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Abstract—Temporal community detection is helpful to discover
and analyze significant groups or clusters hidden in dynamic
networks in the real world. A variety of methods, such as
modularity optimization, spectral method and statistical net-
work model, have been developed from diversified perspectives.
Recently, network embedding-based technologies have made
significant progress, and one can exploit deep learning superiority
to network tasks. Although some methods for static networks
have shown promising results in boosting community detection
by integrating community embedding, they are not suitable for
temporal networks and unable to capture their dynamics. Fur-
thermore, the dynamic embedding methods only model network
varying without considering community structures. Hence, in
this paper, we propose a novel unsupervised dynamic community
detection model, which is based on network embedding and can
effectively discover temporal communities and model dynamic
networks. More specifically, we propose the community prior by
introducing Gaussian Mixture Model (GMM) in the variational
autoencoder, which can obtain community information and better
model the evolutionary characteristics of community structure
and node embedding by utilizing the variant of Gated Recurrent
Unit (GRU). Extensive experiments conducted in real-world and
artificial networks demonstrate that our proposed model has a
better effect on improving the accuracy of dynamic community
detection.

Index Terms—Dynamic networks, Temporal community struc-
ture, Community detection, Network embedding, Variational
auto-encoder.

I. INTRODUCTION

DYNAMIC networks have attracted attention for a long
time owing to their ability to represent many real-

world systems and their diversity, including social networks
of individual connections [1], citation networks among aca-
demic papers [2], [3], and biological networks like protein-
protein interaction networks [4], [5]. Dynamic or temporal
community detection aims to discover meaningful groups
or clusters hidden in dynamic networks [6], [7], which is
beneficial to a variety of applications, such as information
spreading [8] and link prediction [9]–[11]. As an integral
part of temporal community detection, community evolution
focuses on analyzing changing behaviors and patterns. It can
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also reveal the evolutionary characteristics of the network,
which quantifies the transitional relationships of communities
between consecutive snapshots [12]. Therefore, it can model
the real complex system better and has more challenges
compared to community detection in static networks [7].

Many works have been proposed to detect the community
structure and analyze its evolution for the dynamic net-
work, including modularity optimization [13], spectral clus-
tering [14], multiobjective evolutionary algorithm [15], [16],
nonnegative matrix factorization [17] and generation mod-
els [18]. Mucha et al. [13] denoted a new modularity metric
for time-dependent and multiplex networks. Liu et al. [14]
proposed the PisCES with eigenvector smoothing based on the
spectral method. Folino and Pizzuti [19] firstly extended the
multiobjective approach for the dynamic networks and Zeng et
al. [20] proposed the consensus community and a particle
swarm optimization algorithm further. Ma and Dong [17]
constructed two evolutionary nonnegative matrix factorization
frameworks for community detection in dynamic networks.
Dynamic stochastic block and latent space mode are the two
types of generative methods for this problem. All these meth-
ods of temporal community detection are designed specially
and have their advantages respectively.

Recently, as a key part of deep learning [21], network em-
bedding has achieved widespread success in complex network
analysis [22], [23], which embeds each node of the network
into a low-dimensional space and applies it to downstream
tasks, such as the classification and link prediction. Consider-
able effort has been committed to developing network embed-
ding techniques including matrix factorization, random walk
and graph neural networks [24]. However, these methods are
designed for static networks and fail to analyze the dynamic
networks. To extract rich temporal information of dynamic
networks, some novel methods are put forward to mine the
underlying network dynamics of long-term evolution [25]–
[28]. Meanwhile, some community-based embedding methods
in static networks have manifested that network embedding
can not only integrate node and label information to improve
the ability of latent representation, but also promote the
performance of community detection [29]–[32]. However, they
are not suitable for the temporal networks for they lose the
modeling of dynamic behaviors.

To deal with the dynamic networks, some important repre-
sentation methods for dynamic network embedding are devel-
oped [33], [34]. For example, VGRNN [35] integrates high-
level latent random variables into a graph recurrent neural net-
work, which can learn interpretable latent representations and
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generate dynamic networks, and the learned embedding can be
used to predict future links. A comprehensive review about the
network embedding in dynamic networks can be reffed in [36].
Usually, with the embedding result of the dynamic network,
it can further calculate the community structure with the node
embeddings via the unsupervised clustering algorithm.

This kind of two-stage mechanism may get wrong commu-
nity results because it does not take community information
into account. So it is interesting to construct a dynamic
network representation method that could integrate the com-
munity structure and topological varying. Therefore, it is an
urgent task to detect the temporal communities in dynamic
networks via network embedding. However, it faces many
challenges, e.g., irregular varying and dynamic dependencies
of links, the generation of embedded varying links, and the
impact of temporal community structure on node embedding,
which make this problem more complicated and meaningful.

To address the above-mentioned challenges, we try to model
dynamic networks with community structure based on network
embedding and improve temporal community detection. First
of all, the above problem can be solved from the perspective of
probability instead of using the costly two-step approach and
ignoring uncertainty in the modeling process. We assume that
nodes and edges are modeled from Gaussian Mixture Model
(GMM), which facilitates coupling community assignment and
network embedding into a joint probability distribution. Be-
cause the GMM is a multimodal distribution, which is required
by the community assignment, while the GMM is more com-
putationally efficient and more accurate than other multimodal
distributions like Dirichlet distribution due to the immature
reparameterize technique. By combining the Variational Auto-
Encoder (VAE) [37] with a community prior, i.e. the GMM
distribution, we can model the uncertainty of the network
and the community membership simultaneously. As for mod-
elling the dynamic characteristics of the network, inspired by
VGRNN, we can utilize the RNN [38] structure to capture
the dynamic information. More specifically, we construct a
Gated Recurrent Unit (GRU) instead of RNN on the varied
relationship of nodes to capture the complex dependencies in
the embedding space. By the combination of GRU and VAE,
we propose a deep Bayesian model termed Variational Graph
Recurrent GMM autoencoder model(VGRGMM), to learn the
dynamic network embedding and the community membership
of node simultaneously.

