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Abstract—Residential energy consumption continues to climb
steadily, requiring intelligent energy management strategies to
reduce power system pressures and residential electricity bills.
However, it is challenging to design such strategies due to the
random nature of electricity pricing, appliance demand and user
behavior. This paper presents a novel reward shaping (RS)-
based actor-critic deep reinforcement learning (ACDRL) algo-
rithm to manage the residential energy consumption profile with
limited information about the uncertain factors. Specifically, the
interaction between the energy management center and various
residential loads is modeled as a Markov decision process that
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provides a fundamental mathematical framework to represent
the decision making in situations where outcomes are partially
random and partially influenced by the decision maker control
signals, in which the key elements containing the agent, envi-
ronment, state, action, and reward are carefully designed, and
the electricity price is considered as a stochastic variable. An RS-
ACDRL algorithm is then developed, incorporating both the actor
and critic network and an RS mechanism, to learn the optimal
energy consumption schedules. Several case studies involving
real-world data are conducted to evaluate the performance of
the proposed algorithm. Numerical results demonstrate that the
proposed algorithm outperforms state-of-the-art RL methods in
terms of learning speed, solution optimality and cost reduction.

Index Terms—Demand response, residential energy manage-
ment, deep reinforcement learning, deep deterministic policy
gradient, reward shaping.

I. INTRODUCTION

W ITH growing populations, ever-increasing living stan-
dards, and more appliances now being used in homes,

the energy demand of the residential sector has grown consid-
erably in these days, and is expected to increase even further
[1]. Thus, an energy management program is required to
allow residential users to make informed changes concerning
their energy consumption and help the power grid reshape
load patterns and reduce peak demand, thereby eliminating
potential electricity supply disruptions and the need for backup
power plants [2]. A residential energy management center
(REMC) in a home can use autonomous load scheduling
plans offered by energy management programs with real-time
electricity pricing to manage the load energy consumption,
reduce user electricity costs, and enhance power grid reliability
[3].

To date, extensive efforts have been conducted to the
optimal residential energy management. For example, [4]
presented a demand response program for household energy
management to reduce daily payments, in which the opti-
mization problem was formulated as a mixed integer linear
programming model. [5] developed an event-triggered multi-
stage secondary control approach for microgrid management
to overcome the power sharing error and frequency deviation
problems. [6] proposed a model predictive control method
to schedule air conditioners in the residential electricity net-
work, aiming to shave peak demand and firm photovoltaic
generation capacity. [7] created a delay-tolerant predictive
power compensation control strategy for voltage regulation
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in a high penetration level of photovoltaic energy systems.
Most recently, a predictive voltage hierarchical controller is
adopted in [8] to enhance the voltage and energy sharing
of distributed generations for microgrids. However, designing
an efficient energy management program in a residential
environment involves two challenges [9]. First, affected by
the user commuting behavior and living activity, the REMC
has uncertainties in operational interval and time slots of
residential appliances, which makes it difficult for an REMC to
produce energy management schedules efficiently in response
to varying electricity prices. Second, to effectively control
residential appliances, precise appliance parameters and mod-
els would be predetermined by relevant experts to estimate
their operational dynamics and energy demand characteristics.
Nevertheless, expert experience is not always available in
homes.

Driven by the fast evolution of artificial intelligence, re-
inforcement learning (RL)-based approaches that avoid the
necessity of an accurate mathematical model have recently
induced increasing interest in the power grid domain for
creating optimal energy dispatch schedules [10]. To be spe-
cific, RL comprises a smart agent that gradually learns the
optimal control policy via utilizing Markov decision process
(MDP) experiences obtained from repeated interactions with
the stochastic environment, without prior system knowledge
[11]. This provides the agent with powerful capacities to learn
the optimal performance behavior when it is difficult or costly
to model the system explicitly and accurately. Furthermore,
once the learning procedure of RL is accomplished, the
acquired policy can be directly deployed for end-to-end real-
time decision-making to produce optimal actions instantly for
the given system states.

The great success of RL has inspired the development
of RL-based approaches for residential energy management.
For example, [12] proposed a device-based RL approach for
various loads energy management in residential and small
commercial building sectors. [13] created a day-ahead energy
consumption schedule of thermostatically controlled loads
using a batch RL method. [14] designed an RL-based real-
time demand response scheme for residential customers to
equilibrize energy demand and supply. [15] developed a multi-
agent RL structure for building energy management to min-
imize electricity costs and the induced user dissatisfaction.
However, these works employing RL in energy management
problems all utilized the traditional Q-learning algorithm and
its variants. This kind of RL algorithm calculates the action-
value functions for all possible state-action pairs based on a
look-up table; thus both state spaces and action spaces are
discretized, which is not appropriate for most applications with
massive states and actions in the real-world, given that the Q-
table becomes greatly large.

To address such dimensionality challenges, a new promis-
ing approach, referred to as deep Q-network (DQN), which
incorporates RL with deep neural network (DNN) to exploit
its powerful function approximation capabilities, has been
witnessed recently. A DQN is an extension of Q-learning
that employing a DNN to approximate the Q-value so as to
handle the continuous multi-dimensional state space problems.

