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Abstract

In order to meet people’s demands for intelligent and user-friendly Internet of Things (IoT) services, the amount

of computation is increasing rapidly, and the requirements of task delay are becoming increasingly more stringent.

However, the constrained battery capacity of IoT devices greatly limits the user experience. Energy Harvesting (EH)

technologies enable green energy to provide continuous energy support for devices in the IoT environment. Together

with the maturity of Mobile Edge Computing (MEC) technology and the development of parallel computing, it

provides a strong guarantee for the normal operation of resource-constrained IoT devices. In this paper, we design

a parallel offloading strategy based on Lyapunov optimization, which is conducive to efficiently finding the optimal

decision for Delay-Sensitive and Compute-Intensive (DSCI) tasks. We establish a stochastic optimization problem

on a discrete-time slot system and propose a Green Parallel Online Offloading Algorithm (GPOOA). By decoupling

the target problem three times, the joint optimization of green energy, task division factor, CPU frequency and

transmission power is realized. Experimental results demonstrate that under the constraints of strict task deadlines

and limited server computing resources, GPOOA performs well in terms of system cost and task drop ratio, far

superior to several existing offloading algorithms.

Index Terms

Mobile Edge Computing, Internet of Things, Task Offloading, Energy Harvesting, Perturbed Lyapunov Opti-

mization

I. INTRODUCTION

J. Chen and H. Wu are with the Center for Applied Mathematics, Tianjin University, Tianjin 300072, China. Email: {junqichen,
whming}@tju.edu.cn

R. Li is with the Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan. Email: liruidong@ieee.org
P. Jiao is with the School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China. Email: pjiao@hdu.edu.cn

(Corresponding author: Huaming Wu)



F IFTH-Generation (5G) mobile communication has paved the way for the rapid proliferation of the

Internet of Things (IoT) [1]. With the increasingly diversified and user-friendly functions of IoT

devices, various compute-intensive and delay-sensitive applications have emerged, e.g., Augmented Reality

(AR), Virtual Reality (VR), speech recognition, video analysis [2], and smart homes. The underlying IoT

tasks generated by these applications usually require high computational demands and short delays [3],

which are referred to as Delay-Sensitive and Compute-Intensive (DSCI) tasks [4]. In most cases, the

limited computing resources and battery capacity of the device itself are difficult to support DSCI-type

tasks. This can easily lead to tasks not being executed smoothly due to battery depletion or long response

times. Regardless of transmission latency, it is ideal to offload the workload to a cloud server with abundant

computing resources for processing. However, it is unrealistic to offload all tasks to remote clouds. On

the one hand, large-scale and long-distance transmission of tasks will consume a lot of energy. On the

other hand, frequent communication with the cloud may also cause greater communication delays [5]. As

a result, not only has today’s already congested network become worse [6], [7], but the entire IoT system

has also become unstable.

The emergence of Mobile Edge Computing (MEC) has made up for the deficiencies of cloud computing

and can support the needs of mission-critical computing for low latency, intensive computing, and mass

storage [8], [9]. However, there exist several bottlenecks restricting the further development of IoT

technology. For instance, battery life has become one of the main factors affecting user experience.

Limited battery life increases the maintenance cost of IoT devices, and the cost of replacing batteries is

often higher than the cost of IoT devices themselves. For instance, in an industrial environment with only

10,000 sensors, the battery needs to be replaced nearly 3,333 times each year [10]. Not to mention how

to deal with today’s huge IoT system where everything is interconnected. Fortunately, Energy Harvesting

(EH), a promising technology that obtains harvested green energy from the external environment (e.g.,

solar and wind energy) and converts the captured renewable energy into electrical energy through an

energy harvesting device, provides a new opportunity for powering IoT-edge systems [11]. The working

range of most IoT devices and sensors is between 0.1 µW and 1 W, which can be easily handled by EH

devices [12]. While EH extends the life cycle of the equipment, it also eliminates the limitation of fixed

rechargeable batteries as energy sources. Despite the obvious advantages of using green energy for power

supply, the energy collection process is highly intermittent and random, which poses a huge challenge

for making full use of green energy. In addition, although the edge server has more abundant computing
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resources than the device itself, e.g., faster CPU frequency and higher parallel computing power [13].

However, most MEC servers in the real world have limited computing capacities and cannot match cloud

computing, especially in a multi-device IoT environment.

To address the above challenges, several Lyapunov optimization-based solutions, e.g., DBWA [14] and

EEDTO [15] have been proposed to minimize system energy consumption by optimizing the workload

distribution based on IoT-Edge-Cloud computing architecture. Chen et al. [16] transformed the energy

minimization problem into a knapsack problem and proposed an Energy-Efficient Dynamic Offloading

algorithm (EEDOA), which can approximate the minimum transmission energy consumption while en-

suring the stability of the system. Although the aforementioned approaches strive for energy-efficient

algorithms, they do not take into account green energy harvesting techniques or the mobility of the devices.

Using execution delays and task failures as execution costs, Mao et al. [17] developed a low-complexity

Lyapunov Optimization-based Dynamic Computation Offloading (LODCO) algorithm for models from a

single device to a single edge. Zhao et al. [13] inherited the advantages of the LODCO algorithm and

migrated it to the multi-device multi-server scenario that is more in line with the real world. Inspired by

the above practices, we try to apply the Lyapunov optimization technique combined with the mobility of

the device in the multi-device multi-server model.

Regarding how to reduce latency to meet the needs of different types of tasks, Yousefpour et al. [18]

utilized the concept of Load Sharing to reduce service latency by sharing load among fog nodes. Mukherjee

et al. [19] used Quadratic Constrained Quadratic Programming (QCQP) to solve the delay-sensitive

task offloading problem when considering local execution delay and transmission delay. Liu et al. [20]

developed an efficient one-dimensional search algorithm to solve the power-constrained delay minimization

problem under different time scales. Instead, in this paper, we use parallel offloading for DSCI-type tasks

to achieve this goal.