To sum up, this paper proposes a dynamic community
detection model called VGRGMM based on a Variational
Graph autoencoder with gated Recurrent unit and Gaussian
Mixture Model. It is an end-to-end framework for community
detection in dynamic networks designed specifically to meet
the above challenges. The main contributions of this paper can
be summarized as follows:
• We propose a novel unsupervised dynamic community

detection model VGRGMM based on graph deep learn-
ing, which can effectively model temporal community
structure and network embedding.

• The proposed model incorporates communities across the
snapshots of the dynamic network into a variational au-
toencoder with GMM and integrates the GRU to capture

temporal dynamics in the embedding space.
• Experimental results demonstrate that VGRGMM can

significantly improve the performance of temporal com-
munity detection when compared with baselines on both
synthetic datasets and real-world networks.

The rest of this paper proceeds as follows: Section II
presents the related work on dynamic community detection
and dynamic network embedding. Section III formally de-
scribes our proposed method and the optimization algorithm.
Then we validate our approach by analyzing extensive exper-
iments on both synthetic and real-world datasets in Section
IV, a case study is also given and Section V concludes this
paper. Section VI shows some limitations and points out future
directions.

II. RELATED WORK

A. Dynamic Community Detection

There is a taxonomy of dynamic community detection meth-
ods, including incremental-based clustering, evolutionary-
based clustering, and generative-based clustering [19], [39],
[40]. Incremental-based clustering converts community evo-
lution into changes in nodes and edges between snapshots,
thereby incrementally updating the attributes of nodes by
defining different objective functions. However, this type of
method suffers from error accumulation issues due to the
excessive reliance on the defined objective functions, which
are sensitive to the noise accordingly.

The main idea of evolutionary-based clustering is to in-
corporate the community structure information obtained at
the current time step with that obtained at one or more
previous time steps [13], [19]. A representative method is
DYNMOGA [19], which formalizes community detection of
dynamic networks as a multi-objective optimization problem.
Xu et al. [39] presented AFFECT, an evolutionary clustering
framework that uses shrinkage estimation to adaptively esti-
mate the optimal balance parameters. Liu et al. [40] proposed
a multi-objective evolutionary clustering algorithm DECS, in
which an evolving community migration operator is developed
to ensure that neighbor nodes are grouped. However, the high
computational complexity caused by repeated calculations is
an unavoidable issue in these methods.

Starting from the network generation mechanism,
generative-based clustering methods consider that community
transfer of nodes obeys the Hidden Markov hypothesis to
transform community detection into the parameter estimation
problem of the probabilistic model in dynamic networks.
Furthermore, there is a dichotomy of the methods: Latent
Space Model [41] and Dynamic Stochastic Block Model
(DSBM) [18], which are of great significance in theoretical
interpretation and generative capability. Yang et al. [12]
modeled the transition of community memberships for
individual nodes and employs a Bayesian treatment for
parameter estimation for finding communities and their
evolution in a dynamic network. Nevertheless, these models
still have high complexity and intractable optimization
problems owing to a huge number of parameters in a
probabilistic model, thus developing an excellent algorithm
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that is most suitable for dynamic community detection
remains largely unexplored.

B. Dynamic Network Embedding

Due to the powerful representation capabilities of neural
networks, dynamic network embedding based on deep neural
networks has achieved impressive results. Firstly, inspired by
static graph embedding methods [42], some methods have
been proposed via adding temporal regularization into the ob-
jective function. Goyal et al. extended SDNE [43], a classical
static network embedding model, into a dynamic embedding
model called DynGEM [44]. It learns the node embeddings
by initializing the current embeddings with the previous em-
beddings. However, it only considers the information of the
previous snapshots, while ignoring historical information.

In order to better capture the historical information, Lip-
ton et al. [38] utilize the temporal information in each snapshot
t1, t2, · · · , tl−1 when calculating the embedding at snapshot
tl based on RNN, i.e., the representation at tl is not only
dependent on the previous snapshot. Goyal et al. [25] pro-
posed dyngraph2vec, which consists of DynAE, DynRNN and
DynAERNN, to capture the temporal patterns of the network
based on the variational autoencoder framework. DynAE uses
multiple fully connected layers for both encoder and decoder,
while DynRNN adopted LSTM as both encoder and decoder
and DynAERNN utilized a fully connected encoder to obtain
low-dimensional hidden representations as the input of LSTM
to learn the node embedding and the decoder is similar to
DynAE. Due to the internal transition structure of RNN is
completely deterministic, these methods cannot model the un-
certainty of nodes. To overcome the obstacle, Zhao et al. [45]
proposed BurstGraph that uses two RNN-based variational
autoencoders to model the graph evolution mechanism as
well as the uncertainty of node embedding. Hajiramezanali et
al. [35] developed VGRNN, a variational model that incorpo-
rates additional latent random variables into the hidden states
of a graph RNN to better capture the dynamic changes of the
network, it is an refined combination of GNN and RNN in the
aspect of dynamic node embedding learning. But in the aspect
of dynamic community detection, it inevitably needs additional
clustering methods to obtain community memberships. Such
works mainly focus on downstream tasks, e.g., link prediction
and node classification, which first obtain the low-dimensional
node embedding, and then execute related algorithms on the
embedding. However, for dynamic community detection, it is
inappropriate to execute clustering algorithms on embedding
results in the same way, because the embedding may lose too
much community information of the network.

C. Community Detection Based on Network Embedding

Several embedding methods that combine node embedding
and community embedding at the same time have been pro-
posed for community detection. Cavallari et al. [29] proposed
a framework that forms a closed loop among node embed-
ding, community embedding and community detection, where
node embedding can be conducive to outputting meaningful
community embedding and promoting community detection,

TABLE I: Notations and Their Descriptions.