For example, [16] explored the benefits of utilizing DQN to
accomplish online strategies optimization in residential energy
management systems, based on highly dimensional observed
data. [17] adopted a distributed DQN to manage household
energy consumption profiles, considering the randomness in
electricity price and appliance demand. [18] developed a DQN
model that shifts residential load from peak to off-peak slots,
with the aim of minimizing user electricity costs and reducing
grid peak load synchronously. [19] proposed a federated DQN
for multiple homes energy management, taking into account
the dynamically varying operation conditions of appliances.
Although the abovementioned works have demonstrated high-
quality DQN performance in continuous state spaces energy
management problems, the DNN employed is commonly
learned to generate discrete Q-value estimates instead of
continuous actions, which severely prevents its advantages
from dealing with multi-dimensional continuous action space
energy management issues.

To resolve this problem, another RL algorithm of deter-
ministic deep policy gradient (DDPG) approach is further
proposed. Rather than approximating the action-value function
in DQN, it calculates the possibility of choosing an action at
a particular state directly to deal with the continuous action
space situations. [20] presented a commercial building load
control method based on DDPG to minimize electricity costs
and thermal discomfort without information about the build-
ing thermal dynamic model. [21] combined the DDPG with
prioritized experience replay strategy for residential multi-
energy systems to schedule different devices for reducing
energy costs, considering the uncertainties in both demand and
supply sides. [22] employed a DPPG and federated learning
to incentivize residential users to reduce electricity demand
during peak time slots while accounting for the indeterminacy
in privacy concerns and power flow constraints. [23] proposed
a privacy-preserving residential microgrids load scheduling
algorithm using a DDPG, without knowing a prior information
about customer behavior or model dynamics. Despite the
great promise of utilizing RL approaches to solve highly
complex energy management problems in dynamic residential
environments, challenges remain to be solved. One such pitfall
is that discovering the state-action space in stochastic and
uncertain environments is really time-consuming to converge,
due to the sparse and delayed rewards.

To accelerate the training process of RL approaches in con-
tinuous action environment, many efforts have been dedicated
to find efficient ways to speed up the convergence rate [24].
Reward shaping (RS) is a kind of general principled methods
to improve the learning procedure by providing an additional
reward term that would be initialized to the value function [25].
This shaping reward is indeed not come from the environment,
but is incorporated by the system designer and estimated on
the basis of some prior problem knowledge [26]. The work
of [27] proposed a potential-based RS method to improve
the RL agent performance, wherein the difference of some
potential function is designed over a source and a destination
state. It also proved that the RS defined with this way can
lead to substantial reductions in learning time for obtaining
optimal actions while the optimality of the original optimal
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policy unchanged.
In this paper, a novel RS-based actor-critic DRL (ACDRL)

algorithm for real-time autonomous residential energy man-
agement is proposed, with the aim of minimizing electricity
bills and sustaining user comfort. Specifically, the proposed
RS-ACDRL algorithm featuring an actor-critic architecture
combines a DPG with a DQN and an RS mechanism to
boost its performance. In this configuration, the actor-critic
is realized by two DNNs used for function approximation,
in which the actor learns via the Q-value estimated from the
critic. More detailed, the actor is represented by a policy net-
work that can learn policies in a high-dimensional continuous
state and action spaces, and the critic is represented by a Q-
network to exploit the success of the target Q-value and the
experience replay to stabilize learning. In addition, an effec-
tive RS mechanism is also introduced in episodic ACDRL,
attempting to add information about state-action pairs closer
to terminal states and thereby increases the convergence speed
of the ACDRL. The effectiveness of the proposed RS-ACDRL
algorithm for residential energy management is verified via
numerous numerical simulations with real-world data consid-
ering uncertainties arising from electricity price and appliance
demand. Case studies demonstrate the performance of the
proposed algorithm by comparing it against the case without
scheduling, and another two state-of-the-art RL methods of
DQN and DDPG, in terms of the cost reduction, solution
optimality, and learning speed.

To emphasize major research gap of the proposed algorithm
in light of the related methods in literature, a comparative
analysis is carried out in terms of 4 aspects as given in Table
I, including the optimization approach, the state space, the
action space and the approximate method. In summary, this
work contributes in four-fold.

A residential energy management problem is investigated,
considering uncertainties in electricity price and appliance
demand to reflect realistic scenarios, in which the schedul-
ing procedure is formulated to an MDP without known the
transition probability.

A novel RS-ACDRL algorithm blended an actor and critic
network with an RS mechanism, that does not require system
model information in a multi-dimensional continuous state and
action spaces, is proposed to obtain the real-time autonomous
optimal energy management policies.

Numerical results based on real-world data demonstrate that
the proposed algorithm achieves better performance than the
other two baselines, and appears a more beneficial computa-
tional property because of its utilization of the RS mechanism.

Case studies verify that the RS-ACDRL algorithm gains
approximately 38.57% lower electricity costs than that of
the case without scheduling, and further promotes nearly
600 reductions in training episodes when compared with the
DDPG.

The rest of this paper is organized as follows. Section II
introduces the problem formulation. Section III describes the
proposed RS-ACDRL algorithm in detail. Section IV provides
simulation results demonstrating the effectiveness of the pro-
posed algorithm. Finally, Section V gives the conclusions and
future work.
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Fig. 1. System model.

II. PROBLEM FORMULATION

As illustrated in Fig. 1, we consider a smart home equipped
with one REMC and diversified residential loads. The REMC,
as a coordinator of user load scheduling, is connected to the
utility company via a two-way communication network that
receives real-time pricing termly from the utility company and
then regulates the various loads energy consumption, with the
goal of minimizing electricity bills while satisfying comfort
requirement. Due to the control actions of the REMC are
taken sequentially to the different loads, MDP affords a logical
structure to build the interactions between the REMC and
the loads. The following sections present the formulations of
residential loads and MDP.

