p — |k|| < 1}, € is
supported on {0 20— 0y < ﬁ}, and « is supported on {a Do —ag] S m
Furthermore, we also have

Therefore, we have

11 1
1 L<S— 0’
I3-18)] STt <|k:|sin0 Hf 2 PR
1 (3.19)
N|ZL‘| <|k:|sm€ Hf H \p \k:H<1
Similarly, we also have
1 1 ~
3.18b 318¢)| S ———F7— . :
|( )| + |( C)| ~ |.T‘ <|l{?| 51n9k> H (p)pHL\pr\kugl (3 20)
Then, by (3.19) and (3.20),
1 ~ 2
2 —
|l’| ]§3|fk| Z <|k’|Sln9k>2Hf(p)pHL%p—\kugl
1 ~ 2
~ a1 (P)p|| 2
% x, el
k1 |<N,[ka| <N
S ZlnNHf PHLz e S ||f| ?{;(R?’)'
NeN =
This finishes the proof of (3.17). O

We also need the following mismatch estimates concerning the commutator of x;
and 0. The same result was already proved in [38] for 4D, and their argument can
be easily extended to general dimensions. Therefore, we omit the details of proof.
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Lemma 3.6 (Mismatch estimates). Let 2 < r < o0, 5,1 = 0 and k,m € Z3. Suppose
that 1 > j+5 and |k — m| > 100. Then for any integer M > 0, we have
||XjDle||L§(R3)%L;(R3) < CMQ_Mla (3.21)
and
18kXe 0l 2R3y 1 m2) < Cr2 Mk —m[ . (3.22)
Now, we give the proof of Proposition 3.4 using Lemmas 3.5 and 3.6.

Proof of Proposition 3.4. Take some € > 0 that will be defined later. We first con-
sider the r < oo case. Then, for any p > r, by Lemma 2.13,

H|V|seitAwaL£L$L; = Z N HeitAPwaHL?LZLE

Ne2N

SVP Z N® HeitADkPNfHLgL;li

Ne2N
SVP Z Z N* HXjDkX<j+5€itAPNfHL%L;li (3.23a)
Ne2l j>0
VY DN HXJDkX>j+5eitAprHLgL;lg - (3:23b)
Ne2N j=>0

We first bound the term (3.23a). When j = 0, by Lemmas 3.5 and 2.6,
Z N° HXODkX@eitAPNfHL%Lgli N Z Ns’ D’*CPNJ\’XQ’JeimPNfHLQLrl?

tha k|~ N

Ne2N NeaN
S Z Ne|| |V|EP~NX<5€”APNfHL§x
NeaN ’
g Z Nste X<5eitAPNfHL%I
Ne2N 7
ste—12
< Z Nt ||PNf||Lg < ||f||Hs+2e—$ :
NeaN ’
(3.24)
For j > 1, also by Lemmas 3.5 and 2.6,
Z Z N* HXJDkX@HeitAPNfHL%L;I%
Ne2N j>1
—(1—2)4 —2 i
S Z ZNSQ G2l OpPanx<jase™ Py f L2002
Ne2N j=1 t -ty
so—(1—2); € itA
SO D N2 V) Panegiae Puf | (3.25)
NeaN j>1 ’
—(1—2); i
S DD N s P
Ne2N j>1 ’
SO D NG Pyl SIFN vaey -
NeaN j=1 ¢

Then, combining (3.24) and (3.25), we have
(3:230) S VFIfI| vay (3.26)
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Next, we consider (3.23b). We decompose that
(323b) SJ\/]_j Z Z N*® “XjDkX>j+5€itAPNfHL?L;li

Ne2N j=0

VP Z Z Z N* HXJ'D’*‘X&WRAPNJCHL%L;Z%

Ne2N j=20 I>j+5

XN Y OO Te B Pf |y (3:272)

Ne2N j=0 I>j+5 meZ3:lm—k|<100
B ~ itA
+/P E E E N H E X;Urxalmxie PNfHL?L;li'
Ne2aN §20 I>5+5 meZ3:|m—k|>100
(3.27b)

Now, we take some M > 1. For (3.27a), by Minkowski’s inequality, Lemmas 3.6,
and 2.6,

(3.27a) SV/p Z Z Z Ne|| Z XjDleDmgleitAPNf}}L?Lgl%

Ne2N j=0 I>j+5 mEZ3:|m—k|<100

SVP YLD DN > |G Oexa O X!

Ne2N 520 1>j+45 meZ3:|m—k|<100

SVDID 3D SR TR D SR SR LNy N

Ne2N j=0 I>j+5 meZ3:im—k|<100

VP Z Z Z N2~ HmkyleimPNleiL?’x

Ne2N j20 1>5+5

B Y Y N R,

Ne2N 720 I>5+5

IS Ns—29-(M=3)l I1Pnfllpz < foH

Ne2N 720 I>5+5

(3.28)
Similarly by Lemmas 3.6, 2.6, and Young’s inequality in k,
(3.27b) =\/p Z Z Z N*|| Z XjDleDmféz@imPNfHLgL;li

Ne2N j>0 I>5+5 meZ3:|m—k|>100

SVP Z Z Z N Z HDk‘XlelimjzleitAPNfHL?Lg 2
Ne2N j20 I>5+5 meZ3:|m—k|>100

SVP o3 2 Nty e m Y OnRe Py S s
NeaN j=0 I>j+5 mEZB:|m—k|>100 ’

Svp D0 >0 N2l Bnxe Pl e

Ne2N 720 I>5+5

PY Y T N R,

Ne2N j=20 I>j+5

<D Z Z Z N2~ (M=)l PN fllrz < \/_||f|| e

Ne2N j=20 I>j+5

(3.29)
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Therefore, we have

(3.23b) S VP Il/]

e (3.30)
By (3.26) and (3.30),
H|V|seitAwaL£L$L; = Z N* HeitAPwaHL?LZLE

Ne2N

<(3:230) + (3.230) S VB IfI| . year

Let € < 1(so — s+ 3), then we have (3.15) and (3.16) hold for r < oco.

When r = 0o, using the similar argument above with r = g,

D S e KV N S 1 S
Nea t v Lw T
Let € < 3(so — s+ 3), then we finish the proof of the r = oo case. O

4. LOCAL WELL-POSEDNESS

4.1. Reduction to the deterministic problem. Suppose that © = v + w with
Uy = Vo + wo, v = ey, and w satisfying

i0yw + Aw = |ul*u,
(4.1)
w(0, x) = wp(x).
Define the working space
. }

Ne2N
1
We first have a local result for H¢-data:

1
Proposition 4.1. Let % <s<1,veY*NZ(R), and wy € HE. Then, there exists
some T" > 0 depending on s, ||w0||H%, and vy« mynzs ) such that there uniquely

exists a solution w of (1.7) on [O,T]Iwith

1
2

we C(0,T): HZ) n X2(]0,T)).

1
Next, we turn to the improved local result for H; "_data. Define

) 1
||w||X1(I) = ( Z N? ||wN||Ui(I;L§))2'

Ne2N
1
Then our local result for H;,?Jr-data is

Proposition 4.2. Let % < s< %, v e Y NZ5R), and wy € HL. Then, there erists
some T' > 0 depending on s, |[woll g1, and [|v|ly.g)nzs @) Such that there uniquely
exists a solution w of (1.7) on [0,T] with

we O([0,7); H) n X' ([0,1)).
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In fact, the s = 1 case is trivial. However, we need it for the global result in

2
Proposition 5.1.

Now, we give the proof of Theorem 1.2, assuming that Propositions 4.1 and 4.2
hold.

Proof of Theorem 1.2. Let
u(t) = €5 £ 4 w(h),

then w satisfies the equation (4.1) with

= f¥ wo =0, and v = €2 f¥.

