
1

Double Deep Q-Network based Dynamic Framing
Offloading in Vehicular Edge Computing

Huijun Tang, Huaming Wu, Senior Member, IEEE, Guanjin Qu, and Ruidong Li, Senior Member, IEEE

Abstract—With the rapid development of Artificial Intelligence
(AI) and the Internet of Vehicles (IoV), there is an increasing
demand for deploying various intelligent applications on vehicles.
Vehicular Edge Computing (VEC) is receiving extensive attention
from both the industry and academia due to its benefits from
the edge computing paradigm, which pushes computing tasks
from the core of the network to the edge of the network.
However, in the VEC environment considering vehicles to Road
Side Units (RSUs), due to the mobility of vehicles, it is still a
challenge to make dynamic and efficient offloading decisions for
compute-intensive tasks, especially in the congestion situation.
In order to minimize the total delay and waiting time of tasks
from moving vehicles, we establish a dynamic offloading model
for multiple moving vehicles whose tasks can be divided into
sequential subtasks, so that the offloading decisions are more
refined. Moreover, the proposed model is frame-based to avoid
unnecessary waiting time, which makes offloading decisions
when the subtasks of each vehicle are generated rather than
offloading subtasks after gathering subtasks of vehicles for a
time slot. Aiming to find the optimal offloading decision for
sequential subtasks, we propose a Dynamic Framing Offloading
algorithm based on Double Deep Q-Network (DFO-DDQN).
Extensive experimental results demonstrate the effectiveness and
superiority of the proposed DFO-DDQN when compared with
other DRL-based methods and greedy-based methods.

Index Terms—Vehicular Edge Computing, Internet of Vehicles,
Task Offloading, Deep Reinforcement Learning

I. INTRODUCTION

ALONG with the fast development of Internet of Things
(IoT) and communication technologies, the number of in-

vehicle applications, e.g., online gaming, Augmented Reality
(AR), and Deep Neural Network (DNN)-based intelligent
applications [1], [2], has risen significantly in recent years.
The upcoming sixth-generation (6G) wireless communication
brings together various enabling technologies and opens a
new era of ‘Internet of Intelligence’. Unfortunately, there is
still a contradiction between the huge demand to perform
delay-sensitive and compute-intensive tasks and the severely
constrained computing resources of vehicles [3]. In the mean-
while, with the continuous improvement of 6G networks and
edge computing paradigm, these tasks can be either performed
in vehicles, roadside infrastructure, or the cloud, which makes
it possible to make full use of the computing resources in
Vehicular Edge Computing (VEC) environments.

H. Tang, H. Wu and G. Qu are with the Center for Applied Mathematics,
Tianjin University, Tianjin 300072, China. E-mail: {tanghuijune, whming,
guanjinqu}@tju.edu.cn

R. Li is with the Institute of Science and Engineering, Kanazawa University,
Kanazawa 920-1192, Japan (e-mail: liruidong@ieee.org).

(Corresponding author: Huaming Wu)

Many efforts have been devoted to task offloading in Mobile
Edge Computing (MEC) environments, where tasks can be
divided into several subtasks that can be executed locally or be
partially offloaded to other devices [4]–[7]. In order to perform
better task offloading under poor wireless channel conditions,
partial offloading is believed to be more suitable for tasks with
stringent latency requirements, rather than binary offloading
whose tasks will be completely offloaded or not in edge
computing [8], [9]. Compared with the MEC environment, the
conditions of VEC environments are even more complicated
due to the mobility of vehicles, especially for compute-
intensive tasks which need more execution time. To simplify
the offloading-decision problems, numerous studies [10]–[13]
have divided the road into several service sections of RSUs
that do not intersect and assume vehicles in the coverage of
a certain RSU can only offload tasks to the edge server of
this RSU. This is called whether-to-offload setting of RSUs,
where the offloading decision is whether to offload or not
instead of where to offload to. However, the whether-to-offload
setting of edge servers ignores the computing resources of
other available edge servers and may cause more waiting
time when there is traffic congestion in the coverage of the
current RSU. Unlike the where-to-offload-to setting, vehicles
can choose multiple edge servers.

In addition, people are in great demand of Artificial In-
telligence (AI), which is pervading every aspect of life and
traffic is no exception. For example, the amount of compu-
tation required per task for computing a 1024 × 768 image
can reach 2,640 cycles in [20], which means that executing
AR tasks requires a large amount of computation. However,
executing compute-intensive tasks in VEC environment with
high speeds is still a great challenge. It is important to note that
certain compute-intensive tasks such as Apple ARkit [21] and
Google ARCore [22], which are well-modularized software
development kits that can split tasks into multiple independent
subtasks, which can be processed in sequence. Considering
the limitation of the computing abilities of local devices, such
compute-intensive tasks are usually partially offloaded to edge
or cloud servers. However, dynamic offloading of tasks with
sequential dependencies in a VEC environment considering
both Vehicle-to-RSU (V2R) and Vehicle-to-Network (V2N)
remains unresolved. There are few studies discussing the
offloading of sequential subtasks in the VEC environment,
which is important for applying edge computing to compute-
intensive tasks in the VEC environment. As shown in Table I,
due to the consideration of resource competition and decision-
making cooperation between different vehicles, the previous
VEC models were built in the form of time slots rather than

2

TABLE I: The Qualitative Comparison of the Current Literature on Deep Learning-based VEC Schemes.

