CHINA COMMUNICATIONS

Lyapunov-guided Optimal Service Placement in Vehicular

Edge Computing

Chaogang Tang', Yubin Zhao?, Huaming Wu**

! School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
2 The Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
3 School of Microelectronics Science and Technology, Sun Yat-Sen University, Zhuhai 519082, China

“The corresponding author, email: whming@tju.edu.cn

Abstract: Vehicular Edge Computing (VEC) brings
the computational resources in close proximity to the
service requestors and thus supports explosive com-
puting demands from smart vehicles. However, the
limited computing capability of VEC cannot simul-
taneously respond to large amounts of offloading re-
quests, thus restricting the performance of VEC sys-
tem. Besides, a mass of traffic data can incur tremen-
dous pressure on the front-haul links between vehicles
and the edge server. To strengthen the performance
of VEC, in this paper we propose to place services
beforehand at the edge server, e.g., by deploying the
services/tasks-oriented data (e.g., related libraries and
databases) in advance at the network edge, instead of
downloading them from the remote data center or of-
floading them from vehicles during the runtime. In
this paper, we formulate the service placement prob-
lem in VEC to minimize the average response latency
for all requested services along the slotted timeline.
Specifically, the time slot spanned optimization prob-
lem is converted into per-slot optimization problems
based on the Lyapunov optimization. Then a greedy
heuristic is introduced to the drift-plus-penalty based
algorithm for seeking the approximate solution. The
simulation results reveal its advantages over others in
terms of optimal values and our strategy can satisfy the
long-term energy constraint.

Keywords: Vehicular edge computing; Service place-

Received: ***
Revised: ***
Editor: ***

ment; Response latency; Computational resources

I. INTRODUCTION

Various advanced Information and Communication
Technologies (ICT) are applied and integrated into In-
telligent Transportation Systems (ITS) to pursue har-
monious unification of humans, vehicles and roads.
Many benefits can be obtained from ITS, includ-
ing guaranteeing traffic safety, raising transportation
efficiency, improving the transportation environment
and driving experience. In this context, a wide va-
riety of data can be gathered by mounted facilities
in smart vehicles (e.g., SIM cards, GPS, sensors,
and cameras). Furthermore, the consequent vehicular
tasks have sprung up, which require computational re-
sources and services for successful execution. Smart
vehicles are usually equipped with computing facili-
ties such as On-Board Unit (OBU) to satisfy the com-
putational demands of these tasks. However, such
“computers on wheels” can only offer limited com-
puting capabilities, due to restricted physical size and
energy supply.

To alleviate the contradiction between the skyrock-
eting demands for computational resources and the
limited computing capabilities of vehicles themselves,
it becomes increasingly dominant that computational
resources and services are provisioned outside the ve-
hicles. For example, Vehicular Cloud Computing
(VCC) and Vehicular Edge Computing (VEC) are two
newly emergent computing paradigms in recent years,
which are intended for addressing the above contra-

China Communications

diction. The difference between VCC and VEC lies in
that VEC shifts the computational capability from the
remote data center to the network edge and provides
computing services in close proximity to the resource
requestors (i.e., vehicles). Comparatively speaking,
VEC can better cater to the delay-strict requirements
of vehicles tasks. In particular, vehicles offload their
tasks/applications to the edge server for execution in
VEC and the edge server is usually deployed at the
Road-Side Unit (RSU) in a densely populated area.
However, due to explosive growth in vehicular tasks
and applications, tremendous pressure has been im-
posed on the computing capabilities of the edge server
as well as the front-haul links between vehicles and an
accessible computational access point, e.g., RSU. This
is because the amount of computational resources in
VEC is not unlimited compared to that at the cloud
center.

Accordingly, we propose to place services in ad-
vance at the edge server. Service placement, also
termed service deployment, strives to deploy the
services/tasks-oriented data (e.g., related libraries and
databases) in advance at the network edge (e.g.,
RSUs), instead of downloading them from remote data
center during the runtime or rush hours. When a ve-
hicle sends its offloading request to the edge server,
the execution result can be directly retrieved, if the
corresponding service has been placed at the edge
server. Otherwise, the corresponding service may be
offloaded from the vehicle or downloaded from the
data center, which increases both the transmission and
calculation delay. As a result, the response delay is
much longer, compared to the case when the service is
cached.

Although there is an extensive literature on task of-
floading and service placement in VEC [1-4], they sel-
dom consider factors which may increase the difficulty
of service placement. Such factors usually include
limited sojourn time for vehicles, limited wireless cov-
erage and vehicular offloading requests featured by
temporal and spatial variation. In addition, most of
the current works on service caching assume that ser-
vice caching does not incur energy consumption at the
edge server, which, however, does not always hold in
the task-oriented caching scenarios [5, 6]. As a con-
trast, in this paper we not only take into account the
above factors but also the evaluation of service place-
ment in the long run.

In this paper, we strive to make service placement
decision with a time effect and strategic update in a
scenario where vehicles are covered by multiple RSUs
owing to an increasing density of RSUs. Specifically,
services are placed at RSUs along the slotted timeline
such that the average response latency for all the re-
quested services can be optimized. The major contri-
butions are summarized as follows.

* A generic approach is put forward for improv-
ing the performance of VEC in terms of response
latency, with the help of strategic service place-
ment. By formulating the mathematical model,
our goal is to minimize the average response la-
tency of requested services along the slotted time-
line in this paper.

* Multiple constraints are considered in the op-
timization problem, especially the overall con-
straint of energy consumption along the in-
finite time-slotted horizon. The Lyapunov
optimization-based technology is leveraged for
converting the long-term energy constraint into
per-slot ones. Based on this, an online algorithm
is designed to search for the approximate optimal
solution in this paper.

* Extensive simulation is conducted for investigat-
ing and evaluating the performance of the pro-
posed service placement strategy. Simulation re-
sults have revealed that our strategy can achieve
better performance compared to other strategies.

The rest of the paper is organized as follows. Some

related works are reviewed in Section II. The system
model is mathematically formulated in Section III, and
the optimization problem is also given in Section IV.
An online approach for service placement is put for-
ward in Section V, followed by the simulation evalua-
tion in Section VI. Finally, the conclusion is drawn in
Section VII.

II. RELATED WORK

Due to restricted physical size and energy supply
of smart devices (e.g., OBU), there are increasingly
strong demands for shifting the task execution from
the local to the third party with abundant computa-
tional resources. Such a tendency has given birth to
several new computing paradigms represented by edge
computing. Extensive attention has been paid to this

China Communications

research field, aiming to optimize the performance of
task offloading and service outsourcing from different
angles [7]. In the meanwhile, service placement usu-
ally plays an important role in improving the perfor-
mance of the systems when tasks are offloaded and re-
sources are scheduled in the cloud-edge networks [8—
12].

Mobile Edge Computing (MEC), derived from edge
computing, brings the computational resources close
to the devices, and enables tasks to be accomplished
with shorter response latency compared to cloud com-
puting. To further enhance the performance of MEC,
Li et al. [1] jointly optimized task offloading, service
placement and resources deployment at the edge in
MEC. To improve the quality of service such as re-
sponse latency, service providers usually deploy ser-
vices at the network edges. In this context, Panadero
et al. [13] studied the service placement at the edge
server by minimizing the total cost for task offload-
ing which includes the costs on service placement, the
throughput of edge server, and the energy consump-
tion. In the meanwhile, the strict requirement for user-
perceived delay should be satisfied. They proposed a
heuristic algorithm to solve the formulated Mixed In-
teger Linear Programming problem.

