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Abstract—Object detection, as a fundamental problem in
computer vision, has been widely used in many industrial
applications, such as intelligent manufacturing and intelligent
video surveillance. In this work, we find that classification and
regression have different sensitivities to the object translation,
from the investigation about the availability of highly overlapping
proposals. More specifically, the regressor head has intrinsic char-
acteristics of higher sensitivity to translation than the classifier.
Based on it, we propose a decoupled sampling strategy for a deep
detector, named Decoupled R-CNN, to decouple the proposals
sampling for the two tasks, which induces two sensitivity-specific
heads. Furthermore, we adopt the cascaded structure for the
single regressor head of Decoupled R-CNN, which is an extremely
simple but highly effective way of improving the performance
of object detection. Extensive empirical analyses using real-
world datasets demonstrate the value of the proposed method
when compared with the state-of-the-art models. The repro-
ducing code is available at https://github.com/shouwangzhel34/
Decoupled-R-CNN.

Index Terms—Object Detection, R-CNN, Two-stage Detection,
Decoupled Sampling Strategy, Decoupled R-CNN.

I. INTRODUCTION

ECENT years have witnessed the computer vision sys-

tems (CVS) bring rapid development in the ‘industry 4.0’
era. Object detection is one of the fundamental problems in
CVS, considered as an enabling technology contributing to
the growth of many industrial applications. Furthermore, it
provides advanced information for various downstream tasks.
For example, the CVS in smart manufacturing detects the
special tiny object to obtain better quality products that are
available at lower costs. Person search [1] in an intelligent
surveillance system provides the human-concerned seman-
tic cue for adding to already-heightened security awareness.
Hence, object detection has resulted in increased research
interest in the application of data/predictive analytics.

Due to the remarkable performance of deep learning [2], es-
pecially convolutional neural network (CNN) [3], [4], the CSV
has made breakthroughs in accuracy and speed to detect the
concerned object. Generally, existing object detection methods
can be categorized as: one-stage detection, such as YOLO
series [5]-[7] and SSD series [8], [9], two-stage detection, such
as R-CNN series [10]-[15], and even multi-stage detection,
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such as Cascade R-CNN [16]. Despite these different detection
frameworks, object detection always aims to determine where
the object locates and which category the object belongs to in
a given image, which is constructed as a multi-task learning
problem: regression and classification.

Specifically, the one-stage frameworks [17]-[20] directly
use the CNN-based features to classify the objects in the
predefined reference boxes and regress the offsets of re-
finements without a proposal generation step. However, the
one-stage detector comes to terms with the bounding box
regression, because it seems to be translation invariant!. For
two-stage detectors [21], [22], which treat the detection as
a coarse-to-fine process, they first generate region proposals
(a pre-processing step) and then adopt a region of interest
(Rol) pooling to extract a fixed-length representation for the
next steps. It makes the extracted feature reveal the position
information of the region proposal explicitly. So the region-
specific Rol pooling breaks down translation-invariance to
some extent. This phenomenon makes the two-stage detector
to be more sensitive to translation than the one-stage.

Note that the mentioned two-stage detectors perform the
classification and regression tasks on the same dense proposals
generated by Region Proposal Networks (RPNs), where they
have opposite preferences towards translation. Intuitively, the
shift on an object inside an image should be indiscriminative
for classification, while the translation of an object inside
a candidate box should produce meaningful responses for
regression. It led to a big dilemma: increasing transla-
tion invariance for classification vs. respecting translation
variance for regression. More specifically, the translation-
invariant of an object is beneficial to classification, and in
contrast, the translation-variant is helpful for regression.

Unfortunately, the detector must distinguish the foreground
objects from the background and assign accurate bounding
boxes to different objects simultaneously, as shown in Fig. 1-
(a). It is particularly difficult to accomplish the two tasks
perfectly for the Rol-based detector with the shared proposals
and heads for classification and regression. Note that the
detectors based on deep learning are very example intensive.
Training on the same proposals makes both the classifier and
the regressor finally have correlated sensitivities to translation,
especially for the shared heads. This process is particularly
problematic for deep detectors: two different tasks with
the same sensitivity. Based on the above, classification and

IThere are two reasons: the misalignment between the reference box and
the extracted feature (a 3x3 convolution centered at the reference box), and the
shared convolutional feature among multiple reference boxes with the same
center.
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regression should be considered on specific RPN proposals,
which is shown in Fig. 1-(b).
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Fig. 1: The illustration of our motivation. (a) The regressor
and the classifier share the same training samples. (b) The
regressor and the classifier should be operated on the different
views for improving the performance of the two-stage detector.

In this work, we meticulously revisit the sampling process
in the Rol-based object detector to seek the solution of the
sensitivity mismatching. Then, we introduce a novel network
structure with the sensitivity-specific training scheme, named
Decoupled R-CNN, to alleviate the aforementioned problems.
Specifically, we propose a decoupled sampling strategy, that
classification adopts the random sampling with a positive-to-
negative ratio and regression adopts only positive sampling, to
select the specific proposals with the different sensitivities to
translation for the corresponding heads. Besides, the parame-
ters on the two heads are decoupled to avoid interacting with
each other. Then, we extend the sensitivity-specific regressor to
a cascaded structure. Benefited from the cascaded regressors
with increased sensitivity to translation, the performance of
our proposed method is significantly improved. The major
contributions of this paper are summarized as follows:

o We investigate the availability of highly overlapping RPN
proposals for the two basic tasks, which are removed
by a Non-Maximum Suppression (NMS) operation. To
our best knowledge, few works have been proposed to
study whether the highly overlapping proposals are really
redundant for both classification and regression. In other
words, we study whether the threshold of NMS on RPN
proposals is suitable for both tasks.

e We propose a decoupled sampling strategy to select
proposals with different densities for the two tasks,
corresponding to the sensitivity-specific classifier and
regressor. With the decoupled design, it is convenient
to extend the single regressor to a cascaded structure
with increased sensitivity to translation, in a simple but
effective way.

o We evaluate our method from different aspects on the
public databases, including PASCAL VOC [23] and
Microsoft COCO [24]. The experimental results on
MS COCO test-dev demonstrate that our final detector
achieves Average Precision (AP) of 45.3 on ResNet-
101 and 47.2 on ResNeXt-101-64x4d using multi-scale
training.