Approaches Partial
Offloading

Multiple
Vehicles

Dynamic
Offloading

Task
Dependency

Infrastructures In-
tercommunication

Granularity

Huang et al. [14] 7 3 3 7 7 Slot-based
Huang et al. [15] 7 7 7 7 7 Slot-based
Tang et al. [16] 3 3 3 3 7 Slot-based
Wu et al. [17] 7 7 7 7 3 Slot-based
Luo et al. [18] 7 3 7 7 7 Slot-based
Ke et al. [19] 3 7 7 7 7 Slot-based

Ours 3 3 3 3 3 Frame-based

in the form of frames, where different frames correspond to
different timestamps. Slot-based offloading decisions are more
coarse-grained than frame-based offloading decisions.

In this paper, we propose a novel dynamic offloading-
decision algorithm based on DDQN to optimize the total delay
of subtasks with sequential dependency, including the waiting
time caused by the subtasks congestion when the number of
subtasks received by the same edge server increases sharply.
The key contributions of this paper are summarized as follows:

• Where-to-Offload-to Setting: In this paper, the subtask
of vehicles can choose different edge servers to offload
instead of choosing the edge server by the location of
vehicles and the coverage of RSUs.

• Sequential Subtasks Offloading: We divide compute-
intensive tasks into several sequential subtasks, which
means the latter subtask is generated after completing the
previous subtask of the same vehicle, and the results of
the last subtask need to be transmitted to vehicles. There-
fore, sequential subtasks can be executed in different edge
servers to cope with the uncertainty of communication
conditions caused by the mobility of vehicles and opti-
mize the waiting time caused by the limited resources in
a traffic congestion environment.

• Frame-based Offloading: To further find the optimal
space of offloading decision-making, we build the VEC
model by frame-based form, so that the VEC system can
make decisions immediately once subtasks of vehicles
are generated, instead of being aggregated into a set of
subtasks in a time slot. To the best of our knowledge, this
work is the first one to explore the frame-based offloading
in VEC environments.

• Algorithm Design: We design a novel Dynamic Framing
Offloading algorithm based on Double Deep Q-Network
(DFO-DDQN) to solve the MDP problems and further
optimize the time delay of tasks of the multiple moving
vehicles in the VEC system. Based on simulation ex-
periments conducted under different VEC environmental
conditions, our DFO-DDQN outperforms the greedy-
based method without task segmentation (NoSeg-Greedy)
by over 46.44% at least.

The remainder of this paper is organized as follows. Related
works are provided in Section II. The system model and
problem formulation are provided in Section III. The proposed
algorithm is presented in Section IV. Extensive simulation
experiments are conducted and discussed in Section V. Sec-
tion VI concludes this paper and points out future directions.

II. RELATED WORK

In recent years, with the rapid development of AI and
autonomous driving technology, a number of studies focus
on offloading tasks in VEC environments. Huang et al. [12]
proposed a Lyapunov-based dynamic offloading algorithm,
which considers the uplink transmission from vehicles to Road
Side Units (RSUs) to optimize the tradeoff between energy
consumption, packet drop rate, and queue stability. Wang et
al. [10] proposed a dynamic offloading algorithm considering
limited resources and variable speeds of the vehicle for MEC-
enabled vehicular networks. However, the shortcomings of
the offloading methods based on classic methods are slow
calculation and weak generalization ability.

Apart from conventional offloading-decision approaches,
deep learning-based methods such as Federal Learning
(FL) [23], [24], Deep Imitation Learning (DIL) [25], [26],
Deep Reinforcement Learning (DRL) [14], [16]–[19], [27],
[28], Multi-agent Learning [29], [30] and Deep Meta-Learning
(DML) [15], [31], [32] have been widely applied to cope with
the challenges of dynamic offloading decision-making in VEC
environments. As far as we know, the offloading decision-
making process of sequential subtasks can be regarded as a
Markov Decision Process (MDP), where the next state is only
related to the current state. Thus, DRL is particularly suit-
able for solving MDP in a complex interactive environment,
where DNNs need to learn how to represent a complicated
relationship (or policy π) between the state s and the action
a. After inputting the current state, the network generates an
action that causes the environment to generate a new state and
a reward value of r, as a feedback for adjusting the network.
Deep Q-Network (DQN) [33] is a classic DRL method that
is widely applied in the field of human-computer interaction.
Wu et al. [17] considered a VEC environment, where the RSU
can be switched to a sleeping or working state and proposed a
DQN-based method to find the optimal offloading decision
to minimize the total delay of tasks. However, DQN still
suffers from Q-value overestimation. To solve the overesti-
mate problem, Double Deep Q-Network (DDQN) is further
proposed in [34] by choosing actions by MainNet parameters
instead of TargetNet parameters. In addition, Huang et al. [14]
proposed a speed-aware offloading algorithm based on Deep
Deterministic Policy Gradient (DDPG) [35] to minimize the
energy cost within delay constraints. Wu et al. [17] proposed
a DQN based method to learn the optimal scheduling policy
for minimizing the total delay of tasks. Luo et al. [18] propose
a collaborative data scheduling scheme based on DQN to
minimize the processing cost with ensured delay constraints

3

of applications. The aim of DRL-based methods is to achieve
long-term benefits than greedy-based methods, since greedy-
based methods always choose the current optimal solution.

