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ALMOST SURE WELL-POSEDNESS AND SCATTERING OF THE

3D CUBIC NONLINEAR SCHRÖDINGER EQUATION

JIA SHEN, AVY SOFFER, AND YIFEI WU

Abstract. We study the random data problem for 3D, defocusing, cubic nonlin-
ear Schrödinger equation in Hs

x(R
3) with s < 1

2
. First, we prove that the almost

sure local well-posedness holds when 1

6
6 s < 1

2
in the sense that the Duhamel

term belongs to H
1/2
x (R3).

Furthermore, we prove that the global well-posedness and scattering hold for
randomized, radial, large data f ∈ Hs

x(R
3) when 3

7
< s < 1

2
. The key ingredient is

to control the energy increment including the terms where the first order derivative
acts on the linear flow, and our argument can lower down the order of derivative
more than 1

2
. To our best knowledge, this is the first almost sure large data global

result for this model.
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1. Introduction

In this paper, we consider the nonlinear Schrödinger equations (NLS):
{
i∂tu+∆u = µ|u|pu,
u(0, x) = u0(x),

(1.1)

where p > 0, µ = ±1, and u(t, x) : R × Rd → C is a complex-valued function.
The positive sign “+” in nonlinear term of (1.1) denotes defocusing source, and the
negative sign “−” denotes the focusing one.
The equation (1.1) has conserved mass

M(u(t)) :=

∫

Rd

|u(t, x)|2 dx =M(u0), (1.2)

and energy

E(u(t)) :=

∫

Rd

1

2
|∇u(t, x)|2 dx+ µ

∫

Rd

1

p+ 2
|u(t, x)|p+2 dx = E(u0). (1.3)

The class of solutions to equation (1.1) is invariant under the scaling

u(t, x) → uλ(t, x) = λ
2
pu(λ2t, λx) for λ > 0, (1.4)

which maps the initial data as

u(0) → uλ(0) := λ
2
pu0(λx) for λ > 0. (1.5)

Denote

sc =
d

2
− 2

p
,

then the scaling leaves Ḣsc norm invariant, that is,

‖u(0)‖Ḣsc = ‖uλ(0)‖Ḣsc .

This gives the scaling critical exponent sc. Let

2∗ = ∞, when d = 1 or d = 2; 2∗ =
4

d− 2
, when d > 3.

Therefore, according to the conservation law, the equation is called mass or L2
x

critical when p = 4
d
, and energy or Ḣ1

x critical when p = 4
d−2

. Moreover, when
4
d
< p < 2∗, we say that the equation is inter-critical.
Let us now take a brief overview on the well-posedness and scattering theory of

NLS (1.1). Kato [46] first proposed a method based on the contraction mapping and
the Strichartz estimate, and obtained the local well-posedness when p < 4

d−2
in H1

x.

See also [72] by Tsutsumi for the L2
x-solution when p < 4

d
. Note that the above two

results concerned the sub-critical cases when s > sc. The local well-posedness in the
critical sense was solved by Cazenave and Weissler, see [22]. Moreover, we refer the
readers to Cazenave’s textbook [21] for more complete local results of NLS.
The global well-posedness and scattering are basic topics for the long time be-

haviour of NLS. Lin and Strauss [59] obtained the large data scattering for the 3D,
defocusing, cubic NLS with decaying data. Their argument relied on the Morawetz
estimate, which was first discovered by Morawetz [61] for the Klein-Gordon equa-
tions. The global well-posedness and scattering in energy space were solved by
Ginibre and Velo [42] in the defocusing inter-critical cases for d > 3. In this paper,
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we mainly focus on the results in L2
x-based Sobolev spaces, thus we do not mention

the vast scattering theory for NLS with decaying data.
The main breakthrough of the energy critical NLS was owed to Bourgain [10]. He

introduced the powerful induction-on-energy method and the localised Morawetz
estimate to study the defocusing equations with radial data for d = 3, 4. Bourgain’s
method was then further exploited extensively: Nakanishi [62] introduced a modified
version of Morawetz estimate for low dimensions, and solved the energy scattering in
the inter-critical cases for d = 1, 2; Bourgain’s 3D result was extended to non-radial
by Colliander, Keel, Staffilani, Takaoka, and Tao [27], based on a localised version of
their interaction Morawetz estimate [26]. The results for defocusing energy critical
NLS in higher dimensions were obtained by Ryckman and Visan [66, 74].
For the focusing equations, Kenig and Merle [48] introduced the concentration

compactness method to give a complete dynamical characterization below the energy
of ground state, for the energy critical NLS in d = 3, 4, 5 with radial data. Their
study opened a way to study the scattering of focusing equations below the ground
state. Then, Duyckaerts, Holmer, and Roudenko [40, 45] gave the result for 3D,
focusing, cubic NLS, which is a typical model in the inter-critical cases. For the
non-radial focusing energy-critical NLS, Killip and Visan [52] solved the d > 5 case,
and Dodson [34] solved the 4D case. The scattering of 3D, focusing, energy-critical
NLS in the non-radial case remains open.
The concentration compactness method also enlighten the development of mass

critical NLS. Killip, Tao, Visan, and Zhang [53, 54, 71] studied the mass critical NLS
in the radial case. Dodson then remove the radial assumption, and completely solved
the global well-posedness and scattering of mass critical NLS in the defocusing case
[30, 32, 33], and in the focusing case below the mass of ground state [31].
Next, we focus on the well-posedness results of 3D, defocusing, cubic NLS, for

which the critical regularity exponent sc = 1/2. We have learned that the defocusing

equation is local well-posed in Ḣ
1/2
x , while the global well-posedness and scattering

hold in a smaller space H1
x. A natural question is to ask the weakest space X to

guarantee the global well-posedness in Ḣ
1/2
x ∩ X . Bourgain [9] used the high-low

decomposition method (introduced in [8]) to give X = Hs
x with s > 11

13
. The lower

bound was then improved by “I-method” gradually in [25, 26, 69], and so far, the
best result is s > 5

7
. Under the radial assumption, Dodson [35] showed that the

result holds for almost critical space s > 1
2
.

Note that X spaces in the above mentioned results are all Ḣ
1/2
x super-critical.

Recently, Dodson [36] gave a result in the critical space X = Ẇ
11/7,7/6
x , based on the

observation that linear solution becomes more regular with initial data in Lp
x with

p < 2. Using this observation, the authors [67] obtained that X = Ẇ s,1 for s > 12
13
,

which is a sub-critical space with the order of derivative less than 1, by the method
in [1] .
Currently, there is no result for the global well-posedness of 3D defocusing cubic

NLS merely in Ḣ
1/2
x or H

1/2
x . Kenig and Merle [49] initiated an another approach to-

wards this problem. They proposed the concept of “conditional scattering”, namely
the global well-posedness and scattering hold for the solution that is uniformly
bounded in the critical space on the maximal existence interval. Generally for the
inter-critical NLS, no global well-posed result is known in the critical space. See
[2, 36] for some related results.
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Now, we turn to the probability theory of NLS. Although there are ill-posedness
results below the critical regularity for NLS due to the result of Christ, Collian-
der, and Tao [24], Bourgain [6, 7] first introduced a probabilistic method to study
the well-posedness problem for periodic NLS for “almost” all the initial data in
super-critical spaces. The probabilistic well-posedness result for super-critical wave
equations on compact manifolds was also studied by Burq and Tzvetkov [16, 17].
There have been extensive studies about such subject since then, and we refer the
readers to [5] for more complete overviews.
Next, we only review the study of random data theory for NLS on R

d. There are
several ways of randomization for the initial data. We recall the one relying on the
unit-scale decomposition in frequency, which is named as the Wiener randomization,
appeared first in [78]. Then, under the Wiener randomization, Bényi, Oh, and
Pocovnicu [3] studied the cubic NLS when d > 3. They proved the almost sure
local well-posedness, small data scattering, and a “conditional” global well-posedness
under some a priori hypothesis. Afterwards, the almost sure local results were
improved by Bényi-Oh-Pocovnicu [4] and Pocovnicu-Wang [65]. The random data
well-posedness for quintic NLS was studied by Brereton [11]. Later, Oh, Okamoto,
and Pocovnicu [64] studied the almost sure global well-posedness (with no a priori
assumptions) for energy critical NLS on d = 5, 6.
The large data almost sure scattering was first obtained by Dodson, Lührmann,

and Mendelson [37] in the context of 4D, defocusing, energy-critical, nonlinear wave
equation with randomized radial data, using a double bootstrap argument combining
the energy and Morawetz estimates. The result was extended by Bringmann to non-
radial 4D case [13], and to radial 3D case [12]. The related results on non-radial
energy-critical nonlinear Klein-Gordon equations were studied by Chen and Wang
[23]. The first almost sure scattering result for NLS was given by Killip, Murphy,
and Visan [51]. They proved the result for 4D, defocusing, energy-critical case with
almost all the radial initial data in Hs

x for 5
6
< s < 1. This result was then improved

to 1
2
< s < 1 by Dodson, Lührmann, and Mendelson [38].

We remark that the Wiener randomization is closely related to the modulation
space introduced by Feichtinger [41]. Such space has been applied to non-linear
evolution equations before the development of Wiener randomization, dating back
to the results of Wang, Zhao, Guo, and Hudzik [75, 76].
There are also other kinds of randomization for NLS on Rd. Burq, Thomann, and

Tzvetkov [15] constructed a Gibbs measure for NLS with harmonic potential, and
proved almost sure L2-scattering for 1D, defocusing NLS with p > 5, after changing
the Schrödinger equations into the ones with harmonic oscillator potential by lens
transform. Recently, Burq and Thomann [14] improved the result to all the short
range exponents p > 3. See also [58] for higher dimensional extensions.
In addition, Murphy [60] introduced a new kind of randomization based on the

physical space unit-scale decomposition, and studied the almost sure existence and
uniqueness of wave operator for L2 sub-critical NLS above the Strauss exponent.
Then, Nakanishi and Yamamoto [63] extended the result below Strauss exponent,
and applied the method on some quadratic Schrödinger models. We also mention
that Bringmann’s almost sure scattering results [12, 13] include other kinds of ran-
domization for nonlinear wave equations on R

d, involving the micro-local and the
annuli decompositions of initial data.
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To the best of our knowledge, the only study by far of global well-posedness
and scattering for inter-critical NLS seems Burq, Thomann, and Tzvetkov’s 1D L2-
scattering result [15], based on the Gibbs measure for the Schrödinger equations
with harmonic potential. Very recently, we learnt that Duerinckx [39] also studied
the global well-posedness of cubic NLS adding a tiny dissipation with spatial inho-
mogeneous random initial data. In this paper, we intend to study a typical model
of inter-critical NLS, namely the 3D, defocusing, cubic NLS under the Wiener ran-
domization, at super-critical regularity.
Before stating the main result, we give the definition of the randomization:

Definition 1.1 (Wiener randomization). Let ψ̃ ∈ C∞
0 (R3) be a real-valued function

such that ψ̃ > 0, ψ̃(−ξ) = ψ̃(ξ) for all ξ ∈ R3 and

ψ̃(ξ) =




1, when ξ ∈ [−1

2
,
1

2
]3,

0, when ξ /∈ [−1, 1]3.

Let

ψ(ξ) :=
ψ̃(ξ)

∑
k∈Z3 ψ̃(ξ − k)

.

Then, ψ ∈ C∞
0 (R3) is a real-valued function, satisfying for all ξ ∈ R3, 0 6 ψ 6 1,

supp ψ ⊂ [−1, 1]3, ψ(−ξ) = ψ(ξ), and
∑

k∈Z3 ψ(ξ − k) = 1.
For any k ∈ Z3, define ψk(ξ) = ψ(ξ − k). Denote the Fourier transform by F .

Then, we define

�kf = F−1
(
ψkFf

)
.

Let (Ω,A,P) be a probability space. Let {gk}k∈Z3 be a sequence of zero-mean,
complex-valued Gaussian random variables on Ω, where the real and imaginary parts
of gk are independent. Then, for any function f , we define its randomization fω by

fω =
∑

k∈Z3

gk(ω)�kf. (1.6)

In the following, we use the statement “almost every ω ∈ Ω, PC(ω) holds” to
mean that

P

({
ω ∈ Ω : PC(ω) holds

})
= 1.

Now, we study the 3D, defocusing, cubic NLS with randomized initial data:{
i∂tu+∆u = |u|2u,
u(0, x) = fω(x).

(1.7)

For this model under the probabilistic setting, the local well-posedness, small data
scattering, and conditional global well-posedness results have been established be-
fore.
We first recall the local results for (1.7). Bényi, Oh, and Pocovnicu [4] proved the

local result with f ∈ Hs
x when 2

5
σ < s < 1

2
in the sense that Duhamel term belongs

to C(I;Hσ
x ) for any fixed 1

2
6 σ 6 1. They also proved the improved local result

when 1
6
< s < 1

2
(except for the lower endpoint) by weakening the definition of local

solution:

u− z1 − z3 − · · · − z2k−1 ∈ C(I;H1/2
x ),
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where the function zk ∈ C(I;Hsk
x ) is defined by iteration with some sk <

1
2
. Pocov-

nicu and Wang [65] also proved the local result in L2
x with Duhamel term in C(I;L4

x).
There are also global results of (1.7), either with small data restriction or with

suitable a priori assumptions. Bényi, Oh, and Pocovnicu [3] proved the almost sure
small data global well-posedness and scattering for 1

4
< s < 1

2
. Furthermore, they

[3] also proved the random data global well-posedness when 1
4
< s < 1

2
under two a

priori assumptions:

• The Duhamel term is uniformly bounded in the critical space H
1/2
x in the

probabilistic setting.
• The 3D, defocusing, cubic NLS is globally well-posed with deterministic ini-

tial data in H
1/2
x .

Each of the above two a priori assumptions seems very difficult to verify.
In this paper, we improve the previous local results and give an optimal local

result for (1.7). Moreover with the radial data, we prove the global well-posedness
as well as scattering, without imposing any a priori assumption or size restriction,
where the scattering result holds in the energy space.

1.1. Almost sure local well-posedness. The first main result in this paper con-
cerns the almost sure local well-posedness. Previously for the random data local
result, Bényi, Oh, and Pocovnicu [4] introduced the higher order expansion method;
Pocovnicu and Wang’s argument [65] is based on the dispersive inequality; Dod-
son, Lührmann, and Mendelson [38] used the high dimensional version of smoothing
effect and maximal function estimates. In this paper, we give some simple new ap-
proaches combining the atom space method by Koch-Tataru [55] and the variants
of bilinear Strichartz estimate.

Theorem 1.2 (Local well-posedness). Let f ∈ Hs
x(R

3). Then, for almost every
ω ∈ Ω, it holds that:

(1) If 1
6
6 s < 1

2
, then there exists T > 0 and a solution u of (1.7) on [0, T ] such

that

u− eit∆fω ∈ C([0, T ];H
1
2
x (R

3)).

(2) If 1
3
< s < 1

2
, then there exists T > 0 and a solution u of (1.7) on [0, T ] such

that

u− eit∆fω ∈ C([0, T ];H1
x(R

3)).

Our result improves the local results in [4], where Bényi, Oh, and Pocovnicu [4]
proved the same results in Theorem 1.2 (1) for 1

5
< s < 1

2
and Theorem 1.2 (2) for

2
5
< s < 1

2
.

The following are some remarks concerning the theorem.

Remark 1.3. (1) We believe that the first result in Theorem 1.2 is optimal in the
following sense. In fact, we need to control the term

(√
−∆

) 1
2
(
|eit∆fω|2eit∆fω

)
,

and there is at least 1
6
-order derivative acting on each fω.

(2) It seems very difficult to extend the local solution obtained in Theorem 1.2
(1) to global directly. Therefore, we establish the local solution with higher
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regularity in Theorem 1.2 (2). As remarked before, the lower bound 1
3
seems

also sharp in this case.
(3) Our second result can be compared to Dodson, Lührmann, and Mendelson’s

local result [38] for 4D, cubic NLS, which is energy critical, since both results
put the Duhamel term in C([0, T ];H1

x). They proved local well-posedness for
1
3
< s < 1, also except the endpoint exponent 1

3
.

(4) Apparently, the local results in Theorem 1.2 also hold for focusing equations.

The proof of Theorem 1.2 (2) is more difficult than the first local result. We
postponed here to illustrate the main idea. It reduces to consider the term

∇
(
|eit∆fω|2eit∆fω

)

with f merely in H
1
3
x . The task is how to allocate the first order derivative to each

eit∆fω. However, the use of bilinear Strichartz estimate or local smoothing can only
lower down semi-derivative. Then, we overcome the difficulty by following two tools:

• We employ the Up-V p method introduced by Koch-Tataru [55] to exploit the
duality structure.

• We also apply the bilinear Strichartz estimate in the form of∥∥[eit∆φ][e±it∆ψ]
∥∥
Lq
tL

r
x(R×R3) (1.8)

with 1 6 q, r 6 2, see Candy’s result [18]. Particularly, the use of (1.8) with
q < 2 and r = 2 can reduce the loss of derivative, at the cost of lower time
integration exponents.

Let v = eit∆fω, and it suffices to control
∫ T

0

∫

R3

ghi∇vhiv2low dx dt,

where e−it∆g ∈ V 2(R;L2
x), and “hi”, “low” represent the size of frequency. Heuris-

tically, by Hölder’s inequality,
∫ T

0

∫

R3

ghi∇vhiv2low dx dt . ‖ghivlow‖
L

3
2
t L2

x

‖∇vhivlow‖
1
3

L1
tL

2
x
‖∇vhi‖

2
3
L∞
t,x

‖vlow‖
2
3

L∞
t L2

x
.