II. RELATED WORK

In this section, we briefly survey relevant works about the
sampling strategy in object detection and the advancements of
Faster R-CNN.

A. Sampling Strategy

The training of a deep object detector is essentially an im-
balanced foreground-background (fg-bg) class learning prob-
lem. Some sampling strategies, such as heuristic sampling or
hard negative mining, are performed to maintain a manageable
balance between foreground and background. In RPN [12],
the authors randomly selected 256 anchor boxes in an image
as a mini-batch, where the ratio between the positives and
negatives was 1:1. Fast R-CNN [11] constructed a mini-batch
by randomly sampling proposals with a fixed fg-bg ratio (1:3).
In SSD [8] and OHEM [25], only the gradients of a small set
of samples with the largest loss values were back-propagated,
which eliminated the hyper-parameter of the fg-bg ratio. In
RetinaNet [18], a focal loss was proposed to address the
extreme fg-bg class imbalance problem by down-weighting
the loss assigned to well-classified examples, and all anchor
boxes were contributed to the training. PISA [26] selected
the positive samples with the highest IoUs and the negative
samples with the highest classification scores to train an object
detector, which is defined as prime samples. Besides, some
learn-to-match methods such as FreeAnchor [27], ATSS [28]
and AutoAssign [29] were proposed to change the contribution
of samples.

All the above methods were trained on the same samples,
which leads to the interaction between classification and
regression.

B. The Advancements of Faster R-CNN

Recently, there are some advancements focused on either
classification or regression.

R-FCN [21] introduced positive-sensitive score maps to
address the dilemma between invariance/variance on transla-
tion for classification and regression tasks. R-FCN-3000 [30]
decoupled a super-classes detection by a fine-grained classi-
fication. Deformable ConvNets [31], [32] were introduced to
adapt to the geometric variations of objects. Cheng et al. [33]
focused on improving the classification performance of the
detector, and proposed a Decoupled Classification Refinement
(DCR) module to train an RCNN-styled strong classifier,
while introduced extra computation overhead. Furthermore,
Cheng et al. [34] designed a faster DCR module to alle-
viate the computation overhead. Cai et al. [16] proposed
Cascade R-CNN, a multi-stage object detection architecture
composed of cascaded regressors and cascaded classifiers,
which learned high-quality object detectors sequentially. The
cascaded regressors are powerful for bounding box regression
and have been evidenced by the remarkable improvement un-
der high-quality evaluation metrics. In order to emphasize the
head structure, Double-Head [35] adopted a fully connected
head for classification and a convolution head for regression.
TSD [36] proposed task-aware spatial disentanglement learn-
ing, in which two deformation-learning operations extracted
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specific features focusing on different spatial dimensions for
different tasks. Qiao et al. [37] proposed DeFRCN for few-
shot object detection, which tailored the degree of decoupling
between the three components of Faster R-CNN and decoupled
the tasks of classification and regression by a score calibration
module. D2Det [38] introduced a dense local regression that
predicts multiple dense bounding boxes for each proposal.

Different from the above, our Decoupled R-CNN selects
different dense samples for corresponding tasks to satisfy the
sensitivity requirements of the two basic tasks.

III. MOTIVATION

A series of detectors based on Faster R-CNN have shown
dramatic improvement in object detection, while it is worth
noting that the generated RPN proposals highly overlap with
each other in the proposal generation stage. To reduce the re-
dundancy, a common practice is to use NMS at an Intersection
over Union (IoU)? threshold (usually set to 0.7) for the RPN
proposals.

The strategy is also proven not harmful to the final perfor-
mance since the detector is trained on the same proposals for
both tasks in [12]. However, there is no previous work studying
whether the threshold of NMS is suitable for both classification
and regression. To bridge the gap, we next investigate the
availability of highly overlapping proposals for specific tasks.

A. The investigation of Highly Overlapping Proposals

To investigate the availability of highly overlapping pro-
posals for the classification and regression, we conduct a
toy example with Faster R-CNN on PASCAL VOC [23]
dataset. We perform twice sampling on RPN proposals with
different NMS thresholds for classification and regression,
respectively. Besides, the parameters of Fully Connected (FC)
layers from the classification branch and the regression branch
are unshared. With such experimental settings, we dynamically
change the corresponding NMS thresholds for classification
(NMS_cls) and regression (NMS_reg) to explore the impact
of the NMS threshold on the two different tasks.

For quantitative analysis of the impact of NMS threshold,
we utilize the overall AP? as the primary metric. However,
the overall metric is not enough to show the specific influence
at each single IoU threshold, and we further use (APs,
APgy, APy, APgy, APg) to detailedly discuss the influence
with a different quality degree. The experimental results are
summarized in Table I.

As in Table I, when we increase NMS_reg from 0.7 to 0.9
and fix NMS_cls, the performance is significantly improved,
especially for high-quality evaluation metrics. However, the
increment of NMS_cls for classification has little influence
on the detection performance. The phenomena induce two

2Intersection over union (IoU) between the proposal bounding box b and
any ground truth bounding box by is defined as:

area(b(by) .
area(b|Jby)

3 AP is computed by averaging over 10 IoU thresholds[0.5:0.95]; APs, and
others are computed at a single IoU threshold of 0.5 or corresponding value.

IoU(b,by) =

TABLE I: Results with different NMS thresholds evaluated on
the PASCAL VOC2007 test. NMS_reg refers to NMS thresh-
old for regression, and NMS_cls refers to NMS threshold for
classification.

