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Abstract— Network embedding is an important class of link
prediction methods, which can use the distance between learned
low-dimensional node representations to characterize the simi-
larity between nodes. Traditional network embedding methods
focus on single-layer networks, while in reality, a large part
of complex networks are not isolated, but interdependent and
interrelated, forming multiplex complex networks. Also, how
to effectively exploit layer correlations in multiplex networks
to learn more robust and valuable representations, to improve
link prediction performance, has been a hot research topic
in the field of complex network analysis. However, previous
studies mainly focus on inferring intralinks in each layer of
complex networks or anchor links among layers. Another issue
that has not been discussed is how to predict potential links
or reconstruct the network in unobserved relations based on
existing multiplex networks. To this issue, we define a novel
inductive link prediction problem in multiplex networks, in which
most existing multichannel network embedding methods fail to
solve. This is either because they only emphasize the specific
structure information of an individual layer or only capture
the common information for all layers. To effectively address
this problem, we propose a novel embedding method termed
interactive learning across relations (ILAR), to capture and fully
exploit the multiple relations and complex layer correlations in
multiplex networks. We leverage two convolutional modules and
ILAR to capture the sufficient complementary and correlations
in multiplex networks. Moreover, during interactive learning,
a disparity constraint is introduced, which enforces the features
encoded from two convolutional modules to be different and
prevents information redundancy. Finally, the extensive experi-
ments in several real-world datasets show that our model can
significantly outperform the existing state-of-the-art network
embedding methods on the novel link prediction problem in
multiplex networks.

Index Terms—Layer correlations, link prediction, multiplex
network, network embedding.
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NOMENCLATURE
L Numbers of layers in the known multiplex network.
G'  Ith layer network in multiplex network.
G'  Unknown target network to be predicted.
Vv Set of nodes in the multiplex network.
A" Adjacency matrix of G'.
D' Degree matrix of G'.
A Reconstruction adjacency matrix.

Z!  Specific representation for nodes in the /th layer.
Zi Complementary representation for nodes in the
[th layer.

Z"  Nodes representation of the remaining networks for
anchor network G'.

Z'  General representation for nodes in the /th layer.

Y/ Final representation for nodes to predict the target
network.

Wﬁ. Project matrix of specific convolutional module in

the /th layer.

Project matrix of complementary convolutional

module in the /th layer.

I. INTRODUCTION

ITH the massive growth of social media usage [1],
Wa large collection of multimodal data is generated,
which poses great challenges for data analysis [2]. Complex
network is a ubiquitous data structure that captures con-
nections between individual entities, where nodes represent
entities and edges encode the interactions between these nodes.
It can be employed in a wide range of domains, e.g., social
networks [3], citation networks [4], biological protein—protein
networks [5], and vehicular ad hoc networks (VANETS) [6].
Link prediction is a fundamental problem in analyzing and
mining complex networks, with the goal of predicting lost
or potential links based on known network information [7].
It is critical for understanding the evolutionary process and
exploration of complex networks and helps to complement
partially observed networks. Link prediction is the basis for
online marketing, e-commerce services, and various recom-
mendation systems.

In recent years, link prediction in complex networks has
attracted a lot of attention and a large number of methods have
been proposed gradually. Network embedding [8] learns the
low-dimensional vector representation of the nodes while max-
imizing the structural information of the original network and
can simply characterize the similarity of the node pairs by the
distance between the node representations. Therefore, network
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Fig. 1.

Tlustrative example of link prediction in multiplex networks. It is constructed from the richly structured data of Twitter. G', G?, and G> represent

different kinds of relation networks, namely, retweet, mention, and follow, respectively. Solid lines of the corresponding color are the existing connections

between them, while dashed lines represent the links to be predicted.

embedding methods can easily and efficiently take link pre-
diction and are widely used in link prediction tasks. Although
existing network embedding methods have been extensively
researched with good results on link prediction tasks, most
of the previous research has focused on single-layer com-
plex networks, i.e., complex networks consisting of only
one type of interaction behavior between nodes. In reality,
however, complex network systems are often consisting of
multiple interacting relationships, e.g., the social network may
represent a network of friend’s relationships, a network of
family relationships, or a network of cooperative relationships.
Such complex networks formed by the interaction of multiple
relationship types between the same entities can naturally be
described as multiplex networks [9], [10].

Link prediction based on multiplex network embedding has
become an important research direction. Unlike single-layer
networks that only take link prediction in one network, there
are two main types of link prediction tasks in multiplex net-
works. The first type [11]-[13] is inferring links for intralayer,
that is, inferring the potential links in every single layer
using multiple networks structure. Some work extends the
link to interlayer [14]—-[18], commonly referred to as network
alignment. Network alignment establishes the correspondence
between the nodes from two networks and predicts the anchor
links. However, there is often the situation in real life, e.g., the
data of a network are completely lost for technical reasons
and need to be recovered or the behavior of a gene in an
entirely new type of interaction is inferred based on the known
behavior of the type of relationship. Predicting the potential
links for such a network with no topology at all is very
practical, and yet, it has not been discussed. In this article,
we propose the novel link prediction problem and define
it as inductive link prediction in multiplex networks, which
exploits the existing multiple types of relational data to predict
links in an unobserved relation. We give a specific example
in Fig. 1, and there are several kinds of relations such as
retweet, mention, and follow in the Twitter social network.
The first type is forecasting links at each relation displayed

as the dashed line as the color corresponding to the located
network and the network alignment predicts interlayer links
finding that the correspondence nodes between two networks
are shown as a gray dashed line. Unlike these two tasks, the
inductive link prediction is to predict an unobserved relation,
friend in life, which is a brand new relationship without any
known links.