This can cut down the order of high-frequency derivative to 1
3
for vhi, with a total

loss of low-frequency derivative of order 2
3
, which can be assigned to each vlow.

Note that the above observation is sharp with respect to the regularity. Further-
more, we have a logarithmic loss of derivative when passing g into V 2

∆ by interpola-
tion. That is the main reason why we need s > 1

3
to acquire additional regularity

for summation.
Moreover, if we only requires

u− eit∆fω ∈ C([0, T ];Hσ
x (R

3))

for 1
2
6 σ < 1, the approach in above observation can provide enough additional

regularity for summation. Thus, we expect that the argument works for the optimal
lower endpoint, namely 1

3
σ 6 s < 1

2
, which clearly includes the result in Theorem

1.2 (1). However, in this paper, we only consider two endpoint cases when σ = 1
2

or σ = 1, and present two different methods, respectively. For Theorem 1.2 (1), we
provide another proof without exploiting the duality structure. In fact, there is only
1
2
-order derivative acting on the nonlinear term, and we can transfer it simply using

the bilinear Strichartz estimate.
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1.2. Almost sure scattering. Now we turn to our second main result for the
global well-posedness and scattering:

Theorem 1.4 (Global well-posedness and scattering). Let 3
7
< s 6 1

2
and f ∈

Hs
x(R

3) be radial. Then, for almost every ω ∈ Ω, there exists a solution u of (1.7)
on R such that

u− eit∆fω ∈ C(R;H1
x(R

3)).

Moreover, the solution u scatters, in the sense that there exist u± ∈ H1
x such that

lim
t→±∞

∥∥u− eit∆fω − eit∆u±
∥∥
H1

x
= 0.

The most significant point of this result is that we are able to control the energy
increment containing the term∇eit∆fω, under the assumption that f merely belongs
to Hs

x with some s < 1
2
.

Comparing to the energy-critical results in [38, 51], for 3D, defocusing, cubic
NLS, it is easier to derive space-time estimates, since the Morawetz type estimates
are energy sub-critical. On the other hand, however, this problem seems more
difficult, in the sense that we need to reduce the order of derivative more than 1

2

for ∇eit∆fω, while the current results for energy-critical NLS lower down at most
1
2
-order derivative, in the view of local smoothing effect.
Our method is different from the recent results on the almost sure scattering of

nonlinear Schrödinger and wave equations [12, 13, 37, 38, 51]. To establish the al-
most energy conservation of u−eit∆fω, we make a high-low frequency decomposition
of the initial data, and keep track of the explicit increase of energy bound. Then, we
implement a bootstrap argument for the energy, building upon a perturbed inter-
action Morawetz estimate, various nonlinear estimates and the bilinear Strichartz
estimate.
Lastly, we remark that the lower bound of regularity 3

7
is not sharp. Here, we do

not achieve this optimality, and only give a well-presented result. However, it is of
great interest to improve the regularity’s lower bound down to 1

3
, or even 1

6
.

1.2.1. Sketch the proof of Theorem 1.4. The main ingredient of the proof is summa-
rized as follows.
• High-low frequency decomposition in the probabilistic setting.

In probabilistic setting, we only have the boundedness in the almost every sense.
Roughly speaking, in order to quantify the size of energy, we decompose the proba-
bility space Ω by setting

Ω̃M =
{
ω ∈ Ω : ‖fω‖Hs +N s−1

0 ‖P6N0f
ω‖H1 + ‖eit∆fω‖Ỹ s(R) 6M ‖f‖Hs

}
,

where the Ỹ s-norm is some required space-time norm defined by (3.13) and (5.1)
below, and N0 ∈ 2N depends only on M and ‖f‖Hs. See (5.4) for the precise

definition of Ω̃M . Then it follows from the Borel-Cantelli Lemma that

P
(
∪M>1 Ω̃M

)
= 1.

According to the decomposition above, we may consider ω ∈ Ω̃M for each M
separately. Now, we give the high-low frequency decomposition v = eit∆P>N0f

ω and

w = u− v. Then, for any ω ∈ Ω̃M , there exists a constant C(M) > 0 such that

E(w(0)) 6 C(M, ‖f‖Hs)N
2(1−s)
0 .



3D CUBIC NLS 9

The application of Bourgain’s high-low decomposition method [8] to random
Cauchy problem was first made by Colliander and Oh [28] for 1D NLS on T. How-
ever, in this paper, we do not intend to carry out Bourgain’s iteration procedure.
We only make the decomposition in order for two benefits:

(1) v̂ is supported on {|ξ| & N0}.
(2) We can explicitly keep track of the energy increment of N0.

• Strichartz estimates with 1
2
−derivative gain.

Note that v is not radial anymore under the Wiener randomization. However, due
to the pioneer works [37, 38], we can prove that for the radial f ,

∥∥|∇|s+ 1
2v
∥∥
L2
tL

∞
x
<∞, (1.9)

which is followed by combining a “radialish” Sobolev inequality for the square func-
tion and the local smoothing estimate. Note that the estimate (1.9) gains 1

2
-order

derivative.
• Global space-time bound for the nonlinear solution.

From the perturbed interaction Morawetz estimates, we can derive the bound of

‖w‖L4
t,x
,

which is H
1
4 -critical, under the a priori hypothesis of H1-bound. The high-low fre-

quency decomposition also plays a crucial role for controlling the remainder. How-
ever, this is far from sufficient for the estimates of energy bound.
Then, an observation is that combining the above L4

t,x-estimate and the integral
equation, we can further control

( ∑

N∈2N

N ‖PNw‖2U2
∆(L2

x)

)1/2
,

which is Ḣ
1
2 -critical space-time estimates invoking the Up-V p method, on suitable

long-time interval. Keeping in mind that the equation is Ḣ
1
2 -critical, the space-

time estimates under the same scaling play an important role throughout the whole
argument.
Furthermore, applying the above Ḣ

1
2 -critical estimates, we can update the scaling

up to Ḣ1
x: ( ∑

N∈2N

N2l ‖PNw‖2U2
∆(L2

x)

)1/2
, for any l ∈ (

1

2
, 1].

For this purpose, we also need to use the maximal function techniques to deal with
some critical cases.
In the above argument, the use of U2

∆-space has two advantages: we can transfer
the derivative by duality formula, and the U2

∆-space allows estimates on any long-
time interval.
• Energy bound.

The main goal is to prove

sup
t∈R

E(w(t)) .M N
2(1−s)
0 .

It suffices to prove the bootstrap inequality

sup
t∈I

E(w(t)) .M N−α
0 N

2(1−s)
0 ,
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for some α > 0 under the assumption supt∈I E(w(t)) .M N
2(1−s)
0 . Under this

bootstrap hypothesis, we can also give the precise increase of N0 for the various
global space-time estimates on I obtained in the previous step, which are very useful
for the control of energy increment. Now, the main term in the energy estimate is

∣∣
∫

I

∫

R3

∇whi∇vhiw2
low dx dt

∣∣, (1.10)

where “hi” and “low” represent the size of frequency.

We remark that the Morawetz estimate of the form
∫∫ |w|4

|x|
dx dt plays an im-

portant role in the former energy-critical results [37, 38, 51], but it is not sufficient
for the 3D cubic case. First, the Morawetz estimate cannot yield the global space-
time bounds, as in the previous step. That is the reason why the use of interaction
Morawetz estimate is necessary. Second, using their method, (1.10) can be controlled
by

‖∇whi‖L∞
t L2

x

∥∥√|x|∇vhi
∥∥
L2
tL

∞
x

(∫

I

∫

R3

|wlow|4
|x| dx dt

) 1
2
.

Then, the energy bound can be followed by the “radialish” Sobolev inequality, local
smoothing effect, and Morawetz estimate when s > 1

2
. Unfortunitely, this argument

does not work here, since we are lack of ∇v-estimates in the view of (1.9), when
s < 1

2
in our situation.

To overcome the difficulty, we observe that there is still some gap in the estimate

(1.10) . ‖∇whi‖L∞
t L2

x
‖∇vhi‖L2

tL
∞
x
‖wlow‖2L4

t,x
,

towards the desired bound N
2(1−s)
0 . This gives us the room to use the global space-

time estimates obtained above and the bilinear Strichartz estimate, which can fur-
ther lower down the derivative for ∇vhi.

1.3. Organization of the paper. In Section 2, we give some notation and useful
results. In Section 3, we prove the almost sure space-time estimates for the linear
solution. Then, we prove the local results in Theorem 1.2 in Section 4, and prove
the global well-posedness and scattering results in Theorem 1.4 in Section 5.

2. Preliminary

2.1. Notation. For any a ∈ R, a± := a ± ǫ for arbitrary small ǫ > 0. For any
z ∈ C, we define Rez and Imz as the real and imaginary part of z, respectively.
Let C > 0 denote some constant, and write C(a) > 0 for some constant depending

on coefficient a. If f 6 Cg, we write f . g. If f 6 Cg and g 6 Cf , we write f ∼ g.
Suppose further that C = C(a) depends on a, then we write f .a g and f ∼a g,
respectively. If f 6 2−5g, we denote f ≪ g or g ≫ f .
Moreover, we write “a.e. ω ∈ Ω” to mean “almost every ω ∈ Ω”.

We use f̂ or Ff to denote the Fourier transform of f :

f̂(ξ) = Ff(ξ) :=
∫

Rd

e−ix·ξf(x)dx.
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We also define

F−1g(x) :=
1

(2π)d

∫

Rd

eix·ξg(ξ)dξ.

Using the Fourier transform, we can define the fractional derivative |∇| := F−1|ξ|F
and |∇|s := F−1|ξ|sF .
We next recall the unit-scale frequency decomposition in Definition 1.1. Let ψ ∈

C∞
0 (Rd) is a real-valued function, satisfying for all ξ ∈ Rd, 0 6 ψ 6 1, supp ψ ⊂

[−1, 1]d, ψ(−ξ) = ψ(ξ), and
∑

k∈Zd ψ(ξ − k) = 1. For any k ∈ Z
d, define ψk(ξ) =

ψ(ξ − k). Then, we define

fk = �kf := F−1
(
ψkFf

)
.

We also define a fattening version

�̃kf := F−1
(
ψ(2−1(ξ − k))Ff

)
,

with the property �k = �k�̃k.
We also need the usual inhomogeneous Littlewood-Paley decomposition for the

dyadic number. Take a cut-off function φ ∈ C∞
0 (0,∞) such that φ(r) = 1 if r 6 1

and φ(r) = 0 if r > 2.
Then, we introduce the spatial cut-off function. Denote χ0(r) = φ(r), and χj(r) =

φ(2−jr) for j ∈ N+. We also define a fattening version χ̃j := φ(2−j−1|ξ|) with the
property χj = χjχ̃j .
For dyadic N ∈ 2N, when N > 1, let φ6N(r) = φ(N−1r) and φN(r) = φ6N(r)−

φ6N/2(r). We define the Littlewood-Paley dyadic operator

f6N = P6Nf := F−1(φ6N(|ξ|)f̂(ξ)),
and

fN = PNf := F−1(φN(|ξ|)f̂(ξ)).
We also define that f>N = P>Nf := f − P6Nf , f≪N = P≪Nf , f&N := P&Nf ,
f.N := P.Nf , and f∼N = P∼Nf .
Let S(Rd) be the Schwartz space, S ′(Rd) be the tempered distribution space, and

C∞
0 (Rd) be the space of all the smooth compact-supported functions.
Given 1 6 p 6 ∞, Lp(Rd) denotes the usual Lebesgue space. We define the

Sobolev space

Ẇ s,p(Rd) :=
{
f ∈ S ′(Rd) : ‖f‖Ẇ s,p(Rd) := ‖|∇|s f‖Lp(Rd) < +∞

}
.

We denote that Ḣs(Rd) := Ẇ s,2(Rd). The inhomogeneous spaces are defined by

W s,p(Rd) = Ẇ s,p ∩ Lp(Rd), and Hs(Rd) = Ḣs ∩ L2(Rd).

We often use the abbreviations Hs = Hs(Rd) and Lp = Lp(Rd). We also define 〈·, ·〉
as real L2 inner product:

〈f, g〉 = Re

∫
f(x)g(x) dx.

For any 1 6 p <∞, define lpN = lp
N∈2N

by its norm

‖cN‖plp
N∈2N

:=
∑

N∈2N

|cN |p.
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The space lpk = lp
k∈Zd is defined in a similar way. In this paper, we use the following

abbreviations
∑

N :N6N1

:=
∑

N∈2N:N6N1

, and
∑

N6N1

:=
∑

N,N1∈2N:N6N1

.

We then define the mixed norms: for 1 6 q < ∞, 1 6 r 6 ∞, and the function
u(t, x), we define

‖u‖q
Lq
tL

r
x(R×Rd)

:=

∫

R

‖u(t, ·)‖qLr
x
dt,

and for the function uN(x), we define

‖uN‖qlq
N
Lr
x(2

N×Rd)
:=

∑

N

‖uN(·)‖qLr
x
.

The q = ∞ case can be defined similarly.
For any 0 6 γ 6 1, we call that the exponent pair (q, r) ∈ R2 is Ḣγ-admissible,

if 2
q
+ d

r
= d

2
− γ, 2 6 q 6 ∞, 2 6 r 6 ∞, and (q, r, d) 6= (2,∞, 2). If γ = 0, we say

that (q, r) is L2-admissible.

2.2. Atom space and bounded variation space. We recall the definitions of
Up and V p, and some properties used in this paper. The Up-V p method was first
introduced by Koch-Tataru [55], and we also refer the readers to [20, 44, 56, 57] for
their complete theories.

Definition 2.1. Let Z be the set of finite partitions −∞ < t0 < t1 < ... < tK = ∞.

(1) For {tk}Kk=0 ∈ Z and {φk}K−1
k=0 ⊂ L2

x with
∑K−1

k=0 ‖φk‖pL2
x
= 1, we call the func-

tion a : R→L2
x given by a =

∑K
k=1 1[tk−1,tk)φk−1 a Up-atom. Furthermore,

we define the atomic space

Up :=
{
u =

∞∑

j=1

λjaj : aj U
p-atom, λj ∈ C with

∞∑

j=1

|λj| <∞
}
, (2.1)

with norm

‖u‖Up(R;L2) := inf
{ ∞∑

j=1

|λj| : u =

∞∑

j=1

λjaj , aj U
p-atom, λj ∈ C

}
. (2.2)

(2) We define V p as the normed space of all functions v : R→L2 such that

‖v‖V p(R;L2
x)
:= sup

{tk}
K
k=0∈Z

( K∑

k=1

‖v(tk)− v(tk−1)‖pL2
x

)1/p
(2.3)

is finite, where we use the convention v(tK) = v(∞) = 0. V p
rc denotes the

closed subspace of all right-continuous V p functions with limt→−∞ v(t) = 0.
(3) We define U2

∆(R;L
2
x) as the adapted normed space:

U2
∆(R;L

2
x) :=

{
u : ‖u‖U2

∆(R;L2
x)
:=

∥∥e−it∆u
∥∥
U2(R;L2

x)
<∞

}
.

Similarly, V 2
∆(R;L

2
x) denotes the adapted normed space

V 2
∆(R;L

2
x) :=

{
u : ‖u‖V 2

∆(R;L2
x)
:=

∥∥e−it∆u
∥∥
V 2(R;L2

x)
<∞, e−it∆u ∈ V 2

rc

}
.
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In this paper, we will use restriction spaces to some interval I ⊂ R: Up(I;L2
x),

V p(I;L2
x), U

p
∆(I;L

2
x), and V

p
∆(I;L

2
x). See Remark 2.23 in [44] for more details.

Note that for 1 6 p < q <∞, the embeddings

Up(R;L2
x)→֒L∞

t (R;L2
x), V

2(R;L2
x)→֒L∞

t (R;L2
x),

and Up →֒V p
rc→֒U q are continuous.

We need the following classical linear estimate and duality formula:

Lemma 2.2 ([44]). Let I be an interval such that 0 = inf I. Then, for any f ∈ L2
x,∥∥eit∆f

∥∥
U2
∆(I;L2

x)
. ‖f‖L2

x
,

and for F (t, x) ∈ L1
tL

2
x(I × Rd),

∥∥
∫ t

0

ei(t−s)∆F (s) ds
∥∥
U2
∆(I;L2

x)
= sup

‖g‖
V 2
∆

(I;L2
x)
=1

∣∣∣∣
∫

I

∫

R3

F (t)g(t) dx dt

∣∣∣∣ .

We also need the following interpolation result to transfer from U2
∆ into V 2

∆.

Lemma 2.3 ([44]). Let q > 1, E be a Banach space and T : U q
∆→E be a bounded,

linear operator with ‖Tu‖E 6 Cq ‖u‖Uq
∆
. In addition, assume that for some 1 6 p <

q, there exists Cp ∈ (0, Cq] such that the estimate ‖Tu‖E 6 Cp ‖u‖Up
∆
holds true for

all u ∈ Up
∆. Then, T satisfies the estimate for u ∈ V p

∆,

‖Tu‖E 6
4

(1− p/q) ln 2
Cp

(
1 + 2(1− p/q) ln 2 + ln

Cq

Cp

)
‖u‖V p

∆
. (2.4)

2.3. Useful lemmas. In this subsection, we gather some useful results.

Lemma 2.4 (Schur’s test). For any a > 0, let sequences {aN}, {bN} ∈ l2N∈2N , then
we have

∑

N16N

(N1

N

)a
aNbN1 . ‖aN‖l2

N
‖bN‖l2

N
. (2.5)

Lemma 2.5 (Hardy’s inequality). For 1 < p < d, we have that∥∥|x|−1u
∥∥
Lp
x(Rd)

. ‖∇u‖Lp
x(Rd) .