NMS_reg NMS_cls | AP | APsy APgy AP;, APgy APy
0.7 07 |54.8|822 775 674 492 180
0.8 07 [559|822 779 680 515 207
0.9 07 |56.1|81.9 773 679 525 218
0.7 0.8 |550|81.7 767 685 498 185
0.7 09 |54.8|81.8 77.0 68.0 499 17.7

findings as follows and encourage us to make a distinction
when treating classification and regression in a deep detec-
tor: 1) highly overlapping proposals are useful rather than
redundant for regression, and the regressor trained on denser
proposals will fit with translation variance better; 2) highly
overlapping proposals are redundant for classification, and [25]
also showed that the proposals with high overlaps are likely
to have correlated losses, which results in twice repetitive
optimization. These observations lead to a question: Why do
the same proposals have different behaviors for the two
tasks?

B. Analysis of the Head Branches

To make a comprehensive analysis, we first give concrete
notations, followed by our analytical results. Suppose F' and
G are the corresponding classification function and regression
function in R-CNN, respectively. The predictions of the two
head branches are given by:

p=F(X), (1)
t=G(X), )

where X is the Rol feature of a proposal, p is the predicted
probability and ¢ is the predicted offset. When training a
deep detector, cross-entropy loss and L; loss are usually used
for classification and regression, respectively. With a concrete
declaration, the cross-entropy loss is defined as:

CE(p,p*) = — Y _p;log(p:), 3)

and L, loss is defined as:

where ¢ is the index of categories, j is the index of a box’s
center coordinates, and p;, ¢ are the corresponding ground
truth.

For two pre-mentioned highly overlapping proposals, the
input features X; and X5 are also highly overlapped such that
the predictions of p; and po are highly correlated and so it is
with the predictions of ¢; and 5. On the other hand, these two
proposals have the same category labels p*, but different offset
labels ¢] and t5 as training supervisions. These two ground-
truth offsets (¢7, ¢3) always differ from the shift between the
two proposals. Then, under the optimization with the above
two object functions for classification and regression, ¢; and
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to aim to specific targets of ¢] and ¢3, while p; and p2 aim
to the same target of p*, leading to different behaviors on the
highly overlapping proposals for the two tasks.

C. Analysis of the Effective Bin Locations

The Rol feature of a proposal is generated by Rol-pooling,
in which max-pooling is utilized to convert the proposal into
a fixed spatial extent of HXW (e.g., 7x7). The visualization of
Effective Bin Locations (EBLs) in [32] has shown that not all
bins in an Rol-pooling contribute equally to their responses,
and bins on the object foreground generally receive larger
gradients. For a deep detector, the effective bins are inconsis-
tent for different tasks. Specifically, the features in the salient
area have rich information for classification while features
around the boundary are always necessary for bounding box
regression. Intuitively, the inside bins of an object generally
receive larger gradients for classification and the boundary
bins of an object receive larger gradients for regression. Thus,
the shift of Rols is unlikely to influence the inside bins.
Reconsidering the two highly overlapping proposals, although
the Rol features are highly correlated, the corresponding EBLs
for the regression task are more likely to be different.

Based on the aforementioned analyses, we find that the
regressor has intrinsic characteristics of relative sensitivity
to translation while the classifier is relatively insensitive to
translation. The phenomena usually happen in the two-stage
detectors and encourage us to process the classification and
regression with a different strategy: using the highly over-
lapping proposals to make the regressor higher sensitive
to translation.

IV. PROPOSED METHOD

In this section, we propose Decoupled R-CNN to deal
with the sensitivity mismatching for specific tasks, which is
illustrated in Fig. 2. We first introduce a decoupled sampling
strategy to select different dense proposals, corresponding to
the sensitivity-specific classifier and regressor. Further, we
extend the single regressor, equipped with increased sensitivity
to translation, to cascaded structure in a simple way, which en-
hances the performance of the detector with a higher accurate
localization.

A. Decoupled Sampling Strategy

Sharing the training samples makes the heads of classifier
and regressor finally have the same sensitivity to translation,
where the two tasks compromise with each other. From the
above analyses in Section III, the corresponding object func-
tions of classifier and regressor have different characteristics of
translation sensitivity. Therefore, we here design a Decoupled
Sampling Strategy (DSS) to separately take samples from
specific RPN proposals for preventing the two tasks from
interacting with each other. Specifically, we employ NMS
with different thresholds (NMS_cls and NMS_reg) on the
RPN proposals to obtain the differently dense proposals for
the corresponding tasks (Proposals_cls for classification and
Proposals_reg for regression), which is shown in Fig. 2.

Notice that the regressor is higher sensitive to translation
intrinsically than the classifier, NMS_reg threshold should be
set higher than NMS_cls. And compared to Proposals_cls,
the shift on overlapping Proposals_reg is slighter. Hence, the
final proposals of regression should be much more than the
proposals of classification.

In this manner, our regressor needs to be aware of the
slighter translation between overlapping proposals, obtaining
more accurate localization. We set the label attribute by using
the function as follows:

L = sign(IoU — p), (5
where
. +1, >0
sign(z) = (6)
-1, <0

If the IoU ratio is greater than p (L = +1), we will
assign a positive label to an RPN proposal. Otherwise, we
will assign a negative label (without loss of generality, we
set p = 0.5). To maintain a manageable balance between
foreground and background in classification, we randomly
select positive and negative proposals with a fixed fg-bg
ratio (1:3) from Proposals_cls (Random Sampling with fg-
bg Ratio). For regression, we only select positive proposals
from Proposals_reg and construct a large mini-batch for more
training samples (Positive Sampling).

Our proposed DSS is a focused module, which can deal
with different sensitivities to translation for classification and
regression. In the previous Faster R-CNN, random sampling
with fg-bg ratio for shared proposals causes two limitations
for the regressor: the restrictive number of positive and the
useless negative; the restrictive sensitivity to translation. In our
Decoupled R-CNN, adopting separate sampling only for the
positive on more dense Proposals_reg allows us to efficiently
train the regressor on more available samples. Training on pro-
posals with different densities for two tasks corresponds with
sensitivity-specific heads. Besides, to prevent the two task-
specific heads from interacting with each other, the classifier
branch should not share any parameters with the regressor
branch (the Unshared-FC Heads are shown in Fig. 2).