Although existing work demonstrates promising perfor-
mance in the two conventional link prediction tasks, they face
the following challenges when applied to the new issue we
raised. First, the methods designed for the first type of link
prediction emphasize the structure specific to the single layer,
although they incorporate the correlations among multiple
layers. The specific structure may be useless or even negatively
impacting in predicting links in a new relation. Second, the
alignment models focus on two-layer networks and predict
links to the same node in both networks, rather than infer
links between different nodes. Third, the multiplex embedding
methods learn general representations of nodes in all layers
and are mainly used for node classification and clustering but
can also be used to predict links in a new relation. However,
the type defining common vectors [11], [19] shared by all
layers may lose the information essential for a part of layers,
while the type aggregating the interactions of all layers [12],
[20] encoding the specific information for individual layers
but not useful for other layers and redundant information
included in other layers in some cases. To overcome the
limitations, we are seeking an approach that can facilitate
the collaboration of different layers and capture sufficient
complementary information and eliminate unique information
for specific layers but the noise for the target network.

In this article, we propose a novel method termed interac-
tive learning across relations (ILAR), to inductively predict
links by exploiting sufficient complementary information and
correlations in multiplex networks. In the proposed method,
we design two convolutional modules, i.e., a specific con-
volutional module and a complementary convolutional mod-
ule, to encode different features that capture the specific
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information from a single layer and complementary infor-
mation from other layers, respectively. Also, for the comple-
mentary convolutional module, we apply a parameter sharing
strategy to build the correlations of multiple layers. Moreover,
we design a disparity constraint to ensure that the features
extracted are different.

The main contributions of this article can be summarized
as follows.

1) We summarize two types of link prediction tasks of
existing multiplex network methods and raise a new
issue to be settled, that is how to inductive link pre-
diction on an unobserved relation based on the existing
multiple types of relational data.

2) We propose a novel ILAR method to solve the novel
inductive link prediction problem by fully capturing the
complementary and useful information in multiplex net-
works. Also, we design two convolutional modules, i.e.,
specific convolutional module and complementary con-
volutional module, and disparity constraints to encode
the complementary information.

3) Extensive experiments on a series of real multiplex
networks clearly demonstrate that our proposed model
outperforms the state-of-the-art network embedding
methods in the novel link prediction problem.

The rest of this article is structured as follows. Section II
reviews related work on network embedding methods, includ-
ing single-layer network embedding methods, multichannel
network embedding methods, and heterogeneous network
embedding methods. In Sections III and IV, we present
the problem formulation and the proposed method in detail,
respectively. Extensive experiments are conducted and ana-
lyzed in Section V. Finally, Section VI concludes this article.

II. RELATED WORK
A. Single-Layer Network Embedding Methods

Single-layer network embedding methods can be roughly
divided into three categories: methods based on matrix decom-
position, methods based on random walk-based, and methods
based on deep learning.

Most of the early methods learned node embedding by
taking the form of matrix decomposition, where they used
a matrix representation of the features of the network and
then factorized the matrix to obtain the low-dimensional
vector. Isomap [21] first used the K-nearest neighbor (KNN)
algorithm to construct a neighborhood graph and then used
this graph by computing the shortest path between node pairs
to obtain the distance matrix of the graphs. It then applied
the classical multidimensional scaling (MDS) algorithm to the
distance matrix to obtain the coordinate vectors of the nodes.
The local linear embedding (LLE) method [22] eliminated the
need to estimate pairwise distances between separated nodes,
which assumed that each node and its neighbors lie at or near
a local linear patch of the principal line and then constructed
a neighborhood-preserving mapping based on local linear
reconstruction. LE [23] also constructed a graph from using
€ neighbors or KNN and then used a heat kernel to select
weights between pairs of nodes in the graph.

However, these methods based on matrix decomposition are
difficult to use in large networks due to the high computational
and time-consuming. With the great success of word2vec [24]
in the field of natural language processing (NLP), scholars
have proposed methods based on random walks to learn node
representations. These models treat a node in a network as a
word and use random walks to obtain a sequence of contexts
and then use the skip-gram [24] algorithm to model the
probability of nodes within each local window in the random
walk sequence. Inspired by the fact that the distribution
of nodes in short sequences generated by random walks is
similar to that in natural language, DeepWalk [25] took a
depth-first sampling strategy to perform truncated random
walks to generate wandering sequences and then applied the
skip-gram algorithm to learn node embedding. node2vec [26]
designed a second-order random walk strategy to sample
the neighborhood, defining two parameters p and ¢ that
adjust between depth-first sampling and breadth-first sampling
during the random walk. LINE [27] considered the first-order
similarity and the second-order similarity of nodes.

Although these shallow models perform well on many tasks,
they have a limited ability to discover underlying relationships
in complex data. In recent years, deep learning-based network
embedding methods have emerged as the main key technology,
primarily extending graph neural networks (GNNs) to complex
networks to learn complex nonlinear features in network
structures. SDNE [28] and DNGR [29] are based on a deep
autoencoder framework to capture highly nonlinear network
structures. However, both of them use the global neighborhood
of each node as input, which is computationally expensive.
Graph convolutional networks (GCNs) are solved by defining
a convolution operator in the network [30]. GCNs iteratively
aggregate the representations of a node’s neighbors and use the
obtained representation and its representation in the previous
iteration to obtain a new node representation, with multiple
iterations allowing the learned node representation to charac-
terize the global neighborhood. GCNs can be broadly classified
into two categories based on the spectral domain [30]-[32]
and the spatial domain [33]-[35]. From the spectral domain
perspective, GCN applied Fourier transform to the graph
signal and filter and then applies the convolution theorem to
transform the convolution operation in the time domain to a
product operation in the spectral domain. The key difference
between the different methods is the different choice of filters.
From the spatial domain perspective, GCNs can be seen as an
operation that aggregates feature information from a node’s
neighborhood.