Green computing and communication have become the new darlings of researchers. Taking advantage of

EH and Device-to-Device (D2D) communication, Zhou et al. [21] proposed GreenEdge, a novel framework

for sustainable edge computing, and verified its feasibility. Deng et al. [22] designed a green sustainable

MEC framework for dynamic and parallel computing offloading and energy management (DPCOEM)

algorithms. However, this work was carried out under the ideal state of MEC server computing resources,

ignoring the mobility of IoT devices. We consider more scenarios where the edge server has limited

computing resources and the devices can move freely. Hu et al. [23] proposed an Online Mobile-aware
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Offloading and Resource Allocation (OMORA) algorithm, which combined Lyapunov optimization and

Semi-Definite Programming (SDP) methods. Although the task drop rate and migration cost are considered,

the main optimization is the total energy consumption. Inspired by the above, we attempt to apply the EH

technology to deal with system energy consumption, while placing more emphasis on the optimization of

latency.

In this paper, we design a Green Parallel Online Offloading Algorithm (GPOOA) for DSCI-type tasks.

GPOOA is based on the Lyapunov optimization framework to offload tasks in a parallel manner in multi-

device and multi-server scenarios, and combines EH technology to power the devices. Our goal is to

optimize the user experience and system robustness by reducing system costs. The main contributions of

this paper are summarized below.

• We establish a multi-device and multi-server MEC system model for DSCI-type tasks and formally

define the stochastic optimization problem on a discrete-time slot system, taking the mobility of the

device into account.

• To meet the delay requirements of DSCI-type tasks, we propose a parallel offloading strategy with the

close collaboration between IoT devices and edge servers. To ensure the robustness of task processing,

we take the drop ratio into consideration to motivate the system to perform tasks as many as possible.

• We apply the EH technology to IoT devices to make full use of the advantages of green energy, and

further propose a Lyapunov-guided solution to maintain the continuity of energy supply in IoT-edge

systems. Meanwhile, we decoupled the optimization problem three times and designed the GPOOA

algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model, computation offloading and energy harvesting

models, and then formulate the online decision problem for task offloading in MEC environments.

A. System Model

As shown in Fig. 1, we consider a 5G-based MEC environment with multiple IoT devices and multiple

MEC servers, where IoT devices M = {1, 2, · · · , M} can move freely in the environment, while MEC

servers N = {1, 2, · · · , N} are statically deployed. According to the EH technology, each device in the

scenario is equipped with an energy harvester. The energy harvester will collect green energy (e.g., solar,

wind) from the environment and convert it into electricity to power the device itself. According to the
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divisible load theory [24], we assume that the unit task A(L, τ) generated by the device is divisible and

of DSCI type, where L (in bit) is the task size, and τ (in ms) is the deadline of the task. Divisible here

means that the task A(L, τ) can be divided into two parts arbitrarily. And we adopt the cooperation of

local devices and edge servers to process tasks in parallel.

Fig. 1. The system model with energy harvesting technology.

We perform parallel offloading on a discrete-time slot system, where the time slot set is T = {0, 1, · · · ,T−

1} with the slot length τ0. Tasks are randomly generated with Bernoulli distribution in the time slots, and

the task arrival rate is defined as ρ (0 ≤ ρ ≤ 1). Let ζ t
i denote a task generation indicator, and ζ t

i = 1

means that the i-th IoT device has a task generated in the time slot t. And ζ t
i = 0 indicates no task is

generated. In addition, we define the task division factors of i-th device in time slot t as follows:

I t
i,l + I t

i,e + I t
i,d = 1, (1)

I t
i,l, I t

i,e ∈ [0, 1], I t
i,d ∈ {0, 1}. (2)

where I t
i,l and I t

i,e indicate the ratio of the task processed locally and offloaded to the edge server,

respectively. The value of I t
i,d is either 1 or 0, indicating that the task is either completely discarded

or executed. The symbols and their definitions commonly used in this paper are summarized in Table I.

B. Computation Offloading and Energy Harvesting Models

1) Local Execution Model: Dynamic Voltage and Frequency Adjustment (DVFS) technology [25] can

adjust execution time and energy consumption by controlling the CPU cycle frequency to achieve low

power consumption. Using DVFS, the local execution delay of the i-th device in time slot t can be obtained

by:

T t
i,l =

K∑
k=1

(
f t
i,k

)−1
, ∀t ∈ T , ∀i ∈ M, (3)

5



TABLE I
NOTATIONS AND DEFINITIONS

Notation Definition

A(L, τ) A unit task
τ0 The slot length of system
τ′ A temporary time variable
I t
i,l , I t

i,e, I t
i,d The task division factors

T t
i,l The delay to process a unit task locally

T t
i,e The delay to offload a unit task

E t
i,l The energy consumption to process a unit task locally

E t
i,e The energy consumption to offload a unit task

f max
local The maximum CPU-cycle frequency of local devices

K The number of CPU cycles required for a unit task
Emax

H The maximum energy can grab from the outside
Emax The maximum discharge energy of the battery
pmax The maximum transmission power allowed by the device
bt

i The battery level of the i-th device in the time slot t
χt

i The task drop indicator
ζ t

i The task generation indicator
ψ The penalty weight (the system cost of dropping the task)
Dt

i The delay of the i-th device in the time slot t

et
i

The green energy level collected through the energy
harvester in the time slot t

εt
i

The total energy consumption of the i-th device
in the time slot t

Q The maximum number of devices that the edge server
can connect to in a time slot

where K = LW is the number of CPU cycles required for a unit task A(L, τ) and W is the number of

CPU cycles required to perform one bit locally. f t
i,k is the frequency allocated by the i-th device to the

k-th CPU cycle in the time slot t. The corresponding local execution energy consumption is :

E t
i,l = θ

K∑
k=1

(
f t
i,k

)2
, ∀t ∈ T , ∀i ∈ M, (4)

where θ is the capacitance constant [17] that depends on the chip architecture. Here, f t
i,k ≤ f max

local, ∀k ∈

{1, 2, · · · ,K}, where f max
local (in cycle/s) represents the maximum CPU-cycle frequency of local devices.

2) MEC Offloading Model: The Shannon-Hartley formula shows that the channel transmission rate is

determined by the channel gain ht
i, j and the transmission power pt

i of the device. So the transmission rate
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vt
i, j from the i-th device to the j-th MEC server can be expressed as [26]:

vt
i, j = v

(
ht

i, j, pt
i

)
= ω log2

(
1 +

ht
i, j p

t
i

σ

)
, (5)

where ht
i, j = γ

t
i, jg0

(
d0
dt
i, j

)α
represents the channel gain from the i-th device to the j-th MEC server, γt

i, j

is the small-scale fading channel power gain, d0 represents the reference distance, dt
i, j is the distance

from the device i to the MEC server j. g0 is the pass-loss constant, and α is the pass-loss exponent. The

bandwidth of the channel is denoted as ω. σ is the noise power at the MEC server.