A. Residential Loads

Loads in a household are usually divided into two categories
according to their priorities and characteristics: nonschedu-
lable and schedulable. The energy demands of nonschedu-
lable loads must be satisfied completely in their operation
time as needed and do not respond to price variations (e.g.,
alarm systems). In contrast, schedulable loads can be stopped,
shifted, or adjusted to freely change their working time and
energy demand, abiding by some functional constraints (e.g.,
dishwashers). For each load n ∈ {1, ..., N}, its control variable
is represented by ctn ∈ {0, 1} denoting the operating status,
i.e., ctn = 1 if the load n operates with a task at time t or
ctn = 0 if otherwise.

[
T inin , T endn

]
indicates the scheduling

window corresponding to a working period that includes the
initial time T inin and the end time T endn for the task; and Etn
represents the required energy consumption to function the
task.

1) Nonschedulable Load: A nonschedulable load has tight
energy demand requirements that have to be satisfied with no
intervention. As soon as it begins running, it should be worked
consecutively and will not be regulated. Therefore, the energy
consumption of nonschedulable load n, non is equivalent to
its energy demand:

Etn,non = en,non · ctn,non (1)

ctn,non =

{
1, t ∈

[
T inin,non, T

end
n,non

]
0, otherwise

(2)

where en,non is the energy demand and ctn,non is the control
variable at time t of the nonschedulable load n, non.
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TABLE I
RESEARCH GAP OF THE PROPOSED ALGORITHM WITH OTHER LITERATURES

References Optimization Approach State Space Action Space Approximate Method
Ref [4]–[8] model-based - - -

Ref [12]–[15] learning-based discrete discrete deep neural network
Ref [16]–[19] learning-based continuous discrete deep neural network
Ref [20]–[23] learning-based continuous continuous deep neural network

This work learning-based continuous continuous deep neural network + long short-term memory + reward shaping

2) Schedulable Load: Schedulable loads include all loads
whose working time can be shifted or those requiring energy
that can be regulated throughout the day in response to price
variations, and can also be broken into two technology groups:
shiftable and controllable.

Shiftable loads can be regulated from on-peak to off-peak
hours, effectively reducing not only the peak energy demand,
but also the electricity bill for the user. Assume that a shiftable
load n, sh requires continuous manipulation of Tneedn,sh time
periods to accomplish a task. The starting time of the task
is denoted by T stan,sh. Then, the energy consumption of the
shiftable load n, sh is

Etn,sh = en,sh · ctn,sh (3)

ctn,sh =

{
1, t ∈

[
T stan,sh, T

sta
n,sh + Tneedn,sh

]
0, otherwise

(4)

T inin,sh ≤ T stan,sh ≤ T endn,sh − Tneedn,sh (5)

where Eq. (4) restricts the control variable ctn,sh to operate
continuously because the shiftable load n, sh cannot be inter-
rupted during its operation horizon, and Eq. (5) limits the load
n, sh to complete the task within the deadline.

In contrast, the energy demand of the controllable load is
continuously adjustable in response to prices. Thus, the energy
consumption of a controllable load n, con at time slot t is given
by:

Etn,con = emin
n,con +

(
emax
n,con − emin

n,con

)
· ctn,con (6)

ctn,con =

{
Itn,con · 1, t ∈

[
T inin,con, T

end
n,con

]
0, otherwise

(7)

where Itn,con is a continuously varying decimal indicating that
the controllable load n, con can be regulated between the min-
imum energy demand emin

n,con and maximum energy demand
emax
n,con respectively, with an elastic energy consumption.

B. Markov Decision Process Formulation

In the smart household under consideration, the residential
load energy consumption level at the next time slot relies on
the current energy demand level and the control variable in
the current time slot according to Eqs. (1), (3), (6), which is
independent of foregoing actions and states, so the residential
loads energy consumption scheduling is formulated as an
MDP. In the MDP, the sequential decision-making process is
represented by a four-tuple (S,A,R, S′), where S and S′ are
the state sets, A is the action sets, and R (s, a, s′) is the reward

function. The following sections present the key elements of
the MDP, containing the agent, environment, state, action, and
reward.

1) Agent: The decision-maker (i.e., REMC) denotes the
agent that learns how to accelerate its control policies grad-
ually to maximize rewards via experiences obtained by re-
peatedly interacting with the environment. Depending on the
presented smart home system, the agent is used to realize the
switching or adjustment of the residential loads.

2) Environment: The other objects outside the agent (i.e.,
nonschedulable and schedulable loads) to be controlled repre-
sent the environment, as depicted in Fig. 1.

3) State: The state st at time slot t is regarded as a feedback
of the REMC agent, which reflects its control action effect
on the residential load status. It consists of three types of
information:

st =
(
t, Etn,non, E

t
n,sh, E

t
n,con, P

t−23, P t−22, . . . , P t−1, P t
)

(8)
where t denotes the time step identifier given that the
energy demand of residential loads and electricity prices
from utility company are repetitive with a daily pattern;
Etn,non, E

t
n,sh, E

t
n,con represent the energy consumption of the

endogenous physical state features of residential loads that
are managed and can be influenced by the agent actions; and
P t−23, P t−22, . . . , P t−1, P t indicate the electricity prices over
the past 24 time slots, which are accessed through the utility
company and can be considered as exogenous information
state features that are needed to make a control decision and
calculate the reward. These features are characterized by the
intrinsic variability and uncertainty of the system and are
independent of the agent actions.