B. Multiplex Network Embedding Methods

The above embedding methods, although proven to be effec-
tive, are mainly used to deal with single-layer networks and
are not applicable to learn node embedding in multiplex net-
works. With the increasing prevalence of multiplex networks in
real-world applications, multiplex network embedding meth-
ods have been proposed, which can be divided into methods
that learn specific representations for each single layer and
methods that learn general representations for all layers.
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Some multiplex network embedding methods learn specific
representation for every single layer and usually applied
to link prediction for intralayer of multiplex networks.
MNE [11] and CrossMNA [19] introduce a common vector
for anchor nodes to capture the shared information across
all the relations. MNE [11] represents the embedding vec-
tor in each relation through the combination of common
vector and low-dimensional vectors for each relation, while
CrossMNA [19] combines the common vector and network
vector for each relation, which is introduced to extract the
semantic meaning of the single network. MELL [36] enforces
embedding vectors in each layer for the same node to be close
to the average embedding matrix among layers in order to
share the common information. The asp2vec [37] dynamically
assigns relation for each node based on its local context and
models the interactions among layers in terms of both related-
ness and diversity. LISCNE [38] takes advantage of the com-
mon and local features in multiplex networks and exploited
layer similarity at the same time. DMGE [39] first learned
consistent node embeddings through shared GCN, and then,
based on the consistent node embeddings, it defined specific
graph convolutional layers for each complex network to learn
the node embeddings of each layer. MANE [40] divided the
node pairs in multiplex networks into intraview pairs, cross-
view, intranode pairs, and cross-view, cross-node pairs, and
jointly trained the three types of node pairs to learn the corre-
sponding node representations for each layer of the network.

Some multiplex network embedding methods learn con-
sistent and general representation and often applied to node
classification and clustering. MNE [11] and CrossMNA [19]
learn the general representations with the definition of the
common vector and intervector, and CrossMNA is also a
method applied to network alignment. MVE [41] provides
a robust representation by promoting the collaboration of
different views and different weights were assigned to views
during voting. HMNE [42] extracts the cross-layer neighbor-
hood of a node to learn the unified embedding by applying a
heuristic 3-D interactive walk technique. mGCN [12] is a mul-
tidimensional convolutional neural network method for mod-
eling intra- and cross-dimensional interactions in multiplex
networks. DMGI [20] extends deep graph infomax (DGI) [35]
for attributed multiplex networks and jointly integrates the
relation-type specific node embeddings by minimizing the
disagreements among them. SSDCM [43] leverages a novel
cluster-aware, node-contextualized global graph summary gen-
eration strategy and then modeled the nodes and cluster
structures by maximizing the mutual information between
local nodewise patch representations and label correlated
structure-aware global graph representations. HDGI [44] first
designs a joint supervision signal containing both extrinsic and
intrinsic mutual information through high-order mutual infor-
mation and then introduces a high-order deep infomax (HDI)
to optimize the proposed supervision signal.

C. Heterogeneous Network Embedding Methods

A heterogeneous network consists of multiple types of
nodes and edges, while the multiplex network can be viewed as
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a special form with only one type of node. metapath2vec [45]
is a well-known model, which extends the skip-gram model
to model the heterogeneous neighborhood of a node based on
the meta-paths. RHINE [46] divides structural characteristics
of relations in HINs into affiliation relations (ARs) and one-
centered-by-another structures and interaction relations (IRs)
with peer-to-peer structures. R-GCN [47] introduces the GCN
framework that can be to model multiple types of relations.
HeGAN [48] employs adversarial learning for HIN embedding
in order to model the rich semantics on HINs. GATNE [49]
proposed a general framework of MNE [11] to attribute mul-
tiplex heterogeneous networks. Although many recent studies
applied GNNs to heterogeneous networks [50], they are mostly
semisupervised methods and not adapted to our tasks.

II1. PROBLEM FORMULATION

Our goal in this article is to take inductive link prediction
based on the learned node embeddings from the existing
multiplex network data. In this section, we will introduce some
background knowledge and definitions of multiplex networks,
followed by the problem formulation.

Definition 1 (Multiplex Network): A multiplex network
MG = (G',G?,...,G") consists of a set of N nodes
V = (v1,v2,...,0y) and L relations, and interactions in
each relation form a set of edges (¢!,¢2,...,¢L), where
G' = (V,&) denotes the Ith layer and the topological
structure of this layer can be represented by the adjacency
matrix A’.

Due to the sparse and high-dimensional format of adjacency
matrix, multiplex network embedding has recently attracted
great attention to learning the low-dimensional representations
for nodes.

Definition 2 (Multiplex Network Embedding): ~ Given a
multiplex network with L relations, MG = (Gl, G2, ..., Gh),
the type of learning specific representations for nodes in
each relation multiplex network embedding aims to learn the
robust node representations for each node »; € V in each
layer Z; € R'*? with d « N. The type of learning general
representations for each node o; € V in all relations is to
learn the d-dimensional vector Z; € R? with d < N.

There are not only intralayer interactions but also interlayer
interactions in multiplex networks; correspondingly, there are
two types of link prediction in multiplex networks, one for
intralayer link prediction that is to predict missing or potential
edges in each layer of network and one for interlayer link
prediction that is commonly referred to as network alignment.

Definition 3 (Intralayer Link Prediction in Multiplex
Network):  Given a multiplex network MG =
(G',G?,...,G"), intralayer link prediction in multiplex
network aims at inferring the missing or potential edges in
each relation of G! € MG, that is, to generate the edge
probability function P(vl]-, vé) — [0, 1].