Similarly, the Internet of Things (IoT) devices
have increasing demands for services characterized by
ultra-low response latency. In this context, minimiza-
tion of response latency while meeting multiple con-
straints has become the main focus in the existing lit-
erature. However, current works seldom consider the
load-balancing issue which has played a key role in
cost-efficient system management. Therefore, an op-
timization problem with two optimization objectives
was proposed in [14], aiming to place IoT services
with load balance for improving the quality of service
that is defined as a function of deadline violation, ser-
vice deployment, and unhosted services.

Task execution at the network edges brings bene-
fits to the task requestors, but it also causes serious
pressure on the limited computational resources of
the edge servers. How to efficiently schedule these
resources for the requestors has become one of the
prime challenges. Different from the previous works
which try to jointly optimize the service placement
and request routing, Yuan et al. [15] have considered
the non-negligible operating expenses caused by ser-
vice placement. Specifically, they introduce a two

timescale framework to minimize these costs during
frequent cross-cloud service replacement and replica-
tion, and further design a greedy algorithm to address
the service placement problem. Community networks
have attracted lots of attention recently. These net-
works are usually constructed and managed voluntar-
ily at the edge, and featured by irregular topology and
resource heterogeneity. In view of this, Panadero et
al. [16] proposed a service placement strategy, which
can place services in decentralized community net-
works.

Complicated services can usually be divided into
independent components which can be separately ac-
complished at different edge servers in a cooperative
fashion. Previous works usually assumed services are
unsplittable or ignored the fact that edge servers can
be geographically isolated. Furthermore, the inter-
ference caused by services sharing the same physi-
cal nodes/links was also ignored, which however can
cause long computation delay. Accordingly, Han et
al. [17] paid attention to the Interference-Aware (IA)
service placement while assuming that services can be
composed of multiple components in the edge-cloud
networks.

Apart from the computational resources, storage
and networking resources are both required for data-
intensive applications such as machine learning tasks.
Furthermore, the service (libraries, databases and
codes) placement strategy should be updated over
time. Accordingly, a two-time-scale framework is
put forward in [18], aiming to jointly optimize ser-
vice placement and request allocating. Moreover, a
polynomial-time service placement algorithm is de-
signed in real-time response to the service requests.
Simulation results reveal that their approach achieves
90% of the optimal performance. To realize ser-
vice migration in dynamic mobile networks, pervasive
edge computing is attracting more and more attention
recently. Against this background, Ning et al. [19]
aimed to maximize the utility value of the edge sys-
tem. Specifically, they consider both storage capac-
ity and response latency in the optimization problem.
Lyapunov optimization is introduced for converting
it into instant subproblems. Moreover, two approxi-
mation algorithms are used to obtain the average sys-
tem utility in the future and make decisions on service
placement, respectively.

Due to the increasingly unoccupied resources on

China Communications

UAVs, more and more UAVs can act as the edge
servers to process the offloaded tasks by the onboard
processors [20-22]. Thus, services should be placed
beforehand. He ef al. [20] aimed to jointly optimize
the service placement and resource allocation problem
in UAV-assisted edge computing, which was modeled
as a mixed-integer nonlinear programming problem
and divided into two subproblems which are proven to
be submodular and convex, respectively. Thus, a gen-
eral alternative optimization is adopted to solve this
problem.

III. SYSTEM MODEL

A considered scenario is depicted in Fig. 1. Multiple
RSUs are scattered in the densely populated area. In
addition, the performance of them is enhanced by de-
ploying edge servers that are rich in computational re-
sources, as denoted in the figure. Thus, services can
be provided at the edge of the network. Consider-
ing the mobility of vehicles, the strategy for service
placement, i.e., which services should be deployed at
which RSUs, should be updated periodically. There-
fore, we divide the timeline 7 into T time slots in this
paper, and each time slot lasts 7 seconds, i.e., T =
{0,---,T—1}. The service placement can be updated
within each time slot, so as to reflect its dynamics. We
denote the set of RSUs by N' = {1,---, N}, where
N is the number of RSUs in the considered model. In
addition, we further assume that the area considered
in this paper can be divided into M disjoint sub-areas
(regions), indexed by M. Due to the increasing den-
sity of RSU deployment, it is likely that one sub-area
or region can be covered by multiple RSUs.

Let R,,,(C N) denote the set of RSUs that can cover
the region m. Thus, vehicles with offloading requests
at region m can resort to RSU n € R,,. Assume
that there are K computing services that can be de-
ployed at RSUs, indexed by £ = {1,---, K}. Each
service k can be represented by a 2-tuple of (dy, si),
where dj and s; denote the task-input data size and
averagely required workload (e.g., the CPU cycles),
respectively. Each RSU n can be represented by a 2-
tuple of (D,,, f,), where D,, and f,, denote the caching
and processing capabilities of RSU n, respectively.

Definition 1. Service Placement Decision. Ser-
vice placement in this paper refers to the deploy-
ment of services at the edge server by downloading

service-oriented data such as parameters, libraries
and databases in advance from the remote data center.
Let (5,2771 be a binary variable to indicate whether the
service k is deployed at RSU n in time slot t. 512,7; =1,
if service k is deployed at RSU n in time slot t; and 0,
otherwise. Define &,, = {6}, -
vice placement decision of RSU n for all services in K
in time slot t, and §' = {&%, -
placement decisions of all RSUs in N in time slot t.

-, 0% o} as the ser-

-, 8%} as the service

Note that it is impractical for RSU n to deploy all the
services simultaneously, since the storage (caching)
capability (i.e., D,,) is limited. In particular, the ser-
vice placement decisions should meet the following
constraint:

K
> 64,di <Dy, VEET, VneN. (1)

k=1

The above equation indicates that the total amount
of task-input data of all the services placed at RSU n
should not exceed its caching capability D,, in each
time slot. We investigate the performance of service
placement in vehicle edge computing in regions in-
stead of individual vehicles [2], since the statistical
information on vehicular offloading requests can be
better captured and evaluated in regions than individ-
ual vehicles, and this way can better cater to service
placement featured by the long-term process. As a re-
sult, it is no longer adequate to assume that the number
of vehicular offloading requests is constant as most of
existing literature did [3, 5]. In this paper, we assume
that the vehicular task arrivals, i.e., the arrivals of the
offloading requests generated by vehicles in the corre-
sponding regions, follow a Poisson process. In partic-
ular, let)‘Z,m denote the arrival rate of vehicular tasks
requesting service k in region m in time slot £.

Let R}.,, € R, denote the set of RSUs that have
deployed service k in region m in time slot . Thus,
vehicular offloading requests in region m can resort
to the RSU in Rzm Thus, two cases may occur as
follows. One is that the set Rfem is empty. Then,
we assume that the vehicular offloading requests will
be forwarded to the cloud center where the tasks are
served by corresponding services. The other case is
that, the set Rj,,, is not empty, i.e., there are multiple
RSUs that can serve the vehicular offloading requests.
For simplicity, the vehicular offloading requests are as-

China Communications

RSU Edge
Server Coverage

V2V Link Wireless V2I Link

Figure 1. A VEC Application scenario considered in this paper

sumed to be evenly distributed among RSUs in Rzm
[2]. Therefore, we define w}fm as the average work-
loads required by service k to RSU 7 in time slot ,
given as:

win - ’ M SpAY U%:1 Ri:’m B 0’
" O L UM R, £ 0.
2)
where U%:l R};m = () means that there are no re-
gions m € M that have placed service k. I, ,, is an
indicator to denote whether the RSU n covers the re-
gion m. It can be defined as:

1 € R,
Lim=14_ " 3)
0 n¢Rpy.