Unfortunately, the aforementioned studies ignore the depen-
dencies between subtasks, which are generally required to be
considered in AR, video stream, and other DNN-based ap-
plications. For example, we need to perform data acquisition,
image rendering, encoding, transmitting, decoding, and display
in a virtual reality system [36], whether to consider the order
of tasks has a great impact on the offloading decision and
the overall execution time. Tang et al. [16] utilized several
service vehicles to provide computing services and designed
a DQN-based algorithm to offload subtasks that have order
dependencies. However, it still ignores the computing services
of edge servers and roadside infrastructure. In addition, due
to the mobility of the vehicle, the transmission rate will vary
with the distance between the devices, allowing more room
for optimization during partial offloading, which is much more
efficient than binary offloading in meeting stringent Quality of
Service (QoS) requirements.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a VEC system model as depicted
in Fig. 1, which consists of multiple vehicles (blue, green,
and orange represent different vehicles) and multiple RSUs,
and the tasks of vehicles are divided into several sequential
subtasks.

Fig. 1: An illustration of our VEC system model.

Once a task is generated in a vehicle, it is common to
be executed on the vehicle or executed on edge servers in
RSUs in previous studies. However, when the task needs to
occupy a large number of computing resources, executing on
the vehicle will occupy computing resources of the vehicle for
a long time, which may cause a safety hazard, while executing
on edge servers in RSUs will fail into two situations. One is
the congestion situation, where multiple vehicles may offload
tasks to the same edge server and some tasks need to wait for
a while because of the congestion. The other is a high-speed

situation, where the vehicle may move out of the receiving
range with a high transmission rate during execution and
transmission, causing downlink transmission to fail. To cope
with the aforementioned challenges, we segment each task
into several sequential subtasks and execute them on different
devices. The task of the m-th vehicle is divided to K parts
Φm = {φm1, φm,1, · · · , φm,K}, where Φm is the subtasks set
of the m-th vehicle, m = 1, 2, · · · ,M and the subtask φm,k+1

is generated on the l-th edge server when the subtask φm,k is
completed on the l-th edge server, where l = 1, 2, · · · , L and
k = 1, 2, · · · ,K. The major notations used in this paper are
defined in Table II.

In the case when the edge server is not occupied when the
subtask arrives at it, the subtask can be executed immediately
and there is no need to wait (black double arrow in Fig. 1).
Otherwise, if the edge server is occupied by subtasks of other
vehicles when the subtask arrives, the subtask needs to wait
for other subtasks (red arrow in Fig. 1). Solid triangle k
of different colors corresponds to the arrival time of the k-
th subtask of different vehicles, dotted hollow triangle k of
different colors corresponds to the end time of k-th subtask
of different vehicles without considering waiting time, and
hollow triangle k in different colors represents the actual end
time of the k-th subtask of different vehicles, which is also the
generation time of the k+1-th subtask. The transmission time
can be regarded as the gray line between the hollow triangle of
k-th and the solid triangle of k+1-th. The gray line represents
the transmission and execution process of the VEC system,
and it only can represent chronological order instead of the
length of time. When the tasks that can be divided into several
sequential subtasks are partially offloaded, their subtasks can
be executed on different edge servers, so that we can make
more refined offloading decisions to cope with the mobility
of vehicles and traffic congestion. By doing this, we can get
less time delay and waiting time compared with offloading the
whole task to the edge. The last subtasks need to be transmitted
back to vehicles, whose amount of computation can be 0 or
not. The time delay of our VEC system consists of three parts,
i.e., execution time, transmission time, and waiting time.

A. Execution Time

We denote tEm,k,l as the execution time when the current to-
do subtask φm,k of vehicle m is executed on the edge server
l in RSUl, which can be expressed as:

tEm,k,l =
wm,k
fl

, (1)

where wm,k is the amount of computation of the subtask φm,k,
and fl (cycle/s) is the computing capability of the edge server
l in RSUl, where l = 1, 2, · · · , L and k = 1, 2, · · · ,K. We
denote tEm,k,0 as the execution time when the subtask φm,k is
executed on vehicle m, which is calculated by:

tEm,k,0 =
wm,k
fm

, (2)

4

TABLE II: Notations and their definitions.