Notation Description

G the undirected, unweighted dynamic network
G(t) the snapshot network at time step t

V (t), E(t) the node and edge sets of G(t)

N(t),M(t) the node and edge numbers of G(t)

T the number of snapshots in G
A(t) the adjacency matrix of G(t)

X(t) the feature matrix of G(t)

Z(t) the embedding matrix of G(t)

D the embedding dimension
C(t) the partition of V (t)

C
(t)
k the k-th community of c(t)i

K(t) the number of communities in C(t)

c
(t)
i the community vi belongs to at time step t

π(t) the parameter of the generative categorical distribution
µ

(t)

c
(t)
i

, σ(t)

c
(t)
i

the parameters of the generative Gaussian distribution

b
(t)
i,j the parameter of the generative Bernouli distribution

C(t) the community assignment matrix of G(t)

ΦX, ΦZ the Multi-layer perceptron models
h(t) the hidden state representation of GRU

µ̂
(t)
i , σ̂(t)

i the parameters of the inferred Gaussian distribution
S(t)
i the set of Monte Carlo samples for vi at time step t

γ
(t)

c
(t)
i

the simple indicator for q(C(t)
i |A(t),X(t))

while community embedding can optimize node embedding
conversely. A community-based variational autoencoder model
called ComVAE was proposed in [31] to learn node embed-
ding, where community information obtained from community
detection algorithms, namely, LPA and Informap, was utilized
to enhance node embeddings. Choong et al. [30] presented
VGAECD from the perspective of variational autoencoders.
This method replaces the single prior of variational autoen-
coders with GMM, which is suitable for community detection
in essence. Unfortunately, they are unable to model temporal
characteristics, which plays a key role in modeling dynamic
networks.

Motivated by the above related works, we propose the
VGRGMM model, which learns the dynamic network embed-
ding and community membership of node simultaneously by
combining the Bayesian model and the deep structure into it.
In section , we will introduce the structure of VGRGMM, the
inference of it and the optimization algorithm.

III. PROPOSED METHOD

In this section, we introduce the notations used in this paper,
the framework and its detailed process of the VGRGMM
model, and the optimization algorithm.

A. Notations and Problem

In this paper, we focus on the undirected and un-
weighted dynamic network and denote it as G ={
G(1), G(2), · · · , G(T )

}
, where T represents the number of

snapshots in the dynamic network, and G(t) = (V (t), E(t)) is
the snapshot graph at time step t composed of a set of nodes
V (t) and a set of edges E(t). Node number is N (t) = |V (t)|
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Fig. 1: The framework of VGRGMM on snapshot t. It takes the topological structure A(t) and attributes X(t) (if any) as input,
the GCN as encoder, a Gaussian Mixture Model to detect the community structure, a GRU to reveal the temporal behaviors
and a decoder to reconstruct the network structure.

and edge number is M (t) = |E(t)|. The connections in G(t)

can be represented by the symmetric adjacency matrix A(t) ∈
{0, 1}N(t)×N(t)

, where A
(t)
i,j = 1 means nodes vi ∈ V (t) and

vj ∈ V (t) have a edge, and A
(t)
i,j = 0 otherwise. If node

features exist in G(t), represent them as a matrix X(t), whose
i-th row is the feature vector of node vi ∈ V (t) at time step
t; otherwise, we set X(t) = I, where I is the identity matrix.
Network embedding on dynamic networks aims to generate a
set of node representation vectors whose dimension D is much
smaller than N (t) for each snapshot G(t). We use the matrix
Z(t) ∈ RN(t)×D to represent the stacked embedding vectors
of G(t). And community detection in a dynamic network is
to partition the nodes in every G(t) of G into K(t) groups
C(t) =

{
C

(t)
1 , C

(t)
2 , · · · , C

(t)

K(t)

}
so that ∪K(t)

k=1C
(t)
k = V (t).

Community detection via network embedding groups nodes
close to each other within the same cluster while nodes in
different clusters are far away in terms of network structure. In
this paper, we do not consider overlapping communities [46],
i.e. C(t)

k ∩ C
(t)
l = ∅, ∀k ̸= l. We summarize main notations

and their descriptions as listed in Table I.

B. VGRGMM Framework

To detect the temporal communities in the dynamic network
based on the network embedding, we propose the VGRGMM
model, which generates the first snapshot as a static network
and models the dynamics of snapshot t ≥ 2 across the
network. The model is based on the encoder-decoder frame-
work. In the encoder part, we take the Graph Convolutional
Networks (GCN) [47] to project the nodes into the latent
space. Considering the inherent mechanism and community
structure in the network, we place the mixture Gaussian

distribution on the latent variables under the VAE [37]. With
this design, it can improve the ability of community detection
at snapshots. Besides, the most important part is modeling the
dynamic varying of the network. Here, we propose to take the
GRU to analyze the nodes embedding and model the temporal
dependence across the snapshots.

We show the process of snapshot t of the VGRGMM
depicted in Fig. 1. It includes the GCN part with the adjacency
matrix A(t) and feature matrix X(t). The VAE part with the
GMM prior embeds the nodes into latent space, the modified
GRU part on the temporal dynamics and the decoder part.
Here, the modified GRU could capture the dynamic varying
of networks in the embedding space with the hidden state
embedding h(t). So our model can effectively model the
dynamic network and its temporal varying and capture its
community structure.

1) Generation: At the snapshot t, model the probability of
each node vi belonging to a community c

(t)
i as follows:

c
(t)
i ∼ Cat(π(t)), (1)

where π(t) is the parameter of the categorical distribution
Cat(π(t)). The k-th entry of π(t) ∈ RK(t)

+ is the prior

probability for cluster C
(t)
k and it meets

∑K(t)

k=1 π
(t)
k = 1.