Typically, the downlink transmission rate is much higher than the uplink rate. And the size of the

output result is usually much smaller than the input, so our model ignores the return time of the result.

Inspired by [13], [17], [22], our model inherits the delay assumptions in these works. That is, we do not

consider the execution delay of the MEC server for simplicity. If a unit task generated by the i-th device

is processed by the j-th MEC server, the corresponding offloading delay is calculated by:

T t
i,e =

L
vt

i, j
, ∀t ∈ T , i ∈ M, (6)

And the corresponding energy consumed by the i-th device of offloading tasks is:

E t
i,e = pt

iT
t
i,e, ∀t ∈ T , ∀i ∈ M . (7)

3) Energy Harvesting Model: We adopt EH technology to make full use of green energy to provide

energy support for IoT devices. The energy harvester converts green energy such as solar, wind and

mechanical energy obtained from the outside into electrical energy and stores it in the battery to ensure

the normal operation of the device. However, the process of obtaining green energy in the real world is

stochastic.

Assuming that the green energy arrives at the i-th device in the time slot t with E t
i,H , which is independent

and identically distributed, and E t
i,H ≤ Emax

H . Here, Emax
H is the maximum energy that the device can grab

from the outside world. Define the green energy level collected through the energy harvester of the i-th

device in the time slot t as et
i , and the captured energy et

i cannot exceed the randomly arrived green energy

level:

0 ≤ et
i ≤ E t

i,H . (8)

In our model, the generated tasks are either executed in parallel or dropped (satisfy Eq. (1)). Dropping
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tasks will not generate energy consumption. Therefore, the total energy consumption of the i-th device in

the time slot t consists of two parts (local part I t
i,l E

t
i,l and edge part I t

i,eE t
i,e):

εt
i = I t

i,l E
t
i,l + I t

i,eE t
i,e. (9)

In order to prolong the service life of the battery and prevent the battery from over-discharging, the battery

output energy of each time slot should not exceed Emax:

0 ≤ εt
i ≤ Emax, (10)

where Emax is the maximum discharge energy of the battery in each time slot.

Define the battery level of the i-th device in the time slot t as bt
i . It needs to be emphasized that the

energy consumed in each time slot cannot exceed the current battery level, which satisfies:

εt
i ≤ bt

i < ∞. (11)

In other words, if the energy consumed by the processing task exceeds the current battery level, the system

will drop the task due to insufficient energy supply. In summary, the battery level of device i in time slot

t + 1 is updated according to:

bt+1
i = bt

i − ε
t
i + et

i . (12)

C. Problem Formulation

Our goal is to optimize user experience (reduce delay) and improve system stability (reduce task drop

ratio) by reducing the total system cost. For DSCI-type tasks, we use a parallel offload strategy to cope

with DS (delay-sensitive) features, and we use EH techniques to power devices for compute-intensive

(CI) features. Before defining the system cost, we first define a task drop indicator as: χt
i = ζ

t
i I t

i,d (if the

i-th device has a task to generate in time slot t while it is dropped).

Based on the characteristics of the parallel computing framework, the delay of the i-th device in time

slot t is the larger of the delays between the local side I t
i,lT

t
i,l and the offload to the edge server side I t

i,eT
t
i,e:

Dt
i = ζ

t
i ·max

{
I t
i,lT

t
i,l, I t

i,eT
t
i,e

}
. (13)

The cost of the i-th device in time slot t is defined as the weighted sum of the delay Dt
i and the task
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drop indicator χt
i :

costt
i = Dt

i + ψχ
t
i , (14)

where ψ (in second) is the penalty weight, i.e., the system cost of dropping the task. Therefore, the total

cost of the system in time slot t is:

costt
total =

M∑
i=1

costt
i . (15)

Considering that there are many random factors in the system, such as the arrival of tasks, the location of

devices, the state of the channel, and the energy harvesting situation, etc. First, we formulate the problem

as a random optimization problem. And we want to minimize the response time and task drop ratio in

the sense of time average through resource allocation and parallel offloading. So we first get optimization

problem P1:

P1 : min lim
T→∞

1
T
E

[
T−1∑
t=0

costt
total

]
s.t. : (1), (2), (8), (10) and (11)

Dt
i ≤ τ (16)

I t
i,l + I t

i,e ≤ ζ
t
i (17)

0 ≤ f t
i,k ≤ f max

local, ∀t ∈ T , ∀i ∈ M (18)

0 ≤ pt
i ≤ pmax, ∀t ∈ T , ∀i ∈ M (19)

where Eqs. (1) and (2) are task division factor constraints. Eqs. (8), (10) and (11) are energy consumption

constraints (the task will be dropped if the energy consumed to perform the task exceeds the current

battery level). Eq. (16) indicates that the response time constraints (the task will be dropped if it is not

executed before the deadline). Eq. (17) indicates that parallel offloading can only occur when there are

tasks generated. Eqs. (18) and (19) are the constraints of the device’s CPU frequency and transmission

power, respectively, where pmax represents the maximum transmission power allowed by the device.

D. Modified System Cost Minimization Problem

It is worth noting that the energy constraint in Eq. (11) makes the system coupled between different

time slots when making decisions, which is challenging to directly apply the traditional Lyapunov method.

In order to eliminate this coupling effect, similar to [17], we introduce a non-zero energy consumption
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Emin as the minimum discharge energy of the battery in each time slot to tighten the constraints of the

problem P1, so that an improved stochastic optimization problem can be obtained by:

P2 : min lim
T→∞

1
T
E

[
T−1∑
t=0

costt
total

]
s.t. : (1), (2), (8), (11) and (16) − (19)

εt
i ∈ {0} ∪

[
Emin, Emax] (20)

where the constraints of P2 are much stricter than that of P1. By forcing Emin to tend to zero, the optimal

solution of P2 will tend to that of P1. The relationship between the optimal solutions of the two problems

is as shown in Lemma 1. According to Lemma 1, we transform how to solve problem P1 into how to

solve problem P2.