Combining the service placement decision ¢!,
w} ,, can be further rewritten as:

M t
st Sk Ak m
wkyn = 5k7"7n2_:1[”’m‘72';€’m” Vk S /C,Vn € N
“4)

Service placement at the edge server in advance
aims to reduce the response delay and further improve
the quality of service (QoS) and the quality of expe-
rience (QoE). However, it shall be noted that, the ser-
vice deployment and placement at the edge, e.g., by

downloading task-input data, libraries and databases
pertaining to the corresponding services from the data
center, will also incur costs such as energy consump-
tion at the edge. We will separately discuss the re-
sponse delay and energy consumption models in what
follows.

3.1 Response Delay Model

The average response delay for the tasks processed at
the edge mainly consists of the queueing delay and
computation delay, when the corresponding services
have already been placed at the edge server in advance.
We have considered the queueing delay in the paper,
owing to the fact that the computational resources at
RSUs cannot process all the tasks in parallel, espe-
cially when the number of vehicular offloading re-
quests is huge. Furthermore, the queueing delay is one
of the causes that incur long response latency.

Since the vehicular task arrival of each service type
follows a Poisson process with rate \j , and the of-
floading requests are evenly distributed among RSUs
in szm, the overall task arrival at RSU n for service
k is also a Poisson process, with the rate)\fm given as:

M t

A
Moo= SNT e ke K,VneN. (5
kn rnzzzl s |Rl;€7m’ n N ()

China Communications

The service time of one task of service type k at
RSU n can be expressed as si/f,. Accordingly, the
service rate fy, p iS:

In
Hin = —,
Sk

Vk € K,Vn e N, (6)

where f,, denotes the processing frequency of RSU n.
Specifically, we evaluate and analyze the response de-
lay by modeling this process as an M/M/1 queue. Thus
the response delay, i.e., the average sojourn time (wait-
ing time and service time) for service k£ at RSU n in
time slot ¢, is given as:

Sk

_Skz

rdi:’n In 7n>\ (7)

k 'ml

The above equation implies that service k£ has been
placed at RSU n. On the other hand, it is also possible
that service & is not placed at RSU n. In this case, the
offloading request will be served at the cloud center.
Due to the sufficient computing resources and power-
ful computing capabilities at the cloud center, we thus
assume that the calculation delay at the cloud center
can be ignored. The response delay, denoted by rdk o
is mainly caused by the transmission delay when data
and execution results are transmitted over the back-
bone network using the backhaul links. Such trans-
mission delay can be estimated and predicted based on
historical statistical data and highly efficient machine
learning approaches such as auto-regression analysis.
Hence, the average response delay for service k in time
slot ¢ rd}, is:

rdi = — Opn)rd e (8)

uMz

3.2 Energy Consumption Model

As mentioned earlier, the service placement at the
edge in advance incurs negligible energy consump-
tion, including the static energy consumption and dy-
namic energy consumption. The static energy, denoted
by «,,, is consumed for maintaining virtual resources
allocated to service k, which is independent of the
workload of the service. The dynamic energy 5,27,1
is consumed for performing the service at run time.
Thus, the total energy consumption for service k at

RSU 7 in time slot ¢ (i.e., the static energy consump-
tion plus the dynamic energy consumption) can be ex-
pressed as:

€n = Qn + §77U)Zn(fn>2
Sk)\};’m
Riml’

M
=y + gnékn fn 2 Z In,m)]
m=1

where the second part on the right-hand side represents
the dynamic energy consumption ﬂ,tm, ¢ represents
the effectively switched capacitance coefficient, and n
is the number of cycles needed to perform one task-
input bit from n. The energy consumption for com-
putation undertaking at the edge server is supposed to
be lower than the given threshold, so the residual en-
ergy can be kept for other purposes such as vehicle-
to-infrastructure and pedestrian-to-infrastructure com-
munications. Thus, the following constraint should be
satisfied:

K
> thn < Chppn MENNVEET, (10)

k=1

where eﬁmmm is the maximal energy consumption that
RSU n can tolerate to perform the tasks. Therefore,
for arbitrary time slot ¢, the total energy consumption
for undertaking all the services at RSU n should not
exceed this energy threshold. For easy discussion, we
assume that the energy threshold is the same for each

time slot at RSU n.

IV. PROBLEM FORMULATION

Our goal in this paper is to minimize the overall re-
sponse delay of services along the infinite time slots,
by adjusting the strategy of service placement at RSUs
within each time slot. In particular, our optimization

China Communications

problem can be formulated as:

1 T-1 K
- t
PV pinfim 72 2
t=0 k=1
T-1 K
st lim 23N e <&, VneN, (D)

t=0 k=1
famin < fo < fomaz, Y €N, (12)
Iim€{0,1} VneN,VmeM, (13)
6, €{0,1} VEeK,VneNVteT,
(14)

Constraints (1), (10), (15)
where the inequation (11) represents that the long-
term energy consumption at RSU n should not ex-
ceed the threshold &,,, for the reason that the evalua-
tion of service placement strategy needs a long process
as mentioned earlier. The computational resources al-
located for service deployment and execution should
be bounded as shown in the inequation (12), owing to
the limited computing capabilities at the edge server
in contrast to the cloud center. The number of services
that are placed is restricted by the limited storage ca-
pacity of the edge server. In addition, per-slot energy
consumption for RSU n is also bounded by eﬁn(w’n as
shown in Eq. (10).

The difficulties in addressing the problem P1 are
summarized as follows. First, the entire information,
such as the offloading requests in all time slots, is re-
quired for optimally solving this problem. However,
it is difficult to obtain this information of the future
time slots in the current time slot. In addition, P1 is
essentially an integer linear programming that is com-
putationally prohibitive even if the entire information
is acquired a priori. Last but not least, it is quite diffi-
cult to handle the constraint (11), since it similarly re-
quires the entire information in all the time slots. Ac-
cordingly, an online approach is needed for addressing
this problem, such that the response delay can be opti-
mized by placing services at the edge within each time
slot.

V. ONLINE ALGORITHM FOR SERVICE
PLACEMENT

To address the above challenges, we in this section
present an online algorithm, named Online service

Placement for vehicular Edge Computing (OPEC).
Specifically, the Lyapunov optimization technology
is introduced for converting the infinite time-slotted
(global) energy consumption constraint (11) into re-
spective constraints within each time slot. Thus,
the optimization for P1 can be solved approximately
within each time slot.

5.1 Lyapunov-based Online Algorithm

To covert the global constraint into local ones, n en-
ergy migration queues Q,(n € N) are constructed,
which can be recursively defined as:

K
Qu(t+1) = max[Qn(t) — £, 0]+ Y _ef,. Vn €N,
= (16)

where @), (t) is a numerical value to denote the queue
backlog of RSU n in time slot ¢. Actually, @, (¢) can
indicate how far the energy consumption in current
time slot deviates from the global energy constraint £,
e.g., a larger value of @, (t) for RSU n always denotes
a sharper deviation from &,. Note that we assume that
Q,(0) = 0 holds, Vn € N.

Lemma 1. For an arbitrary RSU n € N, given the
corresponding queue backlog Q.,(t) in time slot t, the
following inequality always holds

S
L

M=

B[S el — &l < S EIQ(T)].

NI =
~
]
o

k=1

Proof. : The lemma can be proven based on the fol-
lowing two cases.