B. Cascaded Structure for Regression

Cascaded technique is an extremely simple but highly
effective way to improve the performance of a deep detector.
Considering the decoupled sampling for the two unshared-FC
heads, we can extend the single regressor in Decoupled R-
CNN to cascaded structure in a simple way, as shown in Fig. 3.
Increased translation sensitivity for regression is also suitable
for cascaded structure, which further enhances the accurate
localization capability of our detector.

Notice that all regression stages have the same architecture,
two fully connected layers followed by a final output layer.
The positive samples in the first stage (P-Samples;) are taken
from Proposals_reg. In the subsequent stages, we adopt the
resampling mechanism

P-Samples; = Regressor;_1(P-Samples;—1).  (7)
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Fig. 2: The framework of Decoupled R-CNN. It decouples the proposals for two tasks (Decoupled Sampling Strategy) and
makes the parameters of the following FC layers to be unshared (Unshared-FC Heads). Proposals_cls and Proposals_reg denote

the proposals for classification and regression, respectively.

P-N-Samples oot 2FC
Decoupled Sampling Cascaded Structure for Regression

Rol

P Samples, 2FC
Rol

P-Samples, Alien 2FC
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P- Samples, 27c

Fig. 3: The two top branches in Decoupled R-CNN with
cascaded regression. P-N-Samples denotes the positive and
negative samples for classification. P-Samples; denotes the
positive samples for the ith stage of regression.

The regression outputs in the previous stage are sampled to
train the subsequent stage. Decoupled sampling strategy se-
lects denser proposals for cascaded regression. Benefiting from
it, the cascaded regressors are more sensitive to translation.
However, for classification, we do not adopt the cascaded
structure because of the little performance improvement, com-
pared with the cascaded regressors, with similar additional
computational complexity. The detailed discussion will be
introduced in Section VI-A.

C. Loss Function

For the proposed deep detector, we use a multi-task loss to
jointly train for classification and cascaded regression:

> Lige(t, t;;)] . ®
k

The classification loss L.;s is the cross-entropy loss defined
as CE(p,p*) = —_,p;log(pi), where i is the index of
categories, p; is the predicted probability and p; is the ground-
truth label. The regression loss L,.g4 is the L loss defined as

L(p,p*,t,t") = Las(p, p*) + A

L1 (tx, t}) = [ty —t;|, where k is the index of regression stage,
tx is the predicted offset in k-th stage, and ¢} is the ground
truth. All terms are normalized by mini-batch, and the two
task losses are weighted by a balancing parameter A because
of one classifier vs. three cascaded regressors.

V. EXPERIMENTS
A. Datasets

We evaluate our proposed Decoupled R-CNN on PASCAL
VOC [23] and MS COCO [24], which are the two most
widely used datasets in object detection. For the PASCAL
VOC dataset, we use the union of VOC 2007 trainval and
VOC 2012 trainval as training data and evaluate our model on
the VOC 2007 test. For the MS COCO dataset, training and
evaluation are performed on 118k images of the training set
and 5k images of the validation set, respectively. Finally, we
report our results on the COCO test-dev set (without public
labels).

B. Implementation Details

All experiments are implemented on MMDetection [39], an
open-source object detection toolbox based on PyTorch [40].
The input images are resized to 800 pixels along the shorter
side. Besides, only the horizontal image flipping is used
for data augmentation. The proposed model is end-to-end
trained on 4 TITAN X GPUs with a total batch size of 8 (2
images per GPU). For the classification branch, we select 512
region proposals including foreground and background. For
the (cascaded) regression branch, we use a large mini-batch
size of 512 to only select positive proposals. If the number
of positive proposals is less than 512, we pad the negative
proposals to ensure a fixed mini-batch size, and the negatives
are ignored via setting the corresponding weights to zero.

To train the model, we choose the SGD optimizer with
the weight decay and momentum setting as 0.0001 and 0.9,
respectively. On the PASCAL VOC, we use a training schedule
with 12 epochs, in which the learning rate is initialized as
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0.005 and dropped 10 times at the 9th epoch. On the MS
COCO, two training schedules are adopted: “1x” and “2x”,
with corresponding 12 epochs and 24 epochs, respectively.
The learning rate is initialized as 0.01 and dropped 10 times
at the 8th and 11th epoch in “1x” schedule. For “2x”, the
learning rate is also initialized as 0.01 while dropped at the
16th and 22nd epoch. For testing, we use at most 1k top-
scoring proposals for detection, followed by NMS with a
threshold of 0.5, and finally the top-N scoring detections are
obtained. Note that before NMS a threshold of score_thr is
usually used to remove detections with scores lower than it.
Unless otherwise claimed, we set score_thr as 0.05 following
the default hyper-parameter in MMDetection.

C. Ablation Experiments

In Decoupled R-CNN, the choice of hyper-parameters
(NMS_reg, Number of stages, \) heavily influences the de-
tection performance. To investigate the effectiveness of these
hyper-parameters, we firstly conduct ablation experiments on
PASCAL VOC data set and choose the best one fixed in the
following experiments. we use ResNet-101 [4] as backbone
model with Feature Pyramid Network (FPN) [41] in our
ablation experiments.

1) The Necessity of Unshared Parameters: DSS (Decou-
pled Sampling Strategy) is a key sampling technique for our
method, which makes the classifier head and regressor head
have different sensitivities to the translation. We set NMS_reg
= 0.7 to reveal the effect of the different Shared-FC and
Unshared-FC head branches for the detection performance,
which is reported in Table II.

TABLE II: The ablation study on the shared parameters of FC
layers.

Method | Shared-FC Unshared-FC | AP
FPN v 54.1

v 55.0

Deocupled v 53.6
R-CNN v 55.0

From Table II, whatever FPN or Decoupled R-CNN, the
models with unshared-FC have achieved the best perfor-
mance. Especially, Decoupled R-CNN with shared-FC has
degraded the performance. That means that sharing a same
fully connected head for two different tasks would introduce
confliction. Hence, unshared parameters are necessary for the
proposed method.