We first prove Theorem 1.2(a), using the result in Proposition 4.1. By Corollary
3.3, we have for almost every w € €2,

[0]lys @) + V] 2oy < o0

Since wy = 0, we can apply Proposition 4.1 to obtain the existence and uniqueness
1

of w e C([0,T); H?) for almost every w € .
The proof of Theorem 1.2 (2) by Proposition 4.2 is similar as above, so we omit
the details. 0J

4.2. Local well-posedness. In this section, we prove Proposition 4.1. We make
the choices of some parameters and define the auxiliary working space:

(1) Let Cy > 0 be the constant such that
< Cp ||wol] 3
Hg

le S ol s

X3 (R)

(2) Let
R:= maX{C’OHwOH \ ,1}.
HE

(3) Let ¢ and € be some constants such that 0 < §,e < 1.
(4) Define the following space:

~1 1
X2(I) :HW|3wNHz§VL§Lg(2Nx1xR3 + HW‘G NHP L4L2 (2N X I xR3)

1

+ H‘v|6wNHl?vL§’Lg(2N><I><R3 Hlwllsrgmrn + 1Wlgreams)
1

+ H<V>2’LUHL2L5 IXRS + HwHLl ELI SE(IXRS)

+ HU)H 4(4 35) 2(4—3¢) .
Ly 173 (IxR3)

(5) Let T'>0 satlsfy the smallness conditions

itA <5

e wol| 3 o7y + 10 lvsomy

and

6T ||v] < 6.

9 1
zo@) T TR 0] 50 g
We remark that

X2([0,T))—Xz([0,T7),
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and T depends on s, 6, 2, [olly.qey, 10l7sy, and ol 3. Let the working space
be defined by ’

1
Bra = {w € CO0,TH HE) 1wl gy o) < 2R, Tl gy o) < 20}

Define

t
Do (W) = P wy — z/ e =R (Ju)?u) ds.
0

Now, we are going to prove @, , is a contraction mapping on Bpsr, which is
reduced to prove the following nonlinear estimate

t
H/Ov ez(t—S)A(|u|2u) dSHX%([QTD = 0

In fact, we can use similar argument to prove

1
||w1 wo ||

H‘bwo,v(wl) — Qg0 (w2) H

boan S X2 ([0,1])

and then finish the proof of contraction mapping.
Therefore, we reduce the proof of Proposition 4.1 to the following lemma:

Lemma 4.3. Let 1 <s< i 5, and 0, €, Cy, R, T be defined as above. Assume that
the following estzmates hold

||,U| YS([O,TD < ||w||X2 [0 T] < R a’nd ||w||X2 [0 T])
Then, we have the nonlinear estimate
H/ i(t—s)A (Jul?w) dSHX2 (071 < 6. (4.3)

Proof. In the following, we shall slightly abuse notation and write u for both itself
and its complex conjugate, and all the space-time norms are taken over [0, 7] x R3
without writing its integral region. First, to prove (4.3), by Lemma 2.2, Hélder’s
inequality, and embedding Vi< L° L%, we are reduced to consider

t 1
H/ ei(t_s)A(|u|2u) dsHX% Z N sup }/ (Px(ul?u), ds’ )5
0

e llallyp=1

1
SO N sw [|Pa(fulPu)lf} 0 gl )? (4)
NeoN ||g||V2—

SHN%PN (Ju|?u

Hl?ngLg'

Noting that

[Py(ufu)| S| Y Py(umuy,),

Ni:N1 >N
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by Cauchy-Schwarz’s inequality in N; and Lemma 2.12,

V2Pl e SIS0

Ni:N1 >N Nf

N2
22 N; Py (uyu y) [Pairy

: 45
SN P iy g, 12 4
1
SHNfuNluiNlHLngz?Vl ST+
where we denote
[:= HN wN1u<N1HL1L212 yand 1 := HNQUN1U<N1HL1L212 :

First, we deal with the term I, where the %—order derivative acts on w. This is the
simpler case, since w allows estimates with the derivative of order % By frequency
support property,

1
2
I S|[NEwn v ten, || 1 p0p2 (4.6a)
t~xt Ny

1
3 2
+ HN1 leu<<N1HL%L%V . (4.6b)
1

Now, we estimate (4.6a). By Holder’s inequality and Lemma 2.4, it holds that

(4.6a) Z

C.o\»—l

1
lwn [l 2oy NY IIU~N1||L§L§ lueny L

Ny
1 4.7
ST om0 Bl s Nl o
Sllwll gy (lwll gy + llolly)?
For (4.6b), by Holder’s inequality, Lemmas 2.11 and 2.12,
1 2
(4.6b) SHwaNlHLngl?V H SUP |u<<N1|HL;1Lg (48)
4.8
;
SIKVY2 0] papg Ml zszs S Mlwll g3 (lwll g3 + llolly)*
Then, by (4.7) and (4.8), we have
I'< (4.6a) + (4.6b) < [lwl ¢y (lwll gy + llolly.)? < 6% (4.9)

Next, we consider the term I, where the §—order derivative acts on v. However,
the function v can only have %-order derivative. Therefore, we need to transfer
the additional fractional order derivative to other functions. We make a frequency
decomposition:

I[N oxy 2y | (4.102)

LIL2,
1
2
_'_ HNl UN1U<<N1U/<N1 HLILQlQ (410b)
tHx "Ny

1
+ HN1QUN1U}<<N1U<N1HL1L212 . (4.10c)
t~x Ny



26 JIA SHEN, AVY SOFFER, AND YIFEI WU

By Lemma 2.12, Holder’s inequality, and embedding 13,13,

1 2
(4.10a) Z N6 ||'UN1||L3L6 ( Ny ||U~N1||L§Lg)
N1€2N

§H|V|%UN1H12 L3L6H

S lollys (Hng% + Hvllys)2 <0

1

(4.11)

U~ Ny Hﬂ (LPLS

Next, we consider (4.10b) and (4.10c). The proof is more difficult, where we use
the bilinear Strichartz estimate to transfer derivative. However, this approach will
create the term |[|v||,., which cannot get smallness by letting the interval small.
Therefore, we also need some T to control the Z*-norm.

Now, we consider the term (4.10b). By Holder’s inequality,

(4 10b Z N1 ”UN1UN2u<N1”L1L2

N2<<N1
N1 IIUvaNQH L ||vN1||Loo ||vN2||Loo ||U<N1|| s -
Z —€ +35 T—3¢
T N Ly L La
(4.12)
By Lemma 2.9, for Ny < Ny,
1 2
-1 -2 2
v, e, S N3EN 2 (| Pyyvoll gz 1P, voll 2 S Ny 2 Mol - (4.13)
t x
Note that
ol 2., 5 % gy + ol S5 (11
By (4.12), (4.13), (4.14), and Holder’s inequality,
Jr N N
(4.10b) S ) N1 ||levN2||3 . ||UN1||L°°€||UN2||L°°€||u<N1|| i S
EL e+3e Ll 3e
N2<<N1 T t
+2€ + E— 5 = — —75
Y NS loll 3™ Ny 5|V )e EleHLof lows I 255, Ilull e e
No <Ny
§+ _1 1_
ST ll5E S N ol S 6T (ol
No< N1 ( )
4.15
Finally, we consider the term (4.10c). By Hélder’s inequality,
1
(4.100) S Y N7 llomww,ven, |12
Nz (4.16)
<) N HUleNQH 4 HUN1HL;€HwN2HLq1Ln luen o pr s
"~ N LPLZ

where (qp,71) is defined by

2 — 3¢ 4 1 1 -3¢ 4 1
=(z—¢)—, an =
4 3 0 6
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Noting that ¢, = gg:gg = §+ and r; = Q(f‘_—_;f) = 8+, we have % — ;—1 — % = %+,
and there exists ¢u = 4(54;316) such that
2 3
—+—=1
a2 T
Then, we have
sl pr S llwllpee g+ 0ll g g S 6. (4.17)

By Lemma 2.9, for Ny < Ny,

11
lomwnell g, SN2 Ny 2 (| Prvoll 2 lwws llug
= (4.18)
_2
SNy ? ol

< NTOR |||,

We remark that for (4.18), if we do not invoke the UP-V? method, by Lemma 2.9,
it reduces to deal with the term

1
NP ([1Pvywoll 2 + [| P (ul*u) || 11 )-

Thus, the argument would be more complex, especially when N11 /2 acts on [v]v.