Lemma 2.6 (Local smoothing, [29, 43, 50]). We have that

sup
R>0

R− 1
2

∥∥eit∆f
∥∥
L2
t (R;L

2
|x|6R

)
.

∥∥|∇|− 1
2f

∥∥
L2
x
.

Lemma 2.7 (Strichartz estimate, [47, 57]). Let I ⊂ R. Suppose that (q, r) and
(q̃, r̃) are L2

x-admissible. Then,
∥∥eit∆ϕ

∥∥
Lq
tL

r
x(R×Rd)

. ‖ϕ‖L2
x
, (2.6)

and
∥∥
∫ t

0

ei(t−s)∆F (s) ds
∥∥
Lq
tL

r
x(R×Rd)

. ‖F‖
Lq̃′

t Lr̃′
x (R×Rd)

. (2.7)

Moreover, if we assume further 2 < q <∞, then

‖u‖Lq
tL

r
x(I×R3) . ‖u‖Uq

∆(I;L2
x)
. ‖u‖V 2

∆(I;L2
x)
. (2.8)

In this paper, we need the the following multi-scale bi-linear Strichartz estimate
for Schrödinger equation, which is a particular case of Theorem 1.2 in [18]:
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Lemma 2.8. Let 1 6 q, r 6 2, 1
q
+ 2

r
< 2, and suppose that M,N ∈ 2Z satisfy

M ≪ N . Then for any φ, ψ ∈ L2
x(R

3),

∥∥[eit∆PNφ][e
±it∆PMψ]

∥∥
Lq
tL

r
x(R×R3)

.
M4− 4

r
− 2

q

N1− 1
r

‖PNφ‖L2
x
‖PMψ‖L2

x
. (2.9)

The bilinear Strichartz estimate was first introduced by Bourgain [8], and further
extended in [27, 74], when q = r = 2. The q, r < 2 case was referred to bilinear
restriction estimates for paraboloid, first obtained by Tao [70], based on the method
developed by Wolff [77].
Using the same argument by Visan [74], and combining the result by Candy [18],

we can transfer the linear solutions in bi-linear estimate of Lemma 2.8 into general
functions:

Lemma 2.9. Let I ⊂ R, a ∈ I, 1 6 q, r 6 2, 1
q
+ 2

r
< 2, and suppose that M,N ∈ 2Z

satisfy M ≪ N . Moreover, for any t ∈ I, û(t, ·) is supported on {ξ : |ξ| ∼ N}, and
v̂(t, ·) is supported on {ξ : |ξ| ∼M}. Then,

‖uv‖Lq
tL

r
x(I×R3) .

M4− 4
r
− 2

q

N1− 1
r

‖u‖S∗(I×R3) ‖v‖S∗(I×R3) , (2.10)

where for any L2-admissible (q̃, r̃),

‖u‖S∗(I×R3) := min
{
‖u(a)‖L2

x
+ ‖(i∂t +∆)u‖

Lq̃′

t Lr̃′
x (I×R3)

, ‖u‖U2
∆(I;L2

x(R
3))

}
. (2.11)

2.4. Maximal function estimates and Littlewood-Paley theory. Let M be
the Hardy-Littlewood maximal operator:

Mf(x) := sup
r>0

1

|B(0, r)|

∫

B(0,r)

|f(x− y)| dy,

where B(0, r) =
{
x ∈ R

d : |x| 6 r
}
. M is bounded on Lp

x for 1 < p < ∞. Further-
more, we have the vector-valued version of the boundedness:

Lemma 2.10 (Lpl2-boundedness for maximal function, see [68]). Let 1 < p < ∞
and {fj}j∈N+ be a sequence of functions such that ‖fj‖l2

j∈N+
∈ Lp

x. Then, we have

‖M(fj)‖Lp
xl2

j∈N+
. ‖fj‖Lp

xl2
j∈N+

.

We also gather some useful classical results about the Littlewood-Paley projection
operator.

Lemma 2.11 (Maximal Littlewood-Paley estimates). Let 1 < p < ∞ and f ∈
Lp
x(R

d). Then, we have∥∥ sup
N∈2N

∣∣PNf
∣∣∥∥

Lp
x
+
∥∥ sup

N∈2N

∣∣P6Nf
∣∣∥∥

Lp
x
. ‖f‖Lp

x
.

Proof. Note that F−1(φN) is a L1-renormalised, radial Schwartz function, we have
that for any x ∈ Rd, ∣∣PNf(x)

∣∣ =
∣∣F−1(φN) ∗ f(x)

∣∣ . M(f)(x),

where M is the Hardy-Littlewood maximal operator. Then, by the Lp boundedness
of M, ∥∥ sup

N∈2N

∣∣PNf
∣∣∥∥

Lp
x
.

∥∥M(f)
∥∥
Lp
x
. ‖f‖Lp

x
.
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The proof for P6Nf follows similarly. �

Lemma 2.12 (Littlewood-Paley estimates). Let 1 < p <∞ and f ∈ Lp
x(R

d). Then,
we have

‖fN‖Lp
xl

2
N∈2N

∼p ‖f‖Lp
x
.

2.5. Probabilistic theory. We recall the large deviation estimate, which holds for
the random variable sequence {Regk, Imgk} in the Definition 1.1.

Lemma 2.13 (Large deviation estimate, [16]). Let (Ω,A,P) be a probability space.
Let {gn}n∈N+ be a sequence of real-valued, independent, zero-mean random variables
with associated distributions {µn}n∈N+ on Ω. Suppose {µn}n∈N+ satisfies that there
exists c > 0 such that for all γ ∈ R and n ∈ N+

∣∣
∫

R

eγxdµn(x)
∣∣ 6 ecγ

2

,

then there exists α > 0 such that for any λ > 0 and any complex-valued sequence
{cn}n∈N+ ∈ l2n, we have

P
({
ω :

∣∣
∞∑

n=1

cngn(ω)
∣∣ > λ

})
6 2 exp

{
− αλ ‖cn‖−2

l2n

}
.

Furthermore, there exists C > 0 such that for any 2 6 p < ∞ and complex-valued
sequence {cn}n∈N+ ∈ l2n, we have

∥∥
∞∑

n=1

cngn(ω)
∥∥
Lp
ω(Ω)

6 C
√
p ‖cn‖l2n . (2.12)

The following lemma can be proved by the method in [73], see also [37, 38].

Lemma 2.14. Let F be a real-valued measurable function on a probability space
(Ω,A,P). Suppose that there exists C0 > 0, K > 0 and p0 > 1 such that for any
p > p0, we have

‖F‖Lp
ω(Ω) 6

√
pC0K.

Then, there exist c > 0 and C1 > 0, depending on C0 and p0 but independent of K,
such that for any λ > 0,

P
({
ω ∈ Ω : |F (ω)| > λ

})
6 C1e

−cλ2K−2

.

Particularly, we have

P
({
ω ∈ Ω : |F (ω)| <∞

})
= 1.

3. Almost sure Strichartz estimates

3.1. Non-radial data.

Lemma 3.1. Let s ∈ R and f ∈ Hs
x. Suppose that the randomization fω is defined

in Definition 1.1. Then, we have the following estimates:
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(1) For any 2 6 q, r <∞ with 2
q
+ 3

r
6 3

2
, and for any p > max {q, r},

∥∥〈∇〉seit∆PNf
ω
∥∥
Lp
ωl2NLq

tL
r
x(Ω×2N×R×R3)

.
√
p ‖f‖Hs

x
. (3.1)

(2) For any p > 2,
∥∥〈∇〉seit∆PNf

ω
∥∥
Lp
ωl2NL∞

t L2
x(Ω×2N×R×R3)

.
√
p ‖f‖Hs

x
. (3.2)

(3) For any 2 6 q <∞, there exists p0 > 2 such that for any p > p0,∥∥〈∇〉s−eit∆PNf
ω
∥∥
Lp
ωl2NLq

tL
∞
x (Ω×2N×R×R3)

.
√
p ‖f‖Hs

x
. (3.3)

(4) For any 2 < r 6 ∞, there exists p0 > 2 such that for any p > p0,∥∥〈∇〉s−eit∆PNf
ω
∥∥
Lp
ωl2NL∞

t Lr
x(Ω×2N×R×R3)

.
√
p ‖f‖Hs

x
. (3.4)

Remark 3.2. We remark that for example, by Minkowski’s inequality and Lemma
2.12, (3.1) also gives that

∥∥〈∇〉seit∆fω
∥∥
Lp
ωL

q
tL

r
x(Ω×R×R3)

.
√
p ‖f‖Hs

x
.

Proof. In the proof of this lemma, we restrict the variables on ω ∈ Ω, N ∈ 2N, t ∈ R,
x ∈ R3, and k ∈ Z3.
We first prove (3.1). By Minkowski’s inequality and Lemma 2.13, we have

∥∥〈∇〉seit∆PNf
ω
∥∥
Lp
ωl2NLq

tL
r
x
.
∥∥〈∇〉seit∆PNf

ω
∥∥
l2
N
Lq
tL

r
xL

p
ω

.
√
p
∥∥〈∇〉seit∆�kPNf

∥∥
l2
N
Lq
tL

r
xl

2
k

.
√
p
∥∥〈∇〉seit∆PN�kf

∥∥
l2
N
l2
k
Lq
tL

r
x
.

(3.5)

Now, let 2 6 r0 6 r such that (q, r0) is L2
x-admissible. For any k ∈ Z3, by the

support property of ψk and Bernstein’s inequality, we have
∥∥〈∇〉seit∆PN�kf

∥∥
Lq
tL

r
x
.

∥∥〈∇〉seit∆PN�kf
∥∥
Lq
tL

r0
x
. (3.6)

Then, by (3.5), (3.6), Lemma 2.7, and orthogonality, we have
∥∥〈∇〉seit∆PNf

ω
∥∥
Lp
ωl2NLq

tL
r
x
.
√
p
∥∥〈∇〉seit∆PN�kf

∥∥
l2
N
l2
k
Lq
tL

r0
x

.
√
p ‖〈∇〉sPN�kf‖l2

N
l2
k
L2
x
.

√
p ‖f‖Hs

x
.

This gives (3.1).
Next, we prove (3.2). By Plancherel’s identity, we have

∥∥〈∇〉seit∆PNf
ω
∥∥
Lp
ωl2NL∞

t L2
x
. ‖〈∇〉sPNf

ω‖Lp
ωl2NL2

x
. ‖〈∇〉sfω‖Lp

ωL2
x
. (3.7)

Then, by Minkowski’s inequality and Lemma 2.13,

‖〈∇〉sfω‖Lp
ωL2

x
. ‖〈∇〉sfω‖L2

xL
p
ω

.
√
p ‖〈∇〉s�kf‖L2

xl
2
k
.

√
p ‖f‖Hs

x
.

(3.8)

Then, (3.7) and (3.8) imply (3.2).

We then prove (3.3). Let 0 < ε≪ 1. Using the Sobolev’s embedding W
2ε, 3

ε
x →֒L∞

x

in x, we have
∥∥〈∇〉s−2εeit∆PNf

ω
∥∥
Lp
ωl2NLq

tL
∞
x
.

∥∥〈∇〉seit∆PNf
ω
∥∥
Lp
ωl2NLq

tL
3
ε
x

. (3.9)
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Let p0 = max
{
q, 3

ε

}
and 2 6 r0 6

3
ε
such that (q, r0) is L

2
x-admissible. Then, similar

as above, by Minkowski’s, Bernstein’s inequalities, Lemmas 2.7, and 2.13, for any
p > p0, we have

∥∥〈∇〉seit∆PNf
ω
∥∥
Lp
ωl2NLq

tL
3
ε
x

.
∥∥〈∇〉seit∆PNf

ω
∥∥
l2
N
Lq
tL

3
ε
x Lp

ω

.
√
p
∥∥〈∇〉seit∆PN�kf

∥∥
l2
N
Lq
tL

3
ε
x l2

k

.
√
p
∥∥〈∇〉seit∆PN�kf

∥∥
l2
N
l2
k
Lq
tL

3
ε
x

.
√
p
∥∥〈∇〉seit∆PN�kf

∥∥
l2
N
l2
k
Lq
tL

r0
x

.
√
p ‖〈∇〉sPN�kf‖l2

N
l2
k
L2
x
.

√
p ‖f‖Hs

x
.

(3.10)

By (3.9) and (3.10), we have that (3.3) holds.
Finally, we prove (3.4). We only consider the r = ∞ case. In fact, when r < ∞,

we can prove it using interpolation between (3.2) and the r = ∞ case. Let 0 <

ε≪ 1. Using Minkowski’s inequality, the Sobolev’s embedding W
2ε, 1

ε

t →֒L∞
t in t and

W
2ε, 3

ε
x →֒L∞

x in x, we have
∥∥〈∇〉s−6εeit∆PNf

ω
∥∥
Lp
ωl2NL∞

t L∞
x
.
∥∥〈∇〉s−4εeit∆PNf

ω
∥∥
Lp
ωl

2
N
L∞
t L

3
ε
x

.
∥∥〈∇〉s−4ε〈∂t〉2εeit∆PNf

ω
∥∥
Lp
ωl2NL

3
ε
x L

1
ε
t

.
∥∥〈∇〉seit∆PNf

ω
∥∥
Lp
ωl

2
N
L

3
ε
x L

1
ε
t

.
∥∥〈∇〉seit∆PNf

ω
∥∥
Lp
ωl2NL

1
ε
t L

3
ε
x

.

(3.11)

Let p0 = 3
ε
and 2 < r0 6 3

ε
such that (1

ε
, r0) is L2

x-admissible. Then, similar as
above, for any p > p0, we have

∥∥〈∇〉seit∆PNf
ω
∥∥
Lp
ωl

2
N
L

1
ε
t L

3
ε
x

.
∥∥〈∇〉seit∆PNf

ω
∥∥
l2
N
L

1
ε
t L

3
ε
x Lp

ω

.
√
p
∥∥〈∇〉seit∆PN�kf

∥∥
l2
N
L

1
ε
t L

3
ε
x l2

k

.
√
p
∥∥〈∇〉seit∆PN�kf

∥∥
l2
N
l2
k
L

1
ε
t L

3
ε
x

.
√
p
∥∥〈∇〉seit∆PN�kf

∥∥
l2
N
l2
k
L

1
ε
t L

r0
x

.
√
p ‖〈∇〉sPN�kf‖l2

N
l2
k
L2
x
.

√
p ‖f‖Hs

x
.

(3.12)

By (3.11) and (3.12), we have that (3.4) holds. �

Next, we gather all the space-time norms that will be used below. Let 1
6
6 s < 1

2
and ε > 0 be absolutely small. Define the Y s(I) space by its norm

‖v‖Y s(I) :=
∥∥|∇|svN

∥∥
l2
N
L4
tL

9
2
x (2N×I×R3)

+
∥∥|∇|svN

∥∥
l2
N
L6
t,x(2

N×I×R3)

+
∥∥|∇|svN

∥∥
l2
N
L4
tL

18
x (2N×I×R3)

+ ‖vN‖
l2
N
L

20
7

t L10
x (2N×I×R3)

+ ‖v‖L4
tL

12
x (I×R3) + ‖v‖L3

tL
∞
x (I×R3) + ‖v‖L4

tL
6
x(I×R3) + ‖v‖L3

tL
6
x(I×R3)

+ ‖v‖
L

3
1−ε
t L

6
1−3ε
x (I×R3)

+ ‖v‖
L

4(4−3ε)
5+3ε

t L
2(4−3ε)
1−3ε

x (I×R3)

,

(3.13)
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and the Z-norm by

‖v‖Zs(I) :=
∥∥〈∇〉s−PNv

∥∥
l2
N
L∞
t L∞

x (2N×I×R3)
+ ‖〈∇〉sPNv‖l2

N
L∞
t L2

x(2
N×I×R3) . (3.14)

Then, by Lemmas 3.1 and 2.14, we have

Corollary 3.3. Let 1
6
6 s < 1

2
and f ∈ Hs

x. Then, there exist constants C, c > 0
such that for any λ,

P
({
ω ∈ Ω :

∥∥eit∆fω
∥∥
Y s(R)

+
∥∥eit∆fω

∥∥
Zs(R)

> λ
})

6 C exp
{
− cλ2 ‖f‖−2

Hs
x(R

3)

}
.

Moreover,

∥∥eit∆fω
∥∥
Y s(R)

+
∥∥eit∆fω

∥∥
Zs(R)

< +∞, a.e. ω ∈ Ω.

3.2. Radial data. Here, we derive a super-critical estimate for the randomized
radial data that can acquire 1

2
-derivative. Such class of estimates was first proved

by Dodson, Lührmann, and Mendelson [38] in 4D case, based on their “radialish”
Sobolev’s inequality [37]. We adapt their method to the 3D case:

Proposition 3.4. Let 4 < r 6 ∞, s0 ∈ R. Suppose that f ∈ Hs0
x (R3) is radial.

Then for any s < s0 +
1
2
, there exist constants C, c > 0 such that for any λ > 0,

P
({
ω ∈ Ω :

∥∥ |∇|s eit∆fω
∥∥
L2
tL

r
x(R×R3)

> λ
})

6 C exp
{
− cλ2 ‖f‖−2

H
s0
x (R3)

}
. (3.15)

Moreover,

∥∥ |∇|s eit∆fω
∥∥
L2
tL

r
x(R×R3)

<∞, a.e. ω ∈ Ω. (3.16)

To prove Proposition 3.4, we need the following 3D version of radial Sobolev
estimate for the square function.