4) Action: Given the system state st at time slot t, the
action at of the agent is to ideally determine the energy
consumption amount of the various residential loads, defined
as:

at =
(
ctn,non, c

t
n,sh, c

t
n,con

)
(9)

where ctn,non is the constant control variable of the nonschedu-
lable loads, and ctn,sh and ctn,con are the binary and continuous
control variables of the schedulable loads, respectively.

5) Reward: The goal of the agent is to schedule the
elastic loads to minimize user electricity cost, i.e., regulating
energy demand from high electricity price time periods to low
electricity price time periods. However, the scheduled energy
consumption can lead to user dissatisfaction, as it may deviate
from a user preferred working time or required energy demand.
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Thus, from a user perspective, the corresponding reward rt

includes three parts:

rt = rtcom − rtwait − rtele (10)

rtcom =

N∑
n=1

αn,con ·
(
Etn,con − emin

n,con

)2
(11)

rtwait =

N∑
n=1

βn,sh ·
(
T stan,sh − T inin,sh

)
(12)

rtele =

N∑
n=1

P t ·
(
Etn,non + Etn,sh + Etn,con

)
(13)

where rtcom denotes the user comfort index, which is defined
by a quadratic function form. αn,con is a controllable load-
dependent parameter measuring the user sensitivity toward
the energy consumption reduction, i.e., a load with a smaller
αn,con prefers to consume more energy to enhance its comfort
level, and vice versa. rtwait indicates the waiting penalty for
a shiftable load to begin its task, which is calculated based
on the deviation from its initial working time. For example,
a dishwasher commonly functions during a specific working
period

[
T inin,sh, T

end
n,sh

]
(e.g., 6pm-10pm), which can be shifted

from on-peak time slots to off-peak time slots. For example,
if the dishwasher starts to function at T stan,sh (i.e., 9pm), then
the waiting time would be T stan,sh − T inin,sh (i.e., 3h). βn,sh is a
weighting factor that reflects the linear relationship slope of the
waiting inconvenience; a larger βn,sh will result in a bigger
penalty. rtele represents the electricity cost for loads energy
consumption, and P t is the dynamic real-time electricity price.

C. Objective

For each time slot t, the REMC agent makes control
decisions about residential load energy consumption schedul-
ing according to a set of available information and forms a
MDP sequences of environmental states, actions, and rewards:
s1, a1, r1; s2, a2, r2; . . . ; st, at, rt; . . . ; sT , aT , rT . The return

R =
T∑
t=1

γrt is the sum of the discounted reward from the

initial learning step thereafter, where γ ∈ [0, 1] is a discounted
factor that represents the relative importance of long-term
(future) rewards and short-term (immediate) reward. The aim
of the REMC agent is to find an optimal policy µ∗ (a policy
µ maps the possibility of choosing an available action to the
corresponding state) that maximizes the cumulative discounted
reward over all feasible policies, as represented by the optimal
Q-value function Q∗ (s, a) = E [R|st = s, at = a;µ∗], which
constitutes an estimation of the discounted, accumulative, and
expected reward, considering an action at at state st, and
following the policy µ∗ from the succeeding states onward.

To analytically determine the optimal Q∗ (s, a), the tran-
sition probability from st to st+1 is needed to indicate the
uncertainty. This requires a precise mathematical model, but
in the problem under consideration, the state transition from
st to st+1 is influenced not only by the agent control actions
at but also by the stochastic exogenous features, including the
price pattern P t and energy demand etn. It is very challenging

Smart Home
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t
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t
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Fig. 2. Actor-critic deep reinforcement learning framework.

to identify an explicit joint probability distribution model to
exactly reflect such indeterminacy, which is affected by many
factors, including the utility company, weather conditions, and
user behavior.

To address this issue, an RS-ACDRL algorithm is proposed
to allow the agent to overcome the uncertainties within in
real-world dataset and implicitly learn the state transition
probability via machine learning techniques. Fig. 2 presents a
diagram of interaction between the agent and the environment
in the MDP of the proposed RS-ACDRL algorithm. The agent
behaves in a dynamic environment by acting sequentially
over a sequence of time slots. At each time slot t, the
agent observes the environment state st and utilizes the RS-
ACDRL algorithm to refresh its control actions at (expressed
by at = µ (st)). The environment then executes action at,
moves to the next state st+1 and generates a reward rt. This
is finally returned to the agent to determine the next time slot
control action at+1. It should be pointed out that the agent
does not have any prior knowledge about how the reward and
next state are associated with each action. Instead, the agent
learns this linking via constantly interacting with the stochastic
environment to minimize the electricity cost while meeting the
satisfaction index of the user.

III. REWARD SHAPING-BASED ACTOR-CRITIC DEEP
REINFORCEMENT LEARNING ALGORITHM

A. Overall Scheme

This section presents an RS-ACDRL algorithm to perform
optimal residential energy management. The algorithm con-
structs an actor-critic structure and utilizes two DNNs that
learn approximations for both the value function and policy
function, wherein the detailed workflow is depicted in Fig.
3. The actor network (represented by DPG), parameterized
by θµ (light yellow color), generates the executable action at

given the current state st, while the critic network (represented
by DQN), parameterized by φQ (light red color), estimates
the Q-value function Q

(
st, at|φQ

)
for the state-action pair(

st, at, rt, st+1
)
. Because the critic just requires to generate

an estimated Q-value for the action carried out by the actor,
the proposed RS-ACDRL algorithm can operate on continuous
action spaces [28]. Through controlling continuous actions,
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Fig. 3. The overall workflow of RS-ACDRL.

the proposed algorithm explores the action spaces more thor-
oughly and avoids the discretization computational cost, and
also produces a smooth action control strategy to schedule the
residential loads.