By (4.16), (4.17), (4.18), and Hélder’s inequality in ¢,

(4100) S ) Ng HUleNzH HleH;;f HwNQHLq_an [y ll o g
N2<<N1
1_2.
<TG aw) Yy N R Joll3: ||vN1|| ||w||Lq2Ln [ll oo 2
N2<Ny
2 1.2 1_
STw6s R ol Y Ny = IV 0|3 S Too R o] 5.
Ny< Ny o
(4.19)
Therefore, by (4.11), (4.15), and (4.19),
11 < (4.10a) + (4.10b) + (4.10¢) < 6% + 6T ||v]|%. + T R* ||v]|, (4.20)

Then, combining (4.5), (4.9), and (4.20), we have
t
H/ e =92 (Ju|2u) dsH 1 I+ 11
0 LEHZNX2
<C (554 8T Joll3. + TH R o).
<06 < 0.
This completes the proof of the lemma. 0

4.3. Improved local theory. In this section, we prove Proposition 4.2. Recall
that

9 1
Hwﬂxl(l) - ( Z N2 ”wNHUZ(I;L%))Q'
Ne2N

We write UX = UA(I; L?) and VZ = VZ(I; L?) for short. We make the choices of
some parameters:
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(1) Let Cy > 0 be the constant such that

[e2 < Co [[wol| 1 -

wOHXl(R)

(2) Let 0 < & < 145(s — 1) and

R := maX{CO l[woll 771 » 1} :

(3) Let T' > 0 satisfy the smallness conditions:

[v] ye(o)) S R,
1 1 1 1 1
TR>< —, CT%R* < —, CTWw R? < 4.21
CT2R T CT3% R 10 C 100R 10 ( )

1

1
CT? [|v] Z5@®) S I_OR'

R and CTT0 ||v||}

1 1
2 L
Z5@®) S b% CTs ||U| Z5@®) S 10

Note that 7 depends on s, [[wo] s, [[olly.(sy. and [[v]l . g)- Let the working space
be defined by

By = {w e C(0,TH Y : [0l yagom) < 2R}
Define

t
D 0(w) = ™ Pwy — z/ e =92 (Ju|?u) ds.
0

Similar as in the former section, in order to get that &, , is a contraction mapping
on Bpp, it suffices to prove:

Lemma 4.4. Let 1 <s<i0<ex< 100( l), and Cy, R be defined as above.
Assume that 0 < T < 1 satisfies the smallness condition (4.21), and let

Hw”Xl([O,T}) S R

Then, we have the nonlinear estimate:

t
H/o e A (|u)u) dSHXl([o,T]) < R. (4.22)

Proof. Again, we do not distinguish v and w, and all the space-time norms are
restricted on [0, 7] x R3. By Lemma 2.2 and frequency decomposition, we have

| o) sl

Z N? sup }/ (Pn(Jul?u), ds} )%

NeaN ||9||V2 1

T -
Z N? sup }/ /PN(ZuNluiNl)g dx ds’ )2ST+11
Ne2N ||g||v2 =1 0 Ny

where

T
Z N? sup / /PN<Z wn,uZ y, )g da d3’2)%’
0 Ny

NeoN ”g”v2 1
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and

T 1
II:=(), N* sup }/0 /PN(Z”NIUZ%NJQ de ds|")*.
N1

NeaN ”g”ngl

We first consider the term [, where the first order derivative acts on w. By
Holder’s inequality and embedding Vi< L* L2, we have

Ig( Z N? sup HPN( Z leuiNl)Hing ”gHi;’OL§)§

NeaN llglly2 =1 Ni:N<N;

S(YON? swp |[Pu( Y leuiNl)Hi%Lg ||9||%/A2)% (4.23)

Ne2N ||g||V2=1 N1:N<N;

SO NPV Y w5 )

NEZN N1:N§N1

Then, by (4.23), Minkowski’s inequality, H6lder’s inequality in N7, and Lemma 2.12,

FSOY NPV YD wnu)0)°

Ne2N N1:N<N,
N
SH Z ENlPN(leuiNI)HL%L%I?\, (4.24)
N1:N<N,

2 2
SJHNlPN(leugNl)HL%L%l?Vl?Vl S HleNlugNlHL%l?vlL%.

By (4.24), Holder’s inequality, and Lemma 2.11,

I SHleNluiNIHng% L2
1
2
SN g llueni Iz Nl g,
2
S H<V>U}HL§L3 HUHL;iLg (4.25)

1 2
ST ||<V>w||L§Lg ||u||L;>°Lg

1 2
ST [lwllxs (oll 7 + lwll )™
Therefore, by (4.25) and the choice of T, we have

1< CTH wly ([0l + lwlly )’ < CTER(IIS. + B < SR (4.26)

DO | —

We next consider the term [, where the first order derivative acts fully on v.

However, v can only have estimates with the derivative of order é, thus there is a
gap of %-order derivative. Note that the bilinear Strichartz estimate can only lower
down %—order derivative. Therefore, this is the main case where we need to exploit
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the duality structure. To this end, we make a frequency decomposition:

T 1
ITS() N sup \/ /PN(ZUNluiNl)g da ds|*)? (4.27a)
0

NeoN ||9||V2 1
1
+ Z N? sup }/ /PN ZUN1U<<N1 Uy, )g dx ds’ )2 (4.27b)
NeoN |QIIV2 1
Z N? sup }/ /PN(Z”N1“2<<N1)9 dz ds‘2)§. (4.27¢)
Ne2N ||g||v2 =1 0 Ny

We first estimate the (4.27a). Using the same method as in (4.23) and (4.24),

T
(4.272) S( Y N? sup \/ /PN<ZUN1U2~N1>Q dz ds[*)?
0

1
NeaN ||9||V2 N
(4.28)
S E: HvaNluvaHL,}Lg'
N1€2N

Then, by (4.28), Lemma 2.12, Hélder’s inequality in Ny, and I3, <13, we have

(4.27a) Z HvaNl ~N1HL1L2

Npe2N
SJT% V5w V|5u. Vsu.
S Wl Wl Bl

STV ow g g N1V 150m g,
<T3 ollye (Jollye + wll ) S T2RP.

Next, we consider (4.27b). Noting that (9, 23) is L2-admissible, similar as above,
by Holder’s inequality and Lemma 2.7,

T 1
(4.27b) Z N? sup ‘/ /PN<ZUN1U<<N1uNN1)g dz ds‘z)5
0 N

Ne2N ||g||v2 =1
<S(S° N2||Py( o ttemtion)| 2 5)? 4.30
N NN E~NL || 15 13T (4.30)
x
Nean Ni:N<Ny !
S DRI
Ny b

Note that by the bilinear Strichartz estimate in Lemma 2.9, for Ny < Ny,

1 1
HVUMUNQHL?L% SN NY ([ Pryvoll gz (11Pw;voll s + ”PNQwHUZ)
1
(H|V|%PNQUOHL3 + Ny ||PN2w||UZ) (4.31)
1
SNE vl s (vl 5o + NJwll 1)

By Holder’s inequality,

1

1 _1
lunsll s S T2 luns | papas S T12Ny ° (Mvlly + llwllx ). (4.32)



3D CUBIC NLS 31

Combining (4.30), (4.31), (4.32), and Holder’s inequality,

(4 27b < Z Nl H'UNlu<<N1 U~ Ny H

N1

LEL

2
SJ Z vaf\huNsz $ o HVUN1HL2LOO HuN2HL3L18 ”uNNlH

LGL2
No<< Ny t T
< Z NQNQ H|V|3 UNIHLQLOO ||uN2||L3L18 ||UNN1||L6L2
No Ny
2 2
Nollze (ol e + ]l ) ? (4.33)
S U 1 1
<SS ON N ollge T (ol + el )37 umil 3
N2<<N1

2
Zs + ||w||X1 ) ’

b (llo
LR (|

7+ (v

l
vs

4

ye +llwllx )2 (llollze + llwllx)
o+ R) < T (o], + BY).