Definition 4 (Interlayer Link Prediction in Multiplex Net-
work): It is often referred to as network alignment. Given the
network MG = (G', G?, ..., G1), a set of observed anchor
nodes V,, the goal of network alignment task is to discover
the unknown or potential anchor nodes among layers of MG,
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interrelated; 2) features extracted: specific features for the anchor network and complementary features from other remaining networks are learned by two
convolutional modules and parameter sharing strategy is used for the complementary convolutional module; and 3) ILAR: fuse the features encoded by two
convolution models to reconstruct the anchor network and disparity constraint is used to enforce features encoding different information for anchor network.

i.e., for a pair of nodes (vf‘ s v?), where v; and v; are in the
set of node set V, and to predict whether there is an anchor
link between them in networks G" and G.

However, it is another highly practical link prediction prob-
lem that is to predict possible links for networks with no
topology at all, for example, sometimes data for a network
are completely lost for technical reasons or the behavior of
genes in an entirely new type of interaction is inferred based
on the behavior of genes interacting in some known types of
relationship. For the novel link prediction problem, we refer
to it as inductive link prediction in multiplex networks.

Definition 5 (Inductive Link Prediction in Multiplex
Network): Based on the multiplex network MG =
(G',G?,...,G") with node set V, the inductive link pre-
diction problem is to find a function P(vf,v;) — [0,1] to
infer the potential edges in G, where v;,0v; € V and G' €
(G", G",...,G"%) are the networks without any topology
need to infer the potential edges.

In this article, we aim at solving the problem that takes
inductive link prediction in one unobserved network, that is,
k = 1, and we use G' to denote the target network to
take inductive link prediction. Then, we will introduce some
notations we will use in the remaining of this work. The
Nomenclature provides a list of major notations in this article.

IV. PROPOSED MODEL

In this section, we introduce our proposed approach for
inductive link prediction by integrating the network structure
of multiple relations in multiplex networks.

A. Overall Structure

When applied to the problem, most existing approaches,
e.g., the methods designed for the link prediction in the indi-
vidual layers and learning general embedding for nodes in all
layers, fail to achieve satisfactory results. This is because either
some of them emphasize the unique structure information
for an individual layer, which may be noise for the target
network, or some only capture the common information for
all layers, which is insufficient. Thus, we need an approach

integrating multiple independent relations to encode sufficient
complementary information and eliminate noise information.

The overall process for ILAR is shown in Fig. 2. The core
idea is that the topological structures of the anchor network
are not only correlated with itself but also with other networks
formed by multiple relations. For the given multiplex network,
our proposed model iteratively selects one layer as the anchor
network, and for each anchor network, we design two different
convolutional modules to separately encode specific informa-
tion for anchor network and complementary information from
other remaining networks. Through the interactive learning
and fusion of features obtained from the two modules, the
representation of the reconstructed anchor network not only
fuses the different relational features but also preserves the
properties and structures of the original network. The final
embedding to inductively predict links is the average value
of outputs of complementary convolutional module for each
anchor network, rather than the specific module to eliminate
the exclusive information.

B. Interactive Learning Across Relations

First, we assume that the anchor network selected is G'.
To capture the specific information for the anchor network
as well as the complementary information and correlations
from other remaining networks, we introduce two convolu-
tional modules, i.e., the specific convolutional module and
the complementary convolutional module. Then, we introduce
these two types of modules in detail.

1) Specific Convolutional Module: In order to make full use
of all layers in multiplex networks, we iteratively select one
layer of the multiplex network as the anchor network. For the
anchor network G’ with the adjacency matrix A’ and its degree
matrix D' as topological structures, we utilize the specific
convolutional module to capture the unique information in
this network. The output Zé € RM*? denotes the specific
representation.

In this article, we use two-layer GCN [51] as the convolu-
tional module, and through the module, Zé is learned by

Z = Als (A’IWQ(O)) W, (1)
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where A" = D A"+ 1D is the symmetrically
normalized adjacency matrix. I is the identity matrix and D’
is the renormalized diagonal degree matrix. In (1), I cannot
be replaced by the feature matrix of the network, that is, our
model is suitable for attribute-free networks, which we will
explain after introducing other convolution modules. Wi(()) and
Wﬁ.(l) are the weight matrices. o is the activation function and
we use ReLU(+) = max(0, -) in this article.

2) Complementary Convolutional Module: As the structure
of the same nodes in different layers is not independent in
multiplex network, we introduce a complementary convolu-
tional module. For the remaining networks except for anchor
network in the multiplex network, we apply the complemen-
tary convolutional module to capture the complementary and
useful information for the anchor network. It is also a two-
layer GCN, while the weight matrices Wi,(o) and Wim are
shared by all the other remaining networks. This parameter
sharing strategy is supposed to learn the most correlated and
common information of the remaining networks. We share the
same weight matrix for each network G” of the remaining
layers as follows:

7 =Ao (fi’lwi(o)) W )

We train the link prediction in each layer based on the
embedding

Ar = sigmoid(Z’ Z"T). 3)

Also, we train the model by minimizing the negative
cross-entropy between the reconstructed adjacency matrix A"
and the original adjacency matrix A"

1 r ~r r A"
loss, = N ZlZJ:AU logA;; + (1 - Aij) log(l - Aij).