Lemma 1: Let the optimal value corresponding to the optimal solution of problem P1 and problem

P2 be SP∗1 and SP∗2, respectively, then we have SP∗1 ≤ SP
∗
2 ≤ SP

∗
1 +

∑M
m=1

(
ψ − τmin

m
)
· 1{Emin>Emin

τ,m }
,

where τmin
m = minτ

{
arg

{
Emin
τ,l,m = Emin

}
, arg

{
Emin
τ,e,m = Emin

}}
, Emin

τ,e,m = τσ
2
LItm,e
ωτ −1
hti, j

and Emin
τ,l,m =

θK3I t
m,l

τ2 .

Proof: Since the constraint condition of P2 is more stringent than that of P1, it is easy to draw

SP∗1 ≤ SP
∗
2. The other side of the inequality can be obtained by constructing a feasible solution of P2

according to problem P1. Let
〈
QP1

m (t)
〉

be the optimal solution of the m-th IoT device in the value space

SP1, the following is to construct an optimal solution in the value space SP2 for each IoT device. We

have, when ε
(
QP1

m (t)
)
∈ {0} ∪

[
Emin, Emax

]
, let

〈
QP1

m (t)
〉
=

〈
QP2

m (t)
〉
. Next, we will discuss the situation

when ε
(
QP1

m (t)
)
∈

(
0, Emin) . For the optimization problem P2, the energy consumption at this time is not

within its constraint range, and the tasks in this state will be dropped, i.e., the corresponding optimization

value SP2 = ψ.

Let the minimum energy consumption of the m-th IoT device meet the task deadline τ as Emin
τ,m = Emin

τ,l,m+

Emin
τ,e,m, where Emin

τ,e,m = τσ
2
LItm,e
ωτ −1
hti, j

represents the minimum energy consumption required for the task to be

executed on the device side, Emin
τ,l,m =

θK3I t
m,l

τ2 represents the minimum energy consumption required for the

task to be executed on the MEC side. If Emin ≥ Emin
τ,m , the newly constructed task drop cost is set to ψ, and

the corresponding cost of P1 is at least τmin
m , where τmin

m = minτ
{
arg

{
Emin
τ,l,m = Emin

}
, arg

{
Emin
τ,e,m = Emin

}}
.

Thus, the optimal values of these two problems may differ by ψ−τmin
m at most. If Emin < Emin

τ,m , the generated

task will also be dropped for P1. In summary, there is no difference between the optimal values of the

two problems in a discrete-time slot system.
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III. PERTURBED LYAPUNOV OPTIMIZATION-BASED APPROACH

A. Lyapunov Optimization Framework

Because Lyapunov optimization does not require many a priori parameters, it can realize real-time con-

trol in dynamic systems with relatively low algorithm complexity, which is in line with the characteristics

of task generation and the characteristics of capturing green energy. In our model, Lyapunov optimization

is combined with parallel offloading and energy harvesting, this method does not directly calculate the

optimal value, but uses an upper bound to guarantee the stability of the system.

The energy flow is constructed as an energy queue to provide continuous and stable energy support for

the normal operation of devices. Each energy queue corresponds to a virtual queue defined as:

b̃t
i = bt

i − β, ∀t ∈ T , ∀i ∈ M, (21)

where the virtual queue vector formed by all IoT devices is B̃t ,
[
b̃t

1, b̃
t
2, · · · , b̃

t
M

]
. The disturbance

parameter β of IoT devices with EH technology is a bounded constant that satisfies:

β ≥ Ẽmax +
Vψ
Emin , (22)

where Ẽmax , min
{
maxi

{
εt

i

}
, Emax

}
= min

{
max

{
βK

(
f max
local

)2
, pmaxτ0

}
, Emax

}
is the upper bound of

the available energy. V is the non-negative weight control parameter.

Then define the Lyapunov function of the virtual energy queue as:

L(t) =
1
2

M∑
i=1

(
b̃t

i
)2
=

1
2

M∑
i=1

(
bt

i − β
)2
, ∀t ∈ T . (23)

Next, we introduce a one-step conditional Lyapunov drift function to push the quadratic Lyapunov function

to a bounded level to form a stable virtual queue, which is formulated as:

∆(t) = E
[
L(t + 1) − L(t) | B̃t ] , ∀t ∈ T . (24)

Finally, by combining the queue stability with the system cost required to execute the task, we obtain a

Lyapunov drift plus penalty function:

∆V (t) = ∆(t) + VE
[
costt

total | B̃
t ] , ∀t ∈ T . (25)
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The parameter V here is consistent with Eq. (22), which shows the trade-off relationship between the

energy queue backlog and the system cost. Use the classic Lyapunov technique [27] to scale the upper

bound of Eq. (25), we have:

∆V (t) ≤E

[
M∑

i=1

(
b̃t

i
(
et

i − ε
t
i
) )
| B̃t

]
+ C

+ VE

[
M∑

i=1

(
Dt

i + ψχ
t
i
)
| B̃t

]
, (26)

where C = M (
Emax
H )

2
+(Ẽmax)

2

2 . The detailed proof of Eq. (26) is shown as follows:

Proof: We first introduce a statement. Let A, B and C be non-negative real numbers and W = A−B+C,

then W2 ≤ A2 + B2 + C2 + 2A(C − B). Recall the definition of battery level in Eq. (12), we have:

(
b̃t+1

i
)2
≤

(
b̃t

i
)2
+

(
εt

i
)2
+

(
et

i
)2
+ 2b̃t

i
(
et

i − ε
t
i
)

≤
(
b̃t

i
)2
+ 2b̃t

i
(
et

i − ε
t
i
)
+

(
Emax

H
)2
+

(
Ẽmax )2

Reorganizing the above formula, we can obtain:

(
b̃t+1

i
)2
−

(
b̃t

i
)2
≤ 2b̃t

i
(
et

i − ε
t
i
)
+

(
Emax

H
)2
+

(
Ẽmax )2

.

Summing all devices over time slot t, it holds:

M∑
i=1

[
(b̃t+1

i )
2 − (b̃t

i)
2
]
≤ 2

M∑
i=1

b̃t
i(e

t
i − ε

t
i )

+ M
[
(Emax

H )2 + (Ẽmax)2
]
.