Lemma 3.5. Suppose that the function f is radial and that 2 6 r 6 ∞. Then, for
any ǫ > 0, there exists Cǫ > 0 such that,

∥∥|x|1− 2
r ‖fk‖l2

k

∥∥
Lr
x(R

3)
6 Cǫ ‖f‖Hǫ

x(R
3) . (3.17)

Proof. It suffices to prove the r = ∞ case, since the general case can be obtained
by interpolation with

∥∥ ‖fk‖l2
k

∥∥
L2
x(R

3)
∼ ‖f‖L2

x(R
3) .

Since f is radial, we can write f̂(x) = f̂(|x|). Assume without loss of generality
that x = (0, 0, |x|). Then, by integration-by-parts and the spherical coordinate

ξ(ρ, θ, α) = (ρ sin θ cosα, ρ sin θ sinα, ρ cos θ),
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we have

fk =

∫ 2π

0

∫ π

0

∫ ∞

0

ψk(ξ(ρ, θ, α))f̂(ρ)e
i|x|ρ cos θρ2 sin θdρdθdα

=− 1

i|x|

∫ ∞

0

∫ 2π

0

∫ π

0

ψk

(
ξ(ρ, θ, α)

)
∂θ

(
ei|x|ρ cos θ

)
f̂(ρ)ρ dθdα dρ

=
1

i|x|

∫ ∞

0

∫ 2π

0

∫ π

0

∂θ
(
ψk(ξ(ρ, θ, α))

)
ei|x|ρ cos θf̂(ρ)ρ dθdαdρ (3.18a)

− 1

i|x|

∫ ∞

0

∫ 2π

0

ψk(ξ(ρ, π, α))e
−i|x|ρf̂(ρ)ρ dαdρ (3.18b)

+
1

i|x|

∫ ∞

0

∫ 2π

0

ψk(ξ(ρ, 0, α))e
i|x|ρf̂(ρ)ρ dαdρ. (3.18c)

Denote that

k = (k1, k2, k3) = (|k| sin θk cosαk, |k| sin θk sinαk, |k| cos θk).

By the support of ψk, we have that ρ is supported on the set {ρ : |ρ− |k|| . 1}, θ is
supported on

{
θ : |θ − θk| . 1

|k|

}
, and α is supported on

{
α : |α− αk| . 1

〈|k| sin θk〉

}
.

Furthermore, we also have

|∂θ (ψk(ξ(ρ, θ, α)))| . ρ |∇ξψk(ξ(ρ, θ, α))| .

Therefore, we have

|(3.18a)| . 1

|x|
1

|k|
1

〈|k| sin θk〉
∥∥f̂(ρ)ρ2

∥∥
L1
|ρ−|k||.1

.
1

|x|
1

〈|k| sin θk〉
∥∥f̂(ρ)ρ

∥∥
L2
|ρ−|k||.1

.

(3.19)

Similarly, we also have

|(3.18b)|+ |(3.18c)| . 1

|x|
1

〈|k| sin θk〉
∥∥f̂(ρ)ρ

∥∥
L2
|ρ−|k||.1

. (3.20)

Then, by (3.19) and (3.20),

|x|2
∑

k∈Z3

|fk|2 .
∑

k∈Z3

1

〈|k| sin θk〉2
∥∥f̂(ρ)ρ

∥∥2

L2
|ρ−|k||.1

∼
∑

N∈N

∑

k1,k2∈Z2

|k1|6N,|k2|6N

1

〈k21 + k22〉
∥∥f̂(ρ)ρ

∥∥2

L2
|ρ−N|.1

.
∑

N∈N

lnN
∥∥f̂(ρ)ρ

∥∥2

L2
|ρ−N|.1

. ‖f‖2Hǫ
x(R

3) .

This finishes the proof of (3.17). �

We also need the following mismatch estimates concerning the commutator of χj

and �k. The same result was already proved in [38] for 4D, and their argument can
be easily extended to general dimensions. Therefore, we omit the details of proof.
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Lemma 3.6 (Mismatch estimates). Let 2 6 r 6 ∞, j, l > 0 and k,m ∈ Z3. Suppose
that l > j + 5 and |k −m| > 100. Then for any integer M > 0, we have

‖χj�kχl‖L2
x(R

3)→Lr
x(R

3) 6 CM2−Ml, (3.21)

and

‖�kχl�m‖L2
x(R

3)→Lr
x(R

3) 6 CM2−Ml|k −m|−M . (3.22)

Now, we give the proof of Proposition 3.4 using Lemmas 3.5 and 3.6.

Proof of Proposition 3.4. Take some ǫ > 0 that will be defined later. We first con-
sider the r <∞ case. Then, for any p > r, by Lemma 2.13,

∥∥|∇|s eit∆fω
∥∥
Lp
ωL2

tL
r
x
.

∑

N∈2N

N s
∥∥eit∆PNf

ω
∥∥
L2
tL

r
xL

p
ω

.
√
p
∑

N∈2N

N s
∥∥eit∆�kPNf

∥∥
L2
tL

r
xl

2
k

.
√
p
∑

N∈2N

∑

j>0

N s
∥∥χj�kχ6j+5e

it∆PNf
∥∥
L2
tL

r
xl

2
k

(3.23a)

+
√
p
∑

N∈2N

∑

j>0

N s
∥∥χj�kχ>j+5e

it∆PNf
∥∥
L2
tL

r
xl

2
k

. (3.23b)

We first bound the term (3.23a). When j = 0, by Lemmas 3.5 and 2.6,
∑

N∈2N

N s
∥∥χ0�kχ65e

it∆PNf
∥∥
L2
tL

r
xl

2
k

.
∑

N∈2N

N s
∥∥�kP∼Nχ65e

it∆PNf
∥∥
L2
tL

r
xl

2
k:|k|∼N

.
∑

N∈2N

N s
∥∥ |∇|ǫ P∼Nχ65e

it∆PNf
∥∥
L2
t,x

.
∑

N∈2N

N s+ǫ
∥∥χ65e

it∆PNf
∥∥
L2
t,x

.
∑

N∈2N

N s+ǫ− 1
2 ‖PNf‖L2

x
. ‖f‖

H
s+2ǫ− 1

2
x

.

(3.24)

For j > 1, also by Lemmas 3.5 and 2.6,
∑

N∈2N

∑

j>1

N s
∥∥χj�kχ6j+5e

it∆PNf
∥∥
L2
tL

r
xl

2
k

.
∑

N∈2N

∑

j>1

N s2−(1− 2
r
)j
∥∥∥χj |x|1−

2
r�kP∼Nχ6j+5e

it∆PNf
∥∥∥
L2
tL

r
xl

2
k

.
∑

N∈2N

∑

j>1

N s2−(1− 2
r
)j
∥∥|∇|ǫ P∼Nχ6j+5e

it∆PNf
∥∥
L2
t,x

.
∑

N∈2N

∑

j>1

N s+ǫ2−(1− 2
r
)j
∥∥χ6j+5e

it∆PNf
∥∥
L2
t,x

.
∑

N∈2N

∑

j>1

N s− 1
2
+ǫ2−( 1

2
− 2

r
)j ‖PNf‖L2

x
. ‖f‖

H
s+2ǫ− 1

2
x

.

(3.25)

Then, combining (3.24) and (3.25), we have

(3.23a) .
√
p ‖f‖

H
s+2ǫ− 1

2
x

. (3.26)
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Next, we consider (3.23b). We decompose that

(3.23b) .
√
p
∑

N∈2N

∑

j>0

N s
∥∥χj�kχ>j+5e

it∆PNf
∥∥
L2
tL

r
xl

2
k

.
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s
∥∥χj�kχlχ̃le

it∆PNf
∥∥
L2
tL

r
xl

2
k

.
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s
∥∥ ∑

m∈Z3:|m−k|6100

χj�kχl�mχ̃le
it∆PNf

∥∥
L2
tL

r
xl

2
k

(3.27a)

+
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s
∥∥ ∑

m∈Z3:|m−k|>100

χj�kχl�mχ̃le
it∆PNf

∥∥
L2
tL

r
xl

2
k

.

(3.27b)

Now, we take some M ≫ 1. For (3.27a), by Minkowski’s inequality, Lemmas 3.6,
and 2.6,

(3.27a) .
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s
∥∥ ∑

m∈Z3:|m−k|6100

χj�kχl�mχ̃le
it∆PNf

∥∥
L2
tL

r
xl

2
k

.
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s
∥∥ ∑

m∈Z3:|m−k|6100

∥∥χj�kχl�mχ̃le
it∆PNf

∥∥
L2
tL

r
x

∥∥
l2
k

.
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s2−Ml
∥∥ ∑

m∈Z3:|m−k|6100

∥∥�mχ̃le
it∆PNf

∥∥
L2
t,x

∥∥
l2
k

.
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s2−Ml
∥∥�kχ̃le

it∆PNf
∥∥
l2
k
L2
t,x

.
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s2−Ml
∥∥χ̃le

it∆PNf
∥∥
L2
t,x

.
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s− 1
22−(M− 1

2
)l ‖PNf‖L2

x
.

√
p ‖f‖

H
s− 1

2+ǫ
x

.

(3.28)

Similarly by Lemmas 3.6, 2.6, and Young’s inequality in k,

(3.27b) =
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s
∥∥ ∑

m∈Z3:|m−k|>100

χj�kχl�mχ̃le
it∆PNf

∥∥
L2
tL

r
xl

2
k

.
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s
∥∥ ∑

m∈Z3:|m−k|>100

∥∥�kχl�m�̃mχ̃le
it∆PNf

∥∥
L2
tL

r
x

∥∥
l2
k

.
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s2−Ml
∥∥ ∑

m∈Z3:|m−k|>100

|k −m|−M
∥∥�̃mχ̃le

it∆PNf
∥∥
L2
t,x

∥∥
l2
k

.
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s2−Ml
∥∥∥∥�̃mχ̃le

it∆PNf
∥∥
L2
t,x

∥∥
l2m

.
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s2−Ml
∥∥χ̃le

it∆PNf
∥∥
L2
t,x

.
√
p
∑

N∈2N

∑

j>0

∑

l>j+5

N s− 1
22−(M− 1

2
)l ‖PNf‖L2

x
.

√
p ‖f‖

H
s− 1

2+ǫ

x

.

(3.29)
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Therefore, we have

(3.23b) .
√
p ‖f‖

H
s− 1

2+ǫ

x

. (3.30)

By (3.26) and (3.30),
∥∥|∇|s eit∆fω

∥∥
Lp
ωL2

tL
r
x
.

∑

N∈2N

N s
∥∥eit∆PNf

ω
∥∥
L2
tL

r
xL

p
ω

.(3.23a) + (3.23b) .
√
p ‖f‖

H
s− 1

2+2ǫ
x

.

Let ǫ 6 1
2
(s0 − s+ 1

2
), then we have (3.15) and (3.16) hold for r <∞.

When r = ∞, using the similar argument above with r = 3
ε
,

∥∥|∇|s eit∆fω
∥∥
Lp
ωL2

tL
∞
x
.

∑

N∈2N

N s+ǫ
∥∥eit∆PNf

ω
∥∥
L2
tL

3
ǫ
x Lp

ω

.
√
p ‖f‖

H
s− 1

2+3ǫ
x

.

Let ǫ 6 1
3
(s0 − s+ 1

2
), then we finish the proof of the r = ∞ case. �

4. Local well-posedness

4.1. Reduction to the deterministic problem. Suppose that u = v + w with
u0 = v0 + w0, v = eit∆v0, and w satisfying

{
i∂tw +∆w = |u|2u,
w(0, x) = w0(x).

(4.1)

Define the working space

‖w‖
X

1
2 (I)

=
( ∑

N∈2N

N ‖wN‖2U2
∆(I;L2

x)

) 1
2 . (4.2)

We first have a local result for H
1
6
x -data:

Proposition 4.1. Let 1
6
6 s < 1

2
, v ∈ Y s∩Zs(R), and w0 ∈ H

1
2
x . Then, there exists

some T > 0 depending on s, ‖w0‖
H

1
2
x

, and ‖v‖Y s(R)∩Zs(R) such that there uniquely

exists a solution w of (1.7) on [0, T ] with

w ∈ C([0, T ];H
1
2
x ) ∩X

1
2 ([0, T ]).

Next, we turn to the improved local result for H
1
3
+

x -data. Define

‖w‖X1(I) =
( ∑

N∈2N

N2 ‖wN‖2U2
∆(I;L2

x)

) 1
2 .

Then our local result for H
1
3
+

x -data is

Proposition 4.2. Let 1
3
< s 6 1

2
, v ∈ Y s ∩Zs(R), and w0 ∈ H1

x. Then, there exists
some T > 0 depending on s, ‖w0‖H1

x
, and ‖v‖Y s(R)∩Zs(R) such that there uniquely

exists a solution w of (1.7) on [0, T ] with

w ∈ C([0, T ];H1
x) ∩X1([0, T ]).
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In fact, the s = 1
2
case is trivial. However, we need it for the global result in

Proposition 5.1.
Now, we give the proof of Theorem 1.2, assuming that Propositions 4.1 and 4.2

hold.

Proof of Theorem 1.2. Let

u(t) = eit∆fω + w(t),

then w satisfies the equation (4.1) with

v0 = fω, w0 = 0, and v = eit∆fω.

We first prove Theorem 1.2(a), using the result in Proposition 4.1. By Corollary
3.3, we have for almost every ω ∈ Ω,

‖v‖Y s(R) + ‖v‖Zs(R) <∞.

Since w0 = 0, we can apply Proposition 4.1 to obtain the existence and uniqueness

of w ∈ C([0, T ];H
1
2
x ) for almost every ω ∈ Ω.

The proof of Theorem 1.2 (2) by Proposition 4.2 is similar as above, so we omit
the details. �

4.2. Local well-posedness. In this section, we prove Proposition 4.1. We make
the choices of some parameters and define the auxiliary working space:

(1) Let C0 > 0 be the constant such that
∥∥eit∆w0

∥∥
X

1
2 (R)

6 C0 ‖w0‖
H

1
2
x

.

(2) Let

R := max
{
C0 ‖w0‖

H
1
2
x

, 1
}
.

(3) Let δ and ε be some constants such that 0 < δ, ε≪ 1.
(4) Define the following space:

X̃
1
2 (I) =

∥∥|∇| 13wN

∥∥
l2
N
L2
tL

9
x(2

N×I×R3)
+
∥∥|∇| 16wN

∥∥
l2
N
L4
tL

9
2
x (2N×I×R3)

+
∥∥|∇| 16wN

∥∥
l2
N
L3
tL

6
x(2

N×I×R3)
+ ‖w‖L4

tL
6
x(I×R3) + ‖w‖L3

tL
6
x(I×R3)

+
∥∥〈∇〉 1

2w
∥∥
L2
tL

6
x(I×R3)

+ ‖w‖
L

3
1−ε
t L

6
1−3ε
x (I×R3)

+ ‖w‖
L

4(4−3ε)
5+3ε

t L
2(4−3ε)
1−3ε

x (I×R3)

.

(5) Let T > 0 satisfy the smallness conditions
∥∥eit∆w0

∥∥
X̃

1
2 ([0,T ])

+ ‖v‖Y s([0,T ]) 6 δ,

and

δT ε2 ‖v‖2Zs(R) + T
1

100R2 ‖v‖Zs(R) . δ3.

We remark that

X
1
2 ([0, T ])→֒X̃

1
2 ([0, T ]),
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and T depends on s, δ, ε, ‖v‖Y s(R), ‖v‖Zs(R), and ‖w0‖
H

1
2
x

. Let the working space

be defined by

BR,δ,T :=
{
w ∈ C([0, T ];H

1
2
x ) : ‖w‖

X
1
2 ([0,T ])

6 2R, ‖w‖
X̃

1
2 ([0,T ])

6 2δ
}
.

Define

Φw0,v(w) = eit∆w0 − i

∫ t

0

ei(t−s)∆(|u|2u) ds.

Now, we are going to prove Φw0,v is a contraction mapping on BR,δ,T , which is
reduced to prove the following nonlinear estimate

∥∥
∫ t

0

ei(t−s)∆(|u|2u) ds
∥∥
X

1
2 ([0,T ])

6 δ.

In fact, we can use similar argument to prove

∥∥Φw0,v(w1)− Φw0,v(w2)
∥∥
X

1
2 ([0,T ])

6
1

2
‖w1 − w2‖X 1

2 ([0,T ])
,

and then finish the proof of contraction mapping.
Therefore, we reduce the proof of Proposition 4.1 to the following lemma:

Lemma 4.3. Let 1
6
6 s < 1

2
, and δ, ε, C0, R, T be defined as above. Assume that

the following estimates hold:

‖v‖Y s([0,T ]) 6 δ, ‖w‖
X

1
2 ([0,T ])

. R, and ‖w‖
X̃

1
2 ([0,T ])

. δ.

Then, we have the nonlinear estimate

∥∥
∫ t

0

ei(t−s)∆(|u|2u) ds
∥∥
X

1
2 ([0,T ])

6 δ. (4.3)

Proof. In the following, we shall slightly abuse notation and write u for both itself
and its complex conjugate, and all the space-time norms are taken over [0, T ]× R3

without writing its integral region. First, to prove (4.3), by Lemma 2.2, Hölder’s
inequality, and embedding V 2

∆→֒L∞
t L

2
x, we are reduced to consider

∥∥
∫ t

0

ei(t−s)∆(|u|2u) ds
∥∥
X

1
2
.
( ∑

N∈2N

N sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

〈PN(|u|2u), g〉 ds
∣∣2) 1

2

.
( ∑

N∈2N

N sup
‖g‖

V 2
∆
=1

∥∥PN(|u|2u)
∥∥2

L1
tL

2
x
‖g‖2L∞

t L2
x

) 1
2

.
∥∥N 1

2PN(|u|2u)
∥∥
l2
N
L1
tL

2
x
.