“)

With the learned weight matrices, we encode the complemen-
tary information for the anchor network G'

Z = ,ifa(,if IW’C(O)) W, )

3) Interactive Learning Across Relations: After obtaining
features based on network structures, embeddings for anchor
network will undergo a fusion from dual feature spaces
to promote interaction among relations. With the fusing of
two features, we get the general embeddings for the anchor
network to reconstruct an adjacency matrix

72 =7 +a Z. (6)

Then, we use the embedding Z' to reconstruct the matrix of
anchor network

Al = sigmoid(z’z’T). %

We minimize the sum of reconstruction error of each
network by

Joss; = _% S Allog Ay + (1 - AL) 1og(1 - Af.j).
! ij

®)

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

a) Disparity constraint: The features learned by two
different convolutional module, encoding specific features and
complementary features for anchor network, help to recon-
struct the network. To ensure that the two modules learn differ-
ent information, we apply a score function D(Z', Z') to keep
them away from each other. We employ the Hilbert—Schmidt
independence criterion (HSIC) [52] to enhance the disparity
of their outputs. Formally, the HSIC constraint of Z' and Z
is defined as

lossg = »_ HSIC(Z!, ZL)
l
=(m—1)"tr(RK,RK,) )

where K, and K. are the Gram matrices with ky;; =
K (Z'Z)) and k.;; = K.(Z Z)), R = I — (1/n)ee’, I is
an identity matrix, and e is an all-one column vector. In our
implementation, we use the inner product kernel function for
K, and K ..

With the disparity constraint of HSIC for Zé and Zi,
it enforces Zi to learn the unique structure existing in the
anchor network and ZIC to learn the complementary structure
shared by other networks that do not exist in the anchor
network. This is also the reason that the identity matrix is
input into the convolutional module instead of the network
attributes. The two convolutional modules cannot effectively
capture different features by propagating the same attributes
if the attributes of the network are input.

b) Overall objective function: The total objective func-
tion is defined as follows:

L

L
loss = Z loss; + 4 - Zlossr + y -loss,
I rl

(10)

where f is the coefficient that controls the degree of distorting
embedded space and y is the parameter of disparity constraint
term. Also, we let f = y = 1.0 for all experiments. The
corresponding pseudocode of the model is summarized in
Algorithm 1.

c) Predict links in the target network: We sum the nodes
representation of all anchor networks as the final embedding
to predict the links in the target network. The final embedding
Z € R"™ is expressed as follows:

z=>17

1

Y

where L is the number of layers of the multiplex network.
We can perform inductive link prediction to predict unseen
links in the new relation by utilizing the embedding Z

p(vf,v}) = sigmoid(z] z;) (12)

where G’ is the target network without any topology requiring
to predict potential links and z; and z; are the final embedding
of nodes v; and v}, respectively.

4) Complexity Analysis: In the entire loop of selecting
the anchor network to reconstruct the network and learn
the complementary features by the convolutional module, the
time complexity is O(L>N?). To reduce the time complexity,
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Algorithm 1 ILAR
Input: The multiplex network
G ={G', G?, ..., GE} with adjacency
matrix, the parameters a, 5, y,d
Output: The adjacent matrix A? of the target

network G’

1 repeat
2 | foreach layer [ in L do

! Al AlTwW! I .
3 Z,=A0c(A IWS(O))WS(U,
4 foreach layer r in L and r # 1 do

i i l .
5 7" = A’a(A’IWC(O))WC(l),
6 % reconstruct adjacent matrix :
7 A" < sigmoid(Z'Z'T);
8 loss, = . loss(A", A”);
9 end
Al (Al .

10 z.=Alg(AIW. YW
1 Z2'=27 +o-Z.;
12 Al = sigmoid(Zl?lT);
13 loss; = loss(Al, Al);
14 % Disparity constraint
15 lossq = HSIC(Z!, Z);
16 | end
17 until converge;
18 2= 72,

19 return A’ = sigmoid(ZZ");

we take two strategies: sampling negative edges (negative
sampling approach [53]) and sampling complementary layers.
More specifically, the sparsity of network in real life, the
number of negative edges, is very large and can generally be
linearly bounded by the number of nodes. It is computationally
expensive to consider all the negative edge pairs. Therefore,
we randomly sample K nodes that are not connected to node
v; for each (v;,v;) € Ein every network G'. These K samples
are put into the set of negative samples. In this way, the size
of negative samples is only k times as large as that of positive
samples. Also, the time complexity for reconstructing each
network is O(M), and M = |&|'. Then, the loss in (8) can be
trained like this (see (4) is the same)

z logp(vf, vi)
(uf,vﬁ)eil

>

11 =]
(vl. ,uj)egneg

loss; = —

1 —log(p(vf,v;)) (13)

where féeg is the sampled negative edge set.
On the other hand, for most multiplex networks, it is not
necessary to sample layers because L is usually a relatively

small number. For L larger to sample, we randomly select R
layers to learn the complementary features for each anchor
network instead of all the rest of the networks to reduce the
learning time. After implementing the two sampling strategies,
the overall time complexity of our model is O(L(R + 1)M).

V. EXPERIMENT

To verify the effectiveness of our method, we conduct
inductive link prediction on four real multiplex networks and
compare three types of network embedding methods, including
single-layer network embedding methods, multiplex network
embedding methods, and heterogeneous network embedding
methods.

A. Datasets

Mobile crowdsensing (e.g., a community with people using
mobile devices) has emerged as a promising way to collect
data [54]. Here, we apply the datasets obtained from CoMuNe
lab’s web site.! We summarize the dataset statistics as listed
in Table I.

1) CKM [55]: A social multiplex network of physicians in
four towns, where three layers represent whom they turn
to who they need advice, who they discuss cases with,
and who they most often socially. There are 246 nodes
and 1551 links.

2) SACCHPOMB [56], [57]: A genetic multiplex net-
work of different types of genetic interactions. It has
five layers of interactions: direct interactions, physical
associations, suppressive genetic interactions, synthetic
genetic interactions, and additive genetic interactions.
There are 4092 nodes and 63 033 links.