By dividing both sides of the above inequality by two:

∆(t) ≤
M∑

i=1
b̃t

i(e
t
i − ε

t
i ) + M

[ (Emax
H

)2
+

(
Ẽmax )2

2

]
.

Finally, by taking the expectation on the above inequality and adding the item VE
[
costt

total | B̃
t
]
, it further

yields Eq. (26).

By scaling Eq. (25) with Lyapunov optimization, we embed the constraint on the stability of the energy
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queue into Eq. (26). Solving problem P2 is transformed into how to solve problem P3:

P3 : min
M∑

i=1

(
b̃t

i
(
et

i − ε
t
i
) )
+ V

M∑
i=1

(
Dt

i + ψχ
t
i
)
+ C.

s.t. : (1), (2), (3), (8), (11) and (16) − (20)

Doing so not only minimizes the total system cost in a time-averaged sense, but also stabilizes the battery

charge of each device.

B. Decoupling and Problem Solving

The problem P3 contains four variables to be determined: green energy, task division factor, CPU

frequency, and transmission power. It is challenging to solve by traditional convex optimization algorithms.

Our main idea is to decompose the problem P3 into a series of sub-optimization problems at each time

slot. In this part, we give the decoupling process of the problem theoretically and summarize it into Fig. 2.

Fig. 2. The decoupling process of the problem.

1) The First Decoupling of the Problem: We can find that problem P3 can be decomposed into two

sub-problems, namely, Penergy and Po f f load . The former is to optimize the energy harvesting decision, that

is, how to determine et
i , while the latter is to optimize parallel decision-making St

i ,
[
I t
i,l, I t

i,e

]
, the CPU

frequency f t
i,k and the transmission power pt

i for resource allocation. We will give the optimal solution

to the problem in each slot. Before discussing the problem further, we need to give a Lemma 2 [17] as

follows:

13



Lemma 2: If the task is executed on the device side (locally) in the time slot t (t ∈ T ), the allocation of

the CPU frequency will be optimal when K CPU cycles are equal, i.e., f t
i,k = f t

i , i ∈ M, k = 1, 2, · · · ,K .

According to Lemma 2, we will use T t
i,l = K( f t

i )
−1, E t

i,l = θK( f t
i )

2, t ∈ T , i ∈ M to optimize the

objective problem. For the energy optimization problem Penergy, it is easy to obtain the optimal amount

of energy harvesting e∗ti by solving the following Linear Programming (LP) problem:

Penergy : min
M∑

i=1
b̃t

ie
t
i

s.t. : 0 ≤ et
i ≤ E t

H

et
i + bt

i ≤ Λi

where

e∗ti =


min
{
Λi − bt

i, E
t
H

}
, b̃t

i ≤ 0

0, b̃t
i > 0

(27)

Considering the remaining terms except for et
i in problem P3, we can get the problem Po f f load as

following:

Po f f load : min−
M∑

i=1
b̃t

iε
t
i + V

M∑
i=1

(
Dt

i + ψχ
t
i
)
+ C

s.t. : (1), (2), (3), (11) and (16) − (20)

which includes three phases of operations in each time slot: i) Scheduling of CPU cycle frequency f t
i,k ;

ii) Distribution of transmission power pt
i ; iii) Determination of parallel offloading decision St

i . Since there

are both continuous and discrete variables in the constraints, and the coupling between different variables

is very high, it is still difficult to solve them directly. So we try to decouple the problem a second time.

2) The Second Decoupling of the Problem: Similar to [22], we convert Po f f load into three equivalent

sub-problems in each time slot for the second decoupling. Taking the task division factor as the starting

point, when the generated tasks is dropped, i.e., I t
i,d = 1, I t

i,l = I t
i,e = 0, the device neither needs to process

the task nor send it to the edge server. Thus, we have f t
i,k = 0 and pt

i = 0. Next, we consider the case that

the task is not dropped, and the following three equivalent sub-problems can be obtained:

Parallel offloading problem SS: When the transmission power and CPU frequency are given, i.e.,

14



pt
i = pt

0 and f t
i = f t

0 , we can get the optimal solution S∗ti .

SS : min
St
i

−b̃t
i

(
I t
i,1E t

i,l + I t
i,eE t

i,e

)
+ V ·max

{
I t
i,1T t

i,l, I t
i,eT

t
i,e

}
s.t. : (1), (2), (16), and (20)

Transmission power problem SP: When parallel offloading decision and CPU frequency are given,

i.e., St
i = St

0 and f t
i = f t

0 , the optimal solution p∗ti can be obtained.

SP : min
pti
−b̃t

i

[
I t
i,l E

t
i,l + I t

i,e

pt
i L

ω log2
(
1 +

hti, jp
t
i

σ

) ]
+ V ·max

{
I t
i,lT

t
i,l, I t

i,e
L

ω log2
(
1 +

hti, jp
t
i

σ

) }
s.t. : (16) and (19)

I t
i,eE t

i,e ∈

[
max

{
0, Emin − I t

i,l E
t
i,l

}
, Emax − I t

i,l E
t
i,l

]
CPU frequency problem SF : When parallel offloading decision and transmission power are given,

i.e., St
i = St

0 and pt
i = pt

0, the optimal solution f ∗ti can be obtained.

SF : min
f ti
−b̃t

i

(
θI t

i,lK
(
f t
i
)2
+ I t

i,eE t
i,e

)
+ V ·max

{
I t
i,l

K
f t
i
, I t

i,eT
t
i,e

}
s.t. : (16) and (18)

I t
i,l E

t
i,l ∈

[
max

{
0, Emin − I t

i,eE t
i,e

}
, Emax − I t

i,eE t
i,e

]
3) The Third Decoupling of the Problem: We found that the way in which tasks are offloaded in

parallel makes Dt
i (in Eq. (13)) difficult to solve on the three sub-problems. Here, we take Dt

i as the

starting point to decouple the above series of problems for the third time and give the expression of the

optimal solution.