Next, for node vi, we generate a latent vector based on the
community in which it originates:

Z
(t)
i |c(t)i ∼ N (µ

(t)

c
(t)
i

, (σ
(t)

c
(t)
i

I)2), (2)

where µ
(t)

c
(t)
i

and σ
(t)

c
(t)
i

are the mean and standard deviation

of the Gaussian distribution corresponding to cluster c
(t)
i ,

respectively, and I is an identity matrix. Then for each pair of
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nodes (vi, vj), their connection state at time step t is generated
following a Bernoulli distribution:

A
(t)
i,j |Z

(t) ∼ Bern(b
(t)
i,j ), (3)

where b
(t)
i,j is a function of Z(t), and it can be any highly

flexible function such as neural networks. Here, we follow
VGAE [48] and adopt a inner-product decoder as the imple-
ment of Eq. (3). More precisely, we have:

p(A
(t)
i,j = 1|Z(t)

i ,Z
(t)
j ) = σ(Z

(t)
i (Z

(t)
j )⊤), (4)

where σ(·) denotes a non-linear function, such as sigmoid
function. The joint probability for all node pairs at time step
t is as follows:

p(A(t)|Z(t)) =

N(t)∏
i=1

N(t)∏
j=1

p(A
(t)
i,j |Z

(t)
i ,Z

(t)
j ). (5)

Represent the community memberships via the community
assignment matrix C(t) ∈ {0, 1}N(t)×K(t)

of which i-th row
is a one-hot vector and C

(t)

i,c
(t)
i

= 1. According to the whole

generative process above, A(t) and C(t) are independently
conditioned on Z(t). Thus, the joint probability of them at all
time steps can be factorized as:

p(A(≤T ),Z(≤T ),C(≤T ))

=

T∏
t=1

p(A(t)|Z(t))p(Z(t)|C(t))p(C(t))

=

T∏
t=1

(

N(t)∏
i=1

N(t)∏
j=1

p(A
(t)
i,j |Z

(t)
i ,Z

(t)
j )

N(t)∏
i=1

p(Z
(t)
i |C(t)

i )

N(t)∏
i=1

p(C
(t)
i )),

(6)

where A(≤T ) is the simpler indicator for sequence
{A(1),A(2), ...,A(≤T )}. The indicators Z(≤T ), C(≤T ) and
later X(≤T ) are in the same manner.

2) Evolution: We follow GCRN [49] and modify GRU to
model the dynamic dependency among snapshot networks.
We first employ a two-layer GCN to fuse the information of
network structure, features and latent vectors:

X′(t) = GCN2(A
(t),GCN1(A

(t), [ΦX(X(t)),ΦZ(Z(t))])),
(7)

where [ · ] is the concatenation operator. ΦX and ΦZ are multi-
layer perceptron models that operate independently on each
node and extract features from X(t) and Z(t) separately. The
dependency information is preserved in h(t) learned by the
GRU model:

r(t) = σ(Wr(t) [vec(X
′(t)),h(t−1)]), (8)

u(t) = σ(Wu(t) [vec(X′(t)),h(t−1)]), (9)

h̃(t) = tanh(Wh̃(t) [r(t) ◦ h(t−1), vec(X′(t))]), (10)

h(t) = (1− u(t)) ◦ h(t−1) + u(t) ◦ h̃(t), (11)

where the vectorization operator vec(·) splices all the rows
of the input matrix to a single vector and ◦ is the Hadamard
product operator. Wr(t) , Wu(t) and Wh̃(t) are the parameter
matrices of GRU gates. We initialize h(0) = 0.

3) Inference: We use q(·) as the variational posterior to
approximate the true posterior p(·) in VGRGMM. According
to the mean field distribution assumption, the approximate
posterior q(·) is not only a function of A(t) and Z(t), but
also a function of h(t−1). q(·) can be factorized as follows:

q(Z(t),C(t)|A(t),X(t),h(t−1))

= q(Z(t)|A(t),X(t),h(t−1))q(C(t)|A(t),X(t)). (12)

The inference model q(Z(t)|A(t),X(t),h(t−1)) is parameter-
ized by a two-layer GCN of which the first layer is shared:

q(Z
(t)
i |A(t),X(t),h(t−1)) = N (µ̂

(t)
i , (σ̂

(t)
i I)2), (13)

µ̂(t) = GCNµ̂(A
(t),GCNs(A

(t), [ΦX(X(t)),h(t−1)])),
(14)

log σ̂(t) = GCNσ̂(A
(t),GCNs(A

(t), [ΦX(X(t)),h(t−1)])),
(15)

where µ̂(t) ∈ RN(t)×D and σ̂(t) ∈ RN(t)×D denote the pa-
rameter matrices whose i-th rows are the parameters µ̂

(t)
i and

σ̂
(t)
i of the approximate posterior N (µ̂

(t)
i , (σ̂

(t)
i I)2). While

being concatenated, h(t−1) is transformed to a matrix having
the same row number N (t) as ΦX(X(t)) by being duplicated
N (t) times. Here the reparameterization trick is applied:

Z
(t)
i = µ̂

(t)
i + σ̂

(t)
i ◦ ϵ(t), (16)

where ϵ(t) is an auxiliary noise variable ϵ(t) ∼ N (0, I).
The computation of q(C(t)|A(t),X(t)) follows the equation

from [50]:

q(C
(t)
i |A(t),X(t)) = p(c

(t)
i |Z(t)

i )

=
p(c

(t)
i )p(Z

(t)
i |c(t)i )∑K(t)

c′
(t)
i =1

p(c′
(t)
i )p(Z

(t)
i |c′(t)i )

. (17)

Since q(Z(t)|A(t),X(t),h(t−1)) is closely related to h(t−1)

that is a function of A(t−1), X(t−1) and Z(t−1) as shown
in Eq. (12), q(Z(≤T ),C(≤T )|A(≤T ),X(≤T )) can be further
decomposed as follows:

q(Z(≤T ),C(≤T )|A(≤T ),X(≤T ))

=

T∏
t=1

q(Z(t),C(t)|A(≤t),X(≤t),Z(<t)),

=

T∏
t=1

q(Z(t),C(t)|A(t),X(t),h(t−1)). (18)

In the following description, for simplicity, we use
∆(≤T ) and ∆(t)to represent Z(≤T ),C(≤T )|A(≤T ),X(≤T ) and
Z(t),C(t)|A(≤t),X(≤t),Z(<t), respectively.