3) DROSOPHILA [56], [57]: A genetic multiplex network
of different types of genetic interactions, e.g., direct
interactions, suppressive genetic interactions, additive
genetic interactions, and physical interactions. There are
8215 nodes and 43210 links.

4) HOMO [56], [57]: A genetic multiplex network of
different types of genetic interactions, including direct
interactions, physical associations, and colocalization.
There are 18222 nodes and 166904 links.

B. Baseline Methods

We compare with three types of methods, namely, single-
layered embedding models, heterogeneous, and multiplex
embedding models to test the performance of the proposed
model for inductive link prediction.

1) vgae [58]: An embedding model for single-layered
networks. It was an inference model parameterized by a
two-layer GCN.

2) node2vec [26]: An embedding model for single-layered
networks. node2vec designed a biased random walk and
explores diverse neighborhoods to learn richer represen-
tations.

3) MELL [36]: A multiplex network embedding model
learning specific representation for each relation. MELL

Uhttps://comunelab.fbk.eu/data.php
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TABLE I
STATISTICS OF DATASETS

Dataset Nodes | Layers Edges Edges in each relation
CKM 246 3 1551 tgg Ot)o dlsc(lgsgsgmth see 11(15052 )often
SACCHPOMB | 4,092 5 63,033 (?’igeg‘g) PE};”SS(‘)‘SI S‘zll’g’rggsgi)v € Sé’jgg;“ gi‘}ig;‘;
DROSOPHILA | 8215 4 43210 (?fgg";) S“gl?izsls)ive ‘?g’%iég’)e Plhzy’ ;iggl
HOMO 18222 | 3| 166,904 (;)fg;é) ggyg‘g;; Cdg;ﬁ‘ggﬁ?"“

simultaneously learned the embedding vector of each
node and layer embedding of each layer.

mGCN [12]: A multiplex network embedding method
learning general representation for nodes in all lay-
ers. mGCN proposed a multidimensional GCN, which
captured the interactions within and across multiple
dimensions.

DMGI [20]: An attributed multiplex network embedding
method learning general representation for nodes in all
layers. It captures the local patches of a graph and the
global properties of the entire graph.

CrossMNA [19]: A multiplex network embedding model
not only learns the specific representation for each
relation but also learns the general representation for
the whole multiplex network. The representation in each
relation was generated by combining the layer vector
for each layer and the general embedding for each
node.

R-GCN [47]: An embedding model for heterogeneous
networks. R-GCN develops neural networks into het-
erogeneous networks, which specializes in dealing with
the highly multirelational data characteristic of realistic
knowledge bases.

GATNE [49]: An embedding model for heterogeneous
networks. GATNE proposes a unified framework to
address the problem of embedding learning for the
attributed multiplex heterogeneous network, which sup-
ports both transductive and inductive learning. It is
noted that the multiplex network is seen as a special
heterogeneous network with only one node type.

For single-layer network embedding methods, node2vec and
vgae, training is first performed on all network layers to
learn the node representation of each layer of network, and
then, the node representations of all layers are summed up as
the final node representation for link prediction in the target
network. For multiplex network embedding methods that learn
specific embedding for each layer, MELL, the intravector of
CrossMNA and GATNE, we also sum up the embedding of
all layers as the final representation to predict in the target
network. For multiplex network embedding methods that learn
general representation for all layers, CrossMNA, mGCN, and
DMGI, we take the general representation for prediction. For
the convenience of display, we use CMNA_s and CMNA_g
to indicate the learned specific representation and general
representation, respectively. For the R-GCN, we follow the
reference using DistMult factorization [59] as the scoring

4)

5)

6)

7)

8)

function to infer links in each layer and average the scores
in all layers as the link possibility in the target network.

C. Experimental Settings

For each dataset, we select one layer at a time to be the
target network for prediction and the other layers as inputting
multiplex network. It is reasonable to use the information-rich
networks to predict the other layers, while using a sparse and
information-less network to predict a dense network has a
relatively high error rate and is meaningless. For the CKM
dataset, we choose “turn to” and “discuss with” as target
networks to predict in turn and others as known multiplex
network from which complementary structural information is
learned. For the SACCHPOM dataset, we choose the layer
of “direct interaction” and “synthetic genetic interaction”
as target networks in turn. For the DROSOPHILA dataset,
we choose “‘suppressive genetic interaction” and “additive
genetic interaction” as target networks. For the HOMO dataset,
we set “direct interaction” as the target network for prediction.

For the selected target network, all nodes and links present
in the network are used as the test set positive samples, and the
same number of disconnected edges as the negative samples
of the test set is randomly selected. The remaining networks in
a multiplex network dataset are taken as the training set. Each
method is trained and tested five times, and the average result
of the tests is taken as the final result. All models set 128 as the
dimension of the final embedding. For CrossMNA, both the
dimensions of layer vector d; and intervector d, are set as 128.
For mGCN and DMGI, we use the representations learned by
node2vec on each dataset as attributes to input. In addition,
for node2vec, the optimal hyperparameters are empirically set
as p =2 and g = 1. For all models taking negative samples,
we set the sample number to 5.