* Case 1: Q,(t) > &,. In this case, we have Q,, (t+
1) = max[Qn(t) —&n, 0] +Zl§:1 elltc,n = Qn(t)—
En + Y €h . SO we can obtain Y ef | —

gn: Qn(t + 1) - Qn(t)

* Case 2: Q,(t) < &,. In this case, Q,(t + 1) =
max|[Q, (t)—E&n, O]+Z£<:1 Chn = 22(:1 e}, and
S el —En = Qu(tt+1) =&y < Qu(t+1)—
Qu(t). Asaresult, Y1 eh —E,< Qut+1)—
Qn(t) holds, Vt € T. Take the expectation of this
inequality and then summarize it over V¢ € T, we

China Communications

=0 Lk=1
T-1
t=0

Thus, Vn € N, we can obtain

= K 1

f E Zell‘/c,n —&n| < TE[Qn(T)]
t=0 Lk=1

Define the vector Q(t) = {Q1(t), -+ ,Qn(t)} as

the queue backlogs of NV RSUs in time slot t. Then,
the Lyapunov function with regards to (w.r.t.) Q(%) is
defined as:

1 N
=52 Q). (17)
n=1

The Lyapunov function is actually the function of
the queue backlogs of all the RSU A in time slot ¢.
We can further define Lyapunov drift as the increment
of the queue backlogs in two consecutive time slots,
given as:

A Q) 2 E[F(Q(t+1) - FQM)Q(®). (18)

The Lyapunov drift can actually indicate the fluctu-
ation of two consecutive states. From the perspective
of system stability, the smaller the Lyapunov drift, the
better the system stability. However, to minimize the
Lyapunov drift faces the similar challenge, since it also
needs the information in the future time slots. For ex-
ample, the optimization of A(Q(t)) needs the future
information F(Q(¢ + 1)). To avoid involving the fu-
ture information, we can actually relax it by determin-
ing its upper bound. In the next, we will show how to
find the upper bound of the Lyapunov drift according
to the following lemma [23].

Lemma 2. Given four non-negative real numbers A,
B, C and m, they satisfy C' = max{B — m,0} + A,
then C? < A? + B* +m? — 2B(m — A).

Based on this Lemma, we have

R =
= SED max[Qu(t) - £.,01+ Y cf,,
n=1 =
. k=1
NAOI10)
n=1
Loz o (NS 2
K
+2Q.(0(> ek — £)]1QD)
Nszl
=D - &Q.0) +EZQn Ze‘};,le(t)}
n=1 k=1
(19)
where
1 R i
_ 2
o= i3t fe |5 () 0
1< 1 [&
S§Z<€721+§]E Z mamn |Q]
171;1 n=1
= 5 Z [52 (€max n)Q] S B. (20)

Therefore, the upper bound of the Lyapunov drift
can be given as:

S B - ZgnQn(t)

AQ(1))
N
E|Y @Y e ey
n=1 k=1

It is noticeable that the upper bound of A(Q(t)) no
longer depends upon the information in future time
slots such as Q(¢ + 1). Then, we introduce the drift-
plus-penalty term which integrates the Lyapunov drift
into the optimization objective in per time slot, given
as below:

K

Zrd}il@(t)])

k=1

O(t) = AQ(t) + VE

China Communications

where V' is a positive numeric value to denote the pref-
erence between energy consumption and response de-
lay. Combining the inequality (21), we have:

O(t) < B =Y _ £.Qn(t)

]\7:1 K K
+E (D Qu(1)d e+ VY rd;@\@(t)] :
n=1 k=1 k=1

(23)

We now turn our attention to the optimization of
the supremum of the drift-plus-penalty term, i.e., the
right hand side of the inequality (23). Since B, &, and
@ (t) are independent of the service placement deci-
sions and thus can be obtained in time slot ¢, to opti-
mize the supremum of the drift-plus-penalty is equiv-
alent to the optimization of the following problem:

N K K
P2) min n(t el + VY rd
P {003 vyl

st (12),(13), (14), (15) (24)

Therefore, we can solve the problem P1 approxima-
tively by solving the problem P2. Compared to P1, it
is relatively easier to solve P2, because the time slot
spanned energy constraint has been converted into per-
slot ones. An important issue is naturally posed, i.e.,
what is the degree of approximation of the solution of
P2 towards that of P1.

Theorem 1. If there exists a solution to the problem
‘P1, the service placement profile obtained by solving
P2 over time slots t € {0,---,T — 1} can also ap-
proximately optimize the problem 'P1 and the optimal-
ity gap which denotes the difference between the two
solutions is bounded by O(1/V).

Proof. : Since there is a solution to P1, there ex-
its a service placement profile " in time slot ¢, and
the corresponding global optimum [*, which respec-
tively satisfy 1) Sp hm < En Vn € N and

* . . 1 T K t
2)1* = 2131\2 lm7 oo 7 D 4y D gy 7dj,» based on

[24]. Accordingly, we have:

O(t) =AQ(t)) + VE

K
> Td’};IQ(t)]

k=1

S B - ZgnQn(t)

n=1

D Q) e VY rd;@!Q(t)]
k=1

n=1 k=1

N K
a0 () 0]

n=1 k=1

Zrdmcz(t)]

+E

= B+E

+VE

k=1

i
<B+VI (25)

Since ©(t) < B + E[X,, Qu(t) (T4, €}, —
£)1QM)+
VE[Y o, rd.|Q(t)], for V¢ € {0,---,T — 1} and
valid service placement profile &', the inequality
still holds when substituting 6° by 6. Owing to
S €hm — En < 0 for 8%, the inequality (1) holds.

Take the expectation of the inequality (25) and add

it over the time slots ¢ € {0,--- , T — 1}, i.e.,
T-1 K
D_EIAQ) + VEDrd|Q()]
=0 k=1
-1

EE[F(Q(t+1)) - F(Q(#)[Q(1)]

~

K
+VE[Y rdf|Q(1)]
T-1 = K
=Y E[F(Q(t +1)) - F(Q(t)] + VE[>_rdi]
t=0 k=1
T—1 K
= E[F(Q(T)) ~ F(Q(O)] + S_ VE[> rd]
- n t=0 k=1
= E[F(Q(T))] + Y VE[Y_ rdj]
t=0 k=1

<STE[B+ VI = (B+VI) T

t

Il
o

China Communications

Since E[F(Q(T))] > 0, then

T-1 K
Y VE|Y rdy| < (B+VI)
t=0 k=1

E
t=0

K

B
E | <I*+=.
Tk]— +V

k=1

Since Zszl rdi, is the expected response time for all
the services in time slot ¢, and according to the law
of iterated expectations, E[>_r_, rdi] = SI5 rd..
Therefore,

S~

-1

K
Zrdt <"+

k=1

N[=

t

Il
o

Thus, the service placement profile obtained by solv-
ing P2 can infinitely approximate the optimization of
P1 by adjusting the variable V. Let G(V') denote the
optimality gap which denotes the difference between
the two solutions. The optimal value by solving the
supremum of drift-plus-penalty term is {* + B/V/, so
G(V) = B/V and O(G(V)) = O(1/V). Hence, the
optimality gap is bounded by O(1/V).

The above analysis can guarantee that the service
placement profile obtained by solving P2 can approx-
imately solve P1. However, another issue that needs
to be addressed is whether the service placement de-
cisions obtained from P2 do not violate the long-term
constraint (11) for P1.

Theorem 2. The service placement decisions obtained
from solving P2 over time slot t € {0,---,T — 1}
always satisfy the inequality (11).