C. Optimization

To optimize q(∆(≤T )) on approximating the true poste-
rior p(∆(≤T )), the KL divergence DKL(q(∆

(≤T ))||p(∆(≤T )))
need to be minimized, which is equivalent to max-
imization of the difference between the log-likelihood
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p(A(≤T ),Z(≤T ),C(≤T )) and KL divergence called evidence
lower bound (ELBO):

LELBO = log p(A(≤T )|Z(≤T ),C(≤T ))

− DKL(q(∆
(≤T ))||p(∆(≤T )))

= Eq(∆(≤T ))

[
log p(A(≤T )|Z(≤T ),C(≤T ))

− log q(∆(≤T )) + log p(∆(≤T ))
]

= Eq(∆(≤T ))

[
log p(A(≤T ),Z(≤T ),C(≤T ))

− log q(∆(≤T ))
]
. (19)

Therefore, we learn the parameters of the generative and
inference models tied jointly by maximizing the variational
lower bound LELBO, which combines community and tem-
poral information together. The objective function of LELBO

then can be written based on Eq. (6) and Eq. (12) as:

LELBO =

T∑
t=1

Eq(∆(t))

[
log

p(A(t)|Z(t))p(Z(t)|C(t))p(C(t))

q(∆(t))

]

=

T∑
t=1

Eq(∆(t))

[
log p(A(t)|Z(t))p(Z(t)|C(t))p(C(t))

− log q(Z(t)|A(t),X(t),h(t−1))q(C(t)|A(t),X(t))
]

=

T∑
t=1

Eq(∆(t))

[N(t)∑
i=1

[N(t)∑
j=1

log p(A
(t)
i,j |Z

(t)
i ,Z

(t)
j )

+ log p(Z
(t)
i |C(t)

i ) + log p(C
(t)
i )

− log q(Z
(t)
i |A(t),X(t),h(t−1))

− log q(C(t)|A(t),X(t))
]]
. (20)

According to Eqs. (1-3) and Eq. (13), LELBO can be
further derived into the following equation concretely by using
SGVB [37] estimator:

LELBO =

T∑
t=1

N(t)∑
i=1

[
1

|S(t)
i |

∑
vs∈S(t)

i

[
A

(t)
i,s log b

(t)
i,s

+ (1−A
(t)
i,s) log(1− log b

(t)
i,s)

]
+

K(t)∑
c
(t)
i =1

D∑
d=1

[
γ
(t)

c
(t)
i

log
π

(t)

c
(t)
i

γ
(t)

c
(t)
i

+
1

2
(1 + log(σ

(t)

c
(t)
i ,d

)2)

− 1

2
γ
(t)

c
(t)
i

[
log (σ

(t)

c
(t)
i ,d

)2 +
(σ̂

(t)
i,d)

2

(σ
(t)

c
(t)
i ,d

)2

+
(µ̂

(t)
i,d − µ

c
(t)
i ,d

)2

(σ
(t)

c
(t)
i ,d

)2

]]]
, (21)

where S(t)
i is the set of Monte Carlo (MC) samples for

node vi ∈ V (t) at time step t in the SGVB estimator, π(t)

c
(t)
i

denotes the prior probability of cluster c(t)i , and γ
(t)

c
(t)
i

denotes

q(C
(t)
i |A(t),X(t)).

Algorithm 1 Learning algorithm of VGRGMM

Input: iteration number L, adjacency matrices A(≤T ) and
feature matrices X(≤T ).
Output: embedding matrices Z(≤T ) and community assign-
ment matrices C(≤T ).

1: Initialization: π(t) ∼ U(0,1),∀1 ≤ t ≤ T ;h(0) = 0;
2: for t = 1, ..., T do
3: Get Gaussian parameters µ̂(t) and σ̂(t); ▷ Eq. (13)
4: Generate embedding matrix Z

(t)
i ; ▷ Eq. (16)

5: Learn GRU hidden state h(t); ▷ Eq. (9)
6: for each vi ∈ V (t) do
7: Sample a community C

(t)
i ∼ Cat(π(t));

8: Attain a MC sample set S(t)
i ⊆ V (t) [37];

9: for each vs ∈ S(t)
i do

10: Reconstruct connection A
(t)
i,s; ▷ Eq. (3)

11: end for
12: end for
13: end for
14: Compute LELBO; ▷ Eq. (21)
15: Maximize LELBO via stochastic gradient descent and

update parameters of VGRGMM.
16: Redo Line 2-15 until the iteration limit L is reached.
17: Obtain community assignment C(≤T ). ▷ Eq. (17)
18: return Z(≤T ) and C(≤T )

We summarize the algorithmic process of our method in
Algorithm 1. Lines 3-4 correspond to the encoding (in-
ference) procedure while Lines 6-12 correspond to the de-
coding (generation) procedure. Line 5 is the procedure to
capture the evolution dependency. Lines 14 and 15 describe
the optimization procedure at each training iteration. The
biggest difference between our method to other embedding-
based dynamic community detection methods is that once our
VGRGMM is finally trained, it can naturally assign nodes into
communities for all the snapshots as Line 17 indicates, where
we choose the community with the largest probability.

IV. EXPERIMENTS

In this section, we introduce a variety of network datasets
and baselines and four evaluation metrics on community de-
tection. Then, we conduct several experiments to demonstrate
the performance of our proposed model for the dynamic
community detection task.

A. Datasets

We chose three types of datasets including 12 dynamic
networks in our experiments.

• Synthetic dataset: The firstly generated data is according
to [51] and [52], which is a dynamic network with the
varying number of communities. At the first snapshot, it
generates the network with community structure based on
the stochastic block model, then at each snapshot t ≥ 2,
it changes the communities and generates the network
structure with the parameter setting in [52]. The other
synthetic dataset is from [53], which can generate the
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dynamic network with a power-law degree distribution,
the varying of network structure is driven by the transfer
of nodes in different communities. We call these two
dynamic networks Var and Synth, the statistics of which
are seen in Table II, the other parameter settings can be
found in [51] and [52].