(4.4)

Noting that

∣∣PN(|u|2u)
∣∣ .

∣∣ ∑

N1:N1&N

PN

(
uN1u

2
6N1

)∣∣,
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by Cauchy-Schwarz’s inequality in N1 and Lemma 2.12,

∥∥N 1
2PN(|u|2u)

∥∥
l2
N
L1
tL

2
x
.
∥∥∥∥ ∑

N1:N1&N

N
1
2

N
1
2
1

N
1
2
1 PN(uN1u

2
6N1

)
∥∥
l2
N

∥∥
L1
tL

2
x

.
∥∥∥∥N

1
2
1 PN(uN1u

2
6N1

)
∥∥
l2
N

∥∥
L1
t l

2
N1

L2
x

.
∥∥N

1
2
1 uN1u

2
6N1

∥∥
L1
tL

2
xl

2
N1

. I + II,

(4.5)

where we denote

I :=
∥∥N

1
2
1 wN1u

2
6N1

∥∥
L1
tL

2
xl

2
N1

, and II :=
∥∥N

1
2
1 vN1u

2
6N1

∥∥
L1
tL

2
xl

2
N1

.

First, we deal with the term I, where the 1
2
-order derivative acts on w. This is the

simpler case, since w allows estimates with the derivative of order 1
2
. By frequency

support property,

I .
∥∥N

1
2
1 wN1u∼N1u6N1

∥∥
L1
tL

2
xl

2
N1

(4.6a)

+
∥∥N

1
2
1 wN1u

2
≪N1

∥∥
L1
tL

2
xl

2
N1

. (4.6b)

Now, we estimate (4.6a). By Hölder’s inequality and Lemma 2.4, it holds that

(4.6a) .
∑

N1

N
1
3
1 ‖wN1‖L2

tL
9
x
N

1
6
1 ‖u∼N1‖

L4
tL

9
2
x

‖u6N1‖L4
tL

6
x

.
∥∥〈∇〉 1

3wN

∥∥
l2
N
L2
tL

9
x

∥∥〈∇〉 1
6u∼N

∥∥
l2
N
L4
tL

9
2
x

‖u‖L4
tL

6
x

. ‖w‖
X̃

1
2
(‖w‖

X̃
1
2
+ ‖v‖Y s)

2.

(4.7)

For (4.6b), by Hölder’s inequality, Lemmas 2.11 and 2.12,

(4.6b) .
∥∥N

1
2
1 wN1

∥∥
L2
tL

6
xl

2
N1

∥∥ sup
N1

|u≪N1|
∥∥2

L4
tL

6
x

.
∥∥〈∇〉 1

2w
∥∥
L2
tL

6
x
‖u‖2L4

tL
6
x
. ‖w‖

X̃
1
2
(‖w‖

X̃
1
2
+ ‖v‖Y s)

2.
(4.8)

Then, by (4.7) and (4.8), we have

I . (4.6a) + (4.6b) . ‖w‖
X̃

1
2
(‖w‖

X̃
1
2
+ ‖v‖Y s)

2 . δ2. (4.9)

Next, we consider the term II, where the 1
2
-order derivative acts on v. However,

the function v can only have 1
6
-order derivative. Therefore, we need to transfer

the additional fractional order derivative to other functions. We make a frequency
decomposition:

II .
∥∥N

1
2
1 vN1u

2
∼N1

∥∥
L1
tL

2
xl

2
N1

(4.10a)

+
∥∥N

1
2
1 vN1v≪N1u6N1

∥∥
L1
tL

2
xl

2
N1

(4.10b)

+
∥∥N

1
2
1 vN1w≪N1u6N1

∥∥
L1
tL

2
xl

2
N1

. (4.10c)
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By Lemma 2.12, Hölder’s inequality, and embedding l2N →֒l3N ,

(4.10a) .
∑

N1∈2N

N
1
6
1 ‖vN1‖L3

tL
6
x

(
N

1
6
1 ‖u∼N1‖L3

tL
6
x

)2

.
∥∥|∇| 16 vN1

∥∥
l2
N1

L3
tL

6
x

∥∥〈∇〉 1
6u∼N1

∥∥2

l2
N1

L3
tL

6
x

. ‖v‖Y s (‖w‖
X̃

1
2
+ ‖v‖Y s)

2 . δ3.

(4.11)

Next, we consider (4.10b) and (4.10c). The proof is more difficult, where we use
the bilinear Strichartz estimate to transfer derivative. However, this approach will
create the term ‖v‖Zs, which cannot get smallness by letting the interval small.
Therefore, we also need some T to control the Zs-norm.
Now, we consider the term (4.10b). By Hölder’s inequality,

(4.10b) .
∑

N2≪N1

N
1
2
1 ‖vN1vN2u6N1‖L1

tL
2
x

.
∑

N2≪N1

N
1
2
1 ‖vN1vN2‖

2
3
+ε

L
1

1−ε
t L2

x

‖vN1‖
1
3
−ε

L∞
t,x

‖vN2‖
1
3
−ε

L∞
t,x

‖u6N1‖
L

3
1−ε+3ε2

t L
6

1−3ε
x

.

(4.12)

By Lemma 2.9, for N2 ≪ N1,

‖vN1vN2‖
L

1
1−ε
t L2

x

. N2ε
2 N

− 1
2

1 ‖PN1v0‖L2
x
‖PN2v0‖L2

x
. N

− 2
3

1 ‖v‖2Zs . (4.13)

Note that

‖u‖
L

3
1−ε
t L

6
1−3ε
x

. ‖w‖
X̃

1
2
+ ‖v‖Y s . δ. (4.14)

By (4.12), (4.13), (4.14), and Hölder’s inequality,

(4.10b) .
∑

N2≪N1

N
1
2
1 ‖vN1vN2‖

2
3
+ε

L
1

1−ε
t L2

x

‖vN1‖
1
3
−ε

L∞
t,x

‖vN2‖
1
3
−ε

L∞
t,x

‖u6N1‖
L

3
1−ε+3ε2

t L
6

1−3ε
x

.T ε2
∑

N2≪N1

N
1
18

− 2
3
ε

1 ‖v‖
4
3
+2ε

Zs N
− 1

18
+ 1

2
ε−ε2

1

∥∥|∇| 16−εvN1

∥∥ 1
3
−ε

L∞
t,x

‖vN2‖
1
3
−ε

L∞
t,x

‖u‖
L

3
1−ε
t L

6
1−3ε
x

.δT ε2 ‖v‖
5
3
+ε

Zs

∑

N2≪N1

N
− 1

6
ε−ε2

1 ‖vN2‖
1
3
−ε

L∞
t,x

. δT ε2 ‖v‖2Zs .

(4.15)

Finally, we consider the term (4.10c). By Hölder’s inequality,

(4.10c) .
∑

N2≪N1

N
1
2
1 ‖vN1wN2u6N1‖L1

tL
2
x

.
∑

N2≪N1

N
1
2
1 ‖vN1wN2‖

2
3
+ε

L
4
3
t L2

x

‖vN1‖
1
3
−ε

L∞
t,x

‖wN2‖
1
3
−ε

L
q1
t L

r1
x
‖u6N1‖Lq1

t L
r1
x
,

(4.16)

where (q1, r1) is defined by

2− 3ε

4
= (

4

3
− ε)

1

q1
, and

1− 3ε

6
= (

4

3
− ε)

1

r1
.
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Noting that q1 = 4(4−3ε)
3(2−3ε)

= 8
3
+ and r1 = 2(4−3ε)

1−3ε
= 8+, we have 3

2
− 2

q1
− 3

r1
= 3

8
+,

and there exists q2 =
4(4−3ε)
5+3ε

such that

2

q2
+

3

r1
= 1.

Then, we have

‖u6N1‖Lq2
t L

r1
x

. ‖w‖Lq2
t L

r1
x
+ ‖v‖Lq2

t L
r1
x
. δ. (4.17)

By Lemma 2.9, for N2 ≪ N1,

‖vN1wN2‖
L

4
3
t L2

x

.N
1
2
2 N

− 1
2

1 ‖PN1v0‖L2
x
‖wN2‖U2

∆

.N
− 2

3
1 ‖v‖Zs ‖w‖

X
1
2
. N

− 2
3

1 R ‖v‖Zs .

(4.18)

We remark that for (4.18), if we do not invoke the Up-V p method, by Lemma 2.9,
it reduces to deal with the term

N
1
2
1

(
‖PN1w0‖L2

x
+
∥∥PN1(|u|2u)

∥∥
L1
tL

2
x

)
.

Thus, the argument would be more complex, especially when N
1/2
1 acts on |v|2v.

By (4.16), (4.17), (4.18), and Hölder’s inequality in t,

(4.10c) .
∑

N2≪N1

N
1
2
1 ‖vN1wN2‖

2
3
+ε

L
4
3
t L2

x

‖vN1‖
1
3
−ε

L∞
t,x

‖wN2‖
1
3
−ε

L
q1
t L

r1
x
‖u6N1‖Lq1

t L
r1
x

.T
( 1
3
−ε)( 1

q1
− 1

q2
)

∑

N2≪N1

N
1
18

− 2
3
ε

1 R
2
3
+ε ‖v‖

2
3
+ε

Zs ‖vN1‖
1
3
−ε

L∞
t,x

‖w‖
1
3
−ε

L
q2
t L

r1
x
‖u‖Lq2

t L
r1
x

.T
1

100 δ
4
3
−εR

2
3
+ε ‖v‖

2
3
+ε

Zs

∑

N2≪N1

N
− 1

6
ε−ε2

1

∥∥|∇| 16−εv
∥∥ 1

3
−ε

L∞
t,x

. T
1

100R2 ‖v‖Zs .

(4.19)

Therefore, by (4.11), (4.15), and (4.19),

II . (4.10a) + (4.10b) + (4.10c) . δ3 + δT ε2 ‖v‖2Zs + T
1

100R2 ‖v‖Zs . (4.20)

Then, combining (4.5), (4.9), and (4.20), we have

∥∥
∫ t

0

ei(t−s)∆(|u|2u) ds
∥∥
L∞
t H

1
2
x ∩X

1
2
6I + II

6C
(
δ3 + δT ε2 ‖v‖2Zs + T

1
100R2 ‖v‖Zs

)

6Cδ3 6 δ.

This completes the proof of the lemma. �

4.3. Improved local theory. In this section, we prove Proposition 4.2. Recall
that

‖w‖X1(I) =
( ∑

N∈2N

N2 ‖wN‖2U2
∆(I;L2

x)

) 1
2 .

We write U2
∆ = U2

∆(I;L
2
x) and V 2

∆ = V 2
∆(I;L

2
x) for short. We make the choices of

some parameters:
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(1) Let C0 > 0 be the constant such that
∥∥eit∆w0

∥∥
X1(R)

6 C0 ‖w0‖H1
x
.

(2) Let 0 < ε < 1
100

(s− 1
3
) and

R := max
{
C0 ‖w0‖H1

x
, 1
}
.

(3) Let T > 0 satisfy the smallness conditions:

‖v‖Y s([0,T ]) 6 R,

CT
1
2R2 6

1

10
, CT

1
36R2 6

1

10
, CT

ε
100R2 6

1

10
, (4.21)

CT
1
2 ‖v‖2Zs(R) 6

1

2
, CT

1
36 ‖v‖3Zs(R) 6

1

10
R, and CT

ε
100 ‖v‖3Zs(R) 6

1

10
R.

Note that T depends on s, ‖w0‖H1
x
, ‖v‖Y s(R), and ‖v‖Zs(R). Let the working space

be defined by

BR,T :=
{
w ∈ C([0, T ];H1

x) : ‖w‖X1([0,T ]) 6 2R
}
.

Define

Φw0,v(w) = eit∆w0 − i

∫ t

0

ei(t−s)∆(|u|2u) ds.

Similar as in the former section, in order to get that Φw0,v is a contraction mapping
on BR,T , it suffices to prove:

Lemma 4.4. Let 1
3
< s 6 1

2
, 0 < ε < 1

100
(s − 1

3
), and C0, R be defined as above.

Assume that 0 < T < 1 satisfies the smallness condition (4.21), and let

‖w‖X1([0,T ]) . R.

Then, we have the nonlinear estimate:

∥∥
∫ t

0

ei(t−s)∆(|u|2u) ds
∥∥
X1([0,T ])

6 R. (4.22)

Proof. Again, we do not distinguish u and u, and all the space-time norms are
restricted on [0, T ]× R3. By Lemma 2.2 and frequency decomposition, we have

∥∥
∫ t

0

ei(t−s)∆(|u|2u) ds
∥∥
X1

.
( ∑

N∈2N

N2 sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

〈PN(|u|2u), g〉 ds
∣∣2) 1

2

.
( ∑

N∈2N

N2 sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(

∑

N1

uN1u
2
6N1

)g dx ds
∣∣2) 1

2 . I + II

where

I :=
( ∑

N∈2N

N2 sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(

∑

N1

wN1u
2
6N1

)g dx ds
∣∣2) 1

2 ,
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and

II :=
( ∑

N∈2N

N2 sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(

∑

N1

vN1u
2
6N1

)g dx ds
∣∣2) 1

2 .

We first consider the term I, where the first order derivative acts on w. By
Hölder’s inequality and embedding V 2

∆→֒L∞
t L

2
x, we have

I .
( ∑

N∈2N

N2 sup
‖g‖

V 2
∆
=1

∥∥PN(
∑

N1:N.N1

wN1u
2
6N1

)
∥∥2

L1
tL

2
x
‖g‖2L∞

t L2
x

) 1
2

.
( ∑

N∈2N

N2 sup
‖g‖

V 2
∆
=1

∥∥PN(
∑

N1:N.N1

wN1u
2
6N1

)
∥∥2

L1
tL

2
x
‖g‖2V 2

∆

) 1
2

.
( ∑

N∈2N

N2
∥∥PN(

∑

N1:N.N1

wN1u
2
6N1

)
∥∥2

L1
tL

2
x

) 1
2 .

(4.23)

Then, by (4.23), Minkowski’s inequality, Hölder’s inequality in N1, and Lemma 2.12,

I .
( ∑

N∈2N

N2
∥∥PN (

∑

N1:N.N1

wN1u
2
6N1

)
∥∥2

L1
tL

2
x

) 1
2

.
∥∥ ∑

N1:N.N1

N

N1
N1PN(wN1u

2
6N1

)
∥∥
L1
tL

2
xl

2
N

.
∥∥N1PN(wN1u

2
6N1

)
∥∥
L1
tL

2
xl

2
N
l2
N1

.
∥∥N1wN1u

2
6N1

∥∥
L1
t l

2
N1

L2
x
.

(4.24)

By (4.24), Hölder’s inequality, and Lemma 2.11,

I .
∥∥N1wN1u

2
6N1

∥∥
L1
t l

2
N1

L2
x

.
∥∥ ‖N1wN1‖L6

x
‖u6N1‖2L6

x

∥∥
L1
t l

2
N1

. ‖〈∇〉w‖L2
tL

6
x
‖u‖2L4

tL
6
x

.T
1
2 ‖〈∇〉w‖L2

tL
6
x
‖u‖2L∞

t L6
x

.T
1
2 ‖w‖X1

(
‖v‖Zs + ‖w‖X1

)2
.

(4.25)

Therefore, by (4.25) and the choice of T , we have

I 6 CT
1
2 ‖w‖X1

(
‖v‖Zs + ‖w‖X1

)2
6 CT

1
2R(‖v‖2Zs +R2) 6

1

2
R. (4.26)

We next consider the term II, where the first order derivative acts fully on v.
However, v can only have estimates with the derivative of order 1

3
, thus there is a

gap of 2
3
-order derivative. Note that the bilinear Strichartz estimate can only lower

down 1
2
-order derivative. Therefore, this is the main case where we need to exploit
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the duality structure. To this end, we make a frequency decomposition:

II .
( ∑

N∈2N

N2 sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(

∑

N1

vN1u
2
∼N1

)g dx ds
∣∣2) 1

2 (4.27a)

+
( ∑

N∈2N

N2 sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(

∑

N1

vN1u≪N1u∼N1)g dx ds
∣∣2) 1

2 (4.27b)

+
( ∑

N∈2N

N2 sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(

∑

N1

vN1u
2
≪N1

)g dx ds
∣∣2) 1

2 . (4.27c)

We first estimate the (4.27a). Using the same method as in (4.23) and (4.24),

(4.27a) .
( ∑

N∈2N

N2 sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(

∑

N1

vN1u
2
∼N1

)g dx ds
∣∣2) 1

2

.
∑

N1∈2N

∥∥N1vN1u
2
∼N1

∥∥
L1
tL

2
x
.

(4.28)

Then, by (4.28), Lemma 2.12, Hölder’s inequality in N1, and l
2
N1

→֒l3N1
, we have

(4.27a) .
∑

N1∈2N

∥∥N1vN1u
2
∼N1

∥∥
L1
tL

2
x

.T
1
2

∑

N1∈2N

∥∥|∇| 13vN1

∥∥
L6
t,x

∥∥|∇| 13u∼N1

∥∥
L6
t,x

∥∥|∇| 13u∼N1

∥∥
L6
t,x

.T
1
2

∥∥|∇| 13 vN
∥∥
l2
N
L6
t,x

∥∥|∇| 13uN1

∥∥2

l2
N1

L6
t,x

.T
1
2 ‖v‖Y s

(
‖v‖Y s + ‖w‖X1

)2
. T

1
2R3.