Proof. : Let ™ denote the service placement deci-
sions of all RSUs A in time slot ¢ obtained by solving
problem P2, i.e., the supremum of drift-plus-penalty
term. In other words, when services are placed based
on 8%, the supremum of drift-plus-penalty term can
achieve the minimum. For the sake of clear expres-
sion and easy discussion, let Y'(8') = S5 rd: and

Zn(8Y) =35, €}, ,- We have:

O(t) = AQ(1)) + VE[Y (8")[Q(1)]

where 6% is an arbitrary valid service placement pro-
file for all RSUs A in time slot ¢ except 6" and
Lf is the corresponding response delay. Due to
E[Z,(6™)] = Z,(6") < &,, there exists a small
enough ¢, > 0 that satisfies Z,(6™) < &,

Vn € N, so the inequality (§) holds.

Take the expectations of the above inequality,
E{O(1)} < B~ E[XY, .Qu(t)] + VL. ie.

E[F(Q(t +1))] — E[F(Q(t))] + VE[Y (6™)]

N

- E[Z enQn (t)]

n=1

<B+VL!

By summing this inequality over t € {0,--- , T — 1},
we have

T-1
E[F(Q(T))] — E[F(Q(0))] + V) _E[Y(8™)]
t=0
T—-1 N
<SBT+VLIT-E|> > e.Qu(t)
t=0 n=1

< BT +VLIT = BT,

where B = B+ VLI Since F(Q(T)) =
1 @n(T)] < 2B'T.

5 2ono1 @n(T), we have E[37)

Then, we have,

N
> QAT)| <2BT.

n=1

2
)SKIE

(E [Z Qn(T)

10

China Communications

Therefore,

2B’
< .
- T

1
=K
T

N
> Qu(T)
n=1

Due to Q,(T) > 0 for Vn € N, E[Q.(T)]/T <
V2B'/T holds, for Yn € N. Given Lemma 1, we
have

P E|Y e -6 < 2B < |2
T ki T En | = pElentEL =\ T
=0 Lk=1
Therefore,
T-1 [K
1 t 2B
- _ < -
A7 2B D fn] <7
=0 Lk=1
Namely,
LT K
‘ ¢
Tlgr;oth_;;ekmSEn Vn e N.

Therefore, the following conclusions hold: 1) the
queue backlog is mean rate stable; and 2) the service
placement profile for P2 can solve P1 without violat-
ing the constraint (11).

5.2 OPEC Algorithm Description

The algorithm OPEC, which leverages the Lya-
punov technology to convert the time slot spanned
energy consumption, is shown in Alg. 1. This algo-
rithm aims to obtain the optimal service placement de-
cisions for optimizing problem P1. To this end, the
service placement decisions can be obtained by solv-
ing the problem P2 along each time slot. In the be-
ginning, some variables should be initialized such as
F(Q(0)) and pi, ,. Within each time slot, some vari-
ables are observed and calculated such as /\lltc,m’ R};m,
and X}w. Then the approximately optimum service
placement decision is obtained by solving problem P2
(line 8). After that, the algorithm calculates the energy
consumption based on the service placement decisions
(line 9) and further updates the queue backlog of each
queue (line 10).

Algorithm 1. Online Service Placement for Vehicular Edge
Computing (OPEC)

Require: Q,(0), &, Dy, N, M, T
Ensure: Service placement decisions
15 F(Q(0) =0
2: Calculate i ,, based on Eq. (6), Vk € K,Vn € N

3: fort =0toT — 1do

4: Observe and record A}, , R}, ... Vk € K, Vm €
M

5. Calculate X,;,n based on Eq. (5), Vk € K, Vn €
N
Set e! Vn e N

max,n’

Predict and obtain rdj, ., Yk € K

Obtain 6'* by solving problem P2

Calculate e}, ,, based on Eq. (9), Vk € K,Vn €
N

10: Update Q, (¢ + 1) based on Eq. (16), Vn € N
11: end for

R A

5.3 Algorithm Design for P2

In algorithm OPEC, there is still a pending issue which
needs to be addressed, i.e., the optimization of P2,
so in this subsection, we will discuss how to ob-
tain the decision placement decision in each time slot
by solving the problem P2 efficiently, i.e., §* =

. N K K
arg g}g;{znzl Qn(t) D1 ei,n + V3 rdy).
Lemma 3. The optimization problem P2 is NP-Hard.

Proof. : It is well-known that the multiple knapsack
problem (MKP) is an NP-hard problem [25], and it
can be formally described as follows. Given a set of
knapsacks G and items Z, respectively, each knapsack
k € @G can pack finite items based on its knapsack
capacity ay and each item ¢ € 7 has a size s; and profit
p;. MKP aims to find a way to assign items into the
knapsacks such that the total profits can be maximized,
ie.,

(P3) max Z Z Tk iDi

ke i€
s.t.: kavisi <a, Vkeqg, (26)
€L

zr; € {0,1} Vke G, Viel. 27

In the next, we will prove that our problem is actually
an instance of MKP, i.e., P2 is equivalent to P3. First,

China Communications

11

it is easy to transform P2 into a maximization prob-
lem, e.g., by the inverse operation. Then, given our
system model, the set of RSUs N and the set of ser-
vices K correspond to the set of knapsacks G and items
7, respectively. Each service has the required amount
of task-input data (e.g., di) which corresponds to the
item size s;. Each RSU has a storage capacity D,, that
corresponds to the backpack capacity ai. The total
amount of task-input data for all the tasks assigned to
the RSU should not exceed its storage capacity. Such
a constraint is actually the knapsack constraint in Eq.
(26). The objective function can be considered as the
profit of each service in P2. Therefore, P2 is equiv-
alent to P3 where K items are packed to N RSUs to
optimize the response delay. Accordingly, the opti-
mization problem P2 is NP-Hard.

The searching space in the potential solution do-
main is up to KV, which thus prohibits the exhaustive
search in reality, especially considering the strict la-
tency requirements of vehicular services. In addition,
the iteration-based evolutionary algorithms have sim-
ilar drawbacks in handling the strict latency require-
ments. Indeed, the time taken to make decisions on
service placement at RSUs should be as fast as possi-
ble. Thus, we in this paper put forward a greedy algo-
rithm for this problem to cater to such requirements in
the next.

Actually, several factors could affect the perfor-
mance of the service placement decision in pursuit of
energy consumption and response latency optimiza-
tion. For instance, the request rate of service usu-
ally indicates its popularity. Intuitively, to place the
most popular services at RSUs can reduce the re-
sponse delay to the most extent. Further to this, ser-
vices with larger size of task-input data tend to be
placed at RSUs, since they actually consume more
network resources than those with smaller task-input
data size. In the next, services that require less com-
putational resources tend to be placed, since services
with larger computational demands usually incur rel-
atively long computation delay and large energy con-
sumption. Last but not least, the value of V' can also
affect the objective value of P2. V is used to adjust
the tradeoff between response latency and energy con-
sumption. Usually, a larger value of V indicates that
the VEC system values the response latency more than
the energy consumption, while a smaller value of V'

indicates that the system values energy consumption
more due to the limited energy supply. Specifically,
we use the average service requests arriving at RSU
n for service k denoted by p};n as the popularity of
service k, and p};n is defined as:

M t
Phn=_ Inmwg—m’"‘ Vk e K, VneN. (28)
m=1

Based on these observations, we design a utility
function that incorporates the above three factors into
one single value to evaluate each service within each
time slot. In particular, the utility function of service
k at RSU n in time slot ¢ can be defined as:

pll‘:ﬂ,n - min(plle,n)

lex
Ukm(t) = wy 7 - 0
max(p;,) — min(p;,)
di — min(d
+ wq ' rln;]g(l)
d;) — min(d
max(d;) — min(d;)
I}’IEE}CX(SI) — Sk Vma:z: - V
T+ W (s1) min(s)+wUV Vinin’
ax(s;) — — Vi
ek l ik l max min
(29)

where w), wq, ws and w, are numerical values to de-
note the preferences towards the four factors which
satisfy w, + wq + ws + w, = 1. The two functions
max(-) and min(-) denote the maximal and minimal
values, respectively. V.. and V,,;,, are the upper and
lower bounds of V, respectively. Therefore, the ser-
vice with a larger utility value is more worth being
placed at RSUs.