2) NMS_reg Threshold: By using DSS, the classification
and the regression have differently dense samples. We explore
different choices of NMS_reg threshold for regression to
investigate the influence of NMS_reg Threshold.

The detection performance with different NMS_reg, which
varies from 0.7 to 0.95, are reported in Table III. Obvi-
ously, increasing the NMS_reg value will improve the per-
formance, and it achieves the best performance of 56.6 AP
when NMS_reg is equal to 0.85. However, the performance
degrades when we further increase the value of NMS_reg.
The phenomena seem that the translation would be too slight
to produce a response for regression.

6

TABLE III: NMS_reg threshold changes the sensitivity of the
regressor head in Decoupled R-CNN.

Method NMS_reg | AP | APs, APg AP;y APgy APo
07 |550]822 775 683 498 182
075 |[553|81.8 780 681 502 194
Decoupled R-CNN | 0.8  [56.0| 822 780 679 520 215
085 |56.6|81.9 779 688 53.1 219
09 |[565|81.6 773 686 530 23.1
095 |56.1|815 775 682 524 226

Hence, based on the availability of highly overlapping
proposals, we introduce DSS to select proposals with differ-
ent densities for the two tasks, corresponding to sensitivity-
specific heads. The regressor, equipped with specific sensitivity
to translation, is capable to achieve higher accurate localiza-
tion.

3) Number of Stages: With the additional cascaded struc-
ture in our proposed model, we next explore the impact of
the number of stages for cascaded regression on the detection
performance, and we exhibit results in Table IV.

TABLE IV: The performance of cascaded regression.

stages | AP | APsg APg) APz APgy APy
1 56.6| 819 779 68.8 531 219
2 5841|810 771 69.1 560 293
3 58.7| 812 773 692 559 30.2
4 58.5| 81.1 76.8 69.1 557 30.8

Similar to Cascade R-CNN [16], the three-stage regression
achieves the best result. As the number of stages increases to 4,
the performance increases continuously on the APy, metric but
declines slightly on APsy, which means that the aimlessness of
increasing the number of stages would result in loss imbalance
for the two tasks due to cascaded regressors vs. one classifier.

4) The Impact of NMS_reg for Cascaded Regression:
Compared with Cascade R-CNN [16], the training samples
for our cascaded regressors are denser through DSS. As
shown in Table V, the cascaded regressors trained on denser
proposals (NMS_reg=0.85), improves the AP by 0.7 , which
reflects the impact of NMS_reg for cascaded regression. The
improvement indicates that increased sensitivity to translation
for the regressor head is also necessary for the cascaded
structure.

TABLE V: The impact of NMS_reg for cascaded regression.

NMS_reg | AP
0.7 58.0
0.85 58.7

815 778 694 549 270
81.2 773 692 559 302

5) Balance Between Classification and Regression: The
hyper-parameter of \ in Eq. (8) controls the balance between
the two tasks. When using a single regressor, although we
select more dense positive proposals, the gap between the two
terms of loss is not large. In this case, we empirically set
A = 1. When using the cascaded structure, the gap is non-
negligible, due to three cascaded regressors vs. one classifier.
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So it is necessary to select the suitable A to balance the two
task losses. Next, we investigate the influence of A for the
performance when it varies in the range [0.25, 1].

TABLE VI: The influence of \.

A | AP
1 [58.7
0.75 | 58.6
0.5 [59.0
0.25 | 58.0

APsy  APg
812 77.1
81.6 772
822 177.8
82.1 77.8

69.0
69.2
70.8
69.5

APgy APy
56.6 30.0
56.0 30.0
56.1 294
544 275

As shown in Table VI, when decreasing A from 1 to 0.5,
we observe the best overall performance when it is set to 0.5,
where our model consistently achieves the best performance,
especially on APsj, which is important for classification. The
phenomena indicate that there exists an imbalance between the
classification loss and the cascaded regression loss. While the
performance on high IoU levels significantly degrades as we
further decrease A to 0.25. Therefore, we set A = 0.5 in the
following experiments.

D. Main Results

1) Results on VOC: First, We evaluate our method on
PASCAL VOC following the above settings, and the detec-
tion results are reported in Table VII. Compared with FPN
based on ResNet-50, our method significantly improves the
performance of AP by 2.6, and our cascaded regression further
improves the AP by 2.9. Besides, a significant improvement
is also shown in the ResNet-101 experiment. Apart from the
detection performance, the Inference Speed has also been com-
pared. For Decoupled R-CNN without cascaded regression,
the increase in computing overhead is negligible compared to
the performance gain. Therefore, in order to achieve better
detection results, the further use of cascade technology is also
worthwhile.

2) Results on COCO validation: To prove the effectiveness
of our method, we report our results on COCO validation
based on different backbones. We adopt the “1x” training
schedule for the following experiments. The performance on
three popular backbones has been reported in Table VIII.

We find that Decoupled R-CNN has improved on these
backbones consistently by 1.1 ~ 1.2 for AP, which demon-
strates the effectiveness of our proposed DSS design. When us-
ing the cascaded technique for the basic model (Decoupled R-
CNN), a consistent improvement with 1.4 ~ 1.5 AP has been
achieved. Especially, our method gains 7 ~ 8 improvement
on APy, compared to FPN. The quantification results show
that our method is effective for improving the performance of
the detector with a highly accurate localization. That means
the sensitivity-specific heads and cascaded structure in our
method have proven to be useful. Besides, from Table VIII, the
proposed module only brings about few FLOPs (floating point
operations) and parameters, which is tolerable in detection.

To confirm the high accurate localization, we further vi-
sually show some results of the head-to-head comparison
between Faster R-CNN [12] and Ours in Fig. 4. Clearly, the

localization of our output regression boxes achieves higher
accuracy.

3) Results on COCO test-dev: In this part, We will carry out
a comprehensive and systematic analysis about our proposed
method compared with a series of state-of-the-art methods on
COCO test-dev. For a fair comparison, the results of single-
model and single-scale testing for all methods are reported in
Tabel IX *.