Specifically, the proposed RS-ACDRL algorithm first em-
ploys long short-term memory (LSTM) neural network to
extract identifiable price data features, which is a critical
process for improving the DNN approximation quality (mark
1© in Fig. 3). Given that the electricity price varies in a

near-periodic manner and has a physical chronological order,
it is rational to extrapolate future electricity price tendency
from former electricity prices [29]. The LSTM networks are
very familiar for their capability to capture the time-series
data dependencies, so the electricity price tendency in this
work is modeled by an LSTM network, in which the input
is the previous 24-h prices and the output is the extracted
price pattern. After that, the output of the LSTM network
concatenated with the time slot and energy consumption
information, are inputted into both DNNs to approximate
the optimal function. The actor first extracts feature states
from the multidimensional state st including the time slot,
energy consumption, and extracted price pattern information
and outputs an action at derived by policy µ (st|θµ) (marks
2© and 3© in Fig. 3). Then, the same feature state st plus the

action at are inputted to the critic, whose output is a scalar
estimated Q-value function for that corresponding state-action
pair with the aid of an RS mechanism and employs the reward
value received from the stochastic environment to regulate the
precision of the estimated Q-value function Q

(
st, at|φQ

)
by

changing its parameter φQ (marks 4© and 5© in Fig. 3). Finally,
the actor network updates its parameter θµ based on the Q-
value function of the critic network to improve the policy and

the action taken on each state (mark 6© in Fig. 3).
More specifically, the critic network criticizes the policy

by providing an approximation of the Q-value function via
minimizing the following loss function:

L
(
φQ
)

= Es,a,r,s′∼D
[
yt −Q

(
st, at|φQ

)]2
|at=µ(st|θµ)

(14)
yt = r

(
st, at

)
+ γmaxQ

(
st+1, µ

(
st+1|θµ

)
|φQ−

)
(15)

which leads to the following gradient:

∇φQL
(
φQ
)

=

Es,a,r,s′∼D

[(
yt −Q

(
st, at|φQ

)) ∂Q(st,at|φQ)
∂φQ

]
(16)

Then, the gradient of the actor network can be written as:

∇θµJ (θµ) = ∇aQ
(
st, at|φQ

)
|at=µ(st|θµ)∇θµµ

(
st|θµ

)
(17)

However, the DQN tends to exhibit unstable when use a
DNN to approximate the Q-value function. First, the online
Q-network Q

(
st, at|φQ

)
being updated in Eq. (14) is also

utilized to compute the target value yt in Eq. (15); thus,
the update of Q-value is apt to diverge. A valid way to
address this oscillation is to bring in a target network for the
critic and actor respectively, represented by µ (st|θµ−) and
Q
(
st, at|φQ−

)
, and use them to compute the target values.

The parameters of these two target networks are then updated
by periodically tracking the online networks µ (st|θµ) and
Q
(
st, at|φQ

)
. The principle behind this soft change is to

enforce the target values to vary slowly and thereby stabilize
the learning process. Second, at each iteration, state transition
samples are collected as the agent interacts with the stochastic
environment sequentially, which means that these transitions
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are highly correlated. Learning from these consecutive tuples
may result in a divergence in the training. To overcome
this problem, an experience reply buffer D, which stores
collected past experiences (an experience is a transition tuple(
st, at, rt, st+1

)
) and samples uniformly a minibatch (of size

K) of experiences, is employed to update the actor and critic
at each time step. Sampling in the experience replay buffer
destroys the temporal correlations between the selected tuples,
thus stabilizing the training. Besides, the experience replay
buffer allows the experiences to be reused, thereby enhancing
the sampling efficiency.

To further improve the convergence speed and accelerate the
learning process, an RS mechanism is utilized. The rationale
behind RS is to improve the stochastic environment reward
feedback by importing extra rewards to make progress toward
discovering high reward actions, which helps RL algorithms
reduce the required training transition number, to obtain the
optimal policy more rapidly [27]. A potential-based RS can
result in massive reductions in learning time to boost the
convergence process and guarantee the optimal policy learned
keeps optimality under the effect of RS [30], which is defined
as:

F
(
st, st+1

)
= γΦ

(
st+1

)
− Φ

(
st
)

(18)

where Φ is a to-be-defined potential function. In this work,
we carefully design the potential function as follows:

Φ
(
st
)

=

{
0, t = 0

1 +
Repsum−R

ep
max(t)

Repmax(t)−Repmin
(t)
, otherwise

(19)

where Repsum is the sum of rewards in the current episode;
Repmax (t) and Repmin (t) are the maximum and minimum value
of episode reward until now. This shaping reward is added to
each environmental reward for every transition in each episode.
As such, the Eq. (15) in the presence of potential-based RS
becomes:

yt = r (st, at) + λF
(
st, st+1

)
+γmaxQ

(
st+1, µ

(
st+1|θµ

)
, |φQ−

) (20)

where λ is a tuning parameter that weights the shaped term
γF
(
st, st+1

)
. RS not only enables the agent to derive its op-

timal policy rapidly from each effective trial but also presents
the agent from choosing bad actions in certain states, thus
improving the learned policy quality.