D. Inductive Link Prediction

In practice, link prediction algorithms can be applied to
predict unseen links in the network and recommend the top-k
most potential links for nodes. Therefore, we evaluate the
ability of our model in the inductive link prediction problem
from two aspects. As mentioned in the experimental setting,
we select one or two networks as the target network for testing
on each dataset. We conduct five times experiments for each
network and take the average as the final result. For each pair
of nodes, we follow the formula defined in (12) to measure
the linking possibility.
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1)

2)

Predict Unseen Links: In this case, we randomly sample
an equal number of nonedges with positive edges as
negative samples in each target network. The evaluation
metrics used to evaluate the performance are area under
the curve (AUC) and average precision (AP), where
AP reflects the accuracy of predicting positive samples.
Higher values of AUC and AP indicate better link
prediction performance. The AUC score is defined as

B > Z?]L I(pred(x;), pred(y;))

AUC
N, * N,
(14)
1, a>b
I(a,b) =105, a=b (15)
0, a<b

where pred(-) is the classification result of the model
for positive sample x; and negative sample y; and N,
and N,, are the number of positive and negative samples,
respectively. AP scores are defined as follows:

2 Precision(k)
B N

where Precision = TPTP+FP, TP denotes true positive,
and FP denotes false positive.

The results for CKM, SACCHPOMB, and
DROSOPHILA in this task are shown in Fig. 3
and the results of HOMO are shown in Table II.
Top-k: In this case, we recommend top @k nodes for
each node that are most likely to existing links with it
in the target network. We compare the results by the
score of the recommended node pairs hitting the real
existing links and the evaluation metric of top @k can
be defined

AP (16)

t
rop@k = [<1oPeR) N (17
<"

where &' is the positive edge set of the target network
and |¢'| is the number of positive links. &(top @k) is
the most likely k edges set recommended for each node.
Also, |E(rop@k) N &' indicates the number of correct
predictions among the k edges recommended for the
node. Here, we set different k as 5%, 10%, and 15%
of nodes to evaluate the effectiveness of recommending
potential edges for nodes. Also, the results of CKM,
SACCHPOMB, and DROSOPHILA are presented in
Fig. 4 and the results of HOMO are shown in Table II.

From the results of the two tasks, we can observe that the
following conditions hold.

1)

Our proposed model ILAR almost outperforms the other
compared methods on all datasets in both predicting
unseen links and recommending top k potential links,
which validates the superiority of our model in pre-
dicting links in new relations by fully utilizing the
complementary information and correlated relationship
in the multiplex network. In particular, the AUC score
of predicting unseen links in the SACCHPOM dataset
obtain remarkable results and boost the performance by

Fig. 3.
top@15 on (a) CKM, (b) SACCHPOM, and (c) DROSOPHILA, respectively.
Note that MGCN and DMGI are attributed network embedding methods.

9
— ILAR vgae CMNA s  —— mGCN R-GCN
node2vec —— MELL CMNA g —— DMGI GATNE
top@10 top@10
0. 0.
02
top@15 top@> d\iLs\;:uss with top@15
(@)
top@10
664 o
top@5 Direct top@15 top@3s Physical top@15
(b)
top@10 10
&0+ -6+
top@> Suppressive op@15 10p@s Addictive p@13
(©
Performance comparison of top-k in terms of top@5, top@10, and

TABLE II

LINK PREDICTION RESULTS OF PREDICTING UNSEEN LINKS AND TOP-k

ON THE HOMO DATASET. (BOLD IS THE BEST RESULT)

Methods AUC AP top@5 | top@10 | top@15
node2vec 0.584 0.614 0.248 0.304 0.351
vgae 0.511 0.520 0.161 0.200 0.240

MELL 0.507 0.567 0.190 0.235 0.275
CMNA_s 0.628 0.561 0.123 0.146 0.161
CMNA_g | 0.613 0.544 0.149 0.167 0.179

mGCN 0.587 0.539 0.127 0.205 0.279

DMGI 0.537 0.531 0.116 0.173 0.225

R-GCN 0.500 0.500 0.033 0.060 0.080
GATNE 0.582 0.553 0.009 0.014 0.020
ILAR 0.761 | 0.767 | 0.192 0.341 0.451

around 25% when compared to the best comparable
method DMGI.

2) In the CKM dataset, the structure is relatively similar

between layers, MELL and DMGI enforcing that the
same node cross relation close also gets good results
comparable to our model in predicting unseen links,
while in the recommending top-k case, there is still a gap
between their results and our model. In other datasets,
MELL gets poor results, and this is because even for the
same node, their structures vary greatly between layers,
and it is unreasonable to force the embeddings to be
closer.

3) DMGI has relatively good results in all datasets, which

may be due to the additional information of inputting the
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Fig. 4.
MGCN and DMGI are attributed network embedding methods.

node2vec embedding results as the attributes. We take
the test using the identity matrix instead of the node2vec
embedding results as attributes, the AUC value on sup-
pressive network only reaches 0.652. Also, DMGI has
a strong advantage in distinguishing between positive
and negative edges and even outperforms ILAR on the
DROSOPHILA dataset, but it does not perform well in
recommending links.

4) The general representation of CrossMNA (shown in
CMNA_g) works generally more effectively than the
methods of learning specific representation in each layer
(shown in CMNA_s). Learning specific representation
emphasizes the structure-specific information for an
individual layer, which may be noise for the target
network.

5) The heterogeneous embedding methods have poor per-
formance on almost all datasets. Maybe, it is because
heterogeneity is designed for networks that contain mul-
tiple types of nodes and edges. When they are applied
to multiplex networks with only one type of nodes, they
are fundamentally single-view models and do not work
well empirically on multiview networks.

E. Ablation Study

We conduct ablation studies on the CKM and Drosophila
datasets to demonstrate the boost in predictive performance

CMNA_g

[ CMNA g

[ CMNA g
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Performance comparison of predicting unseen links in terms of AUC and AP on (a) CKM, (b) SACCHPOM, and (c) DROSOPHILA. Note that

when considering the cross relationship of interactive learning.
The methods for comparison are listed as follows.

1) ILAR_I: The proposed model without disparity con-
straints enforces the two designed convolutional modules
to encode different features.

2) ILAR_2: The proposed model without the complemen-
tary convolutional module learns the complementary
information from other networks except for the anchor
network. This method is also commonly known as
GAE [58].