(4.29)

Next, we consider (4.27b). Noting that (9, 54
23
) is L2

x-admissible, similar as above,
by Hölder’s inequality and Lemma 2.7,

(4.27b) .
( ∑

N∈2N

N2 sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(

∑

N1

vN1u≪N1u∼N1)g dx ds
∣∣2) 1

2

.
( ∑

N∈2N

N2
∥∥PN(

∑

N1:N.N1

vN1u≪N1u∼N1)
∥∥2

L
9
8
t L

54
31
x

) 1
2

.
∑

N1

N1

∥∥vN1u≪N1u∼N1

∥∥
L

9
8
t L

54
31
x

.

(4.30)

Note that by the bilinear Strichartz estimate in Lemma 2.9, for N2 ≪ N1,

‖∇vN1uN2‖
L

3
2
t L2

x

.N
1
3
2 N

1
2
1 ‖PN1v0‖L2

x

(
‖PN2v0‖L2

x
+ ‖PN2w‖U2

∆

)

.N
1
6
1 ‖v‖Zs

(∥∥|∇| 13PN2v0
∥∥
L2
x
+N

1
3
2 ‖PN2w‖U2

∆

)

.N
1
6
1 ‖v‖Zs

(
‖v‖Zs + ‖w‖X1

)
.

(4.31)

By Hölder’s inequality,

‖uN2‖L3
tL

18
x
. T

1
12 ‖uN2‖L4

tL
18
x
. T

1
12N

− 1
6

2

(
‖v‖Y s + ‖w‖X1

)
. (4.32)
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Combining (4.30), (4.31), (4.32), and Hölder’s inequality,

(4.27b) .
∑

N1

N1

∥∥vN1u≪N1u∼N1

∥∥
L

9
8
t L

54
31
x

.
∑

N2≪N1

∥∥∇vN1uN2

∥∥ 2
3

L
3
2
t L2

x

∥∥∇vN1

∥∥ 1
3

L2
tL

∞
x
‖uN2‖

1
3

L3
tL

18
x
‖u∼N1‖

L6
tL

9
2
x

.
∑

N2≪N1

N
1
9
1 N

2
9
+

1

∥∥|∇| 13−vN1

∥∥ 1
3

L2
tL

∞
x
‖uN2‖

1
3

L3
tL

18
x
‖u∼N1‖

L6
tL

9
2
x

· ‖v‖
2
3
Zs

(
‖v‖Zs + ‖w‖X1

) 2
3

.
∑

N2≪N1

N
− 1

18
2 N

− 1
6
+

1 ‖v‖
1
3
Y s T

1
36

(
‖v‖Y s + ‖w‖X1

) 1
3
∥∥|∇| 12uN1

∥∥
L6
tL

9
2
x

· ‖v‖
2
3
Zs

(
‖v‖Zs + ‖w‖X1

) 2
3

.T
1
36 ‖v‖

1
3
Y s ‖v‖

2
3
Zs

(
‖v‖Y s + ‖w‖X1

) 4
3
(
‖v‖Zs + ‖w‖X1

) 2
3

.T
1
36R

1
3 ‖v‖

2
3
Zs R

4
3

(
‖v‖Zs +R

) 2
3 . T

1
36

(
‖v‖3Zs +R3

)
.

(4.33)

Finally, we consider the main term (4.27c). By frequency support property,

(4.27c) =
( ∑

N∈2N

N2 sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(

∑

N1

vN1u
2
≪N1

)g dx ds
∣∣2) 1
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.
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N∈2N

N sup
‖g‖
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∆
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∣∣
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0
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∣∣
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∑

N∈2N

N sup
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V 2
∆
=1

∣∣
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0
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vNu
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≪NgN dx ds

∣∣

.
∑

N16N2≪N

N sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
vNgNuN1uN2 dx ds

∣∣.

(4.34)

To estimate this, we need to use the bilinear Strichartz estimate for both gNuN1 and
∇vNuN2. Now, we give the estimate for gNuN1, where we also need to pass gN into
V 2
∆ by interpolation. By Lemma 2.9, for N1 ≪ N ,

‖gNuN1‖
L

3
2+ε
t L2

x

.
N

2
3
− 2

3
ε

1

N
1
2

‖gN‖U2
∆

(
‖PN1v0‖L2

x
+ ‖wN1‖U2

∆

)
, (4.35)

and by Hölder’s inequality and Lemma 2.7,

‖gNuN1‖
L

3
2+ε
t L2

x

. ‖gN‖
L

8
3
t L4

x

‖uN1‖
L

24
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.N
1
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3
ε

1 ‖gN‖
U

8
3
∆

(
‖PN1v0‖L2

x
+ ‖wN1‖U2

∆

)
.

(4.36)
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Then, noting that ε < 1
100

(s− 1
3
), by (4.35), (4.36), and Lemma 2.3, for N1 ≪ N ,
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x

.
N ε

N ε
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N
2
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3
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∆
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1
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3
ε

1

N
1
2
−ε

N−100ε
1

(
N

1
3
+100ε

1 ‖PN1v0‖L2
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1
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+100ε
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∆
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1
3
−100ε

1
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1
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−ε
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‖v‖Zs + ‖w‖X1

)
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(4.37)

Next, we give the estimate for ∇vNuN2. Using Lemma 2.9 again, for N2 ≪ N , we
also have

‖∇vNuN2‖
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x

.N20ε
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2 ‖PNv0‖L2
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(
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)
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(4.38)

Then, we are ready to bound (4.27c). By (4.37), (4.38), and Hölder’s inequality,

N
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gNvNuN1uN2 dx ds
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(4.39)

Note that
∑

N16N2≪N

N
1
3
−100ε

1 N
− 1

3
2 N−20ε . 1,

then by (4.34) and (4.39),
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(4.40)

Therefore, by (4.29), (4.33), and (4.40),

II 6(4.27a) + (4.27b) + (4.27c)

6CT
1
2R3 + CT

1
36

(
‖v‖3Zs +R3

)
+ CT

ε
100

(
‖v‖3Zs +R3

)
6

1

2
R.

(4.41)
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Then, by (4.26) and (4.41), we have

∥∥
∫ t

0

ei(t−s)∆(|u|2u) ds
∥∥
X1 6 I + II 6 R.

This proves (4.22). �

5. Global well-posedness and scattering

5.1. Reduction to the deterministic problem. Let Ỹ s(I) be defined by its norm

‖v‖Ỹ s(I) := ‖v‖Y s(I) +
∥∥|∇|s+ 1

2
−vN

∥∥
l2
N
L2
tL

∞
x (2N×I×R3)

. (5.1)

Recall that

‖v‖Zs(I) =
∥∥〈∇〉s−PNv

∥∥
l2
N
L∞
t L∞

x (2N×I×R3)
+ ‖〈∇〉sPNv‖l2

N
L∞
t L2

x(2
N×I×R3) .

Proposition 5.1. Let 3
7
< s 6 1

2
and A > 0. Then, there exists N0 = N0(A) ≫ 1

such that the following properties hold. Let u0 ∈ Hs
x, v0 satisfy that supp v̂0 ⊂{

ξ ∈ R3 : |ξ| > 1
2
N0

}
, and w0 = u0 − v0. Moreover, let v = eit∆v0 and w = u − v.

Suppose that v ∈ Ỹ s ∩ Zs(R), w0 ∈ H1 such that

‖u0‖Hs
x
+ ‖v‖Ỹ s∩Zs(R) 6 A, and E(w0) 6 AN

2(1−s)
0 .

Then, there exists a solution u of (1.7) on R with w ∈ C(R;H1
x). Furthermore,

there exists u± ∈ H1
x such that

lim
t→±∞

∥∥u(t)− v(t)− eit∆u±
∥∥
H1

x
= 0.

We will give the proof of Proposition 5.1 in Sections 5.2, 5.3, and 5.4. Now we
prove Theorem 1.4 assuming that Proposition 5.1 holds.

Proof of Theorem 1.4. Let N0 ∈ 2N to be defined later, and make a high-low fre-
quency decomposition for the initial data

u(t) = eit∆P>N0f
ω + w(t),

then w satisfies the equation (4.1) with

u0 = fω, v0 = P>N0f
ω, w0 = P6N0f

ω, and v = eit∆P>N0f
ω.

Since f is radial, by Corollary 3.3, boundedness of the operator P>N0, Proposition
3.4, and Lemma 2.14, we have

P
({
ω ∈ Ω : ‖u0‖Hs

x
+ ‖v‖Ỹ s∩Zs(R) > λ

})
. e

−Cλ2‖f‖−2
Hs

x . (5.2)

For any p > 2, we have

‖w0‖Lp
ωḢ1

x
.
∥∥ ∑

k∈Z3

gk(ω)∇P6N0fk
∥∥
L2
xL

p
ω

.
√
p ‖∇P6N0fk‖L2

xl
2
k∈Z3

.
√
p ‖∇P6N0f‖L2

x
.

√
pN1−s

0 ‖f‖Hs
x
.
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For any p > 4, we also have

‖w0‖Lp
ωL4

x
.

√
p ‖�kP6N0f‖L4

xl
2
k
.

√
p ‖f‖L2

x
.

Note that N0 only depends on M and ‖f‖Hs
x
. Then, by Lemma 2.14,

P
({
ω ∈ Ω :

1

N1−s
0

‖w0‖Ḣ1
x
+ ‖w0‖L4

x
> λ

})
. e

−Cλ2‖f‖−2
Hs

x . (5.3)

For any M > 1, let Ω̃M be defined by

Ω̃M =
{
ω ∈ Ω : ‖u0‖Hs

x
+ ‖v‖Ỹ s∩Zs(R) < M ‖f‖Hs

x
,

1

N1−s
0

‖w0‖Ḣ1
x
+ ‖w0‖L4

x
< M ‖f‖Hs

x

}
.

(5.4)

Therefore, by (5.2) and (5.3), we have

P(Ω̃c
M) . e−CM2

. (5.5)

For any ω ∈ Ω̃M , we have ‖v‖Ỹ s∩Zs(R) < M ‖f‖Hs
x
, and

E(w0) 6 CM2N
2(1−s)
0 ·max

{
M2 ‖f‖4Hs

x
, 1
}
.

Therefore, for any M > 1 and any ω ∈ Ω̃M , let

A = A(M, ‖f‖Hs
x
) := max

{
M ‖f‖Hs

x
, CM2 ·max{M2 ‖f‖4Hs

x
, 1}

}
,

then we have v = eit∆P>N0f
ω,

‖u0‖Hs
x
+ ‖v‖Ỹ s∩Zs(R) 6 A, and E(w0) 6 AN

2(1−s)
0 .

Therefore, we can apply Proposition 5.1. Let N0 depend on A as in the statement
of Proposition 5.1, and we obtain a global solution w that scatters. Then, for any

ω ∈ Ω̃ = ∪M>1Ω̃M , we can also derive that (4.1) admits a global solution w that

scatters. By (5.5), we have that P(Ω̃) = 1. Then for almost every ω ∈ Ω, we
obtain the global well-posedness and scattering for (4.1). This finishes the proof of
Theorem 1.4.

�

5.2. Global space-time estimates.

Lemma 5.2 (Interaction Morawetz). Let w ∈ C([0, T ];H1
x) be the solution of per-

turbation equation (4.1). Then, we have

‖w‖4L4
t,x

. ‖w‖2L∞
t L2

x
‖w‖2

L∞
t Ḣ

1
2
x

+ ‖∇w‖2L∞
t L2

x
‖w‖4L∞

t L2
x
‖v‖2L2

tL
∞
x
+ ‖v‖4L4

t,x
, (5.6)

where all the space-time norms are taken over [0, T ]× R3.

Proof. Recall that w satisfies

i∂tw +∆w = |w|2w + e,

where e = |u|2u− |w|2w. Denote that

m(t, x) =
1

2
|w(t, x)|2; p(t, x) =

1

2
Im(w(t, x)∇w(t, x)).

Then, we have

∂tm = −2∇ · p+ Im (ew̄) , (5.7)



3D CUBIC NLS 35

and

∂tp =− Re∇ · (∇w∇w)− 1

4
∇
(
|w|4

)
+

1

2
∇∆m+ Re (e∇w)− 1

2
Re∇ (we) . (5.8)

Moreover, we note that

∂j

( xj
|x|

)
=
δjk
|x| −

xjxk
|x|3 ; ∇ · x|x| =

2

|x| ; ∆∇ · x|x| = δ(x).

Let

M(t) :=

∫ ∫

R3+3

x− y

|x− y| · p(t, x)m(t, y) dx dy,

then by (5.7) and (5.8), we have the interaction Morawetz identity

∂tM(t) =

∫∫

R3+3

x− y

|x− y| · ∂tp(t, x)m(t, y) dx dy

+

∫∫

R3+3

x− y

|x− y| · p(t, x) ∂tm(t, y) dx dy

=

∫∫

R3+3

x− y

|x− y| ·
(
− Re∇ · (∇w∇w)− 1

4
∇
(
|w|4

))
(t, x)m(t, y) dx dy

(5.9a)

− 2

∫∫

R3+3

x− y

|x− y| · p(t, x)∇ · p(t, y) dx dy (5.9b)

+
1

2

∫∫

R3+3

x− y

|x− y| · ∇∆m(t, x)m(t, y) dx dy (5.9c)

+

∫∫

R3+3

x− y

|x− y| · p(t, x) Im (ew̄) (t, y) dx dy (5.9d)

+

∫∫

R3+3

x− y

|x− y| · Re (e∇w) (t, x)m(t, y) dx dy (5.9e)

+

∫∫

R3+3

1

|x− y| · Re (ew) (t, x)m(t, y) dx dy. (5.9f)

Note that by the classical argument in [26], we have

(5.9a) + (5.9b) > 0,

and

(5.9c) & ‖w(t)‖4L4
x
.

Moreover,

sup
t∈[0,T ]

M(t) . ‖w‖2L∞
t L2

x
‖w‖2

L∞
t Ḣ

1
2
x

.

Then, integrating over [0, T ], it holds that

C ‖w‖4L4
t,x

6M(T )−M(0) +

∫ T

0

|(5.9d)|+ |(5.9e)|+ |(5.9f)| dt,

thus

‖w‖4L4
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. ‖w‖2L∞
t L2

x
‖w‖2

L∞
t Ḣ

1
2
x

+

∫ T

0

|(5.9d)|+ |(5.9e)|+ |(5.9f)| dt.
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By Hölder’s inequality and Lemma 2.5, we have
∫ T

0

|(5.9d)|+ |(5.9e)|+ |(5.9f)| dt

. ‖∇w‖L∞
t L2

x
‖w‖2L∞

t L2
x
‖e‖L1

tL
2
x

. ‖∇w‖L∞
t L2

x
‖w‖2L∞

t L2
x
‖v‖L2

tL
∞
x

(
‖v‖2L4

t,x
+ ‖w‖2L4

t,x

)
.

Note that

‖e‖L1
tL

2
x
. ‖v‖L2

tL
∞
x

(
‖v‖2L4

t,x
+ ‖w‖2L4

t,x

)
,

we further have that
∫ T

0

|(5.9d)|+ |(5.9e)|+ |(5.9f)| dt

. ‖∇w‖L∞
t L2

x
‖w‖2L∞

t L2
x
‖v‖L2

tL
∞
x

(
‖v‖2L4

t,x
+ ‖w‖2L4

t,x

)
.

Therefore, we have

‖w‖4L4
t,x

. ‖w‖2L∞
t L2

x
‖w‖2

L∞
t Ḣ

1
2
x

+ ‖∇w‖L∞
t L2

x
‖w‖2L∞

t L2
x
‖v‖L2

tL
∞
x

(
‖v‖2L4

t,x
+ ‖w‖2L4

t,x

)
.

Then, by Young’s inequality, we have

‖w‖4L4
t,x

. ‖w‖2L∞
t L2

x
‖w‖2

L∞
t Ḣ

1
2
x

+ ‖∇w‖2L∞
t L2

x
‖w‖4L∞

t L2
x
‖v‖2L2

tL
∞
x
+ ‖v‖4L4

t,x
.

This completes the proof of this lemma. �

However, the use of L4
t,x-norm is not enough for our argument. We need larger

class of space-time norms, and it is more convenient to invoke the Up-V p method:

X l(I) =
( ∑

N∈2N

N2l ‖wN‖2U2
∆(I;L2

x)

) 1
2 . (5.10)

First, we can update our space-time estimates to H
1
2 -level.

Lemma 5.3 (H
1
2 -regular promotion). Let w ∈ C([0, T ];H1

x) be the solution of the
perturbation equation (4.1). Then, for any 0 6 l 6 1

2
,

‖w‖Xl . ‖w0‖Hl
x
+
(
‖w‖

L∞
t H

l+1
2

x

+
∥∥ |∇|l vN

∥∥
l2
N
L2
tL

∞
x

)(
‖v‖2Y s + ‖w‖2L4

t,x

)
, (5.11)

where all the space-time norms are taken over [0, T ]× R3.

Proof. By Minkowski’s inequality, Lemmas 2.2, 2.7, and 2.12, we have

‖w‖Xl . ‖w0‖Ḣl
x
+
∥∥PN〈∇〉l(|u|2u)

∥∥
l2
N
L2
tL

6
5
x ∪l2

N
L1
tL

2
x

. ‖w0‖Ḣl
x
+
∥∥PN〈∇〉l(|w|2w)

∥∥
L2
tL

6
5
x l2

N

+
∥∥PN〈∇〉l(|u|2u− |w|2w)

∥∥
l2
N
L2
tL

6
5
x ∪l2

N
L1
tL

2
x

. ‖w0‖Ḣl
x
+
∥∥〈∇〉l(|w|2w)

∥∥
L2
tL

6
5
x

+
∥∥PN〈∇〉l(|u|2u− |w|2w)

∥∥
l2
N
L2
tL

6
5
x ∪l2

N
L1
tL

2
x

. ‖w0‖Ḣl
x
+
∥∥〈∇〉lw

∥∥
L∞
t L3

x
‖w‖2L4

t,x
+ I + II,

(5.12)
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where

I :=
∥∥PN〈∇〉l(

∑

N1:N.N1

wN1v6N1u6N1)
∥∥
L2
tL

6
5
x l2

N

,

and

II :=
∥∥PN〈∇〉l(

∑

N1:N.N1

vN1u6N1u6N1)
∥∥
L1
tL

2
xl

2
N

.