Notations Definitions Notations Definitions
M The number of vehicles K The number of subtasks of each vehicle
L The number of the edge servers v The speed of vehicles
Φm The subtasks set of vehicle m φm,k The k-th subtasks of vehicle m
w The amount of computation D The data size
P The transmission power h The channel fading coefficient
ϑ The path loss exponent ω0 The white Gaussian noise power
Bm,l The bandwidth from vehicle m to edge server l dm,l The distance between vehicle m to edge server l
Bl′,l The bandwidth from edge server l′ to l dl′,l The distance between edge server l′ to l
Bl,m The bandwidth from edge server l to vehicle m dl,m The distance between edge server l to vehicle m
fl The computing capability of the edge server l fm The computing capability of the vehicle m
tEm,k,l The execution time of subtask φm,k on edge server l tEm,k,0 The execution time of subtask φm,k on vehicle m
IEm,k,l The indicators describing whether φm,k is executed on device l TWm,k,l The waiting time before φm,k executed on edge server l
tTrm,k,l The transmission time from vehicle m to edge server l tTr

m,l′,k,l The transmission time of φm,k from edge server l′ to l
tTrl,k,m The transmission time from edge server l to vehicle m tTrm,k The transmission time of subtask φm,k
Rm,k,l The transmission rate from vehicle m to edge server l Rl′,k,l The transmission rate from edge server l′ to l
Rl,k,m The transmission rate from edge server l to vehicle m TEndm,k The end time of subtask φm,k
ITrm,k,l The indicators describing whether φm,k is transmitted from

vehicle to edge server l
ITr
l′,k,l The indicators describing whether φm,k is transmitted from edge

server l′ to edge server l
ITr
l′,k,l The indicators describing whether φm,k is transmitted from edge

server l′ to vehicle m
TOccm,k,l The value describing the occupied time of the edge server l when

subtask φm,k arrives at RSUj
CDm,k The indicator describing which devices that φm,k executed on TSum The sum of the end time of all vehicles in the VEC system
TAm,k,l The arrival time of subtask φm,k TStartm The start time of subtask φm,1
TEm,k The execution time of φm,k TWm,k The waiting time of subtask φm,k
s(tp) The state when the current frame is tp TGm,k The generation time of subtask φm,k
tp The p-th frame xm,tp The location of vehicle m when the current frame is tp
φ(tp) The subtask which should be offloaded in frame tp a(tp) The action when the current frame is tp
4Tφ(tp) The time required when the subtask φ(tp) is executed

where fm (cycle/s) is the computing capability of the vehicle
m, and m = 1, 2, · · · ,M . For subtask φm,k, the execution
time TEm,k is:

TEm,k =

L∑
l=0

IEm,k,lt
E
m,k,l, (3)

where IEm,k,l ∈ {0, 1} is an indicator value that describes
whether φm,k is executed on the device l (l = 0, 1, · · · , L).
For instance, IEm,k,0 = 1 means the subtask φm,k is executed
on vehicles, otherwise, it is offloaded. In addition, we have∑L
l=0 I

E
m,k,l = 1.

B. Transmission Time

There are three types of transmission time, namely, tTrm,k,l,
tTrm,l′,k,l and tTrl,k,m, where tTrm,k,l is the transmission time from
vehicle m to the edge server l in RSUl, tTrm,l′,k,l is the
transmission time of φm,k from the edge server l′ in RSUl′

to the l-th edge server in RSUl, and tTrl,k,m is the transmission
time from the edge server l to the vehicle m. Moreover,
we assume that the channel is a frequency-flat block-fading
Rayleigh channel [37].

1) Vehicle m to RSUl: When the subtask φm,k is trans-
mitted from the vehicle m to the RSUl, the transmission rate
Rm,k,l is:

Rm,k,l = Bm,l log2

(
1 +

P |h|2

ω0(dm,l)ϑ

)
, (4)

where Bm,l and dm,l are the bandwidth and the distance from
vehicle m to RSUl, respectively. P is the transmission power,
h is the channel fading coefficient, ϑ is the path loss exponent,

and ω0 is the white Gaussian noise power. The transmission
delay tTrm,k,l from vehicle m and the RSUl is calculated by:

tTrm,k,l =
Dm,k

Rm,k,l
, (5)

where Dm,k is the data size of φm,k.
Furthermore, we define CDm,k as an indicator that de-

scribes on which device the subtask φm,k is executed. For
example, CDm,k = l means φm,k is executed on the edge
server l.

2) RSUl′ to RSUl: When the subtask φm,k is transmitted
from the edge server l′ in RSUl′ to the edge server l in RSUl,
which means CDm,k−1 = l′ and CDm,k = l, the transmission
rate Rl′,k,l is:

Rl′,k,l = Bl′,l log2

(
1 +

P |h|2

ω0(dl′,l)ϑ

)
, (6)

where Bl′,l and dl′,l are the bandwidth and the distance from
the edge server l′ in RSUl′ to the edge server l in RSUl,
respectively. The transmission delay tTrl′,k,l from RSUl′ to
RSUl is calculated by:

tTrm,l′,k,l =
Dm,k

Rl′,k,l
. (7)

3) RSUl to Vehicle m: When the subtask φm,k is trans-
mitted from the edge server l in RSUl to vehicle m, which
means CDm,k−1 = l and CDm,k = 0, the transmission rate
Rl,k,m is calculated by:

Rl,k,m = Bl,m log2

(
1 +

P |h|2

ω0(dl,m)ϑ

)
, (8)

where Bl,m and dl,m are the bandwidth and the distance
from the edge server l in RSUl to vehicle m, respectively.