• Real-world social network with ground truth: It con-
tains four dynamic social networks, namely, HS11 [54],
HS12 [54], Primary [54] and Workplace [55]. Their nodes
represent people, and edges indicate the communications
among nodes, and the communities are defined as friends,
groups or classes.

• Real-world network without ground truth: It contains
Cellphone [19] (a telephone network of an organization),
Enron1 (an email communication network), Voles [56]
(an interactive network of animals), Fbmessages [56] (a
social network derived from the University of Califor-
nia) and two larger-scale networks, iadublin2 and soc-
wiki [56].

The statistics of the above dynamic networks are summa-
rized in Table II. N , M , K, davg and ccavg represent the
average number of nodes, edges, groups, mean degree and
mean clustering coefficient at all snapshots, respectively.

TABLE II: The statistics of dynamic networks

Dataset T N M K davg ccavg

Var 10 393 3,055 8 15.492 0.162
Synth 10 128 2,048 8 20.000 0.253
HS11 7 126 424 5 6.734 0.261
HS12 8 180 538 7 5.978 0.260

Primary 6 242 2,977 13 24.610 0.527
Workplace 8 92 175 6 3.821 0.215
Cellphone 10 400 512 - 2.562 0.014

Enron 12 151 292 - 4.014 0.408
Voles 7 1,686 4,739 - 0.804 0.077

fbmessages 6 1,899 15,648 - 2.914 0.155
iadublin 8 10,972 415,913 - 75.000 1.061
soc-wiki 12 7,118 100,811 - 28.326 0.141

B. Baselines Setting

To make a comprehensive comparison, here we compare our
VGRGMM with the popular methods of community detection
in dynamic networks AFFECT [39], DYNMOGA [19] and
DECS [40] (non-deep learning), and dynamic embedding
methods based on deep learning including DynGEM [44], Dy-
nAE [57], DynRNN [25], DynAERNN [25] and VGRNN [35].

• AFFECT [39]: It treats evolutionary clustering as a
tracking problem followed by ordinary static clustering,
which involves smoothing proximities between objects
over time followed by static clustering.

• DYNMOGA [19]: It regards the detection of community
structure in dynamic networks as a multiobjective opti-
mization problem. The first objective searches for highly
modular structures at the current time step, the second
objective tries to minimize the differences between the

1http://www.cs.cmu.edu/ enron
2http://www.sociopatterns.org/datasets/

community structure at the current time step and that
obtained at the previous snapshot.

• DECS [40]: It develops a migration operator cooperating
with efficient operators to ensure that nodes and their
most neighbors are grouped together, and uses a genome
matrix encoding the structure information of networks to
expand the search space.

• DynGEM [44]: It employs a deep autoencoder at its core
and leverages deep learning to generate highly non-linear
embeddings and the observed network.

• DynAE [57]: It addresses a community detection and net-
work reconstruction trade-off, by gradually and smoothly
eliminating the reconstruction objective function in favor
of a construction one.

• DynRNN&DynAERNN [25]: DynRNN takes a set of
previous graphs as input and generates the network
structure as output at the next time step, thereby it can
capture highly non-linear interactions between the nodes
at each time step and across multiple snapshots. Besides,
it also captures temporal information through an RNN
framework. The difference between DynAERNN and
DynRNN is that DynAERNN captures the high number
of model parameters through an autoencoder RNN.

• VGRNN [35]: It develops a model that is universally
compatible with potential changes in both node and edge
sets, and each node at each snapshot is represented with
a specific prior distribution.

• VGAECD: It is the method of community detection with
variational graph autoencoder on each snapshot network
independently. It is also equivalent to the method in
[30] and the special case of our VGRGMM method that
ignores dependencies across the snapshots.

For non-deep learning models, the parameters in their
models are set based on their original papers to guarantee the
best performance. And for deep learning models, we make
fine-tuning the parameters in these models to get the best
performances in different datasets. As for our model in all
datasets, we set up a single recurrent hidden layer with 32
GRU units. In the encoder process, we use 2-layer GCN
with a size equal to [32, 16] to devise µ̂(t) and σ̂(t) and
two 32-dimensional fully-connected layers for ΦX and ΦZ.
In addition, we train L = 1, 000 iterations with a learning
rate of 0.01, or until the model converges. For that most
of these methods are all set the number of communities
K(1),K(2), · · · ,K(T ) of the dynamic network in advance, we
set that as the true values. For the real networks without ground
truth, we compute that with the popular method [58] on each
snapshot.

C. Evaluation Metrics
Here, we use four widely-used metrics to evaluate the per-

formance of community detection, they are listed as follows.
• Normalized Mutual Information (NMI): It measures

the closeness between the computed partition of C(t) and
the true community partition C′(t) at time step t:

NMI(C(t), C(t)
T ) =

2I(C(t), C′(t))

H(C(t)) +H(C′(t))
, (22)



IEEE TRANSACTIONS ON CYBERNETICS, 2022 8

2 4 6 8 10t
0

20000

40000

60000

AC

2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

(a) Var dataset

2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

2 4 6 8 10
t

0

10000

20000

30000

AC

2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

(b) Synth dataset

2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

DynAE DYNMOGA DynAERNN AFFECT DynGEM DECS DynRNN VGAECD VGRNN VGRGMM

Fig. 2: Experiment results on the two generated dynamic networks with the ground truth. (a) Var dataset, (b) Synth dataset. The
performance results are based on the AC, NMI and ARI, respectively. Each value is computed by the average of ten randomly
generated networks with the same parameters.
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Fig. 3: Experiment results on four real-world dynamic networks with ground truth. (a) HS11, (b) HS12, (c) Primary and
(d) Workplace. The box diagram shows the average value and standard deviation of the results across the snapshots of each
dynamic network. Larger NMI and ARI and smaller AC mean better performance and smaller values of standard deviation
represent the stable results.

where H(·) is the entropy function, and I(C(t), C′(t)) =

H(C(t)) +H(C′(t))−H(C(t), C′(t)).
• Accurate calibration (AC) [19]: It measures the perfor-

mance with ground truth:

AC =
∥∥∥C(t)(C(t))⊤ −C′(t)(C′(t))⊤

∥∥∥ , (23)

where C(t) is the learned community assignment matrix
at time step t while C′(t) is the groud truth of com-
munity assignment at the corresponding time step. The
lower the AC value, the better the community detection
performance.