2
3

v

<T36 ||’U|

<T% RS o]

Finally, we consider the main term (4.27c). By frequency support property,

T
(4.27¢) Z N? sup }/0 /PN(Z'UNIUiNl)g dz ds}Q)%
N1

Ne2N ||g||v2 =1

T
< Z N sup /0 /ZUN1“2<<N19N dx ds‘
Ny

NeaN ||g||v2 1

T
< Z N sup /0 /’UNU2<<N9N dz ds’

Neow  llallyz=1

T
Z N sup //UNgNUNIUN2 d:pds‘.
0

N1<N2<<N lglly2 =1

(4.34)

To estimate this, we need to use the bilinear Strichartz estimate for both gyuy, and
Vunun,. Now, we give the estimate for gyun,, where we also need to pass gy into
V2 by interpolation. By Lemma 2.9, for N} < N,

2
3

N
< 1

2
§€

lanllyz (I1Pvvoll 2 + llww [z ), (4.35)

and by Holder’s inequality and Lemma 2.7,

, Sllgwll g e

v,z

2+ L 7+85 L
T

(4.36)

2
3¢

SV HgNH (HszlvoHLg +llww llyz )-

O’ﬂl»—‘
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€

Then, noting that & < 145(s — 1), by (4.35), (4.36), and Lemma 2.3, for N; < N,
2
3

win

N¢© Nj
lgnun,|| = 5—5 HQNHW (HPNIUOHLQ + lwn, |2 )
+ 2 N 2 2

1
1 5

N2 N 100€(N3+ ) ||PN11)0||L2 + N3Jr © [|w Nl”Ui) (4.37)

Né 100¢

S—o—(vllze + llwllx ).
Nz27¢

Next, we give the estimate for Vuyun,. Using Lemma 2.9 again, for Ny < N, we
also have

1
[Vonun,|| L SN N2 [[Pyvollpa (1Pwovoll e + lwnllos )
-1 1 £420 1420
SNy NSO o] 4o (N5 [ Prgoll e + N5 lwng s )
-1 1
~*2 ' A Zs Xt )
SNy PN ol 5o ([J0ll g + llwllx )
(4.38)

Then, we are ready to bound (4.27c). By (4.37), (4.38), and Holder’s inequality,

T
N/ /gNUNUN1UN2 dx ds

1 2 2
Slovensll e 19ovumlly o IVently ol
1-100e
N} (4.39)
< 1 3 L_100e\ 3 +z—: H }
ST (N, *N& )Ns M i

1
zs T ||w||X1 )3

(vl

2
zs T ||w||xl) .

1
zo T lwllx ) vllZ

2+ (Ilv]

_2 1 2
Ny * H|v|3uN2Hz;>°L§( 0]

—100e

1 1 2
55 N3 —3 A7—20e 3
<T'10 N; Ny SN2 ||| 2 v

Note that

Z NS 1006 3N 20e < 1

N1<N2<N

then by (4.34) and (4.39),

(4.27¢) Z N sup //ngNuNluN2 dxds}

N1<N2<<N ||g||v2 =1

<o ST NFTNIN ol follBe (ol 4 el ) (440)
N1<No&KN
ST RS [[oll. ([[vll + R)” S T (||o]5. + R?).
Therefore, by (4.29), (4.33), and (4.40),
1T <(4.27a) + (4.27b) + (4.27c)
1 (4.41)

<CT?R® 4+ CTs (||of} 7+ R’) < ZR.

S+ R+ CTw0 (||o]|;

[\]
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Then, by (4.26) and (4.41), we have

I [ ety asly < 1+ 10 < R

This proves (4.22). O

5. GLOBAL WELL-POSEDNESS AND SCATTERING

5.1. Reduction to the deterministic problem. Let }78([) be defined by its norm
(5.1)

1_
HUH?s(I) = ||v| ys(n + HW‘HQ UNHl?VL%LgO(QNXIXRC*)'

Recall that
HUHZS(I) = H<v>87PN,UHl?ngoLgo(QNX[XRS) + H<V>SPNUHl?VL?°L?C(2N><I><R3) '

Proposition 5.1. Let 2 < s < 5 and A > 0. Then, there exists Ny = No(A) > 1
such that the following properties hold. Let ug € HE, vy satisfy that supp vy C
{€eR3:|¢] > 1No}, and wo = ug — vo. Moreover, let v = e™®vy and w = u — v.

Suppose that v € Yen Z5(R), wo € H* such that
e+ vl < A, and E(wg) < AN,

Then, there exists a solution u of (1.7) on R with w € C(R; H!). Furthermore,
there exists uy € H! such that

[[uo] YsnZzs(R)

tEimoo |u(t) — v(t) — eitAuiHH% = 0.

We will give the proof of Proposition 5.1 in Sections 5.2, 5.3, and 5.4. Now we
prove Theorem 1.4 assuming that Proposition 5.1 holds.

Proof of Theorem 1.4. Let Ny € 2V to be defined later, and make a high-low fre-
quency decomposition for the initial data

u(t) = " Poyy f* + w(t),
then w satisfies the equation (4.1) with
ug = ¥, vo = Pon, f*, wo = Py, f, and v = ™ Py, f*.

Since f is radial, by Corollary 3.3, boundedness of the operator P- y,, Proposition
3.4, and Lemma 2.14, we have

P{weQ: [woll s + 10llpenze gy > A S et b (5.2)

For any p > 2, we have

HU}OHLPHI <H ng‘ VP<NokaL2LP

keZ3

SVPIV P full e,
SVPIVPno fllz S PNy I |l -
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For any p > 4, we also have
lwollpp s S VP IORParo fll sz S VPl 2 -

Note that Ny only depends on M and || f|| .. Then, by Lemma 2.14,

1 —ON||f| 2
P({w € Qs o= llwolligy + lwoll g > A}) S el (5.3)
0

For any M > 1, let Qur be defined by

s = {w € Qs lluoll s + 1l5rizey < M IF N
(5.4)

1
s lwolliy + ol < M, }-
Therefore, by (5.2) and (5.3), we have
P(Q5,) S e M (5.5)

For any w € 2, we have ||v] vonzsw) < M || fllgs, and

B(wo) < CMANG - max { M2 | {1}, .1}

Therefore, for any M > 1 and any w € Q M, let
A= AM, | fl ) = max {M || fll;5, , CM* - max{M*|| |
then we have v = e Py, f*,
is Ve zem < A, and E(w) < ANGU
Therefore, we can apply Proposition 5.1. Let Ny depend on A as in the statement
of Prop051t10n 5.1, and we obtain a global solution w that scatters. Then, for any

weN= UM>1QM, we can also derive that (4.1) admits a global solution w that

scatters. By (5.5), we have that P() = 1. Then for almost every w € €, we

obtain the global well-posedness and scattering for (4.1). This finishes the proof of
Theorem 1.4.

o 13}

o]

O
5.2. Global space-time estimates.