5

The transmission delay tTrl,k,m from RSUl to vehicle m is
calculated by:

tTrl,k,m =
Dm,k

Rl,k,m
. (9)

For subtask φm,k, the transmission time TTrm,k is:

TTrm,k =

{∑L
l=1 I

Tr
m,k,lt

Tr
m,k,l, if CDm,k−1 = 0∑L

l=1 I
Tr
l′,k,lt

Tr
m,l′,k,l + ITrl′,k,mt

Tr
l′,k,m, if CDm,k−1 = l′

(10)
where ITrm,k,l and ITrl′,k,l are the indicator values that both
describe whether φm,k is execute on the l-th device (l =
1, 2, · · · , L), ITrl′,k,m = 1 means the subtask φm,k is executed
on vehicles.

∑L
l=0 I

Tr
m,k,l +

∑L
l=0 I

Tr
l′,k,l + ITrl′,k,m = 1 means

that the subtask φm,k can only be executed on one device
and ITrm,k,l, I

Tr
l′,k,l, I

Tr
l′,k,m ∈ {0, 1}. ITrm,k is the transmission

decision indicator of subtasks φm,k.

C. Waiting Time

Vehicles may offload subtasks to the same edge server,
especially when vehicles drive on a low speed-limit road or
meet the traffic congestion situation so that the waiting time
is an inevitable part when the objective is optimizing the total
delay of the VEC system. The order of executing subtasks that
are offloaded to the same edge server operates on a first-come-
first-serve rule, which means that the execution of the current
subtask needs to wait until the end of the earlier arriving
subtask.

When the subtask φm,k is chosen to be executed on the
edge server l, the transmission time is:

TTrm,k,l =

L∑
l′=0

ITrl′,k,lt
Tr
m,l′,k,l + ITrm,k,lt

Tr
m,k,l. (11)

We denote TOccm,k,l as the occupied time of the edge server
l when the subtask φm,k arrive at RSUj and executed on the
edge server l, which is calculated by:

TOccm,k,l = max
{
TEndm′,k′ , T

End
m,k

}
, φm′,k′ ∈ Φ−1m,k,l,∀k ≥ 2,

(12)

where Φ−1m,k,l is the set of subtasks that are executed on RSUl
and the offloading decision is made before φm,k.

The generation time of the whole tasks for vehicles are
different, that is, the start time of subtasks, which is denoted
as TStartm . The end time of the subtask φm,k−1(k ≥ 2) is the
sum of four parts, which is defined as follows:

TEndm,k−1 = TStartm +

k−1∑
j=1

4Tm,j

= TStartm +

k−1∑
j=1

TEm,j +

k−1∑
j=1

TTrm,j +

k−1∑
j=1

TWm,j , (13)

where TWm,j is the waiting time of the subtask φm,j and4Tm,j
is the total time of subtask φm,j , which is equal to the sum
of the execution time TEm,j , the transition time TTrm,j , and the
waiting time TWm,j .

The arrival time TAm,k,l of the subtask φm,k arriving at RSUl
is calculated by:

TAm,k,l = TEndm,k−1 + TTrm,k,l. (14)

When some subtasks arrive at the edge server l earlier than
subtask φm,k, then the waiting time TWm,k,l is:

TWm,k,l =

{
TOccm,k,l − TAm,k,l if TOccm,k,l > TAm,k,l
0 else

(15)

Therefore, the waiting time of φm,k can be calculated as:

TWm,k =

L∑
l=1

IEm,k,lT
W
m,k,l. (16)

where IEm,k,l is the indicator value describing whether φm,k is
executed on the edge server l.

D. Problem Formulation

The total delay of the task of vehicle m is TEndm,K , and the
total delay of the VEC system is:

TSum =

M∑
m=1

TEndm,K . (17)

To avoid occupying the limited computing resource of
vehicles and taking too much transmission time between the
edge server and vehicles, we offload almost all subtasks to the
edge server except the last subtasks that should be transmitted
back to vehicles, which means ITrl′,K,m = 1 for vehicle m when
CDm,K−1 = l′. The last subtask may include result data or
even a small amount of computation that needs to be executed
in the vehicle. Accordingly, the dynamic offloading problem
in the VEC environment with sequential subtask dependency
is formulated as:

(P1) min
IEm,k,l,I

Tr
m,k

: TSum =

M∑
m=1

TEndm,K , (18)

s.t. :

L∑
l=0

IEm,k,l = 1, (19)

L∑
l=0

ITrm,k,l +

L∑
l=0

ITrl′,k,l + ITrl′,k,m = 1 (20)

IEm,k,l, I
Tr
m,k,l, I

Tr
l′,k,l, I

Tr
l′,k,m ∈ {0, 1} (21)

ITrl′,K,m = 1 (22)

where Eq. 19 indicates that φm,k can only be executed on one
device, Eq. 20 indicates that φm,k can only be transmitted to
one device, and Eq. 22 indicates that the last subtask need to
be transmitted back to vehicles.