• Adjusted Rand Index (ARI): It is a data clustering
metric and is used to measure the similarity between two
partitions C(t) and the true community partition C(t)

T :

ARI =

∑
ij

(
ni,j

2

)
−

∑
i (

ai
2 )

∑
j (

bj
2 )

(n2)∑
i (

ai
2 )+

∑
j (

bj
2 )

2 −
∑

i (
ai
2 )

∑
j (

bj
2 )

(N
(t)

2 )

, (24)

where ni,j denotes the number of common elements
between the i-th subset of C(t) and the j-th subset of
C′(t), ai =

∑
j ni,j and bj =

∑
i ni,j .

• Modularity (Q): It measures the strength of dividing the
graph into communities. A graph with a high degree of
modularity has dense connections between nodes within
modules, but sparse connections between nodes in differ-
ent modules:

Q =
1

2M (t)

∑
ij

(
Ai,j −

d
(t)
i d

(t)
j

2M (t)

)
δ
(t)
i,j , (25)

where Q is given by the sum of Ai,j −
d
(t)
i d

(t)
j

2M(t) over all
pairs of vertices i and j that fall in the same community.
δ
(t)
i,j = 1 when both nodes vi and vj belong to the same

community at time step t, and 0 otherwise.
It should be noted that NMI, AC and ARI are only appli-

cable when ground truth exits, while Q can measure without
ground truth. Larger values of NMI, Q and ARI mean better
performance of the method and it is the opposite for AC.

D. Dynamic Community Detection Results

To evaluate the dynamic community detection performance
of VGRGMM, we compare it with other baselines on the
popular synthetic and real dynamic networks. For the dynamic
networks with ground truth, we show the results based on the
metrics NMI, AC and ARI. For the dataset without labels, we
evaluate different methods with the modularity Q.

1) Results on Generated Datasets: As shown in Fig. 2, it
presents the community detection results of all the methods on
the generated datasets Var and Synth (a large-scale network).
We evaluate the methods on the NMI, AC and ARI metrics.
For the two different sizes of networks, our method VGRGMM
has nearly the best performance based on all the three metrics.
AFFECT and VGRNN have competitive results compared
with VGRGMM and are superior to other baselines, AFFECT
can automatically balance two goals on the evolutionary
clustering, VGRNN captures the temporal behaviors and high
dimension and nonlinear structure of the dynamic network,
indicating the importance of the dynamic pattern of dynamic
community detection methods. This is also been proved by
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Fig. 4: Experiment results on real-world datasets without ground truth. (a) Cellphone, (b) Enron, (c) fbmessages and (d) Voles.
The results are evaluated based on Q and computed on ten independent runs.

the poor performance of VGAECD, which is a static method.
On the other hand, the embedding methods, DynRNN and
DynAERNN only focus on modeling the dynamic varying
of the structure, so they are failed to capture the community
structure. It shows that the dynamic embedding methods lose
the community information. DYNMOGA, the classical method
of temporal community detection, has satisfactory results
because it optimizes the communities and the dynamic pattern
of the network with multi-objective functions. As a whole,
VGRGMM can model the temporal dependence across the
snapshots, capture the community structure with GMM and
reveal the nonlinear structure of the dynamic network, thus it
has better performance on the networks with node level and
community level dynamic behaviors.

2) Results on Real-World Networks: Here we show the
results conducted on the real-world datasets, which are divided
into networks with and without ground truth. Fig. 3 shows the
results of different methods on four dynamic networks with the
NMI, AC and ARI metrics. To make the comparison more clear,
we show the performance of all the methods on each dynamic
network with a box diagram, each box denotes the average
value and standard deviation of results. VGRGMM has better
performance on the three metrics compared to other baselines,
a smaller standard deviation means indicating that it has stable
and smooth results across the snapshots. VGAECD has poor
performance for it ignoring the temporal information. For the
other baselines, none of them has competitive results with our
method on all the networks, which means that VGRGMM
can better handle the different types of dynamic networks
in the real world due to the multimodal characteristics of
GMM. We also show the results based on the modularity
Q on four real dynamic networks without ground truth in
Fig. 4, all methods demonstrate a stable performance across
the snapshots and VGRGMM also shows the best or second
performance on these networks. Furthermore, VGRGMM,
AFFECT, DYNMOGA, DECS and VGRNN all have excellent
results because they either optimize the modularity as their loss
function or consider the community structure in their model.

3) Results on Large-Scale Networks: In order to further
verify the effect of VGRGMM on large-scale real-world net-
works, we compare VGRGMM and three efficient baselines,
DynAE, DynGEM and VGRNN, on iadublin and soc-wiki
datasets. All these methods can deal the large-scale networks
compared with the traditional methods for temporal commu-
nity detection. For that there is no community ground truth of
these two dynamic networks, we also evaluate the community
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Fig. 5: Results of temporal community detection of
VGRGMM, DynAE, DynGEM and VGRGMM on two large-
scale networks. (a) iadublin and (b) soc-wiki.

detection performance of our method and the baselines with
Q. We also take the method [58] to compute the number
of communities at each snapshot and get the community
structure for all these methods. Fig. 5 shows the results of
the modularity Q of these methods. For the large-scale and
sparse dynamic networks, the Q values of all methods are very
small. Generally, our VGRGMM still has some advantages
over DynAE, DynGEM and VGRNN on both networks at all
the snapshots. This indicates that the deep Bayesian method
VGRGMM can not only handle the uncertainty of the network,
but also has the characteristics of deep models, i.e., the
powerful computing ability.