The parallel offloading problem SS is a convex optimization problem about the variable St
i , which

consists of several convex functions added together and can be further transformed into sub-problem SS1

and sub-problem SS2:
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Sub-problem SS1 for case I t
i,lT

t
i,l ≥ I t

i,eT
t
i,e:

SS1 : min
St
i

−b̃t
i

(
I t
i,1E t

i,l + I t
i,eE t

i,e

)
+ V I t

i,1T t
i,l .

s.t. : (1), (2), (16), and (20)

Sub-problem SS2 for case I t
i,lT

t
i,l < I t

i,eT
t
i,e:

SS2 : min
St
i

−b̃t
i

(
I t
i,1E t

i,l + I t
i,eE t

i,e

)
+ V I t

i,eT
t
i,e.

s.t. : (1), (2), (16), and (20)

We can use linear programming tools to obtain the optimal solution for each problem easily, and apply

the contradiction method to verify whether the result meets the assumptions, so as to obtain the optimal

offloading decision S∗ti .

The transmission power problem SP can be further reduced to sub-problem SP1 and sub-problem

SP2:

Sub-problem SP1 for case I t
i,lT

t
i,l ≥ I t

i,e

L,v
(
hti, j,p

t
i

)
ωhti, j

:

SP1 : min
pti
−b̃t

i

[
I t
i,l E

t
i,l + I t

i,e

pt
i L

v
(
ht

i, j, pt
i

) ] + V I t
i,lT

t
i,l

s.t. : 0 ≤ pt
i ≤ pmax

I t
i,e

L

v
(
ht

i, j, pt
i

) ≤ I t
i,lT

t
i,l ≤ τ

I t
i,eE t

i,e ∈

[
max

{
0, Emin − I t

i,l E
t
i,l

}
, Emax − I t

i,l E
t
i,l

]
where τ′ = I t

i,lT
t
i,l in this case, and

p∗ti =


pU, b̃t
i ≥ 0

pL, b̃t
i < 0

(28)
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Sub-problem SP2 for case I t
i,lT

t
i,l < I t

i,e

L,v
(
hti, j,p

t
i

)
ωhti, j

:

SP2 : min
pti
−b̃t

i

I
t
i,l E

t
i,l + I t

i,e

pt
i L

v
(
ht

i, j, pt
i

)  + V I t
i,e

L

v
(
ht

i, j, pt
i

)
s.t. : I t

i,e
L

v
(
ht

i, j, pt
i

) ≤ τ
0 ≤ pt

i ≤ pmax

I t
i,eE t

i,e ∈

[
max

{
0, Emin − I t

i,l E
t
i,l

}
, Emax − I t

i,l E
t
i,l

]
where τ′ = τ in this case, and

p∗ti =


pU, b̃t

i ≥ 0 or b̃t
i < 0 & p0 > pU

p0, b̃t
i < 0 & pL < p0 < pU

pL, b̃t
i < 0 & p0 < pL

(29)

Let g1
(
pt

i, h
t
i, j, b̃

t
i

)
=

−b̃tip
t
i

v
(
hti, j,p

t
i

) + V
v
(
hti, j,p

t
i

) , we take the first-order partial derivative of g1:
dg1

(
pti,h

t
i, j,b̃

t
i

)
dpti

=

−b̃ti log2

(
1+

ht
i, j

pt
i

σ

)
−

ht
i, j(

σ+ht
i, j

pt
i

)
ln 2
(V−pti b̃

t
i)

ω log2
2

(
1+

ht
i, j

pt
i

σ

) and p0 is the solution of b̃t
i log2

(
1+

hti, jp
t
i

σ

)
+

hti, j(
σ+hti, jp

t
i

)
ln 2

(
V − pt

i b̃
t
i

)
= 0.

In addition, we define pL and pU as follows:

pL =


pL,τ′, E0 ≥ Emin − I t

i,l E
t
i,l

max
{
pL,τ′, pEmin

}
, E0 < Emin − I t

i,l E
t
i,l

(30)

pU =


0, E0 ≥ Emax − I t

i,l E
t
i,l

min {pmax, pEmax } , E0 < Emax − I t
i,l E

t
i,l

(31)

where E0 =
σI ti,eL ln 2
ωhti, j

, and pL,τ′ =
σ
(
2
LIi,e
ωτ′ −1

)
hti, j

is the solution when T t
i,e = τ

′. Besides, pEmin and pEmax are

the solutions of I t
i,eE t

i,e = Emin and I t
i,eE t

i,e = Emax , respectively. That is, pEmin I t
i,eL = v

(
ht

i, j, pEmin

)
Emin

and pEmax I t
i,eL = v

(
ht

i, j, pEmax

)
Emax .

Furthermore, the CPU frequency allocation problem SF can be further reduced to sub-problem SF 1

and sub-problem SF 2.
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Sub-problem SF 1 for case I t
i,l

K
f ti
≥ I t

i,eT
t
i,e:

SF 1 : min
f ti
−b̃t

i

[
I t
i,lθK

(
f t
i
)2
+ I t

i,eE t
i,e

]
+ V I t

i,l
K
f t
i

s.t. : I t
i,l

K
f t
i
≤ τ

0 ≤ f t
i ≤ f max

local

I t
i,l E

t
i,l ∈

[
max

{
0, Emin − I t

i,eE t
i,e

}
, Emax − I t

i,eE t
i,e

]
where τ′ = τ in this case, and

f ∗ti =


fU, b̃t

i ≥ 0 or b̃t
i < 0, f0 > fU

f0, b̃t
i < 0, fL < f0 < fU

fL, b̃t
i < 0, f0 < fL

(32)

Let g2( f t
i , b̃

t
i) = −b̃t

iθK
(
f t
i

)2
+V K

f ti
, we take the first-order partial derivative of g2:

dg2( f ti ,b̃
t
i)

dpti
= −2b̃t

iθK f t
i −

V K
f ti

and f0 is the solution of g3( f t
i , b̃

t
i), i.e., f0 = 3

√
V
−2θ b̃ti

. Besides, fL = max
{

KI t
i,l

τ′ ,max
{
0,

√
Emin−I ti,eE t

i,e

I t
i,l
θK

}}
and fU = min

{
f max
local,

√
Emax−I ti,eE t

i,e

I t
i,l
θK

}
.