By Hölder’s inequality, we have

I .
∑

N1

∥∥〈∇〉l(wN1v6N1u6N1)
∥∥
L2
tL

6
5
x

.
∑

N1

∥∥N l
1wN1v6N1u6N1

∥∥
L2
tL

6
5
x

.
∑

N1

∥∥N l
1wN1

∥∥
L∞
t L2

x
‖v6N1‖L4

tL
12
x
‖u6N1‖L4

t,x

.
∥∥〈∇〉l+ 1

2w
∥∥
L∞
t L2

x
‖v‖Y s

(
‖v‖Y s + ‖w‖L4

t,x

)
,

(5.13)

and by Lemma 2.11,

II .
∥∥N l

1vN1u6N1u6N1

∥∥
L1
tL

2
xl

2
N1

.
∥∥‖N l

1vN1‖l2N1
sup
N1∈2N

|u6N1|2
∥∥
L1
tL

2
x

.
∥∥N l

1vN1

∥∥
L2
tL

∞
x l2

N1

∥∥ sup
N1∈2N

|u6N1|
∥∥2

L4
t,x

.
∥∥N l

1vN1

∥∥
l2
N1

L2
tL

∞
x

(
‖v‖Y s + ‖w‖L4

t,x

)2
.

(5.14)

Therefore, by (5.12), (5.13), and (5.14), we have that (5.11) holds. �

Based on the space-time estimates in H
1
2 -level, and keeping in mind that the

equation is H
1
2 -critical, we can further obtain the estimates in H l-level with l > 1

2
.

Lemma 5.4 (H1-regular promotion). Let 0 < ε ≪ 1, and w ∈ C([0, T ];H1
x) be the

solution of the perturbation equation (4.1). Then, for any 1
2
< l 6 1 and 1

3
< s 6 1

2
,

we have

‖w‖Xl . ‖w0‖Hl
x
+
(
‖w‖L∞

t Hl
x
+ ‖v‖Ỹ s

)(
‖v‖Y s∩Zs + ‖w‖

X
1
2

)(
‖v‖Zs + ‖w‖

L∞
t H

1
2
x

)

+ ‖w‖L∞
t Hl

x

(
‖v‖Y s + ‖w‖

X
1
2−ε

)(
‖v‖Zs + ‖w‖

L∞
t H

1
2+ε
x

)
,

where all the space-time norms are taken over [0, T ]× R3.

Proof. Similar to the proof of Lemma 5.3, we have

‖w‖Xl . ‖w0‖Hl
x
+
( ∑

N∈2N

N2l sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(|u|2u)g dx ds

∣∣2) 1
2

. ‖w0‖Hl
x
+
( ∑

N∈2N

N2l sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(

∑

N1

uN1u
2
6N1

)g dx ds
∣∣2) 1

2

. ‖w0‖Hl
x
+ I + II,
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where

I :=
( ∑

N∈2N

N2l sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(

∑

N1

wN1u
2
6N1

)g dx ds
∣∣2) 1

2 ,

and

II :=
( ∑

N∈2N

N2l sup
‖g‖

V 2
∆
=1

∣∣
∫ T

0

∫
PN(

∑

N1

vN1u
2
6N1

)g dx ds
∣∣2) 1

2 .

We first consider the term I, where the first order derivative acts on w. By
Hölder’s inequality, and Lemmas 2.7 and 2.12,

I .
( ∑

N∈2N

N2l
∥∥PN (

∑

N1:N.N1

wN1u
2
6N1

)
∥∥2

L2
tL

6
5
x

) 1
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.
∥∥〈∇〉l(
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wN1u
2
6N1

)
∥∥
L2
tL

6
5
x

.
∥∥〈∇〉l(

∑

N1

wN1u∼N1u6N1)
∥∥
L2
tL

6
5
x

(5.15a)

+
∥∥〈∇〉l(

∑

N1

wN1u
2
≪N1

)
∥∥
L2
tL

6
5
x

. (5.15b)

Now, the main task is to update the summation of wN1 to l2N1
. To this end, for

(5.15a), we can simply use Hölder’s inequality in N1 for wN1 and u∼N1. Precisely,
by (4.24), Hölder’s inequality, and Lemma 2.12,

(5.15a) .
∥∥∑
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∥∥N l
1wN1u∼N1u6N1
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6
5
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N1
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∞
x
‖u‖L∞

t L3
x

. ‖w‖L∞
t Hl

x
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‖v‖Y s + ‖w‖

X
1
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L∞
t H

1
2
x

)
.

(5.16)

For the second term (5.15b), we need to invoke the vector-valued Hardy-Littlewood
maximal function to cover the critical summation problem. Using Lemma 2.10 and
Hölder’s inequality,

(5.15b) .
∥∥N lPN
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3
x
.

(5.17)
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Let 0 < ε ≪ 1. By Lemmas 2.4, 2.12, and Hölder’s inequality,
∥∥ sup

N

∣∣u≪N

∣∣2∥∥
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(5.18)

Combining (5.17) and (5.18), we have
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(5.19)

Therefore, by (5.16) and (5.19),

I .(5.15a) + (5.15b)
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)
.

(5.20)

Next, we estimate the term II. We first consider the case when l < s+ 1
2
, by the

same argument as in the local results (see (4.5) for example) and Hölder’s inequality,

II .
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(5.21)

Then, we consider the case when s + 1
2
6 l 6 1, where we need to use the bilinear

Strichartz estimate and the duality structure. By frequency support property, we
obtain
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∥∥N l
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+
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)g dx ds
∣∣2) 1

2 . (5.22b)
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Now, we estimate (5.22a). Since s > 1
3
, we have 2s + 1

2
> 1 > l. Then, by l1N1

→֒l2N1

and Hölder’s inequality,
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(5.23)

Next, we consider (5.22b). To this end, we establish a bilinear Strichartz estimate
before the proof for (5.22b). By Lemma 2.9, for N1 ≪ N ,

‖uN1gN‖L2
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∆
, (5.24)

and by Bernstein’s, Hölder’s inequalities, Lemma 2.7, and embedding U4
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(5.25)

By (5.24), (5.25), and Lemma 2.3, we have the bilinear Strichartz estimate
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(5.26)

Noting that l 6 1 and 1
3
< s, we have l − s+ < 2s+ 0−. Then, by (5.26),
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(5.27)

By (5.23) and (5.27), we have for s+ 1
2
6 l 6 1,
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. (5.28)

Then (5.20), (5.21), and (5.28) give the desired estimates. �
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5.3. Energy bound.

Proposition 5.5. Let 3
7
< s 6 1

2
, A > 0, v = eit∆v0 ∈ Ỹ s ∩ Zs(R) and w be the

solution of (4.1). Take some T > 0 such that w ∈ C([0, T ];H1
x). Then, there exists

N0 = N0(A) ≫ 1 with the following properties. Assume that v̂0 is supported on{
ξ ∈ R3 : |ξ| > 1

2
N0

}
,
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x
+ ‖v‖Ỹ s∩Zs(R) 6 A, and E(w0) 6 AN
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Then, we have
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E(w(t)) 6 2AN
2(1−s)
0 . (5.29)

Proof. Let I = [0, T ] and N0 = N0(A) that will be defined later. From now on, all
the space-time norms are taken over I × R3. We implement a bootstrap procedure
on I: assume an a priori bound

sup
t∈I

E(w(t)) 6 2AN
2(1−s)
0 , (5.30)

then it suffices to prove that
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E(w(t)) 6
3

2
AN
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0 . (5.31)

To start with, we collect useful estimates on I. Now, we use the notation C =
C(A) for short, and the implicit constants in “.” depend on A. Moreover, we take
all the space-time norms over I × R3. By interpolation, we have

‖v‖L∞
t L3

x
+ ‖〈∇〉sv‖L∞

t L2
x
+ ‖v‖L4

t,x
. ‖v‖Y s∩Z . 1. (5.32)

By the frequency support of v, we have for any 0 6 l < s+ 1
2
,

∥∥|∇|lvN
∥∥
l2
N
L2
tL

∞
x
. N

l−s− 1
2
+

0 ‖v‖Ỹ s . N
l−s− 1

2
+

0 . 1. (5.33)

By the conservation of mass, we have ‖u(t)‖L2
x
= ‖u0‖L2

x
. Then, combining (5.32),

we have for all t ∈ [0, T ],

‖w(t)‖L2
x
. ‖u(t)‖L2

x
+ ‖v(t)‖L2

x
. ‖u0‖L2

x
+ 1 . 1. (5.34)

By bootstrap hypothesis (5.30),

‖w‖L∞
t Ḣ1

x
. N1−s

0 . (5.35)

Then, by interpolation, (5.34), and (5.35), we have for any 0 6 l 6 1,

‖w‖L∞
t Ḣl

x
. N

l(1−s)
0 . (5.36)

Next, we derive various space-time bounds combining Lemmas 5.2, 5.3, and 5.4,
under the above setting.

Lemma 5.6. If the assumptions in Proposition 5.5 and the estimate (5.30) hold,
then there exists N0 = N0(A) ≫ 1 satisfying the following estimates.

(1) First, we have the interaction Morawetz estimate

‖w‖L4
t,x

.N
1−s
4

0 . (5.37)

(2) If 0 6 l 6 1
2
, then

‖w‖Xl . N
(l+1)(1−s)
0 . (5.38)
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(3) If 1
2
< l 6 1, then

‖w‖Xl . N
(l+2)(1−s)
0 . (5.39)

Remark 5.7. Roughly speaking, the interaction Morawetz estimate in Lemma 5.2
yields

‖w‖4L4
t,x

. N1−s
0 +N

2(1−s)
0 ‖v‖2L2

tL
∞
x
.

Since v is high-frequency truncated, we are able to cover the additional increment
for the remainder in the view of (5.33). This is the main reason why we implement
the high-low frequency decomposition for the initial data.

Proof. Note that s > 0, by the perturbed Morawetz estimate in Lemma 5.2 and
(5.36),

‖w‖4L4
t,x

. ‖w‖2L∞
t L2

x
‖w‖2

L∞
t Ḣ

1
2
x

+ ‖∇w‖2L∞
t L2

x
‖w‖4L∞

t L2
x
‖v‖2L2

tL
∞
x
+ ‖v‖4L4

t,x

.N1−s
0 +N

2(1−s)
0 N−1−2s+

0 + 1 . N1−s
0 ,

where we need to take N0 = N0(A) suitably large such that N0 &A 1.
By Lemma 5.3 and (5.37), for any 0 6 l 6 1

2
, we also have that

‖w‖Xl . ‖w0‖Ḣl
x
+
(
‖w‖

L∞
t H

l+1
2

x

+
∥∥ |∇|l vN

∥∥
l2
N
L2
tL

∞
x

)(
‖v‖2Y s + ‖w‖2L4

t,x

)

.N
l(1−s)
0 +

(
N

(l+ 1
2
)(1−s)

0 + 1
)(
1 +N

1
2
(1−s)

0

)
. N

(l+1)(1−s)
0 .

Let 0 < ε≪ 1. Then, by Lemma 5.4 and (5.38), for any 1
2
< l 6 1, we have

‖w‖Xl . ‖w0‖Hl
x
+
(
‖w‖L∞

t Hl
x
+ ‖v‖Ỹ s

)(
‖v‖Y s∩Zs + ‖w‖

X
1
2

)(
‖v‖Zs + ‖w‖

L∞
t H

1
2
x

)

+ ‖w‖L∞
t Hl

x

(
‖v‖Y s + ‖w‖

X
1
2−ε

)(
‖v‖Zs + ‖w‖

L∞
t H

1
2+ε

x

)

.N
l(1−s)
0 + (N

l(1−s)
0 + 1)(1 +N

3
2
(1−s)

0 )(1 +N
1
2
(1−s)

0 )

+N
l(1−s)
0 (1 +N

( 3
2
−ε)(1−s)

0 )(1 +N
( 1
2
+ε)(1−s)

0 ) . N
(l+2)(1−s)
0 .

This proves the lemma. �

Now, we are prepared to give the proof of Proposition 5.5. By (4.1) and integration-
by-parts, we have

d

dt
E(w(t)) =Im

∫
∆w

(
|u|2u− |w|2w

)
dx+ Im

∫
|u|2u

(
|u|2u− |w|2w

)
dx

=− Im

∫
∇w · ∇

(
|u|2u− |w|2w

)
dx+ Im

∫
|u|2u

(
|u|2u− |w|2w

)
dx.

Again, we do not distinguish between u and u. Then, we have

sup
t∈I

E(t) .E(w0)

+
∣∣
∫

I

∫
∇w · ∇v(v + w)2 dx dt

∣∣ (5.40)

+
∣∣
∫

I

∫
∇w · ∇wv(v + w) dx dt

∣∣ (5.41)

+
∣∣
∫

I

∫
|u|2u

(
|u|2u− |w|2w

)
dx dt

∣∣. (5.42)
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Estimate on (5.40). This is the main case, where we need the restriction s > 3
7
.

We first make a frequency decomposition:

(5.40) .
∑

N∈2N

∣∣
∫

I

∫
∇w · ∇vNv&N(v + w) dx dt

∣∣ (5.43a)

+
∑

N∈2N

∣∣
∫

I

∫
∇wN · ∇vNv≪N(v≪N + w≪N) dx dt

∣∣ (5.43b)

+
∑

N∈2N

∣∣
∫

I

∫
∇wN · ∇vNw&N(w + v) dx dt

∣∣ (5.43c)

+
∑

N∈2N

∣∣
∫

I

∫
∇wN · ∇vNw2

≪N dx dt
∣∣. (5.43d)

For (5.43a), we can directly transfer the derivative from vN to v&N . By Hölder’s
inequality, Lemma 2.12, and (5.33),

(5.43a) .
∑

N.N1

∣∣
∫

I

∫
∇w · ∇vNvN1(v + w) dx dt

∣∣

.
∑

N.N1

‖w‖L∞
t Ḣ1

x
‖∇vN‖L2

tL
∞
x
‖vN1‖L2

tL
∞
x

(
‖v‖L∞

t L2
x
+ ‖w‖L∞

t L2
x

)

.N1−s
0

∑

N.N1

N
1
2

N
1
2
1

∥∥|∇| 12vN
∥∥
L2
tL

∞
x

∥∥|∇| 12 vN1

∥∥
L2
tL

∞
x

.N1−s
0

∥∥|∇| 12 vN
∥∥
l2
N
L2
tL

∞
x

∥∥|∇| 12vN1

∥∥
l2
N1

L2
tL

∞
x
. N1−s

0 .

(5.44)

Next, we bound (5.43b), where we use the bilinear Strichartz estimate for∇wNv≪N

to lower down the derivative of ∇vN . From Lemma 2.9, (5.39), and (5.32), for
N1 ≪ N , we have that

‖∇wNvN1‖L2
t,x

.
N1

N
1
2

N ‖wN‖U2
∆
‖PN1v0‖L2

x

.N1−s
1 N− 1

2 ‖w‖X1 ‖PN1v0‖Hs
x

.N1−s
1 N− 1

2N
4(1−s)
0 .

(5.45)

Note that 3
7
< s gives

‖∇vN‖L2
tL

∞
x
. N

1
14

∥∥|∇|s+ 1
2
−vN

∥∥
L2
tL

∞
x
, and ‖vN1‖L2

tL
∞
x
. N

− 13
14

1

∥∥|∇|s+ 1
2
−vN1

∥∥
L2
tL

∞
x
.

(5.46)
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Then, combining Hölder’s inequaltiy, (5.45), (5.46), (5.32), (5.33), and (5.36), it
holds that

(5.43b) .
∑

N1≪N

∣∣
∫

I

∫
∇wN · ∇vNvN1(v≪N + w≪N) dx dt

∣∣

.
∑

N1≪N

‖∇wN‖
3
4

L∞
t L2

x
‖∇vN‖L2

tL
∞
x
‖vN1‖

3
4

L2
tL

∞
x
‖∇wNvN1‖

1
4

L2
t,x

·
(
‖v≪N‖L∞

t L2
x
+ ‖w≪N‖L∞

t L2
x

)

.N
3
4
(1−s)

0

∑

N1≪N

‖∇vN‖L2
tL

∞
x
‖vN1‖

3
4

L2
tL

∞
x

(
N1−s

1 N− 1
2N

4(1−s)
0

) 1
4

.N
7
4
(1−s)

0

∑

N1≪N

N
1
14N

− 39
56

1 N
1
4
(1−s)

1 N− 1
8

.N
7
4
(1−s)

0

∑

N1≪N

N
− 1

2
1 N− 3

56 . N
− 1

4
(1−s)

0 N
2(1−s)
0 .

(5.47)

Next, we deal with the term (5.43c), where we can directly transfer the derivative
from vN to w&N . Note that by s > 3

7
,

∑

N,N1:N0.N.N1

N
1
2
−s+

N
1
10
1

. N
− 1

100
0 . (5.48)

By interpolation, (5.37), and (5.38), we also have
∥∥N

1
10
1 wN1

∥∥
L4
t,x

. ‖w‖
3
5

L4
t,x

∥∥〈∇〉 1
4w

∥∥ 2
5

L4
t,x

. N
3
4
(1−s)

0 . (5.49)

Therefore, by Hölder’s inequality, (5.33), (5.48), (5.49), and (5.37),

(5.43c) .
∑

N,N1∈2N:N.N1

∣∣
∫

I

∫
∇wN · ∇vNwN1(w + v) dx dt

∣∣

.
∑

N,N1∈2N:N.N1

N
1
2
−s+

N
1
10
1

‖∇wN‖L∞
t L2

x

∥∥ |∇|s+
1
2
− vN

∥∥
L2
tL

∞
x

·
∥∥N

1
10
1 wN1

∥∥
L4
t,x

(
‖w‖L4

t,x
+ ‖v‖L4

t,x

)

.N
− 1

100
0 N1−s

0 N
3
4
(1−s)

0 N
1
4
(1−s)

0 . N
− 1

100
0 N

2(1−s)
0 .