First, when compared with the one-stage detectors, whose
results located in the top group of Table IX, our proposed
method has achieved a comparable performance. It is noted
that the recent one-stage detectors usually adopt a multi-
scale training manner for improving the performance. For a
fair comparison, we further adapt multi-scale training for our
model, and our detector (our method with ResNet-101 and
MS;¢.q4in) achieves a significantly better performance of 45.3
AP, which outperforms existing one-stage approaches.

Compared with the two-stage detectors, whose results lo-
cated in the middle group of Table IX, our detector with
ResNet-101 using single-scale training achieves 43.3 AP,
which outperforms the recent two-stage approaches of Tri-
dentNet [43], Cascade R-CNN [16] and TSD [36]. However,
DCNvV2 [32] and D2Det [38] have a better performance than
ours. Notice that DCNv2 uses the deformable convolution,
where it has proven the deformable convolution is better than
the normal one, to achieve 44.0 AP on ResNet-101. However,
the gaps reduce to 0.1 (44.6 vs. 44.5) when comparing on the
backbone of ResNeXt-101. Besides, D2Det proposes a dense
local regression and a discriminative Rol pooling for classifi-
cation, achieving 45.4 AP. Considering the improvement from
the proposed Rol pooling (more than 1.0 AP), the difference
between D2Det and our method (Ours™)? is less than 0.7 when
only comparing the localization capability.

We further improve the detection performance of our
method to 46.3 and 47.2 by utilizing larger backbones
ResNeXt-101-32x4d and ResNeXt-101-64x4d, respectively.
The results show that our proposed DSS is effective for
improving the detection performance.

For further demonstrating the performance of our proposed
model, we select visual results of compared methods on the
COCO test-dev and show them in Fig. 5. Our model accurately
locates the boundary of objects and achieves better results
under challenging conditions, such as different geometric
variations in object scale, pose, viewpoint, etc. However, there
also have some failure cases as in the last row, where the
objects are partially occluded or aim clutter. With considerable
observation, we find that foreground objects highly overlap
with each other in these scenarios, therefore confusing our
regressor and leading to the final inaccurate bounding boxes.
In the future, we will explore how to solve these conditions.

VI. DISCUSSION

To detailedly explain the advantages of our Decoupled R-
CNN, we next discuss the differences between it and other
state-of-the-art models from the following three aspects.

4We use the “2x” training schedule and set the score_thr to 0.001.

SOurs™ means that we apply the same soft-NMS as D2Det at inference
and obtain 43.7 AP.
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TABLE VII: Detection results on PASCAL VOC. Inference speed is measured on a single TITAN X GPU.

Cascaded |Inference Speed

Backbone Method AP APSO APG() AP70 APso AP90
Regression| (sec./image)

FPN X 0.079 50.6|80.2 754 63.7 423 11.5

ResNet-50 | Decoupled R-CNN X 0.087 532|80.1 755 658 473 17.7
Decoupled R-CNN v 0.133 56.11 809 76.4 67.6 52.1 242

FPN X 0.101 54.1182.1 779 674 485 156

ResNet-101 | Decoupled R-CNN X 0.108 56.6|81.9 779 688 53.1 219
Decoupled R-CNN v 0.154 59.0| 822 77.8 70.8 56.1 29.4

TABLE VIII: Detailed comparison on COCO validation over multiple popular backbones. Inference speed is measured on a
single TITAN X GPU and FLOPs are computed on a given size image of 1333x800.

Cascaded |Inference Speed| FLOPs |Model Parameters
Backbone Method AP [APs5y APgy AP79 APgy APy
Regression| (sec./image) |(GFLOPs) ™)
FPN X 0.117 215.82 41.53 374|581 53.6 459 33.6 11.1
ResNet-50 Decoupled R-CNN X 0.125 229.72 55.42 38.6|58.6 543 47.1 349 138
Decoupled R-CNN v 0.164 257.52 83.22 40.1] 582 54.0 47.7 373 19.0
FPN X 0.156 295.70 60.52 39.4|160.1 556 483 356 129
ResNet-101 Decoupled R-CNN X 0.159 309.59 74.42 40.6] 60.5 56.2 494 36.7 16.0
Decoupled R-CNN v 0.200 337.39 102.22 42.1160.0 55.8 49.6 39.6 20.9
FPN X 0.185 299.61 60.16 4121622 578 50.6 37.8 14.6
ResNeXt-101-32x4d [42] | Decoupled R-CNN X 0.192 313.51 74.05 4231624 582 51.1 389 17.1
Decoupled R-CNN v 0.238 341.31 101.85 4371622 58.1 51.7 409 21.9

Fig. 4: Faster R-CNN [12] (top) vs. Decoupled R-CNN (bottom). Both are using ResNet-101 with FPN as the backbone. It is
clear that our rectangle boxes more tightly bound the objects than the Faster R-CNN.

S ..

A. Differences to Cascade R-CNN the ground-truth. Therefore, the classification score is

Our module of cascaded regression is similar to Cascade not well correlated with the localization confidence.

R-CNN. However, the proposed work differs from it in that: Via the considerably designed decoupling technique, the
structure of our method is feasible and the classification

score depends on the single classifier probability on
the RPN proposals. Moreover, considering our proposed
DSS module and Unshared-FC heads, it is convenient
to only adopt cascaded regression without cascaded
classification.

2) For training a sequence of higher-quality detectors to
effectively reject close false positives, Cascade R-CNN
increases IoU thresholds at each cascade stage for select-
ing the positive samples with higher IoU distributions.
However, in our cascaded regression, the resampling is
only performed on the positive, and the output IoU of a
regressor is almost invariably better than the input IoU.