Lemma 5.2 (Interaction Morawetz). Let w € C([0,T]; H}) be the solution of per-
turbation equation (4.1). Then, we have

4 2 2 2 4 2 4
lellfs S leoleps 0l .y + IVl lollheps Nolzre + 0l (5.6)
t T

where all the space-time norms are taken over [0,T] x R3.
Proof. Recall that w satisfies
i0iw + Aw = |w|*w + e,

where e = |u|*u — |w|?w. Denote that
1 1

Then, we have
Oom = =2V - p+ Im (ew) , (5.7)
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and
1 1 1
Op = — ReV - (VuVuw) — ZV(\U}|4) + §VAm + Re (eVw) — §ReV (we). (5.8)
Moreover, we note that
x Oir  T;Tp x 2
oj|—X)="L -2 Vo— =, AV -2 = 5(2).
G =% VR AV
Let
m(t,y) dx dy,
0= [[ =l ptaymiey) dr ay
then by (5.7) and (5.8), we have the interaction Morawetz identity
r—Yy
<Op(t, x) m(t,y) de d
0= [ = twlt. ) mit.y) dr dy
(t,x) Oym(t,y) do d
//R3+3‘x_y‘ )t (y) Yy
1
— ReV - (VaVw) — =V (|w|*) ) (¢, t,y) dz d
=[], =l (— ReV (Va0 = {9 (0l ) (t0) m(t.y) dr dy
(5.9a)
— 2// p(t,z) V- p(t,y) de dy (5.9b)
R3+3 |$ - ?/|
// -VAm(t,z) m(t,y) dz dy (5.9¢)
R3+3 |$ - y|
// p(t,z) Im (ew) (t,y) doe dy (5.9d)
R3+3 |9U - y|
+ // — Y Re (eVw) (t,z) m(t,y) dz dy (5.9¢)
R3+3 |9U — Y
+ // -Re (ew) (t,x) m(t,y) dz dy. (5.9f)
R3+3 ‘55 -yl

Note that by the classical argument in [26], we have
(5.92) + (5.9b) = 0,

and
4
(5.90) 2 Jw(®)L,
Moreover,
2 2
sup M(t) < |w|[Foore [|w 1.
s M) S ey ol

Then, integrating over [0, T, it holds that
T
Clhwllzs < M(T) — M(0) +/ |(5-9d)[ +[(5.9¢)[ + [(5.90)[ dt,
T 0
thus

lwllzs S lwlizser ||w||2 . / |(5-9d)[ 4 [(5.9¢)[ + [(5.90)] dt.
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By Holder’s inequality and Lemma 2.5, we have

/OT 1(5.9d)| + (5.9¢)] + | (5.90)] dt

2
S ||vw||L;>°Lg ||w||L;>°Lg ||6||Lng
2 2 2
SIVwllgeps Il 0l 2 (0lzs + llwlizs ).
Note that
2 2
lellzyzz < Mollzzpee (l0llzs, + llwlizs ),

we further have that

/OT 1(5.90)| + [(5.9€)| + [(5.90)] dt

2 2 2
IVl gz 020z Noll gz (ol + ol ).
Therefore, we have

4 2 2 2 2 2
iz, S Nwlligepz 1ol Ly + 1Vl e w0l 1012 Clollze, + lwllzs)-

t T

Then, by Young’s inequality, we have

4 2 2 2 4 2 4
lwllzs, S llwllngers 1wl g + 1VWllzge s 1wl 2 0llzre + 10l -

t T

This completes the proof of this lemma. O

However, the use of L} -norm is not enough for our argument. We need larger
class of space-time norms, and it is more convenient to invoke the UP-V? method:

1
X'(I) = ( Z N? HwN”%Jg(z;Lg) )2- (5.10)
Ne2N

First, we can update our space-time estimates to H 2-level.

Lemma 5.3 (Hz-regular promotion). Let w € C([0,T]; HY) be the solution of the
perturbation equation (4.1). Then, for any 0 <1< 3,

[wllx S lwoll g + (Ilwll ah IV onlle g ) (0l + lwlZ )y (5.10)

where all the space-time norms are taken over [0,T] x R3.

Proof. By Minkowski’s inequality, Lemmas 2.2, 2.7, and 2.12, we have

lwll o < lwoll g + (| P (V) (Juuf*ur)

6
12, L2032 U2 LI L2

< lwolly + [ P(@) (wPw)] , 5,
tHT "N

Pr (V) (Juu — w[2w)]|
+ || P (V) ([uf*u — w*w) 2 adun i

(5.12)
r2nd

P l 2, 2 H
([P (P — oo 2120802 L1

V)

S llwoll gy + (V) (Jwlw) |
V)
{

<ol + (V)00 ey ol + 1411,
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where

L= ||Py(V) Y wnvemuen,)|

6
121312,
Ni:N<Ny LN

and
Il = HPN<V>I( Z UN1U<N1u<N1>HL1L212'
Ni:N<Ny e

By Holder’s inequality, we have
I S Z H<v>l(wN1U<N1u<N1)H
N1

6

L2L}

S Z H]\/v{le,U<Nlu<Nl HL2L%

- - (5.13)

<D [ Niwy, HL;»L; lo<millpapge lwsny g,
N1

1
S e I

ys (llv]

vet el ).
and by Lemma 2.11,

l
11 szvaNlugNlugNlHLlL?lQ
t Mzt Ny

SH ”N{UN1 ”l?\,1 ]\?1122)1\] ‘USNl‘QHL%L%

(5.14)
Vol e | 0 fuen Il
t5e Ny Ty o tx
SHN{UN1 HI?VIL?L?CO( HU”YS + ”wHLf’x )2.
Therefore, by (5.12), (5.13), and (5.14), we have that (5.11) holds. O

Based on the space-time estimates in H %—level, and keeping in mind that the
equation is H %-critical, we can further obtain the estimates in H'-level with [ > %

Lemma 5.4 (H'-regular promotion). Let 0 < e < 1, and w € C([0,T]; H.) be the
solution of the perturbation equation (4.1). Then, for any % <l<1and % <s< %,

we have
7 ) (llv]

lwlgom (Iollys + lwll g0 ) Clollze +llwll o aee),
t T

lwll i S lwollgy + (lwll e e + 101

yanze T Wl g ) Cloll e + llwl]

L;X’Hz% )

where all the space-time norms are taken over [0,T] x R3.

Proof. Similar to the proof of Lemma 5.3, we have

T 1
lwllxe S llwoll g + (Y N* sup \/ /PN<|u|2u>g dz ds|*)?
0

Ne2N ”9”ng1
T b1
Sl + (XN s | [ [ o g de asf)?
ne lallyz=1"Jo N1

S llwoll gy + 1+ 11,
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where
T
(2 s | [ [ (o as )
NeoN ”gHV2 1 0 Ny
and
1= N sw !/ /PN vawl g dz ds[*)7.
NeaN ”9”\/2 1

We first consider the term I, where the first order derivative acts on w. By
Holder’s inequality, and Lemmas 2.7 and 2.12,

1 5( Z N2lHP Z wN1u<N1)Hi2L5)%

Ne2N N1:N<SNy

SV Q_wmuzn)ll 8

v>l(z leuNN1u<N1)HL2L§ (5.15a)
+](v Zleur‘%Nl)HLQLS (5.15h)
Ny

Now, the main task is to update the summation of wy, to 13,. To this end, for
(5.15a), we can simply use Holder’s inequality in N; for wy, and u.y,. Precisely,
by (4.24), Holder’s inequality, and Lemma 2.12,

(5.15a) | Z | Niwn,u ~N1U<N1H HL2

N1

SIS IV, [ Mo e ans s
N1

L}

(5.16)

SHHN{MNJ}@“L% ||u~N1||1§V1LgO ||u||L% 12

SJH<V leLg"L% HuNleﬁvlLngo HUHLOOL3

Slwllpeesy (Nollys + lwll 3 ) (llvll - + Il 8 ).