(5.50)

Now, we deal with the term (5.43d), which is the main part of the whole argu-
ment. We postponed here to illustrate the key idea. Roughly speaking, by Hölder’s
inequality, (5.36), and (5.37),

∣∣
∫

I

∫
∇wN · ∇vNw2

≪N dx dt
∣∣ . ‖∇w‖L∞

t L2
x
‖∇v‖L2

tL
∞
x
‖w‖2L4

t,x

.N
3
2
(1−s)

0 ‖∇v‖L2
tL

∞
x
.

(5.51)

Although we are lack of the ‖∇v‖L2
tL

∞
x
-estimate, the bilinear Strichartz estimate for

∇wNw≪N can be introduced to lower down the derivative of ∇vN . In the view of
(5.38) and (5.39), this procedure will cause the increase of N0. This is allowed, since

there is still N
1
2
(1−s)

0 -gap towards the energy increment N
2(1−s)
0 in (5.51).
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Now, we give the concrete argument for the estimate of (5.43d). By Lemma 2.9,
(5.38), and (5.39),

‖∇wNwN1‖L2
t,x

.
N1

N
1
2

N ‖wN‖U2
∆
‖wN1‖U2

∆

.N1N
−ε
1 N− 1

2 ‖wN‖X1 ‖wN1‖Xε

.N1N
−ε
1 N− 1

2N
(4+ε)(1−s)
0 .

(5.52)

Therefore, by Hölder’s inequality, (5.52) and (5.33),

(5.43d) .
∑

N16N2≪N

∣∣
∫

I

∫
∇wN · ∇vNwN1wN2 dx dt

∣∣

.
∑

N16N2≪N

‖∇wN‖
6
7
+10ε

L∞
t L2

x
‖∇vN‖L2

tL
∞
x
‖∇wNwN1‖

1
7
−10ε

L2
t,x

· ‖wN1‖
5
7
+20ε

L4
t,x

‖wN2‖L4
t,x

‖wN1‖
1
7
−10ε

L∞
t L2

x

.
∑

N16N2≪N

N
( 6
7
+10ε)(1−s)

0 N
1
2
−s+ε‖v‖Ỹ s

[
N1N

−ε
1 N− 1

2N
(4+ε)(1−s)
0

] 1
7
−10ε

·N
1
4
( 5
7
+20ε)(1−s)

0 N
1
4
(1−s)

0 N
−( 1

7
−10ε)

1 N
( 1
7
−10ε)(1−s)

0

.N
(2−20ε)(1−s)
0

∑

N16N2≪N

N
− 1

10
ε

1 N
3
7
−s+6ε.

Since s > 3
7
, we take a suitably small ε > 0 such that 3

7
− s+6ε < 0, then we obtain

that

(5.43d) .N
−20ε(1−s)
0 N

2(1−s)
0 . (5.53)

Combining (5.44), (5.47), (5.50), and (5.53), we have

(5.40) .(5.43a) + (5.43b) + (5.43c) + (5.43d)

.
(
N

−(1−s)
0 +N

− 1
4
(1−s)

0 +N
− 1

100
0 +N

−20ε(1−s)
0

)
N

2(1−s)
0

.N
−20ε(1−s)
0 N

2(1−s)
0 .

(5.54)

Estimate on (5.41). The proof for (5.41) is easier, since there is no derivative
acting on v. However, the integration contains two ∇w terms, which already leads

to the increment of N
2(1−s)
0 . Therefore, we need to cover the additional N0.

Heuristically, by Hölder’s inequality,

∣∣
∫

I

∫
∇w · ∇wvw dx dt

∣∣ . ‖∇w‖2L∞
t L2

x
‖v‖L2

tL
∞
x
‖w‖L2

tL
∞
x
. (5.55)

Note that w has the bounds ‖wN‖l2
N
L2
tL

∞
x

. ‖w‖
X

1
2
. N

3
2
(1−s)

0 and ‖w‖L2
tL

∞
x

.

‖w‖
X

1
2+ . N

5
2
(1−s)+

0 , from which we observe that the latter one increases the energy

bound too much. Therefore, the norm l2NL
2
tL

∞
x is a better choice, and we need to

cover a logarithmic divergence problem for (5.55).
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By frequency decomposition, we have

(5.41) .
∣∣
∫

I

∫
∇w · ∇wvv dx dt

∣∣ (5.56a)

+
∣∣
∫

I

∑

N∈2N

∫
∇w · ∇w.NvwN dx dt

∣∣ (5.56b)

+
∣∣
∫

I

∑

N∈2N

∫
∇w · ∇wv&NwN dx dt

∣∣ (5.56c)

+
∑

N∈2N

∣∣
∫

I

∫
∇w≫N · ∇w≫Nv≪NwN dx dt

∣∣. (5.56d)

First, by Hölder’s inequality and (5.33), it holds that

(5.56a) . ‖∇w‖2L∞
t L2

x
‖v‖2L2

tL
∞
x
. N−2s−1+

0 N
2(1−s)
0 . (5.57)

By the above observation, the main task for (5.56b), (5.56c), and (5.56d) is to
update the summation of wN to l2N . For (5.56b), we move the first order derivative
from w.N to wN , and use the Schur’s test to update the summation. Since s > 3

7

implies 1 − 5
2
s+ < − 1

100
, by Hölder’s inequality, Lemma 2.12, Lemma 2.4, (5.33),

and (5.38),

(5.56b) .
∣∣
∫

I

∑

N1.N

∫
∇w · ∇wN1vwN dx dt

∣∣

.

∫

I

∑

N1.N

‖∇w‖L2
x
‖∇wN1‖L2

x
‖wN‖L∞

x
‖v‖L∞

x
dt

.

∫

I

‖∇w‖L2
x
‖v‖L∞

x

∑

N1.N

N1

N
‖wN1‖L∞

x
‖∇wN‖L2

x
dt

.

∫

I

‖∇w‖2L2
x
‖v‖L∞

x
‖wN1‖l2

N1
L∞
x

dt

. ‖∇w‖2L∞
t L2

x
‖v‖L2

tL
∞
x
‖wN1‖l2

N1
L2
tL

∞
x

.N
2(1−s)
0 N

−s− 1
2
+

0 N
3
2
(1−s)

0 . N
− 1

100
0 N

2(1−s)
0 .

(5.58)

Next, we estimate (5.56c). In this case, we can transfer the additional ε-regularity
from wN to v&N . Let ε > 0 be a absolutely small constant. Similarly by Hölder’s
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inequality, Lemma 2.12, Lemma 2.4, (5.33), and (5.38), we obtain

(5.56c) .
∑

N.N1

∣∣
∫

I

∫
∇w · ∇wvN1wN dx dt

∣∣

.
∑

N.N1

‖∇w‖2L∞
t L2

x
‖vN1‖L2

tL
∞
x
‖wN‖L2

tL
∞
x

.
∑

N.N1

‖∇w‖2L∞
t L2

x

N ε

N ε
1

‖N ε
1vN1‖L2

tL
∞
x
‖wN‖L2

tL
∞
x

. ‖∇w‖2L∞
t L2

x
‖|∇|ε vN1‖l2

N1
L2
tL

∞
x
‖wN‖l2

N
L2
tL

∞
x

.N
2(1−s)
0 N

−s− 1
2
+2ε

0 N
3
2
(1−s)

0 . N
− 1

100
0 N

2(1−s)
0 .

(5.59)

Finally, we deal with the term (5.56d), where we need to get additional regularity
for summation by the bilinear Strichartz estimate. By Lemma 2.9, (5.38), and (5.39),

‖∇wN1vN2‖L2
t,x

.
N2

N
1
2
1

N1 ‖wN1‖U2
∆
‖PN2v0‖L2

x

.N2N
− 1

2
1 ‖w‖X1 ‖v‖Zs

.N2N
− 1

2
1 N

3(1−s)
0 .

(5.60)

Note also that

N ε
2 ‖vN2‖1−ε

L2
tL

∞
x
. N

− 1
2
+3ε−(1−ε)s

2

∥∥|∇|s+ 1
2
−εvN2

∥∥1−ε

L2
tL

∞
x
. N

− 1
2
+3ε−(1−ε)s

2 . (5.61)

Since 0 < ε ≪ 1, then we have

1 + 5ε− (
5

2
+ ε)s < − 1

100
.

Therefore, by Hölder’s inequality, (5.60), (5.61), (5.33), and (5.38),

(5.56d) .
∑

N2≪N≪N1

∣∣
∫

I

∫
∇wN1 · ∇wN1wNvN2 dx dt

∣∣

.
∑

N2≪N≪N1

‖∇wN1‖2−ε
L∞
t L2

x
‖∇wN1vN2‖εL2
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‖wN‖L2

tL
∞
x
‖vN2‖1−ε

L2
tL

∞
x

.
∑

N2≪N≪N1

‖∇wN1‖2−ε
L∞
t L2

x
N ε

2N
− 1

2
ε

1 N
3ε(1−s)
0 ‖wN‖L2

tL
∞
x
‖vN2‖1−ε

L2
tL

∞
x

.
∑

N2≪N≪N1

N
− 1

2
ε

1 N
(2−ε)(1−s)
0 N

3ε(1−s)
0 N

3
2
(1−s)

0 N
− 1

2
+3ε−(1−ε)s

0

.N
2(1−s)
0 N

1+5ε−( 5
2
+ε)s

0 . N
− 1

100
0 N

2(1−s)
0 .

(5.62)

Therefore, combining (5.57), (5.58), (5.59), and (5.62), we have

(5.41) .(5.56a) + (5.56b) + (5.56c) + (5.56d)

.
(
N−2s−1+

0 +N
− 1

100
0

)
N

2(1−s)
0 . N

− 1
100

0 N
2(1−s)
0 .

(5.63)
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Estimate on (5.42). This is a simple case, where no derivative appears. By
Hölder’s inequality, (5.37), and (5.36),

(5.42) .
∣∣
∫

I

∫
|u|2u

(
|u|2u− |w|2w

)
dx dt

∣∣

. ‖v‖L2
tL

∞
x

(
‖v‖2L4

t,x
+ ‖w‖2L4

t,x

)(
‖v‖3L∞

t L6
x
+ ‖w‖3L∞

t L6
x

)

.N
−s− 1

2
+

0 N
1
2
(1−s)

0 N
3(1−s)
0 . N

1− 5
2
s+

0 N
2(1−s)
0 . N

− 1
100

0 N
2(1−s)
0 .

Then, by choosing N0 = N0(A) suitably large, and combining (5.54), (5.63), and
(5.64), we have

sup
t∈I

E(t) 6E(w0) + (5.40) + (5.41) + (5.42)

6AN
2(1−s)
0 + C(A) ·

(
N

−20ε(1−s)
0 +N

− 1
100

0

)
N

2(1−s)
0

6
3

2
AN

2(1−s)
0 .

(5.64)

Then, by the standard bootstrap argument, we finish the proof of (5.29). �

5.4. Proof of Proposition 5.1. We first prove the global well-posedness. Since
v ∈ Y s ∩ Zs(R) and w0 ∈ H1

x, by Proposition 4.2, there exists T1 depending on
‖w0‖H1

x
and ‖v‖Y s(R)∩Zs(R), such that w ∈ C([0, T1];H

1
x) solves (4.1). By Proposition

5.5, we have

E(w(T1)) 6 sup
t∈[0,T1]

E(w(t)) 6 2AN
2(1−s)
0 .

Then, we have ‖w(T1)‖2H1
x
6 2AN

2(1−s)
0 , and can apply Proposition 4.2 again starting

from T1. Since the energy bound in (5.29) does not reply on T , we can extend the
solution on R by induction, and get

sup
t∈R

E(w(t)) 6 2AN
2(1−s)
0 . (5.65)

Next, we prove the scattering statement. We only consider the t→+∞ case, and
it suffices to prove that

∥∥∇
∫ ∞

0

e−is∆(|u|2u) dx
∥∥
L2
x
6 C(A,N0). (5.66)

In fact, since the global well-posedness already holds, we do not care the explicit
expression of A and N0. Now, all the space-time norms are taken over R×R3. Using
Lemmas 5.2 and 5.3 on [0,∞), we have for any 0 6 l 6 1,

‖w‖Xl 6 C(A,N0).

Furthermore, we clearly have

‖v‖
L∞
t H

1
3
x

+
∥∥|∇| 12 v

∥∥
L2
tL

∞
x
+
∥∥|∇| 56+v

∥∥
L2
tL

∞
x
+ ‖v‖L4

tL
6
x
6 C(A).
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Next, we start to prove (5.66) using the above estimates without mentioning. We
split

L.H.S. of (5.66) .
∥∥
∫ ∞

0

e−is∆(∇wu2) ds
∥∥
L2
x

(5.67a)

+
∥∥
∫ ∞

0

e−is∆(∇vu2) ds
∥∥
L2
x
. (5.67b)

The proof for the first term (5.67a) is easy. By Lemma 2.7 and Hölder’s inequality,

(5.67a) 6C
∥∥∇wu2

∥∥
L2
tL

6
5
x

6C ‖∇w‖L∞
t L2

x

(
‖w‖2L4

tL
6
x
+ ‖v‖2L4

tL
6
x

)
6 C(A,N0).

(5.68)

Next, we deal with the term (5.67b). By frequency decomposition,

(5.67b) .
∑

N∈2N

∥∥
∫ ∞

0

e−is∆(∇vNu&Nu) ds
∥∥
L2
x

(5.69a)

+
∑

N∈2N

∥∥
∫ ∞

0

e−is∆(∇vNu2≪N) ds
∥∥
L2
x
. (5.69b)

By Hölder’s inequality and Lemma 2.4, we have

(5.69a) 6C
∑

N.N1

‖∇vNuN1u‖L1
tL

2
x

6C
∑

N.N1

N
1
2

N
1
2
1

∥∥|∇| 12 vN
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L2
tL

∞
x

∥∥|∇| 12 vN1
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tL

∞
x
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N
1
2

N
1
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1
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∞
x
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L4
t,x

‖u‖L4
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6
∥∥|∇| 12 vN
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N
L2
tL

∞
x

∥∥|∇| 12 vN1

∥∥
l2
N1

L2
tL

∞
x
‖u‖L∞

t L2
x

+ C
∥∥|∇| 12 vN

∥∥
l2
N
L2
tL

∞
x

∥∥|∇| 12wN1

∥∥
l2
N1

L4
t,x

‖u‖L4
t,x

6 C(A,N0).

(5.70)

Finally, we estimate (5.69b), where we need to exploit the duality structure as in the
proof of Proposition 4.2. In this case, it is unnecessary to invoke the Up-V p method
as before for two reasons: first, we are considering the dual operator of eis∆; second,
we have estimate for

∥∥|∇| 56+v
∥∥
L2
tL

∞
x

under the radial assumption. We can simply

use the duality representation of the L2
x-norm:

(5.69b) 6C
∑

N16N2≪N
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0

e−is∆(∇vNuN1uN2) ds
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L2
x

6C
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N16N2≪N

sup
‖g‖

L2
x
=1

∫ ∞

0

〈g, e−is∆(∇vNuN1uN2)〉 ds

6C
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L2
x
=1
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0

∫
eis∆g∼N∇vNuN1uN2 dx ds.

(5.71)
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By Lemma 2.9, for N1 ≪ N ,

∥∥eis∆g∼NuN1
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L2
t,x

.
N1

N
1
2

‖g∼N‖L2
x

(
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.
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1
2
1

N
1
3

(
N

1
3
1 ‖PN1v0‖L2

x
+N

1
3
1 ‖wN1‖U2

∆

)
.
N

1
3
1

N
1
6

C(A,N0).

(5.72)

By (5.72) and Hölder’s inequality, for N1 6 N2 ≪ N ,
∫ ∞

0

∫
eis∆g∼N∇vNuN1uN2 dx ds

6C
∥∥eis∆g∼NuN1
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L2
t,x

‖∇vN‖L2
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∞
x
‖uN2‖L∞

t L2
x

6C(A,N0)
N

1
3
1

N
1
6

‖∇vN‖L2
tL

∞
x
‖uN2‖L∞

t L2
x

6C(A,N0)
N

1
3
1

N
1
3
2

N0−
∥∥|∇| 56+vN

∥∥
L2
tL

∞
x

∥∥|∇| 13uN2

∥∥
L∞
t L2

x
6 C(A,N0)

N
1
3
1

N
1
3
2

N0−.

(5.73)

Then, by (5.71) and (5.73),

(5.69b) 6C
∑

N16N2≪N

sup
‖g‖

L2
x
=1

∫ ∞

0

∫
eis∆g∼N∇vNuN1uN2 dx ds

6C(A,N0)
∑

N16N2≪N

N
1
3
1

N
1
3
2

N0− . C(A,N0).

(5.74)

By (5.70) and (5.74), we have

(5.67b) 6 C ·
(
(5.69a) + (5.69b)

)
6 C(A,N0). (5.75)

(5.68) and (5.75) imply (5.66). This finishes the proof of Proposition 5.1.
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