Sub-problem SF 2 for case I t
i,l

K
f ti
< I t

i,eT
t
i,e:

SF 2 : min
f ti
−b̃t

i

(
I t
i,lθK

(
f t
i
)2
+ I t

i,eE t
i,e

)
+ V I t

i,eT
t
i,e

s.t. : I t
i,l

K
f t
i
< I t

i,eT
t
i,e ≤ τ

0 ≤ f t
i ≤ f max

local

I t
i,l E

t
i,l ∈

[
max

{
0, Emin − I t

i,eE t
i,e

}
, Emax − I t

i,eE t
i,e

]
where τ′ = I t

i,eT
t
i,e in this case, and

f ∗ti =


fU, b̃t
i ≥ 0

fL, b̃t
i < 0

(33)

C. Green-Parallel Online Offloading Algorithm

As we mentioned earlier, the computing resources of edge servers in the real world are usually limited.

We assume that MEC servers in IoT-Edge system have limited computing resources, that is, in each time
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slot, at most Q =
[
τ f max

edge

K

]
devices are allowed to connect to one MEC server at the same time. According

to the optimal solution given in Section III, we design the GPOOA algorithm for DSCI-type tasks.

Fig. 3. The task division process for the DSCI-type tasks.

GPOOA adopts the principle of minimum target value (J t
parallel) first offloading, and seeks for parallel

decision-making and resource allocation scheme to minimize the system cost. It is known that when given

any two variables, the P3 turns into how to optimize SF , SP, or SS. First, we get a random task division

factor St
i, j by initializing f t

i, j(0) and pt
i, j(0), and get a random pt

i, j by St
i, j and f t

i, j(0). We use the obtained St
i, j

and pt
i, j as the given two variables to optimize the problem SF . Meanwhile, if the optimal offload object

of task A generated by device i is MEC server j, and the number of devices connected to server j is less

than Q, then task A will be completed by device i and server j together. If the server j has connected Q

devices, then task A can only choose the suboptimal offload object. The details of the algorithmic process

are described in Algorithm 1, where J t
parallel = −b̃t

iε
t
i + V

(
Dt

i + ψχ
t
i

)
and Q is the maximum number

of devices that the edge server can connect to in a time slot. Fig. 3 shows the DSCI-type task division

process.

IV. PERFORMANCE EVALUATION

In this section, we verify the effectiveness of GPOOA through MATLAB simulation with the adoption

of the controlled variable method.

A. Simulation Setup

The parameter setting of the paper mainly refers to work [13], [17]. There are 3 MEC servers and

8 IoT devices placed in an area of 100m × 100m, where IoT devices can move arbitrarily in the area

without affecting each other. Let E t
i,H be a uniform distribution on

[
0, Emax

H

]
with the average EH power

pH = Emax
H /2τ (the range is between 7.5 mW and 10 mW). The unit task A(L, τ) with L = 1 kbits and
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ALGORITHM 1: The GPOOA Algorithm
1: for time slots t ∈ T do
2: for i = 1 to M do
3: Acquire ζ t

i
, b̃t

i
and E t

H
4: Solve the problem Penergy as Eq. (27) to get the e∗ti
5: for j = 1 to N do
6: Initialize f t

i, j(0) and pt
i, j(0)

7: Solve the problem SS to get the St
i, j

;
8: Solve the problem SP as Eqs.(28) and (29) to get the pt

i, j
;

9: Solve the problem SF as Eqs.(32) and (33) to get the f t
i, j

;

10: Record optimal value Jtparallel

(
St
i, j
, pt

i, j
, f t

i, j

)
;

11: If the battery energy level is insufficient for the i IoT device and the j MEC server to parallel offloading, set
Jtparallel

(
St
i, j
, pt

i, j
, f t

i, j

)
as inf;

12: Choose the optimal S∗ti , P∗ti and f ∗ti by selecting the minimum Jtparallel

(
St
i, j
, pt

i, j
, f t

i, j

)
, denote as Jtparallel

(
St
i
, pt

i
, f t

i

)
and

record j.
13: end for
14: Insert key-value pair into the map with key i and value j;
15: end for
16: while map , ∅ do
17: Find the key-value pair“i- j” with the smallest value Jtparallel

(
St
i
, pt

i
, f t

i

)
and record j;

18: if flag[ j] ≤ Q then
19: Remove the key-value pair “i- j” from the map;
20: flag[ j] = flag[ j] + 1;
21: else
22: Jtparallel

(
St:, j, pt:, j, f t:, j

)
= inf;

23: if min
{
Jtparallel

(
St
i,:, pt

i,:, f t
i,:

)}
, inf then

24: Find the smallest Jtparallel

(
St
i, j′
, pt

i, j′
, f t

i, j′

)
, overwrite the server initially selected in the map with j ′, and overwrite the

value of Jtparallel

(
St
i
, pt

i
, f t

i

)
.

25: else
26: There is no server to choose, the task can only be dropped.
27: end if
28: end if
29: end while
30: Update the virtual energy queue b̃t+1

i
;

31: Set t = t + 1;
32: end for

τ = 2 ms. The channel power gains are exponential distribution with mean g0
( d0

dt
i, j

)α, where the pass-loss

exponent α = 4, the path-loss constant g0 = −40 dB and d0 = 1. The small-scale fading channel power

gains follow an exponential distribution, i.e., γt
i, j ∼ E xp(1). In addition, θ = 10−28, f max

local = 1.5 GHz,

pmax = 1.8 W, ω = 106 Hz and σ = 10−13. Penalty weight for dropping tasks cost ψ = 2 ms and

Emin = 0.04 mJ, f max
edge = 1.5 GHz, W = 737.5 cycle/bit. We verify the effectiveness of GPOOA through

MATLAB simulation on 3,000 time slots with the slot length τ0 = 2 ms.

B. Performance Analysis

As depicted in Fig. 4, given the arrival rate ρ = 0.5, as V goes from 0 to 7 × 10−5, the time-averaged

system cost drops from 1.57 to 0.97 ms, and the average energy queue backlog increases from 1.48 to 2.70

mJ. It can be found that the average battery queue length increases linearly as V increases. Meanwhile,
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the system cost is inversely proportional to V and eventually converges to the optimal value of P1 as

V increases. Thus, by adjusting V , the trade-off between the minimization of the system cost and the

stability of the battery queue can be achieved.

Fig. 4. The average system cost and average battery queue level under different control parameters V (in J2 · s−1).