The gradient decent algorithm is then used to update the
parameters of the online actor and critic networks respectively
by performing the following computations:

θµ ← θµ − ηθ∇θµJ (θµ) (21)

φQ ← φQ − ηφ∇φQL
(
φQ
)

(22)

where ηθ and ηφ are the corresponding learning rates. The
target actor and critic networks are updated to track the online
actor and critic networks according to:

θµ− ← τθµ + (1− τ) θµ− (23)

φQ− ← τφQ + (1− τ)φQ− (24)

where a small τ with τ � 1 should be selected to improve
learning stability.

B. Detailed Algorithm

The proposed RS-ACDRL algorithm for residential energy
management consists of two parts: the training algorithm and
the execution algorithm, as illustrated by Algorithm 1 and
Algorithm 2 below.

Algorithm 1 Training process of the RS-ACDRL
Input: Electricity prices, time information, energy consump-

tion and other related parameters.
Output: Optimal parameters of the critic and actor networks.

1: Randomly initialize the online critic and actor networks
with parameters φQ and θµ;

2: Initialize the target critic and actor networks with param-
eters φQ− ← φQ and θµ− ← θµ;

3: Initialize the replay memory buffer D.
4: for episode = 1 to M do
5: Observe the residential environment state st;
6: for t = 1 to T do
7: Select action at = µ (st|θµ) +χt according to the

policy network and exploration noise;
8: Execute action at, receive the reward rt, and

observe next state st+1;
9: Store transitions

(
st, at, rt, st+1

)
in D;

10: Sample a random mini-batch of K transitions(
sk, ak, rk, sk+1

)
from D;

11: Set yk = r
(
sk, ak

)
+ λF

(
sk, sk+1

)
+

γmaxQ
(
sk+1, µ

(
sk+1|θµ

)
, |φQ−

)
;

12: Minimize the loss:
13: L

(
φQ
)

= 1
k

∑
k Es,a,r,s′∼D

[
yk −Q

(
sk, ak|φQ

)]2
14: Leading to the following gradient:

15: ∇φQL
(
φQ
)

=

[(
yk −Q

(
sk, ak|φQ

)) ∂Q(sk,ak|φQ)
∂φQ

]
16: Update the critic network:
17: φQ ← φQ − ηφ∇φQL

(
φQ
)

18: Calculate the sampled policy gradient:
19: ∇θµJ (θµ) = 1

k

∑
k∇aQ

(
sk, ak|φQ

)
∇θµµ

(
sk|θµ

)
20: Update actor network:
21: θµ ← θµ − ηθ∇θµJ (θµ)
22: Update target critic and actor networks:
23: φQ− ← τφQ + (1− τ)φQ−

24: θµ− ← τθµ + (1− τ) θµ−

25: end for
26: end for

1) Training Algorithm: Algorithm 1 corresponds to the
training process of the RS-ACDRL. The inputs are the elec-
tricity price, time information, energy consumption, and other
parameters defined in Section II. Its output is the optimal
parameters θµ and φQ of the actor and critic network.

First, the parameters φQ and θµ of the online networks
Q
(
s, a|φQ

)
and µ (s|θµ) are randomly initialized. The tar-

get networks Q
(
s, a|φQ−

)
and µ (s|θµ−) then initialize the

weights by copying, i.e., φQ− ← φQ and θµ− ← θµ.
The replay memory buffer D is also initialized to store the
transition tuple.

Next, the algorithm begins running with episodic iterations.
At each time slot of each episode, the REMC first observes the
states st of appliances, and selects actions at = µ (st|θµ)+χt
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based on the current policy and the exploration noise (mark
7© in Fig. 3). When selecting actions, it is essential to

keep a proper balance between exploitation and exploration.
Exploitation means that the agent makes full use of the current
information to select the best actions, while exploration refers
to the agent explores more useful knowledge via attempting
different available actions in the action spaces. In this work,
an exploration policy is constituted by appending a random
noise process χt to the actor policy to help the agent explore
the environment thoroughly. The REMC then executes action
at on the schedulable loads, and the reward rt and new state
st+1 are returned from the residential environment.

Correspondingly, the transition sample
(
st, at, rt, st+1

)
is

stored in the replay memory buffer D to train the critic
and actor networks (mark 8© in Fig. 3). First, K transitions(
sk, ak, rk, sk+1

)
are randomly sampled for training DNNs

(mark 9© in Fig. 3). As shown in Lines 11–13, Q
(
sk, ak|φQ

)
and yk produced by the online critic network and target
critic network are utilized to compute mean square error loss.
Through minimizing the loss function, the parameter of the
critic network is updated in Line 17. Then, the sampled policy
gradient is calculated in Line 19, which is utilized to refresh
the parameter of the actor network in Line 21. Finally, the
parameters of the target critic and actor networks are updated
in Lines 23–24.

After the training procedure, the parameters φQ and θµ will
be output for the residential energy management.

2) Execution Algorithm: Algorithm 2 presents the execu-
tion process of the RS-ACDRL. The parameters of the critic
and actor networks trained by Algorithm 1 are loaded when the
training process is finished, and the actor network is reserved
for real-time decision-making. In the loop starting from Line
2, the actor network is utilized to produce the residential
energy management schedules from time slot t to T . At each
time slot, the actor network calculates policy value µ (st|θµ)
based on the observed state features. Then, the load control
action at is selected in Line 5 as µ (st|θµ)+χt. Because only
the current state st is used to make decisions, the proposed
RS-ACDRL control algorithm requires no prior knowledge of
system uncertain parameters or residential load dynamics.