For the second term (5.15b), we need to invoke the vector-valued Hardy-Littlewood
maximal function to cover the critical summation problem. Using Lemma 2.10 and
Holder’s inequality,

(5:150) SIN'P( D7 w8,
Ni1:N1i~N N

=l )|
SN M (wy?, .
t T "N

S| N'wyuZ || (5.17)

6
L2L3l2

SlHINwxllg, sup fuanfl,

<|[N'wy Isup [uen |l 2.5
~ Nlipgerzi, I15WP U< iz
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Let 0 < e < 1. By Lemmas 2.4, 2.12, and Hélder’s inequality,

2
Isup fuan| [l 05 Slhsup D Juwiuws|] 5
N N1,N2:N1<No2 KN

S22 vl s

N1<Na

N Enr—e €
SH Z (ﬁ;) Ny uNlNQUNzHL%Li

N1<N2

5” HNl_auNlHl?Vl HNQEUA@HJ?VQ HL%L%

5 HNfEu]\h HLngol?vl HNguNz HL;}’L%I?\,Q

SClowll, czoe + 1N wmlly, 2z ) (lolze + [l

)
LeH2™e

SOy + Ty ) (el + Tl e
(5.18)
Combining (5.17) and (5.18), we have
. 2
(5.15a) < HN wNHLOOL?l2 H sup }u<<N} HL?Lg (5.19)
Slwllggeny (ollys + 1wl ey ) Clollze + lwll o ye)-
Therefore, by (5.16) and (5.19),
I <(5.15a) + (5.15b)
Slwllgen (ol + lwll ey ) Clollze + lwll ) (5.20)

+lwll e g (lollys + 1wl g ) (vl ge + ool

L;’OHI% +e ) '
Next, we estimate the term [1. We first consider the case when [ < s+ %, by the

same argument as in the local results (see (4.5) for example) and Holder’s inequality,

! 2
17 SJH]\[1U1\717“L<N1 HL1L212
tlaln,

l 2
SIVFom paerg, Nl sup T Pz,

2
SV ol gare (lolg, + s Il e ) (5.21)
2
Sl (ol + el Joll,,5)

2
Slollgs (llolly + llwl

) HwHL?oHé ).

Then, we consider the case when s + % < [ < 1, where we need to use the bilinear
Strichartz estimate and the duality structure. By frequency support property, we
obtain

11 SHN{leuNN1u<N1“ (5.22a)

L1L2l2

Z N sup / /PN ZUN1“<<N1 g dx ds’ :, (5.22b)

NeoN |QIIV2 1
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Now, we estimate (5.22a). Since s > %, we have 2s + 3 > 1 > [. Then, by I}, <%,
and Holder’s inequality;,

(5.220) 3 1910 s 109 e 31 T e
Ny

SJH‘VVJUNIHI?VIL?L%’ H(V)Sule”@VlLng (”UHL;XJLg + HwHL;wa% )
1_
SIVETomlly a0 0l zng + el ) (Wollgzery + lell,_ 3)
Shollg. (lollys + Il ) (lollz + ol 4 )
t T
(5.23)

Next, we consider (5.22b). To this end, we establish a bilinear Strichartz estimate
before the proof for (5.22b). By Lemma 2.9, for N; < N,

Ny
lunvignllze . S —5 (I1Pwvoll e + llww llyz ) llglloz - (5.24)
t,x N2 T A A

and by Bernstein’s, Holder’s inequalities, Lemma 2.7, and embedding Ui~ L*L?,
luwgnllzs . < lusallzzgs lowles
SN a2 gl (5.25)
SV (1P, voll 2 + ol ) Nl -

By (5.24), (5.25), and Lemma 2.3, we have the bilinear Strichartz estimate

<N6 Ny
lumignllss, S5 1ot (1Pwstnlss + ol ) gl
’ 1
o (5.26)
S (1Pwvolls + ooz ) lglvg -

Noting that [ < 1 and é < s, we have | — s+ < 25+ 0—. Then, by (5.26),
T
(5.22b) §H Z sup ‘/ /vaNuNluNQgN dx ds‘Hl?V
Ni,No: N1 <Na<N l9llyz =1 /0

<) > sup || V['ow | 2 lumwall ooz lumignllzz L
Ny, No:Ny <N N 9l =1

1_ _
< Z H|V|S+2 UNHZ?VLngo ||UN2||L;>OL5 Ny 8+( ||PN1UO||L5 + ||wN1||Ui)

N1<Na
s+ — ATS s
§H|V| 3 UNHZ?VLngo Z N10 N ||UN2||L;>°L§ Ny ( ||PN1UO||L3 + ||wN1||Ui)
N1<N2
Slollge (ol zs + 1wl xe ) (ollze + lwll oo grs )-
(5.27)
By (5.23) and (5.27), we have for s + 1 <1< 1,
115 ollg (elly-rze + Nl ) ol + el ). (5.28)
+ T

Then (5.20), (5.21), and (5.28) give the desired estimates. O
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5.3. Energy bound.

Proposition 5.5. Let 2 < s < 3, A >0, v = ey € YN Z5(R) and w be the
solution of (4.1). Take some T > 0 such that w € C([0,T]; H}). Then, there exists
No = No(A) > 1 with the following properties. Assume that vy is supported on

{£ e R [¢] > 3o},
g T 10l

[ Fenze < A, and E(wg) < ANG' )

Then, we have

sup E(w(t)) < 2AN7" . (5.29)
te[0,7)

Proof. Let I =[0,T] and Ny = No(A) that will be defined later. From now on, all
the space-time norms are taken over I x R?. We implement a bootstrap procedure
on [: assume an a priori bound

sup B(w(t)) < 2AN;0 7, (5.30)
tel
then it suffices to prove that
3 —s
sup E(w(t)) < —AN(?(1 ), (5.31)
tel 2

To start with, we collect useful estimates on I. Now, we use the notation C' =
C(A) for short, and the implicit constants in “<” depend on A. Moreover, we take
all the space-time norms over I x R3. By interpolation, we have

ol ez + 107) 0ll o + lolgs S Iollyany 1. (5.32)

By the frequency support of v, we have for any 0 <1 < s + %,

119 0wl o S Mo 7" flollye S Mg THF S 1. (5.33)
By the conservation of mass, we have |[u(t)||,2 = [[uol/;2. Then, combining (5.32),
we have for all ¢ € [0, 7],
lw @2 S w2 + lo@l2 < lluoll s +1 S 1. (5.34)
By bootstrap hypothesis (5.30),
lwllpgepn S No ™" (5.35)
Then, by interpolation, (5.34), and (5.35), we have for any 0 <[ < 1,
]l e e S No' . (5.36)

Next, we derive various space-time bounds combining Lemmas 5.2, 5.3, and 5.4,
under the above setting.

Lemma 5.6. If the assumptions in Proposition 5.5 and the estimate (5.30) hold,
then there exists Nog = No(A) > 1 satisfying the following estimates.

(1) First, we have the interaction Morawetz estimate
1—s
lolly SNy (5.37)
1
(2) If 0 <1 < 5, then
ol NG (5.33)

~
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(38) If 3 <1< 1, then
lw o S N, (5.39)

~Y

Remark 5.7. Roughly speaking, the interaction Morawetz estimate in Lemma 5.2
yields

4 — 2(1— 2
lwlzs < N3+ NoU ™ ol 7 ee -

Since v is high-frequency truncated, we are able to cover the additional increment
for the remainder in the view of (5.33). This is the main reason why we implement
the high-low frequency decomposition for the initial data.