1) Cascade R-CNN is composed of cascaded regressors
and cascaded classifiers, averaging the three classifier
probabilities for the final classification score at infer-
ence. However, our proposed method only has cas-
caded regressors with a single classifier. This design
profits from the study [53] that the classification score
does not well reflect the quality of the bounding box
(localization). It has indicated that classification and
localization need to be solved differently in the detection
pipeline. Specifically, given a proposal, the classifier
probability naturally acts as classification confidence of
the proposal, and the bounding box regression finds
the optimal transformation for the proposal to best fit
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TABLE IX: Comparisons with state-of-the-art detectors on the COCO test-dev. “MS;,4i,” denotes multi-scale training. “n/a”
means that trained models from the MMDetection repository and AP results from the original papers are not available.
“ResNeXt-101(32x4d)” denotes the backbone model that we measure the inference speed, FLOPs, and model parameters on.
Inference speed, FLOPs, and model parameters are measured on the same machine with a single TITAN X GPU under the
same MMDetection [39] framework. Especially, inference speed is related to score_thr, for which we remove detections with
scores lower than it, and set score_thr to 0.001; FLOPs is highly related to the input shape, which we set to [1333, 800].
“Ours” represents single-scale training + traditional NMS; “Ours™” represents single-scale training + soft-NMS; and “Ours*”

represents multi-scale training + soft-NMS.

Inference FLOPs Model
Method Backbone MStrain Speed (GFLOPs) Parameters| AP AP5y AP75 |APg APps AP
(sec./image) M)

one-stage detectors
DES [44] VGG16 n/a n/a n/a 32.8 532 346|139 36.0 47.6
RetinaNet [18] ResNet-101 0.149 250.34 37.74 39.1 59.1 423 (21.8 42.7 50.2
CornerNet [45] Hourglass-104 0.435 1848.93 201.04 |40.5 56.5 43.1 |19.4 42.7 539
HSD [46] ResNet-101 n/a n/a n/a 40.2 594 440|200 444 549
HSD [46] ResNeXt-101 n/a n/a n/a 419 61.1 462 |21.8 46.6 57.0
FoveaBox [47] ResNet-101 v 0.154 331.51 57.38 40.8 61.4 44.0|24.1 453 532
FSAF [48] ResNet-101 v 0.133 295.67 55.19 409 61.5 44.0 240 442 513
FSAF [48] ResNeXt-101-64x4d v 0.263 460.51 93.92 429 63.8 463|266 462 52.7
FCOS [49] ResNet-101 v 0.128 289.68 50.96 41.5 60.7 45.0 |244 448 51.6
FCOS [49] ResNeXt-101-64x4d v 0.263 459.48 89.79 447 64.1 484|276 475 55.6
FreeAnchor [27] ResNet-101 v 0.154 330.21 56.74 43,1 62.2 464|245 46.1 54.8
FreeAnchor [27] ResNeXt-101-64x4d v 0.303 495.05 95.46 449 643 485|268 483 559
ATSS [28] ResNet-101 v 0.135 294.64 51.06 43.6 62.1 474 |26.1 47.0 53.6
ATSS [28] ResNeXt-101-64x4d v 0.263 460.54 89.79 456 64.9 49.7 |28.5 489 556
AutoAssign [29] ResNet-101 v 0.169 290.85 55.09 445 643 4841259 474 550
AutoAssign [29] ResNeXt-101-64x4d v 0.303 460.65 93.92 46.5 66.5 50.7 |28.3 49.7 56.6

two-stage detectors
Faster R-CNN w/FPN [41] ResNet-101 0.149 295.7 60.52 36.2 59.1 39.0|18.2 39.0 482
Mask R-CNN [13] ResNeXt-101(32x4d) 0.208 352.69 62.80 39.8 62.3 434 (221 432 512
Libra R-CNN [50] ResNet-101 0.156 296.8 60.78 41.1 62.1 44.7 |23.4 43.7 525
Libra R-CNN [50] ResNeXt-101-64x4d 0.284 461.64 99.51 43.0 64.0 47.0 253 456 54.6
Faster R-CNN w/ PISA [26] | ResNeXt-101(32x4d) 0.204 299.61 60.16 423 629 46.8 |24.8 455 53.1
Grid R-CNN [51] ResNet-101 0.172 408.86 83.31 41.5 60.9 445|233 449 531
Grid R-CNN [51] ResNeXt-101(32x4d) 0.208 412.77 82.95 432 63.0 46.6 |25.1 46.5 552
Double-Head-Ext [52] ResNet-101 0.294 569.9 66.11 423 62.8 463|239 449 543
TridentNet [43] ResNet-101 0.256 864.85 52.51 427 63.6 46.5 239 46.6 56.6
TridentNet [43] ResNet-101-DCN v n/a n/a n/a 46.8 67.6 51.5|28.0 51.2 60.5
Cascade R-CNN [16] ResNet-101 0.196 323.34 88.16 428 62.1 463|237 455 552
TSD [36] ResNet-101 0.222 312.29 98.86 432 64.0 469 240 463 558
DCNv2 [32] ResNet-101 0.185 227.09 61.81 44.0 65.9 48.1 232 47.7 59.6
DCNv2 [32] ResNeXt-101(32x4d) 0.244 301.64 62.73 44,6 n/a n/a | nfa n/a nla
D2Det [38] ResNet-101 0.250 379.29 98.86 454 64.0 49.5 258 48.7 58.1
Ours ResNet-101 0.200 337.39 102.22  |43.3 62.0 464 |24.1 463 553
Ours™ ResNet-101 0.200 337.39 102.22 |43.7 619 474|244 468 558
Ours* ResNet-101 v 0.200 337.39 102.22 |453 634 49.1 |26.5 484 56.5
Ours ResNeXt-101-32x4d 0.238 341.31 101.85 |44.5 63.5 478|254 473 562
Ours* ResNeXt-101-32x4d v 0.238 341.31 101.85 |46.3 64.7 50.4|27.8 494 575
Ours* ResNeXt-101-64x4d v 0.323 502.23 14094 |47.2 65.6 51.2|29.0 50.5 58.9

3)

It makes us use a fixed IoU threshold of 0.5 for all
the cascaded regression stages. Our method eliminates
the hyperparameters of increasing IoU thresholds, and
each stage of regressors is trained on the corresponding
sample distributions.