In addition, we compare the run time of VGRGMM and
DynAE, DynGEM, DynAERNN and VGRNN on fbmessages
dataset to verify the efficiency of our method. Because these
baselines are deep VAE methods, which are generally faster
than traditional methods like DYNMOGA. Furthermore, the
time complexity of DynGEM and DynAE is O(TND2E),
where T is the number of slices, N is the number of nodes,
D is the size of the trainable graph filter, i.e. the embedding
dimensions and E is the number of edges. While the time com-
plexity of DynRNN, DynAERNN, VGRNN and VGRGMM
is O(TND2W ), where W is the total parameter numbers of
LSTM. Though the time complexity of these methods does not
have a big gap, the realization and the optimization of them
are not the same. Fig. 6 shows that the average run time of
VGRGMM is the same as VGRNN, and higher than DynGEM
and DynAE. But comparing to DynRNN and considering the
accuracy of downstream tasks, the efficiency of VGRGMM is
acceptable.

Furthermore, the tSNE visulization of our method in AP-
PENDIX A together with the Case study in APPENDIX B also
shows the embedding of nodes of our method can preserve
the community information to enhance the downstream tasks.
Which proves that the mesoscopic information of the dynamic
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network can significantly affect the evolution of Macroscale
and the microscopic structure.
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Fig. 6: Run time comparison between VGRGMM and deep
VAE-based methods. We set 30 iterations on fbmessages and
Var datasets for each method, and the result shows that the
average run time cost of DynRNN is the highest among these
methods, meanwhile, our method has the same average run
time cost with VGRNN. Though DynAE have the smallest
run time cose, it is not good at all of the downstream tasks.

E. Statistical Test&Robustness Test

To further evaluate the stability in terms of initialization
and network disturbance, we also make a statistical test and
a robustness test with our method and the deep VAE based
baselines. Fig. 7 shows that on both synthetic and real-world
datasets, VGRGMM outperforms baseline methods despite a
wider result distribution. Meanwhile, the result distribution of
VGRGMM is wider than baseline, indicating that our method
is sensitive to initialization in terms of effectiveness. This is a
drawback of GMM distribution of our method. We can solve it
by replacing GMM with Dirichlet distribution or other multi-
modal distributions with lower entropy.
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Fig. 7: The violin plot on real-world dataset cellphone and
synthetic dataset Var. The x-axis is the number of slices t,
while the y-axis is Modularity Q or NMI. Each method runs
30 times until convergence, and the result is used to generate
the result probability density(the curve on each side of the
violin shape), while the horizontal line in the violin is the
mean value of each method on each slice. Note that DynAE,
DynRNN and DynAERNN have a look back mechanism, thus,
they do not have results at t = 1, 2.

We also make a Robustness test to identify the stability of
our method in terms of network disturbance. Fig. 8 shows that
VGRGMM is not sensitive in terms of network disturbance.
The NMI result distribution indicates that the KL divergence
of our loss function(the GMM part) works well, and can
accurately characterize the higher-order relationships, i.e. com-
munity membership. While the AUC [59] result distribution
shows that the generative ability of our VAE structure. And this
also indicates that our GRU item successfully characterizes the
dynamic feature of the workplace dataset.
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Fig. 8: The violin plot on workplace dataset in terms of NMI
and AUC. To test the robustness of VGRGMM, we remove
the edges of workplace dataset from 5% to 30%, then run
VGRGMM 30 times to get the result distribution. The x-axis
is the percentage of edge removal, whole the y-axis is the NMI
or AUC result distribution.

F. Parameter Analysis

Fortunately, in our model VGRGMM, there are no addi-
tional balance parameters except the number of embedding
dimension D. Here, we analyze the sensitivity of D to the
community detection results on dynamic networks. Here,
we select two datasets, Primary and Enron, evaluated with
the NMI and Q, respectively. Just as shown in Fig. 9, we
report the results of VGRGMM with varying D from 4 to
128 for each snapshot on the two networks. VGRGMM can
achieve the best performance when the embedding dimension
is 32. If this embedding dimension D < 32, there is not
enough representation space to reveal the network structure.
Otherwise, the embeddings will overfit the dynamic network
when D > 32, so we set the D = 32 in our experiments.

V. CONCLUSION

In this paper, we propose a deep learning-based model
VGRGMM for dynamic community detection, which com-
bines variational autoencoder with GMM and the variant of
GRU to jointly capture community structure and evolution
patterns. This method is capable of directly learning com-
munity detection results, network evolution and community-
aware latent representation, which is different from previous
dynamic network representation methods. In particular, the
latent representations are parameters of a probabilistic graphic
model GMM, similar to community division. Then, it does not
require a second step for clustering, such as applying k-means
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Fig. 9: Parameter sensitivity analysis of VGRGMM. (a) The
performance based on NMI with varying D on the Primary
network. (b) The results of different embedding dimensions
based on Q using Enron dataset.

to the learned representation, thereby simplifying the process.
We conduct extensive experiments on real-world networks
and artificial networks compared with several state-of-the-art
methods. The results show that our proposed model has an
excellent performance in improving the accuracy of dynamic
community detection, reducing time complexity and enhancing
capabilities of network representation.

VI. LIMITATIONS & FUTURE WORK

The variational autoencoder structure combined with GMM
prior is a typical Bayesian deep learning paradigm, which
can accurately model temporal network, thus the parameter
of our model can be used to analyze and inference net-
work evolution mechanism. Combining with different real-
world network data, our method can be used to analyze the
evolution of the research team (with citation networks) [60],
social network evolution analysis (with social networks) [5]
and so on. But as for now, the VGRGMM still has some
limitations. Currently, VGRGMM needs to specify the number
of communities K in advance, which is usually unknown
in real-world data. In the future, we will conduct more in-
depth research on dynamic network embedding and mixed
community structure on heterogeneous networks. Furthermore,
we will explore other methods rather than embedding to
predict dynamic events in the temporal community.
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