IV. DYNAMIC FRAMING OFFLOADING ALGORITHM BASED
ON DOUBLE-DQN

In this part, we make offloading decisions in the order of
the generation time of each subtask of multiple vehicles. The
generation time TGm,k of subtasks φm,k is calculated as:

TGm,k = TEndm,k−1, ∀k ≥ 2. (23)

6

As shown in Fig. 2, the process of making the offload-
ing decision of whole tasks in the current road is divided
into different offloading frames tp of subtasks, where p =
1, 2, · · · ,MK.

Fig. 2: An illustration of the frame-based offloading process. The
execution time is necessary for a subtask, while the waiting time and
transmitting time may be zero.

The proposed Dynamic Framing Offloading algorithm based
on Double Deep Q-Network (DFO-DDQN) is as shown in
Fig. 3. The state s, action a, and reward r are set as follows:

1) State Space: The state in our model consists of the
following two parts, namely, the information of subtasks and
the environmental information.
• Subtask Feature (SF): It includes the amount of compu-

tation w and the data size D of subtasks. After the current
subtask corresponding to the current tp is executed, the
locations of the subtask feature with wm,k and Dm,k

are updated with zeros, and the new subtask feature is
generated. It is worth mentioning that the number of
subtasks of a vehicle can be less than K and the empty
position is filled up with zero. The p-th SF state SF (tp)
is as shown in Eq. 24.

SF (tp) = (sfp1 , sfp2 , · · · , sfpM)

=



wp1,1 wp2,1 · · · wpM,1

Dp
1,1 Dp

2,1 · · · Dp
M,1

wp1,2 wp2,2 · · · wpM,2

Dp
1,2 Dp

2,2 · · · Dp
M,2

...
...

. . .
...

wp1,K wp2,K · · · wpM,K

Dp
1,K Dp

2,K · · · Dp
M,K


(24)

where sfpm = [wpm,1, D
p
m,1, w

p
m,2, D

p
m,2, · · · , w

p
m,K , D

p
m,K]T

is the subtask information set of m-th vehicle in frame
tp, and wpm,k and Dp

m,k are the amounts of computation
and the data size of subtask φm,k when in frame tp,
which are computed by Eq. 25 and Eq. 26, respectively.

wpm,k =

{
0, if φm,k has been executed before tp
wm,k, else

(25)

Dp
m,k =

{
0, if φm,k has been executed before tp
Dm,k, else

(26)
• Vehicle Feature (VF): It includes four aspects of in-

formation, namely, the start time of the whole tasks of

vehicles, the computing ability of vehicles, the speed
of vehicles, and the location information of vehicles
in current tp. After the subtask φm,k is executed, the
environmental characteristics are updated as the situation
changes, e.g., the location information of the vehicle m
changes. The p-th VF state V F (tp) is as shown in Eq. 27.

V F (tp) = (vfp1 , vfp2 , · · · , vfpM)

=


TStart1 TStart2 · · · TStartM

f1 f2 · · · fM
v1 v2 · · · vM
xp1 xp2 · · · xpM


(27)

where vfpm = [TStartm , fm, vm, x
p
m]T is the vehicle infor-

mation set of m-th vehicle in frame tp. xpm is the distance
from the starting point of the road of m-th vehicle when
in frame tp, which can be calculated by TStartm , vm, and
TEnd or obtained from the monitoring system of the
reality.

The state in frame tp is as Eq. 28:

s(tp) = [sfpT1 , vfpT1 , sfpT2 , vfpT2 , · · · , sfpTM , vfpTM]T . (28)

2) Action Space: In tp frame, we need to compare which
subtask among the current to-do subtasks is the earliest gener-
ated one, denoted as φ(tp) = arg minm T

End,p
m , where TEnd,pm

is the generation time of the current to-do subtasks of m-th
vehicle in frame tp, which is calculated by Eq. 29:

TEnd,pm,kp
=

{
TStartm , kp = 0

TEndm,kp
, kp ≥ 1

(29)

where (m, kp) is the index tuple of the current to-do subtask
of m-th vehicle in frame tp.

The action space is A = [a1, a2, · · · , aL], each of whose
element corresponds an edge server, where al ∈ {0, 1} and∑L
l al = 1, l = 1, 2, · · · , L. φ(tp) = φm,k in frame tp means

the current action choice a(tp) is the offloading decision of
the k-th subtask of the m-th vehicle, where a(tp) is the action
chosen in tp frame and a(tp) ∈ A . When the current subtask
is φm,K , the action is a0, indicating that the last subtask will
be transmitted back to the vehicle m.

3) Reward: We use TEndm,k to evaluate the action, which is
the time delay required by the subtask φm,k.

r(s(tp), a(tp)) = 4Tφ(tp)
= min

m
TEnd,pm −min

m
TEnd,p−1m (30)

where p ≥ 1 and φ(tp) are the subtasks that need to be
offloaded when the frame is tp. 4Tφ(tp) is also equal to the
sum of the execution time, the transmission time, and the
waiting time of φ(tp).