The most important difference is training samples. Cas-
cade R-CNN uses random sampling with fg-bg ratio
to select shared proposals, which inevitably restricts
the regressor’s sensitivity to translation. Without the

constraint of classification, we select more dense positive
proposals to train the cascaded regressor. Benefited from
increased translation sensitivity, our cascaded regressors
can localize an object more accurately.

To concretely compare with Cascade R-CNN, we implement
our Decoupled R-CNN with the same cascaded structure and
the increasing IoU thresholds. Table X summarizes the stage
performance over the two different methods. And we can find
that the regressor at the final third stage brings significant
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Fig. 5: Visualization on the COCO test-dev set. Each bounding box is linked with a category label and a softmax score. We
set the score threshold to 0.6 to display these images. The last row shows some failure cases, where the objects are partially
occluded or aim clutter in the challenging non-iconic images. In these cases, different foreground objects overlap with each
other, therefore confusing our regressor and leading to inaccurate bounding boxes.

TABLE X: The stage performance of cascaded regression and cascaded classification over different methods. Note that we
equip Decoupled R-CNN with both cascaded regression and cascaded classification, in which we adopt the increasing IoU
thresholds at the cascaded stages as same as Cascade R-CNN. And both methods use ResNet-101 as the backbone. The test
stage (i, j) denotes the i-th stage regressor and the j-th stage classifier, and the test stage (3, 1-3) denotes the average of the

three classifier probabilities.

Method Inference Speed| FLOPs |Model Parameters Test Stage
(sec./image) |(GFLOPs) ™M) (1, D@2, DG, D3, 2|3, 3|3, 1-3)
Cascade R-CNN 0.196 323.34 88.16 3851405 (412|419 |415| 420
Decoupled R-CNN 0.222 365.03 129.85 38.7 | 41.4 | 41.8 | 42.1 | 415 | 427

improvements for Cascaded R-CNN (from 38.5 to 41.2) and
Decoupled R-CNN (from 38.7 to 41.8). However, the single
classifier at any stage obtains marginal improvements and
the ensemble result, averaging the three classifier probabil-
ities, is necessary for better performance. Benefiting from
our proposed DSS, which is more sensitive to translation,
our cascaded regressors are better than the regressors in
cascade R-CNN (41.8 vs. 41.2). When adopting the cascaded
classification, we obtain similar performance improvements
with similar additional computational complexity. So our final
detector only adopts the cascaded structure for regression.

B. Sampling Strategy

Recently, some learn-to-match approaches are proposed
to change the contribution of samples. FreeAnchor [27], an
object-anchor matching approach, is proposed to allow each
object to flexibly match the best anchors during training.
ATSS [28] uses the statistical characteristics of each object to
compute a dynamic IoU threshold for the definition of positive
and negative samples. AutoAssign [29] generates positive and
negative weight maps to adjust each location’s positive and
negative confidences. However, they neglect that the same

sample has different contributions to the two tasks. For our
proposed DSS, “classification and regression” take samples
from the different dense RPN-proposals, and our model evenly
deals with all samples in the training process.

In TSD [36], two disentangled proposals are generated by
two deformable operations on the original proposals and the
corresponding feature extractors for the two heads, solving
the spatial misalignment between classification and regression.
During training, the TSD heads need to be jointly optimized
with the sibling heads. At inference, the same deformable
operations and feature extractors in TSD heads are applied.
But our proposed method focuses on different sensitivity to
the translation for classification and regression, where DSS
takes different dense samples for the unshared-FC heads of
the classifier and the regressor. Even equipped with cascaded
regression, our method has a faster inference speed than the
complex TSD heads, which as shown in Table IX.

Besides, SPFTN [54] incorporates a similar strategy and
decouples the involved self-paced regularizers for different
tasks of localization and segmentation. However, the work
focuses on the task of weakly labeled video object localization
and segmentation, which is very different from our decoupling
of the sampling strategy for the two basic tasks of classification
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and regression.

C. Regression Task

In Decoupled R-CNN, we decouple the sampling of classi-
fication and regression, and disentangle the shared parameters
of these two detector heads. In Double-Head [52], a more
elaborate structure of the detector heads is designed, obtaining
a satisfactory performance. Inspired by the success, we further
inspect the effectiveness of Double-Head for our Decoupled
R-CNN in Table XI. To implement the Double-Head structure,
we equip the classifier head with two fully connected layers
and additionally stack 4 residual convolution blocks for the
regressor head. With such a replacement operation, Decoupled
R-CNN without cascaded regression achieves 40.0 AP and
41.6 AP on ResNet-50 and ResNet-101, which is close to
the results with cascaded regression. Furthermore, when our
cascaded regression also adopts the 4 residual convolution
blocks, we obtain 40.4 AP and 42.2 AP on ResNet-50 and
ResNet-101, only a slight gain by 0.1 ~ 0.3 AP. Although
Double-Head has fewer model parameters, there is a great
increase in computational overhead. Similarly, the dense local
regression in D2Det [38] also adopts a deep head with eight
convolutions, which inevitably increases the FLOPs as seen
in Table IX. Compared with a deep and complex regressor,
our cascaded regressors decompose the regression task into a
sequence of stages, which is efficient and low cost.

VII. CONCLUSION

In this work, we propose a decoupled architecture, called
Decoupled R-CNN, for object detection. It is a simple but
accurate and efficient method to address a rarely explored
problem, i.e. the compromising suboptimality of sensitivity to
translation for the current classifier and regressor. Our model
uses decoupled sampling strategy to decouple the proposals
sampling for two different branches, which guarantees the
consistent sensitivity to the translation for each correspond-
ing branch. Furthermore, we propose a cascaded structure
for regression to improve the accuracy of localization of
Decoupled R-CNN. The extensive experimental results show
that our method achieves competitive performance. Inspired
by the learn-to-match, we further conjecture that a task-
proposal matching approach allows each object to respectively
match the best proposals for the two tasks “classification and
regression” and the label assignment for the two tasks could
be conducted in a different manner, which encourages us to
further improve our model in the future.
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