A greedy algorithm GAPO for solving P2 is put
forward as depicted in Algorithm 2. As illustrated in
our system model, RSUs are inter-connected with each
other, so the information collected from regions such
as \j, ,,, can be timely disseminated and shared among
them. Some initializations should be accomplished
such as ' = 0. Additionally, the algorithm initial-
izes one Max-Heap h,, for each RSU n within each
time slot. In the next, each RSU can make their own
service placement decisions independently. Specifi-
cally, RSU n calculates the utility value of each ser-
vice based on the gathered information. The heuris-
tic rule is that services with larger utility values tend
to be placed at RSUs. To achieve this goal, the al-

12

China Communications

gorithm pushes the pair of service index and the cor-
responding utility value (i.e., (k, U,)) into the heap
h,. Thus, service with a larger utility value is always
retrieved first when the pop operation over h,, is im-
plemented. Then n checks whether there is enough
storage capacity for the current service popped from
h,. If the storage capacity is sufficient, the current
service is placed and the service placement decision is
updated (line 15). The procedure repeats until h,, is
empty or there is not enough storage capacity for RSU
n.

Algorithm 2.
(GAPO)

Require: |C, N, V, &,., Dy, wy, wg, ws, t
Ensure: &'
1: Record and share)‘Z,m among RSUs V, Vk € K,
Ym € M
2: Initialize 6 with zeros
3: Initialize a heap h,, for eachn € N/
4: for each nin N do
5. Csum =0
6: for each k in KC do
7
8
9

Greedy Algorithm for Per Slot Optimization

Calculate p} based on Eq.(28)
Calculate Z/l,i:n based on Eq.(29)
Push (k, U]) into h,,

10: end for ’

11: while h,, not empty do

12: hn-pop(L, U)

13: Csum = Csum + d
14: if Csum < D,, then
15: 0, =1

16: end if

17: end while

18: end for

19: Return &°

Remark: GAPO is actually executable in parallel to
a great extent after each RSU n obtains the required
information from the VEC network. In GAPO, the
time taken for each RSU n mainly includes the fol-
lowing parts. The first part is the time taken for RSUs
to communicate with each other such that the infor-
mation required for decision making can be gathered.
The second part is the time taken to sort the services
in h, and the process can be accomplished with the
time complexity O(K log K'), where K is the number
of services. The third part is the time taken to tra-

verse h, with the aim to find appropriate services to
place, and the process can be accomplished with the
worst time complexity O (K log K'). Note that the first
part of time is usually negligible compared to the other
two parts. To sum up, the time complexity of GAPO
is O(N K log K') without considering the parallel exe-
cution of each RSU. The time complexity is much less
than the evolutionary algorithms such as the Genetic
Algorithm (GA).

VI. SIMULATION EVALUATION

We have conducted a series of experiments to evalu-
ate the placement strategy in this section. In the next,
we will give parameter settings in the simulation, and
discuss the simulation results, respectively.

6.1 Parameter Settings

The main parameters with the default values in the
simulation are listed in Table 1. Note that the param-
eters are set experientially. For example, we assume
that the topology of the vehicular edge computing net-
work is built in a random way. In particular, the set of
RSUs which can cover the region m (i.e., R,,) is de-
termined randomly. Additionally, we assume that the
transmission delay can be predicted when task data are
transmitted over the backbone network and thus the
response delay for task execution in the cloud center
can be obtained. For the utility function of services at
RSUs, the weights towards the four factors are set to
0.3, 0.2, 0.2 and 0.3, respectively.

6.2 Results Analysis and Discussion

Figure 2 shows the performance comparison in terms
of the optimal values. In addition to the proposed
heuristic, there are actually several approaches for
solving the problem P2. In particular, we compare
our approach with three other approaches in the simu-
lation. The three approaches are the greedy approach,
the random approach and the genetic approach, re-
spectively. We denote them by P_Max, RND, and GA
in the simulation, respectively. The greedy approach
only adopts the service popularity as the selection cri-
teria. Within each time slot, the services are sorted in
descending order based on the defined service popu-
larity. Then, the service with the largest value of pop-
ularity is always placed first. The procedure repeats

China Communications

13

Table 1. Parameter Settings

Parameter | Descriptions Value

M The number of regions 6

N The number of RSUs 20

K The number of services [25, 65]
Afam Arrival rate of requests for service k in region m [10, 20]
En Energy consumption constraint for RSU n [1.2,2.2]
fn The processing frequency [SMHz, 1GHz]
d The task-input data size for service k [1, 6]

Sk The averagely required workload for service k [20, 25]
D, The caching capability of RSU n [30, 50]
sn The coefficients for the energy consumption le-12
Qan The static energy consumption [0, 1)

until the violation of constraint conditions such as the
inequation (1) happens. The random approach is the
simplest way to place the services for RSUs within
each time slot. During each time slot, services are ran-
domly selected to place as long as no violation hap-
pens. The random approach does not consider the fea-
ture of the optimization objective or the feature of ser-
vice requests. The genetic algorithm is especially suit-
able for binary MKP, owing to its simple deployment
and easy implementation. However, the solution accu-
racy of this approach mainly depends upon the num-
ber of iterations, which often turns out to be a time-
consuming process. Therefore, it can hardly satisfy
the stringent latency requirement in this paper.

EEE OPEC with GAPO
1600 1 EEE OPEC with P Max

HEl OPEC with RND
1400 4
1200 4
1000 4
800 1
600
0 5

OPEC with GA
Number of Time Slots

Optimal Values

S

S

L

Figure 2. The performance comparison with different ap-
proaches for P2.

From the figure, we can observe that the average

performance of OPEC with GA is the best among the
four approaches, and OPEC with GAPO comes sec-
ond. In the parameter settings for GA, the crossover
and mutation probability are respectively set to 0.2 and
0.02. The population size and the maximal number
of iterations are 20 and 30, respectively. In the sim-
ulation, some information is the same for all the time
slots, which includes M, N, K, R,,, &, and so on.
To reflect the dynamics of the vehicular edge comput-
ing networks, some information is totally independent
in each time slot. Such information is exemplified by
)\Z’m, dk and Sk.

As a result, we can easily observe that the perfor-
mance of all approaches wildly fluctuates in different
time slots. Even so, our approach is averagely much
better than the random approach and the greedy ap-
proach. The random approach can occasionally yield
better results, e.g., when the number of time slots is 10.
In contrast, the greedy approach, which only considers
the service popularity, never yields the best result but
occasionally yields the worst result as denoted in the
figure. This is because it neglects two important fac-
tors such as dj and s, which can seriously influence
the value of the optimization objective. For example,
based on Eq. (9), it is obvious that the service with a
larger value of s; renders more energy consumption if
it is placed at RSU. However, energy consumption has
been incorporated into the optimization of objection
function as shown in problem P2. Therefore, mini-
mization of the optimization objective is supposed to
consider the influence of the averagely required work-

14

China Communications

load si. It shall be noted that the performance of
OPEC with GAPO, P_Max, RND is equally bad com-
pared to OPEC with GA, when the time slot is zero.
The service placement profile is generated randomly
for the three approaches at the beginning. However,
this initial service placement profile can be updated
with the increasing iterations in OPEC with GA.