The Q-function of our model is updated as:

Q̂M (s(tp), a(tp)) = r(4Tφ(tp)) + γQT

(
s(tp+1),

arg max
a(tp+1)

QM (s(tp+1), a(tp+1))
)
, (31)

where s(tp) and a(tp) are the state and the action of the
current frame tp, respectively; s(tp+1) and a(tp+1) are the

7

Fig. 3: An illustration of the proposed DFO-DDQN algorithm.

TABLE III: Parameter Settings.

Parameter Value
v [10, 15, 20, 25] m/s
M [10, 15, 20, 25, 30]
K 6
L 5
P 1.3
ϑ 2
ω0 3× 10−13

h 4
ρ 40
w [0, 100]× 108 cycles
fl [20, 10, 10, 20, 10] GHz
fm [10, 50] MHz
Blm, Bml 5 MHz
Rl′,k,l 1 Gbps
RSU location [20, 50, 80, 110, 140]

state and the action of the next frame tp+1, respectively;
QM (s(tp), a(tp)) is the Q-value of the main network when
choosing action a(tp) under state s(tp), Q̂M (s(tp), a(tp)) is
the prediction of the Q-value of the main network when choos-
ing action a(tp) under state s(tp) and QT (s(tp+1), a(tp+1))
is the Q-value of the target network when choosing action
a(tp+1) under state s(tp+1). The detailed algorithmic process
is as described in Algorithm 1.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments on the
proposed algorithm under various parameter settings, and to
verify its effectiveness, we further compare it with several
existing offloading schemes in VEC environments.

A. Experimental Settings

The simulation settings are as shown in Table III, which
mainly refer to [10]. We have w = ρD, where ρ is the
computational complexity. Regardless of whether the vehicle

position changes or not, the transmission rate between different
RSUs remains the same because the distance between different
RSUs remains the same. We set Rl′,k,l to 1 Gbps, while the
transmission rates Rm,k,l and Rl,k,m are calculated according
to Eq. 4 and Eq. 8, respectively, since they are severely affected
by the distance. We set the number of subtasks K = 6,
the number of RSUs L = 5, and the speed of vehicle
v ∈ [10, 15, 20, 25] m/s. For training, we set the maximum
training episode Maxiter = 10, 000, the learning rate 0.01,
the reward decay 0.9, the ε-greedy rate 0.98, the replace target
iter 500, and the memory size 13,000.

B. Baselines

In order to validate the effectiveness of the proposed DFO-
DDQN algorithm, we compare it with the other four offloading
schemes in VEC environments, as shown below:
• Dynamic Framing Offloading algorithm based on

Deep Q-learning Network (DFO-DQN): As the earli-
est DRL frame, Deep Q-learning Network (DQN) [33]
is widely used to solve Markov decision processes in
complex environments. Similar to DFO-DDQN, the main
difference lies in Q-value [33], i.e., Q̂M (s, a) = r +
γmaxa′ QT (s′, a′). The deep Q network of DFO-DQN
consists of three layers: the first layer is an input layer
with M × (2×K + 4), the following layer is the hidden
layer with 20 nodes, and the last layer is the output layer
with K nodes.

• Dynamic Framing Offloading algorithm based on Du-
eling Deep Q-learning Network (DFO-DuelingDQN):
Dueling Deep Q-learning Network (Dueling DQN) [38]
are proposed based on DQN and aims to guide the
network to distinguish the impacts of state and action
on reward. Similar to DFO-DQN, we implement DFO-
DuelingDQN through the algorithm proposed in [38].
Compared with DFO-DQN, the output layer of DFO-
DuelingDQN has been improved, which is divided into

8

Algorithm 1 Dynamic framing Offloading algorithm based
on DDQN (DFO-DDQN) for sequential subtasks in the VEC
environment
Input: The initial subtask feature and vehicle feature
Output: optimal offloading decision for input

1: Initialize network parameters θ, update steps n, D
2: for episode do
3: TEndm,0 = TStartm , tp = 1.
4: while not all subtasks is executed do
5: Get the earliest generation time of all subtasks

that need to be executed in the current frame tp, and the
corresponding vehicle and its subtask are m and φm,k,
respectively, where φm,k = φ(tp).

6: Calculate the current location x(tp) of vehicle m
7: Input s(tp) to MainNet and get QM (s(tp), al), l =

1, 2, · · · , L
8: if k = K then
9: Choose a(tp) = a0

10: done = 1
11: else
12: Choose a(tp) = arg maxaQM (s(tp), a) ac-

cording to ε−greedy policy
13: Get the occupied time TOccm,k,a(tp)

of RSUa(tp)
before executing the subtask φ(m, k) by Eq. 12

14: Get the arrival time TAm,k,a(tp) of the current
subtask φ(tp), which is transmitted to RSUa(tp) by Eq. 14

15: Compute the waiting time TWm,k,a(tp) by Eq. 15
16: end if
17: Compute TEndm,k