Proof. Note that s > 0, by the perturbed Morawetz estimate in Lemma 5.2 and
(5.36),

4 2 2 2 4 2 4
Iy, S ol Wl g + 1901 ol ol + Mol

SN(}*S + Ng(lfs)NOflf%Jr + 1 5 N&is,

where we need to take Ny = Ny(A) suitably large such that Ny =4 1.
By Lemma 5.3 and (5.37), for any 0 <! < 3, we also have that

l 2 2
Il S Nollgg + (ol ey + 1191 ol ) (ol + ol

1y(1—s 11— s
,SN(I)(l_S) + (Nél+2)(1 )+ 1) (1 + N02(1 )) S Nél‘f'l)(l )'
Let 0 < ¢ < 1. Then, by Lemma 5.4 and (5.38), for any % <[ <1, we have

[wll e Sllwoll g + (lwllpoe g + 0ll5e ) (0llynze +llwll g ) (vl + ||w||L§on% )
Flwll e (Nollys + 1wl 3= ) (ol 5o + ||w||L?on%+s)
SN+ (1 (a4 N+ )
+ NG9 4 Né%_a)(l_s))(l n Né%+e>(1—s>) < N0,
This proves the lemma. 0

Now, we are prepared to give the proof of Proposition 5.5. By (4.1) and integration-
by-parts, we have

%E(w(t)) :Im/AE(|u|2u — |wPw) dz + Im/ lulu(julu — |wfw) dz

= Im/V@ V(Julu = |w*w) dz +Im/ ulPu(|ulu — |w|*w) da.

Again, we do not distinguish between v and u. Then, we have
sup E(t) SE(wy)
tel

T /I/VM V(v + w)? dz dif (5.40)
T /I/Vw  Vwo(v + w) do dt| (5.41)

+| /1/ ul*u(|ulu — [w|*w) dz dt|. (5.42)
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Estimate on (5.40). This is the main case, where we need the restriction s > %
We first make a frequency decomposition:

(5.40) < Z }/I/Vw - Voyvsy (v + w) dz dt| (5.43a)

Ne2N

1 Z } /1 / Vuwy - Vonven(Van + wen) dz dt| (5.43b)

Ne2N

+ 2 }/I/VMN'WNsz(w+v) dz dtf (5.43c)

Ne2N

+ > /1 / Vuwy - VoywZ y dz dt|. (5.43d)

Ne2N

For (5.43a), we can directly transfer the derivative from vy to v>y. By Holder’s
inequality, Lemma 2.12, and (5.33),

(5.43a) < Z \//Vw-qule(v+w) dz dt|
I

NZN;

<) 1wl o i1 VNI 200 0w |20 (0l ooz + 1] pgora )
NN (5.44)
Nz , )
SNol_s Z —lH|v|§,UNHLng°H|V|§,UN1HL%L;"
NSNy 4Vq

SNG [V 12w,

1
5 1-s
L2Lge |V‘2UN1H1§VIL§L;;O SNy

Next, we bound (5.43b), where we use the bilinear Strichartz estimate for Vwyv<y
to lower down the derivative of Voy. From Lemma 2.9, (5.39), and (5.32), for
N1 < N, we have that

~Y

N
IVt liz, SN ol | Pl

SNN e 1Pl 54
<N NTzNG),
Note that % < s gives
1 1 —13 1
IVunll e S N[ V]2 ”NHLngO’ and [ow, |l rzre S M vt UNlHLngo'

(5.46)
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Then, combining Holder’s inequaltiy, (5.45), (5.46), (5.32), (5.33), and (5.36), it
holds that

(5.43Db) Z }//VMN Vunon, (Ven + wen) da dt}

Ni<N

3 3 1
<Y IVenliess 1Vonll a0 ol [ Vwnon|
N1<N

(llvenllperz + lwenl peors )

(1 s) 3 —sar—L ard(1—s 1 5.47
SNFU S (9ol ol (Vo N-ENGO)E (54D
N1 <N
T(1—s) 1 =30 L) 1
<NG > NuN; NN
N1 <N
<N4(1 5) Z N 2N 3 Nofﬁ(lfs)Ng(lfs).
N1<N

Next, we deal with the term (5.43c), where we can directly transfer the derivative
from vy to w>y. Note that by s > %

N3—s+ 1
> — SNy ™. (5.48)

NNiNoSNSNg VpY

By interpolation, (5.37), and (5.38), we also have

1
10
HN1 W,

< g LE < $(1-s)
HL?,x N Hw”Lg’x (V>4wHLix S No . (5.49)

Therefore, by Holder’s inequality, (5.33), (5.48), (5.49), and (5.37),

(5.43¢c) < Z | / / Vwy - Voywy, (w + v) dz dt|
I

N,N1e2N:N<N;

ot
S Z 10

N,N1€2N:N§N1 1

s+—

ol (5.50)

1
AN e Cleollgg o+ ol )
NG NN TN N N,

Now, we deal with the term (5.43d), which is the main part of the whole argu-
ment. We postponed here to illustrate the key idea. Roughly speaking, by Holder’s
inequality, (5.36), and (5.37),

2
| [ [ ox- Foxutoy do dt] S IVl 190 Tl -

31—
§N02(1 K ||VU||L§Lgo :

Although we are lack of the [V} -estimate, the bilinear Strichartz estimate for
Vwywepy can be introduced to lower down the derivative of Vuy. In the view of
(5.38) and (5.39), this procedure will cause the increase of Ny. This is allowed, since

P —s) .
there is still N02(1 )—gap towards the energy increment NOQ(1 ) in (5.51).
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Now, we give the concrete argument for the estimate of (5.43d). By Lemma 2.9,
(5.38), and (5.39),

N1

~Y

IVwnwn, ||z S

<Ny N;eN—z N0,

Therefore, by Holder’s inequality, (5.52) and (5.33),

(5.43d) < | / / Vuwy - Voywy, wy, dz di|

N1<N2<<N

5110e 1_10e
S Y Vel Vol Voo, |75
N1<Na N ’

| 7+20€ 10e

wn, | lwns s, ||wN1||LooL2

Z NO7+105)(1—5) NTHEHU
N1<Na2<N
Li_g) . (L
NI Ny N Nl
< NEZ2090-9) Z Nl—l—%eNg_swa_

N1<N2<N

1_
oo [N N7EN -2 N0 7108

+20e)(1—s) —10g) (2 —10e)(1—s)

Since s > %, we take a suitably small € > 0 such that % — 54 6¢e < 0, then we obtain
that

(5.43d) <N, 200 NP, (5.53)

Combining (5.44), (5.47), (5.50), and (5.53), we have

(5.40) <(5.43a) + (5.43b) + (5.43¢) + (5.43d)
L
S(No (1-s) + N 1(1-s) + No 00 4 NO—QOe(l—s))NOQ(l—s) (5.54)
SNO 20e(1— S)Ng(l s).

Estimate on (5.41). The proof for (5.41) is easier, since there is no derivative
acting on v. However, the integration contains two Vw terms, which already leads
to the increment of Ng (7%) Therefore, we need to cover the additional No.

Heuristically, by Holder’s inequality,

| [ [ - Fwow do dt] 1900 Nl lolgre - (559)
Note that w has the bounds HwNHl?VL?LOO S fwlly NQ( ~) and lwllz2ree S

ol g < NG
X2
bound too much. Therefore, the norm %, LZL° is a better choice, and we need to

cover a logarithmic divergence problem for (5.55).

, " from which we observe that the latter one increases the energy
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By frequency decomposition, we have

(5.41) < // Vw - Vwvv dz dt| (5.56a)
+| / > / Vu - Vwsyvwy dz di| (5.56b)
Ne2N
+}/ Z /Vw Vwvsywy da dt} (5.56¢)
Ne2N
+’§£: y/:/xVUbﬂv Vh&»NU<AﬂUN(iEdt’ (566d)
Ne2N

First, by Holder’s inequality and (5.33), it holds that
(5.568) S IV 70e g I0][72 00 S No 2T NGUT, (5.57)

By the above observation, the main task for (5.56b), (5.56¢), and (5.56d) is to
update the summation of wy to I%. For (5.56b), we move the first order derivative
from w<y to wy, and use the Schur’s test to update the summation. Since s > %
implies 1 — ger < - by Holder’s inequality, Lemma 2.12, Lemma 2.4, (5.33),
and (5.38),

mo’

(5.56Db) <’ /Vw -Vwpy,vwy dz dt}
I'ni<N
/ > Vw2 [[Vwn [ 12 [[wn |l e [0l d
I'ni<N
S [ 190l Polis 32 T lowllas Vvl @t (555
N1<N

2
S [ 190l Pl sl s <

2
S ||Vw||Lg°Lg ||U||L§Lgo ||wN1||l§V1L§LgO

s—i4

—s—1 2(1-s -1 —s
gNg(lfs)NO 2 N02(1 ) g NO 100 N02(1 ).