From Fig. 5, the system cost decreases rapidly at the beginning, then tends to decrease slowly, and

finally stays within 1.1ms. As time increases, the energy buffer of the battery queue gradually increases

and remains at a relatively stable level after the 1,000th time slot. That is, the green energy captured

by the outside world and the energy consumed by the task have reached a balanced state. We can also

find from the curve that the battery queue backlog fluctuates frequently. This is because when the energy

harvester captures energy from the outside world, the process of green energy reaching the device at time

slot t is random.

Fig. 5. The average system cost and the average battery queue length over 3,000 time slots with the arrival rate ρ = 0.5 and V = 3 × 10−5.

From Fig. 6, the task drop ratio tends to be very small after the 500th time slot, which indicates that

most of the generated tasks can be completed within the deadline. This is because the GPOOA utilizes

a combination of green energy to provide power and parallel offloading. Parallel offloading reduces the

execution time of tasks and ensures that they are processed within the deadline as much as possible. Green

energy solves the problem of limited local batteries and provides a constant source of energy support for

smooth parallel offloading of tasks, which results in a significant reduction in task drop ratio.
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(a) The 1st device (b) The 3rd device

(c) The 5th device (d) The 7th device

Fig. 6. Evolution of the average task drop ratio of devices (orange part), where the 1st, 3rd, 5th, and 7th devices are selected in turn.

C. Comparison of Different Offloading Schemes

We compare the proposed GPOOA with the following three offloading methods: LODCO [17], Only-

Edge Algorithm (OEA) and Dynamic Offloading Algorithm (DOA). These algorithms are all performed on

3000-time slots. The devices are powered by the green energy collected by the EH. Tasks are generated with

a Bernoulli distribution and are of the DSCI type. Only-Edge Algorithm (OEA): This algorithm adopts a

method in which tasks are greedily offloaded to edge servers for processing. When i) L
v(hti, j,p

t
i )
≤ τ and ii) the

energy required for the transmission task does not exceed the battery energy level of the current time slot,

the task will be offloaded with the maximum transmission power pt
i . Here pt

i = min
{
pmax, pt

min{bt,Emax}

}
if σL ln 2

ωht < min
{
bt

i, E
max} and pt

min{bti,Emax}
is the unique solution of pL = v

(
ht

i, j, p
)

min
{
bt

i, E
max

}
.

Otherwise, the task will be dropped.

Dynamic Offloading Algorithm (DOA): This algorithm adopts a calculation mode with a smaller

delay within the delay requirement ( L
v(hti, j,p

t
i )
≤ τ or W

f ti
≤ τ). That is, if the delay due to offloading is

less than the local execution time, the task will be offloaded to the edge with the maximum transmission
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power pt
i . Otherwise, it will be processed locally with the maximum CPU cycle frequency f t

i . If neither

of these two calculation modes is feasible, the task will be dropped. The maximum CPU cycle frequency

available on the device side f t
i = min

{
f max
local,

√
min{bti,Emax}

θW

}
if W

f ti
≤ τ. The maximum transmission power

pt
i is the same as OEA algorithm.

1) Impact of the Control Parameter V: It can be observed from Fig. 7(a) that our proposed GPOOA

performs better in minimizing system cost with V increases and outperforms the other three algorithms.

As V increases, the system cost of the LODCO and the GPOOA decreases by O(1/V) and gradually

converges to the lowest level. This is because both the LODCO and the GPOOA are based on the

Lyapunov optimization framework. In addition, this also confirms that GPOOA can reach the asymptotic

optimum. Since DOA and OEA do not require V to regulate system costs and battery queues, their average

system costs do not change with changes in V . At the same time, we found that the DOA is better than

the OEA that only greedily offloads to the edge. As we envisioned, only greedy offloading on the device

side or edge side cannot make full use of resources.

(a) The average system cost (b) The ratio of dropped tasks

Fig. 7. The average system cost and the ratio of dropped tasks under different control parameters V .

2) Impact of the Task Drop Ratio: From Fig. 7, the inability of DOA and OEA to make full use of

system resources has resulted in large delays and high energy consumption. This caused a large number

of tasks to be dropped due to excessive response time or insufficient energy supply. With the increase

of V , LODCO suppresses the task drop ratio at the expense of a smaller system cost drop. However,

compared with the other three schemes, the proposed GPOOA has outstanding performance in reducing

the task drop ratio. Because GPOOA can flexibly select edge servers to parallel offloading for each IoT

device based on the current channel status and user location. Not only does it take full advantage of the

green energy on the device side, but it also takes advantage of the computing power of the edge server,

so that more tasks can be executed within the deadline.

3) Impact of the EH Rate: Figs.8(a) and 8(b) show the relationship between the average system cost

and the task drop ratio with pH . With the increase of pH , the average system cost and task drop ratio of all
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(a) The average system cost (b) The ratio of dropped tasks

Fig. 8. The average system cost and the ratio of dropped tasks vs. pH , where V = 4 × 10−5.

algorithms have decreased to varying degrees. Because the consumption of green energy does not incur

system costs, the larger the pH , the more sufficient energy is provided for the device in a unit time slot.

Adequate energy will weaken the energy consumption constraints caused by offloading, so more tasks

will be executed smoothly. Our GPOOA has outstanding performance in task drop ratio, which is less

than 1% after pH = 8.5 mW. The average system cost of GPOOA is much lower than that of the DOA

and the OEA. Compared with the LODCO, the average system cost is reduced by 8.21%. This once again

verifies the effectiveness of the GPOOA algorithm.

V. CONCLUSION

This paper proposes GPOOA, a green parallel offloading strategy based on Lyapunov optimization.

Through three-time decoupling of the objective function, the joint optimization of green energy, CPU

cycle frequency, transmission power, and task division factor is realized. Under the condition of little prior

knowledge, the algorithm flexibly selects the target server for parallel offloading according to the current

location and channel state of the device. In addition, we conducted a performance analysis and revealed that

GPOOA can achieve asymptotically optimal results. Simulation results demonstrate that through parallel

offloading, GPOOA is significantly superior to benchmark strategies in terms of system costs and task

drop ratio. Future work includes applying Lyapunov-guided federated reinforcement learning [28] and

digital twin [29] to simulate the energy harvesting process.
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