Algorithm 2 Execution process of the RS-ACDRL
1: Load the actor network parameter θµ trained by Algorithm

1.
2: for time step t to T do
3: Observe system st;
4: Calculate actor network µ (st|θµ);
5: Select action at = µ (st|θµ) + χt;
6: Execute action at in residential environment and ob-

serve next state st+1.
7: end for

IV. NUMERICAL RESULTS

A. Case Studies

For case studies, we consider three nonschedulable loads
(the fire (L1), smoke (L2), and earthquake (L3) alarms), and
six schedulable appliances, including four controllable loads (a

heating (L4), a validation (L5), an air conditioning (L6), and a
lighting (L7)), and two shiftable loads (a dishwasher (L8) and
a washing machine (L9)). Table II lists the corresponding pa-
rameters of the loads [31], [32]. For the proposed RS-ACDRL
algorithm, two DNNs for the actor and critic are employed to
learn the optimal residential energy management strategy. The
corresponding parameters of the RS-ACDRL methodology are
listed in Table III, i.e., the hidden layers and neurons amount of
actor and critic, activation function, discounted factor, replay
buffer size, maximum training episode, optimizer, learning
rate, soft updating rate and minibatch size are determined
by some empirical guidelines in the relevant literature survey
and extensive preliminary performance analysis [33], [34].
Specifically, the actor has three hidden layers with 128, 64,
and 32 neurons, and the critic has two hidden layers with
64 and 32 neurons, wherein all hidden layers are realized
by rectified non-linearity (ReLU) as the activation function.
The output layer of the actor is a softsign layer to bound the
continuous actions. These are collected according to common
practice recommended by the machine learning community.
For the critic, the discounted factor γ is set to 0.95 so that
the proposed algorithm can obtain a foresighted strategy,
and L2 regularization is used in its loss function to avoid
large weights. The size of the replay buffer D is 106, and
the maximum episode is set to 1000. Each episode contains
72 hours. The Adam is utilized to optimize the two DNN
parameters with a learning rate ηµ and ηQ of 0.01 respectively,
which are the same as that used in [33]. The target network
soft updating rate τ is set to 0.001, and the minibatch size of
K is set to 1024 in the training process. In the LSTM network,
a 24 neuron units are utilized to extract the feature from
the past 24-h electricity prices. Then, this feature P textracted
is fed into the two DNNs, concatenated with the measured
energy consumption and time information. The algorithm code
is programmed in Python with TensorFlow, an open-source
machine learning package developed by Google Brain.

The performance of the proposed algorithm is evaluated
under a real-world scenario, wherein the hourly electricity
prices [35] from January 1 to October 31 2020 are selected
to train the algorithm, and the prices from November 1 to
December 31 2020 are used for performance evaluation. All
case studies are conducted on a computer with an Intel Core
i7-4790 CPU, 3.60 GHz, 16GB RAM, and one Nvidia 1080
GPU.

B. Energy Management

The proposed RS-ACDRL algorithm is trained with 1000
episodes to learn the optimal residential energy management
strategy. The evolution of the cumulative rewards during the
training procedure is shown in Fig. 4. Specifically, the agent
obtains a very low reward in the first 100 episodes, since the
parameters of DNNs are originally initialized and the actions
are randomly selected to explore the environment. However,
with each iteration, the cumulative reward continues to in-
crease from 100 episodes onward, due to the actions selected
by the DNNs whose parameters are optimized concurrently. Fi-
nally, the agent converges to an optimal value after nearly 300
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TABLE II
PARAMETERS OF DIFFERENT RESIDENTIAL LOADS

Device Type Nonschedulable
Schedulable

Controllable Shiftable

Device Name L1 L2 L3 L4 L5 L6 L7 L8 L9

Energy Demand (kWh) 0.03 0.03 0.05 0 - 1.4 0 - 1.4 0 - 1.4 0 - 1.4 0.75 0.70

Working Period 24h 24h 24h 24h 24h 24h 24h 6pm - 10pm 6pm - 10pm

αn,con - - - 0.013 0.014 0.015 0.016 - -

βn,sh - - - - - - - 0.4 0.1

Tneedn,sh - - - - - - - 1h 2h

TABLE III
THE PARAMETER VALUES OF THE RS-ACDRL METHODOLOGY

Parameter description Value

hidden layers and neurons amount of the actor 3 / 128, 64, 32

hidden layers and neurons amount of the critic 2 / 64, 32

activation function ReLU

discounted factor γ 0.95

replay buffer size D 106

maximum training episode 1000

optimizer Adam

learning rate ηµ and ηQ 0.01 / 0.01

soft updating rate τ 0.001

minibatch size K 1024
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Fig. 4. Convergence process of the proposed algorithm.

episodes, with small oscillations due to the encouragement of
the exploration strategy. This process indicates that the agent
gradually evolves and successfully learns a stable policy to
maximize the cumulative rewards. After the training procedure
(Algorithm 1) of the RS-ACDRL is complete, the weights of
the actor network at convergence are loaded to determine real-
time residential load energy management decisions (Algorithm
2).