Next, we estimate (5.56¢). In this case, we can transfer the additional e-regularity
from wy to v>n. Let € > 0 be a absolutely small constant. Similarly by Holder’s
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inequality, Lemma 2.12, Lemma 2.4, (5.33), and (5.38), we obtain

(5.56¢) Z ‘//Vw Vwuy,wy dz dt‘

NNy

2
~ Z ||Vw||L;>°L§ ||UN1||L§L30 ||wN||L§Lg°
N<M
(5.59)
Z vaHLooB Ne HNEUNlHLQLOO ”wNHL2Loo

NSN
S HVU)HL;”L; V] o, ”z?VlLfL;o ”wNHz?VLngO
< N2 No—s—%+2e NO%<1—5> < No—ﬁ N2,
Finally, we deal with the term (5.56d), where we need to get additional regularity
for summation by the bilinear Strichartz estimate. By Lemma 2.9, (5.38), and (5.39),

Ny
INASRUNY PP Vi [wn [z 1Pn,voll 2

1

L (5.60)
SNoNy 2wl vl
<N, N 2NS0),
Note also that
c 1 +3e— s+i_g 148e—(1—¢
N; lomllzze S Mo IV e . S 82T (661
Since 0 < ¢ < 1, then we have
) 1
1+ 5¢ — < =
e (G e < gy
Therefore, by Holder’s inequality, (5.60), (5.61), (5.33), and (5.38),
(5.56d) < | / / Vuwy, - Vwy, wyvy, dz dt|
N2<<N<<N
S D Vel IVwn o, 172 Nlwnll 20 1o, [l 27
N2 <K NNy
e A= 5E Ar3e(1—s)
S Z ”valHLooLZ N3Ny * Ny ”wNHLQLoo HUNQHLQLOO (5.62)
No< NN
—3€ Ar(2—)(1—5) Ar3e(1—s) nra(l—s e—(1—¢
5 Z N12 NéQ )(1 )Ng’ (1 )N02(1 )N 2+3 (1-e)s
N2 <K NNy
NGO NI < vt a0
Therefore, combining (5.57), (5.58), (5.59), and (5.62), we have
(5.41) <(5.56a) + (5.56b) + (5.56¢) + (5.56d)
(5.63)

__1 _ 1
g(NOf2sfl+ + NO 100)N02(1*5) 5 NO 100 Ng(lﬂ"‘).
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Estimate on (5.42). This is a simple case, where no derivative appears. By
Holder’s inequality, (5.37), and (5.36),

(5.42) < // ulPu(lul*u — [w*w) dz dt|
I
2 2 3 3
Shollzzzee (lollzs, +llwlizs ) (lollze e + lwlizgers )
NG NI ING NI < )

Then, by choosing Ny = Ny(A) suitably large, and combining (5.54), (5.63), and
(5.64), we have

sup E(t) <E(wp) + (5.40) + (5.41) + (5.42)

tel

L
SANGU™ 4 C(A) - (N 207 4 Ny ) NG (5.64)

g%ANS”‘S).

Then, by the standard bootstrap argument, we finish the proof of (5.29). U

5.4. Proof of Proposition 5.1. We first prove the global well-posedness. Since
v € Y*NZ(R) and wy € H}, by Proposition 4.2, there exists T} depending on
[[woll 1 and [[v]ly«(g)rzs ), Such that w € C([0, T1); H}) solves (4.1). By Proposition
5.5, we have

E(w(Ty)) < sup E(w(t)) < 2ANU™,
tE[O,Tﬂ

Then, we have [|Jw(T})||5: < QANg(l_S), and can apply Proposition 4.2 again starting
from Tj. Since the energy bound in (5.29) does not reply on 7', we can extend the
solution on R by induction, and get

sup E(w(t)) < 2AN; ") (5.65)

teR

Next, we prove the scattering statement. We only consider the t— + oo case, and
it suffices to prove that

HV/OOO e (Jul*u) dxHL% < C(A, Ny). (5.66)

In fact, since the global well-posedness already holds, we do not care the explicit
expression of A and Ny. Now, all the space-time norms are taken over R x R3. Using
Lemmas 5.2 and 5.3 on [0, 00), we have for any 0 < [ < 1,

[w]| 50 < C(A, No)-
Furthermore, we clearly have

ol + 191200 e+ VIS0l + Bollng < CCA).
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Next, we start to prove (5.66) using the above estimates without mentioning. We
split

L.H.S. of (5.66) S| / h e A (Vwu?) ds| (5.67a)
0 x
o / e oA (Vou?) ds|| . (5.67b)
0 x

The proof for the first term (5.67a) is easy. By Lemma 2.7 and Hoélder’s inequality,
(5.67a) <C'||[Vwu?|| | o
L2L2

) ) (5.68)
<C ||Vw||L§°Lg (HwHL;*Lg + ||U||L§Lg) < C(4A, No).
Next, we deal with the term (5.67b). By frequency decomposition,
(5.67b) Z H/ A (Voyus yu) dSHL2 (5.69a)
Ne2N
+ Z H/ —isA (Voyu’ y) dsHL%. (5.69Db)
Ne2N
By Holder’s inequality and Lemma 2.4, we have
(5.692) <C' > || Vonunull s
N<N
Nz 1 1
<C Z 1 2UNHL§L;<>H‘V|2UN1HL§L30 HUHL?"L%
N<n NY
1
(5.70)
NS [\ [ wn |y, el
N<ny VY

) 1
<H |V|QUNH1?VL§L30 H|V|QUN1 H@VlLngo HUHL?"L%

1 1
+ CH|V|QUNHI§VL?L30H|V|2leHl§,1L;{x Hu”L?x < C(A, No).

Finally, we estimate (5.69b), where we need to exploit the duality structure as in the
proof of Proposition 4.2. In this case, it is unnecessary to invoke the UP-V? method
as before for two reasons: first, we are considering the dual operator of e**; second,
we have estimate for H\V|g+vH 12150 under the radial assumption. We can simply

use the duality representation of the L2-norm:

(5.600) <C > | / T (Voyuw,u,) dsl|

N1<N2<N

<C Z sup / (g,e 2 (Vunun, uy,)) ds (5.71)

N1<No& N ||9||L2 1

<C / / 29 nvVunuy, uy, dz ds.

N1<N2<<N ||9||L2 1
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By Lemma 2.9, for Ny < N,

i Nl
e Ag~szzv1HLz ST lg~nllzz (Il Prvollzz + lwws oz )
1 1 (5.72)
<N12 < Y
NNé ( 1 ||PN11)0||L2 +]\/vl ||le||U2 ) ~ N% C(A, NO)-
By (5.72) and Hélder’s inequality, for Ny < Ny < N,
/ / gNNVUNUNIUNQ dx ds
<C H628A9~NUN1HL§$ ”VUNHLngo HuNzHLgoLg
N3 (5.73)
<C(A, No)N IVOn]l g2 poo lunell oo 12
1 1
ng 0— 54 1 ng 0—
<C(A, No)— N [[IV ] ¥ oy || o o IV s | e < CA, No)—p N7
Ny o s Ny
Then, by (5.71) and (5.73),
(5.69b) <C / / gNNVvNuNIuN2 dx ds
N1<N2<<N ||9||L2 1
(5.74)

<Ny Y My <o),

N1<N2<N N23

By (5.70) and (5.74), we have
(5.67b) < C'- ((5.69a) + (5.69b)) < C(A, No). (5.75)
(5.68) and (5.75) imply (5.66). This finishes the proof of Proposition 5.1.
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