12 s /}\\
- S - N
o =Rl et N \'__4___",..**’/,*
104
Z ¢| o0.087 = .
g ***adm*t‘,’** U e OPEC with GAPO
= 0.06 OPEC with P_Max
£ 7 oosl --~- OPEC with RND
g --—- OPEC with GA
& 44 002
0.00 q 4+ + it + =i~ 4
21 0 5 10 15 \
0 e m e o m s m i e o e m e o e i

0 4 8 2 16
Number of Time Slots

Figure 3. The execution time comparison with different ap-
proaches for P2.

The execution times for different approaches are de-
picted in Fig. 3. Comparatively speaking, the average
execution time of OPEC with GAPO is slightly longer
than the other two approaches, i.e., OPEC with RND
and OPEC with P_Max. However, these three ap-
proaches can almost achieve real-time response in the
simulation. Obviously, the execution time of OPEC
with GA is much longer than the above three ap-
proaches. As shown in 3, this strategy usually takes
seconds to get the result in the simulation and thus the
execution times of other three approaches are negligi-
ble compared to that of OPEC with GA. Combining
with the results in Fig. 2, we can see that GA helps
OPEC achieve the best performance in terms of opti-
mal values at the expense of unbearable time overhead.
Considering the strict delay requirement for obtaining
the optimal service placement profile, GA based ap-
proach is not appropriate in this paper.

In the next, we evaluate the average energy con-
sumption at different RSUs along the time slots. The
experimental results are shown in Fig. 4. On one hand,
we need to investigate the energy consumption of each
RSU along the time slots; On the other hand, it is
more important to check whether the violation hap-

0.975 1
I i bl Tl L e e R i L bkt EEl bt S
0.950
0.925 k\‘ & /**‘-‘(/ AN /*_*_*_‘,/'*—*,t
- ! L Nt ¥
2 /
?0.900 ‘l
2
8 0.875
>
20
2 0.850 b e e e e e e e i o e e e b
m
. .
0.825 - RSU: 1.27
RSU: 1.28
0.8004 ~——- RSU:2.09
---- RSU: 1.35
0.775 T T T r r
0 4 8 12 16

Number of Time Slots

Figure 4. The energy consumption along different time
slots.

pens along the time slots. Specifically, we select 4
from 20 RSUs in the simulation, and the label “RSU:
1.27” means the RSU with its energy threshold being
1.27. First, it is noticeable that the energy consump-
tion of the four RSUs do not exceed their own global
energy constraints. As a result, the simulation result
has verified the rationality of the theoretical analysis.
Second, the energy consumption for RSUs all seem
stable along the time slots. Such an observation is ac-
ceptable and understandable, since it is in accord with
the conclusion drawn in Theorem 2, i.e., the queue
backlog is mean rate stable. Last but not least, we
notice that the energy consumption for all the RSUs
are the least when the time slot is zero. It is explicable
since we assume that there are no services to be placed
at RSUs in the simulation. Thus, there are no services
at RSUs which incur energy consumption at the initial
time slot.

We investigate the influence of the number of ser-
vices upon the performance of our approach in the
next. The simulation results are shown in Fig. 5.
Specifically, the number of services varies from 20 to
65 with a step of 5 in the simulation. Fig. 5 reveals
the optimal values with different numbers of services.
Several conclusions can be drawn from the observa-
tion as follows. First, it seems that the optimal value
of the optimization objective has little to do with the
number of services, since there are no deterministic
relationships between them. For example, when the
number of services is 25, the optimal value in most
cases is better than that with the number of services

China Communications

15

1400 1

1200 4 K=55

1000 1

600 4

400 -
4 8 12

Number of Time Slots

Optimal Values

%
=)
S

l

Figure 5. The performance comparison under different
numbers of services.

equal to 35 and 45. On the other hand, when the num-
ber of services is 55, the optimal value in most cases is
also better than that with the number of services equal
to 35 and 45, respectively. Accordingly, the number
of services is not the more the better, or the less the
better, in terms of the optimal values.

w
n

g 1\ —< - Long-term Average Response Delay Rl
=

101

\, —®- Long-term Average Energy Consumption r, r70.0

=
3
n

51.0 4 ~ g 7

Sel &=
~o
7¢——<
~
1/ ~,

=)
oy
=]

3
S
3

»
1l
=3
..
-
=
S
o

~
-
w
3
1%

Long-term Average Response Delay

~
’

a
O o
o h < N ¢ h
=1 wn
Long-term Average Energy Consumpti

&
h
n

L
~

W
S}
n

20 30 40 50 60 70
Values of V

Figure 6. The performance comparison with different val-
ues of V.

The control parameter V' can be used for making
a tradeoff between the response latency and energy
consumption as mentioned earlier. We study the in-
fluence of V upon the long-term average response de-
lay and the long-term average energy consumption in
the simulation. The results are shown in Fig. 6. In
particular, the value of V' varies from 20 to 80 in the
simulation. Obviously, the long-term average energy

consumption for all RSUs increases with the increas-
ing value of V. In contrast, the long-term average re-
sponse delay decreases as V' increases. According to
the theoretical analysis, the placement decision profile
obtained by the proposed algorithm can gradually ap-
proach the best decision profile by increasing the value
of V. However, it is inadvisable to blindly increase
the value of V, considering the ever-increasing aver-
age energy consumption for all the RSUs in the long
run. It is better to seek a tradeoff between the response
delay and energy consumption when V is set in the
simulation.

1200 1 ~* RSUI
Bl RSU2
PN --+- RSU3

~\ \\\
AN ---- RSU4

1000 N7 N

{~\ \
8 Sa S AN
= SoU Ty
< S
> SN
S 800 \1\:‘\;:\
z B Y
o SIS N
AN A
N \\ \\
AN S *
600 ERSGIN
BN
NS
NS
NN
Y
N
400 4 *

30 35 40 45 50 55 60 65 70 75
Storage Capability

Figure 7. The performance comparison with different stor-
age capabilities.

We investigate the influence of the storage capabili-
ties upon the performance of OPEC. The simulation
results are shown in Fig. 7. We still select 4 from
20 RSUs as the observation subjects in the simula-
tion. Obviously, greater storage capabilities enable
more services to be placed at the same time. However,
the more the services to be placed, the more the en-
ergy consumption at RSUs. Thus, it is worthwhile in-
vestigating the relationships between the performance
of the approach and the storage capacity. The simula-
tion result in the figure shows that the performance of
OPEC is constrained by the storage capacity at RSUs.
For instance, greater storage capacity yields better per-
formance in terms of the optimal values.

Since our goal in this paper is to reduce the aver-
age response latency for all the requested services by
placing services at the edge in advance, we have con-
ducted the last experiment to evaluate our approach
compared to the traditional approach that does not ap-

16

China Communications

~M- OPEC with GAPO

Traditional Approach
100 4

80

60 ,,I"‘.