To better illustrate the performance of the learned control
policies of the proposed algorithm, Figs. 5 and 6 present the
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Fig. 5. Aggregated energy consumption of all loads with scheduling.
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Fig. 6. Aggregated energy consumption of all loads without scheduling.

obtained energy consumption profiles of nine residential loads,
with and without scheduling on a three consecutive test days
from December 29 to 31 in 2020 that have different electricity
price patterns. When the proposed algorithm is applied, all
schedulable loads consume more energy when the electricity
prices are low and reduce their demand when electricity
prices are high, such that the energy consumption of each
residential load is properly scheduled in response to the hourly
dynamic electricity prices. For the case without scheduling,
the shiftable loads are operated immediately as soon as they
require to function, and the controllable loads are operated
at their maximum energy demand. Clearly, the loads have no
incentive to shift or reduce their energy consumption. Table IV
lists the corresponding system cumulative electricity cost; the
cost with the proposed algorithm is reduced significantly by
38.57% compared to the case without scheduling, validating
the effectiveness of the proposed algorithm in optimizing the
real-time residential load energy consumption.
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TABLE IV
THE CUMULATIVE ELECTRICITY COST

With Scheduling Without Scheduling

Total cost ($) 5.079 8.268

C. Performance Comparison

To further demonstrate the superiority of the proposed RS-
ACDRL algorithm, another two methods of DQN and DDPG
are selected to compare the performance. For the DQN, it
employs a DNN to approximate the Q-value for each discrete
action, and then selects the corresponding action with the
highest Q-value at a given state. To apply the DQN, the
Itn,con of the controllable load is discretized into six decimal
values representing 0, 0.2, 0.4, 0.6, 0.8 and 1.0, following
a similar practice adopted in [36]. For the DDPG, the DNN
takes a state vector as input and outputs a Gaussian policy for
each continuous action dimension, in which the probability
distribution of the action is represented with a Gaussian
distribution, and the DNN is utilized to estimate its mean and
variance.

Fig. 7 illustrates the performance of the three examined
approaches in terms of their policy quality and learning speed.
As illustrated in the figure, the average cumulative reward is
negative during the initial learning phases as the agents are
gathering experiences by casually exploring different actions.
Whereas, as the learning procedure progresses and more
experiences are collected, the cumulative rewards turn positive,
keep increasing, and eventually reaching the maximum for all
three approaches. The RS-ACDRL promotes its control policy
in a higher accumulated reward than the DQN, attributing to
its ability to exploit more accurate information from multidi-
mensional continuous action space and generate more efficient
control strategies, differ from the naive discretization manner
adopted in DQN. Furthermore, RS-ACDRL exhibits favorable
convergence properties compared to DDPG with regard to
learning speed, given that the RS-ACDRL incorporates the
target networks and the RS mechanism, facilitating the agent
to improve its policy rapidly and stably.

To gain insight into the effectiveness of the proposed algo-
rithm, Table V illustrates the optimal electricity cost, number
of convergence episodes and computational time achieved by
the three approaches of RS-ACDRL, DDPG and DQN. As
shown, the overall electricity cost of the residential system
optimized by the proposed algorithm, two benchmarks of
DDPG and DQN are $ 5.079, $ 5.079 and $ 6.741, re-
spectively. The convergence episodes amount of the three
approaches are approximately 300, 900 and 100, respectively.
Accordingly, the total computational time required to reach
convergence are 52 s, 218 s and 27 s, respectively. It can be
concluded the optimized total electricity cost of the proposed
algorithm is reduced by 24.65% when compared to DQN,
indicating that the DQN learns in discrete action space may
lead to sub-optimal scheduling strategies while the proposed
RS-ACDRL preserves all relevant information concerning the
entire continuous action space, and thus is equipped to learn
more cost-efficient energy management strategies. Although
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Fig. 7. Performance comparison of different approaches.

TABLE V
COST AND COMPUTATIONAL PERFORMANCE OF THE THREE METHODS

Approach
Electricity Number of Computational

cost convergence episodes time

DQN 6.741 $ 100 27 s

DDPG 5.079 $ 900 218 s

RS-ACDRL 5.079 $ 300 52 s

the final electricity cost of DDPG and RS-ACDRL is the same,
the number of convergence episode in DDPG is nearly 600
bigger than that of RS-ACDRL (mainly due to the employment
of RS strategy in RS-ACDRL), thereby resulting in the longest
computational time. These results demonstrate that beyond
obtaining a lower overall electricity cost in regard to the DQN
method, the proposed RS-ACDRL algorithm also exhibits a
more beneficial computational performance, making it the
most valid methodology to address the examined residential
energy management problem.

V. CONCLUSIONS AND FUTURE WORK

In this work, an RS-ACDRL based energy management
algorithm for various residential loads is proposed to obtain
real-time autonomous control policies, considering the un-
certainty and variability of electricity price, energy demand
and user behavior. In particular, the proposed RS-ACDRL
algorithm leverages the actor-critic architecture by combining
it with an RS mechanism. Case studies involving real-world
data verify that the RS-ACDRL algorithm gains approximately
38.57% lower electricity costs than that of the case without
scheduling, and further promotes the learning process and
enhances the policy quality via an RS mechanism compared
with the DQN and DDPG. Future work will involve enhancing
the generalization capability of the presented algorithm to
render it more robust to exogenous uncertainties of power
grid conditions (i.e., stochastic renewable energy generation),
going beyond the problem formulated in the current work.
In addition, the proposed algorithm will also be extended
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in a multi-agent setting, aiming to provide optimal energy
management strategies for multiple smart homes, wherein all
participants have learning capabilities and they may cooperate
or compete with each other.
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