3) ILAR_3: The proposed model defines a specific vector
for each layer and a common vector for all layers. The
common vector is shared by all layers and trained by a
two-layer GCN following our model.

Table III summarizes the results of ablation studies. From
the results, we can observe that our model effectively learns
sufficient and useful information in multiplex networks.
Removing the disparity constraint (ILAR_1) degrades the per-
formance considerably, which shows that through the disparity
constraint, the two convolutional modules learn the unique
structure that exists in the anchor network and the comple-
mentary structure that does not exist in the anchor network.
Without the disparity constraint (ILAR_1), the results are even
worse than without the complementary convolutional module
(ILAR_2), which may be because the redundant information
is learned by two convolutional modules. Compared with
method 3 and our model ILAR, the results of method 2
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TABLE III
ABLATION EXPERIMENT RESULTS

11

CKM DROSOPHILA
Methods turn to discuss with Suppressive Additive
AUC top@15 AUC top@15 AUC top@15 AUC top@15
ILAR_1 0.770(0.013) 0.720(0.008) 0.789(0.013) 0.737(0.016) 0.767(0.002) 0.666(0.012) 0.815(0.006) 0.739(0.001)
ILAR_2 0.848(0.003) 0.809(0.006) 0.878(0.006) 0.850(0.001) 0.802(0.006) 0.706(0.001) 0.864(0.001) 0.776(0.002)
ILAR_3 0.873(0.006) 0.852(0.009) 0.897(0.001) 0.882(0.001) 0.801(0.001) 0.705(0.002) 0.856(0.004) 0.792(0.007)
ILAR 0.909(0.010) | 0.888(0.006) | 0.907(0.005) | 0.887(0.010) [ 0.822(0.012) | 0.751(0.009) | 0.899(0.005) | 0.850(0.006)
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(C))

Fig. 5. Parameter sensitivity analysis on the CKM dataset. (a) Analysis of parameter d. (b) Analysis of parameter a. (c) Analysis of parameter f. (d) Analysis

of parameter y .

are weaker, indicating that integrating the correlations in
multiplex networks plays a crucial role. Moreover, learning
a common vector for all layers (ILAR_3) rather than learning
complementary information for each anchor network may only
capture the information shared by all layers and lose some
essential information for some layers.

F. Parameter Sensitivity

In this section, we study the sensitivity of parameters on
the CKM dataset. Specifically, we evaluate how different
numbers of the embedding dimensions and different values
of hyperparameter «, 8, and y can affect the model. Also, the
results are shown in Fig. 5.

1) Parameter of Embedding Dimension d: First, we show
how the dimension of the embedding vectors affects the
performance in Fig. 5(a). The dimension values are set with
various numbers of d ranging from 4 to 256. Also, we can
see that the values of all metrics in both target networks of
CKM dataset improve with the increase of the dimension until
they tend to be smooth. This is intuitive as larger dimension
can encode more useful information, while a too large number
of dimensions may introduce noises. The ascending trend of
our model slows down once the embedding dimension reaches
around 32 and the best performance is around 128.

2) Parameter of o.: Then, we show how the value of bal-
ance coefficient between specific features and complementary
features affects the performance in Fig. 5(b). When a = 0,
the performance is totally determined by the specific features

modeled from the anchor network and we can see that it gets
the worst value. It demonstrated that both specific features and
complementary features are essential for the model. With the
increase of a, the performances raise first, but the performance
will drop if a is larger than 1.0.

3) Parameter of f: We will check the impact of parameter
. p controls the weight of the complementary convolutional
module in the training process. We vary it from 0 to 100 and
the results are shown in Fig. 5(c). Similarly, with the increase
of B, the performances also raise first, but the performance
will drop quickly if g is larger than 1.0.

4) Parameter of vy: Finally, we show how the disparity
constraint coefficient y affects the performance. y controls
the disparity degree of specific features and complementary
features from two different modules. We vary it from O to
100 and the results are shown in Fig. 5(d). When y = 0 and
no constraints force them to disparate, the specific and com-
plementary features will model the common and redundant
information and then get the worst results. However, the per-
formance also degrades when y is too large. The reason is that,
in this case, the specific features and complementary features
are too far apart, and the complementary features cannot apply
useful information to the anchor network reconstruction.

VI. CONCLUSION

This article investigates existing network embedding meth-
ods of predicting links in multiplex networks and finds that
previous studies dealing with the link prediction problem in
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multiplex networks mainly focus on inferring intralinks in each
relation or anchor links between layers based on the observed
multiplex structure. In real life, however, it is often the situa-
tion predicting potential links for networks with no topology
at all, which has not yet been discussed. This is a novel link
prediction issue and we named it inductive link prediction in
multiplex networks, which exploits the existing multiple types
of relational data to predict completely unknown networks.

When applying to the inductive link prediction, the current
multiplex network embedding methods of learning specific
node representations for each layer may learn noise infor-
mation for the target network by emphasizing the specific
structure information, and the methods of learning general
node representation for all layers may be insufficient to
capture the common information among the layers. Therefore,
to cope with the novel inductive link prediction problem in
multiplex networks, we propose an ILAR network embedding
method, which learns the sufficient complementary features
through iteratively interacting learning features extracted by
two designated convolutional modules. We test our method for
the novel link prediction tasks using four datasets compared
with several state-of-the-art baseline models. The experimental
results demonstrate the superiority of our model in solving this
problem.

In this article, we aim at addressing the challenge of
link prediction in one unobserved network, while the link
prediction of multiple relations will be extended in future work
by introducing some external knowledge. We expect that the
novel inductive link prediction problem in multiplex networks
proposed in this work will be further investigated.
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