Average Response Delay

40 Al

204 M
30 35 40 45 50 55 60 6 70 75
Number of Services: K

Figure 8. The response delays with different number of ser-
vices.

ply service placement strategy. In this simulation, the
number of services varies from 35 to 75 with a step
5, and the simulation result is shown in Fig. 8. It is
obvious that a better result is yielded when the ser-
vice placement strategy is applied. In addition, the
response delays increase for both approaches as the
number of services increases. More important, our ap-
proach is much better than the traditional approach no
matter how the number of services varies.

VII. CONCLUSION

VEC can cater to the strict delay requirement of ve-
hicular tasks/services, since the computing resources
are deployed at the network edge such as RSUs. How-
ever, the explosive growth in vehicular offloading re-
quests has caused tremendous pressure on both the
edge server and the front-haul links. In this paper,
we attempt to optimize the VEC systems by service
placement strategy. Specifically, we minimize the av-
erage response latency for the requested services along
the slotted timeline, while considering multiple con-
straints such as energy consumption and storage ca-
pacity. The greedy heuristic has been incorporated
into the drift-plus-penalty based algorithm for search-
ing the approximate solution. Extensive simulation
has proven that our approach can achieve better per-
formance compared with other approaches in terms of
optimal values.

References

[1] LI X, ZHANG X, HUANG T. Asynchronous
online service placement and task offloading for
mobile edge computing[C]//18th Annual IEEE
International Conference on Sensing, Communi-
cation, and Networking, SECON 2021, Rome,
Italy, July 6-9, 2021. [S.L.]: IEEE, 2021: 1-9.

[2] XU J, CHEN L, ZHOU P. Joint service caching
and task offloading for mobile edge computing
in dense networks[C]//2018 IEEE Conference on
Computer Communications, INFOCOM 2018,
Honolulu, HI, USA, April 16-19, 2018. [S.L]:
IEEE, 2018: 207-215.

[3] TANG C, WEI X, ZHU C, et al. Mobile vehicles
as fog nodes for latency optimization in smart
cities[J]. IEEE Trans. Veh. Technol., 2020, 69
(9):9364-9375.

[4] CHEN L, SHEN C, ZHOU P, et al. Collaborative
service placement for edge computing in dense
small cell networks[J]. IEEE Trans. Mob. Com-
put., 2021, 20(2):377-390.

[5] TANG C, ZHU C, WU H, et al. Towards
response time minimization considering energy
consumption in caching assisted vehicular edge

computing[J/OL]. IEEE Internet of Things
Journal, 2021:1-1. DOI: 10.1109/JI0T.2021.
3108902.

[6] TANG C, ZHU C, WU H, et al. Caching as-
sisted correlated task offloading for iot devices in
mobile edge computing[C]//IEEE Global Com-
munications Conference, GLOBECOM 2021,
Madrid, Spain, December 7-11, 2021. [S.L]:
IEEE, 2021: 1-6.

[7]1 XIE R, TANG Q, QIAO S, et al. When server-
less computing meets edge computing: Architec-
ture, challenges, and open issues[J]. IEEE Wirel.
Commun., 2021, 28(5):126-133.

[8] HOU H, JIN H, LIAO X. Cost efficient edge ser-
vice placement for crowdsensing via bus passen-
gers[J]. Mob. Networks Appl., 2021, 26(2):899-
908.

[9] AYOUBI M, RAMEZANPOUR M, KHOR-
SAND R. An autonomous iot service placement
methodology in fog computing[J]. Softw. Pract.
Exp., 2021, 51(5):1097-1120.

[10] HUANG T, LIN W, XIONG C, et al. An ant
colony optimization-based multiobjective ser-

China Communications

17

https://doi.org/10.1109/JIOT.2021.3108902
https://doi.org/10.1109/JIOT.2021.3108902

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

vice replicas placement strategy for fog comput-
ing[J]. IEEE Trans. Cybern., 2021, 51(11):5595-
5608.

XU X, SHEN B, YIN X, et al. Edge server quan-
tification and placement for offloading social me-
dia services in industrial cognitive iov[J]. IEEE
Trans. Ind. Informatics, 2021, 17(4):2910-2918.
HAO Y, CHEN M, GHARAVI H, et al. Deep re-
inforcement learning for edge service placement
in softwarized industrial cyber-physical system
[J]. IEEE Trans. Ind. Informatics, 2021, 17(8):
5552-5561.

CHEN Y, ZHANG S, JIN Y, et al. LOCUS: user-
perceived delay-aware service placement and
user allocation in MEC environment[J]. IEEE
Trans. Parallel Distributed Syst., 2022, 33(7):
1581-1592.

ORTIN J, GALLEGO J R, HERNANDEZ-
SOLANA A, et al. On optimizing network func-
tion placement for multicast group call service
provision in LTE IOPS networks[J]. IEEE Ac-
cess, 2021, 9:160897-160916.
YUAN B, GUO S, WANG Q.
placement and request routing in mobile edge

Joint service

computing[J]. Ad Hoc Networks, 2021, 120:
102543.
PANADERO J, SELIMI M, CALVET L, etal. A

two-stage multi-criteria optimization method for
service placement in decentralized edge micro-
clouds[J]. Future Gener. Comput. Syst., 2021,
121:90-105.

HAN P, LIU Y, GUO L. Interference-aware on-
line multicomponent service placement in edge
cloud networks and its Al application[J]. IEEE
Internet Things J., 2021, 8(13):10557-10572.
FARHADI V, MEHMETI F, HE T, et al
Service placement and request scheduling for
data-intensive applications in edge clouds[J].
IEEE/ACM Trans. Netw., 2021, 29(2):779-792.
NING Z, DONG P, WANG X, et al. Distributed
and dynamic service placement in pervasive edge
computing networks[J]. IEEE Trans. Parallel
Distributed Syst., 2021, 32(6):1277-1292.

HE X, JIN R, DAI H. Joint service placement
and resource allocation for multi-uav collabora-
tive edge computing[C]//IEEE Wireless Commu-
nications and Networking Conference, WCNC
2021, Nanjing, China, March 29 - April 1, 2021.

(21]

(22]

(23]

[24]

[25]

[S.1.]: IEEE, 2021: 1-6.

LIU Z, ZHAN C, CUL Y, et al. Robust edge com-
puting in uav systems via scalable computing and
cooperative computing[J]. IEEE Wireless Com-
munications, 2021, 28(5):36-42.

TANG C, ZHU C, WEI X, et al. Integration
of UAV and fog-enabled vehicle: Application in
post-disaster relief[C]//25th IEEE International
Conference on Parallel and Distributed Systems,
ICPADS 2019, Tianjin, China, December 4-6,
2019. [S.L]: IEEE, 2019: 548-555.
GEORGIADIS L, NEELY M J, TASSIULAS L.
Resource allocation and cross-layer control in
wireless networks[J]. Foundations & Trends in
Networking, 2006, 1(1):1-144.

NEELY, MICHAEL J. Stochastic network op-
timization with application to communication
and queueing systems[J]. Synthesis Lectures on
Communication Networks, 2010, 3(1):211.
KORTE B, VYGEN J. Combinatorial optimiza-
tion: Theory and algorithms[M]. 1sted. [S.L]:
Springer, 2000.

18

China Communications

	Introduction
	Related Work
	System Model
	Response Delay Model
	Energy Consumption Model

	Problem Formulation
	Online Algorithm for Service Placement
	Lyapunov-based Online Algorithm
	OPEC Algorithm Description
	Algorithm Design for P2

	Simulation Evaluation
	Parameter Settings
	Results Analysis and Discussion

	Conclusion