18: Compute r(φ(tp)) = 4Tφ(tp) = TEndm,k − TEndm,k−1
19: Generate the new state s(tp+1)
20: Save (s(tp), a(tp), r(tp), s(tp+1), done) in D
21: if Training Step then
22: Sample memories from D
23: Input s(tp) to MainNet and get

QM (s(tp), a(tp))
24: Input s(tp+1) to MainNet and get a(tp+1) =

arg maxal QM (s(tp+1), al)
25: Input s(tp+1) to TargetNet and get

QT (s(tp+1), a(tp+1))
26: Compute the prediction Q-value by Eq. 31:

Q̂M (s, a) = r(tp) + γ(1− done)QT (s(tp+1), a(tp+1))
27: Update the parameter of the main network by

minimizing |QM (s, a)− Q̂M (s, a)|2
28: Copy the parameter of the main network to the

target network, every n steps
29: end if
30: end while
31: end for
32: return optimal offloading decision for input

two parts: one is the value of the state, called V (s), and
the other one is the advantages for each action, called
A(s, a). The Q-value of the target net is QT (s, a) =
V (s) +A(s, a) and QM (s, a) = r+ γmaxa′ QT (s′, a′).

• Greedy algorithm with segmented tasks (Seg-Greedy):
Greedy algorithm is a classic optimization method that
chooses the best decision of each step and can get the lo-
cal optimal solution of the system. First, we make offload-
ing decisions in the order of the generation time TGm,k of
sub-tasks φm,k and compare the time cost4Tφm,k

among
decisions executing on different RSUs of the current to-
offload subtask, m = 1, 2, · · · ,M, k = 1, 2, · · · ,K − 1.
Then transfer the current subtask φm,k to the RSU with
the lowest delay, where l = arg minl4Tm,k,l. The last
subtask whose k = K may include result data or even
a small amount of computation so that it needs to be
executed in the vehicle.

• Greedy algorithm without segmented tasks (NoSeg-
Greedy): The above methods are all based on segmented
tasks and we need to compare our method to the task
offloading method without task segmentation. We make
offloading decisions in the order of the generation time
of tasks and compare the time cost of the whole tasks
of vehicles, including φm,1, φm,1, · · · , φm,K−1(m =
1, 2, · · · ,M) among offloading decisions that executing
on different RSUs. Then transfer the current to-offload
the whole task to the RSU with the lowest delay and
transfer the last task φm,K to local.

Among them, DFO-DDQN, DFO-DQN and DFO-
DuelingDQN are three DRL-based methods, while Seg-
Greedy and NoSeg-Greedy are two representative greedy-
based methods.

C. Evaluation Indicators

• Average Delay: The average finish time of tasks of
vehicles, which is as follows:

T =
TSum

M
=

∑M
m=1 T

End
m,K

M
. (32)

• Average Reward: The average reward of the frames. The
higher the value, the better the performance of the DRL-
based method is.

• Average Start Time: The start time of the m-th vehicle is
TStartm , which is the generation time of the task of vehicle
m. The start time is entirely unrelated to different meth-
ods, and we simulate it by some start tasks φStart whose
computations wStart = [wStart1 , wStart2 , · · · , wStartM] is
in [0, 100] × 108 cycles. Then we can get TStartm as
follows:

TStartm =
wStartm

fm
. (33)

• Average Waiting Time: The average waiting time is
calculated as follows:

T
W

=
1

M

M∑
m=1

K∑
k=1

TWm,k. (34)

9

• Average Transmission Time: The average transmission
time is calculated as follows:

T
Tr

=
1

M

M∑
m=1

K∑
k=1

TTrm,k. (35)

• Average Execution Time: The average execution time is
as follows:

T
E

=
1

M

M∑
m=1

K∑
k=1

TEm,k. (36)

• The Average Delay excluding Start Time 4T : It in-
cludes the average waiting time, the average transmission
time, and the average execution time. The relationship
among different types of time is as follows:

4T =

∑M
m=1

∑K
j=14Tm,j
M

=

∑M
m=1

∑K
j=1(TEm,j + TTrm,j + TWm,j)

M

= T
E

+ T
Tr

+ T
w

= T −
∑M
m=1 T

Start
m

M
. (37)

• The Improvement Rate: The improvement rate IRA1/A2

of algorithm A1 compared with A2 is:

IRA1/A2
=
TA1
− TA2

TA2

, (38)

where TA1
and TA2

are the average delays of the A1

algorithm and the A2 algorithm, respectively.

D. Experimental Results

1) Impact of the Speeds of Vehicles: As shown in Fig. 4,
DFO-DDQN achieves significantly better results than other
approaches. For instance, when the speed of the vehicle is 15
m/s and the number of vehicles is 15, it achieves 10.28%,
25.64%, 43.65%, and 46.45% improvements when compared
with DFO-DQN, DFO-DuelingDQN, Seg-Greedy, NoSeg-
Greedy, respectively. The Seg-Greedy algorithm achieves a
relatively good offloading decision, which is better than the
NoSeg-Greedy algorithm. The three DRL-based algorithms
DFO-DDQN, DFO-DQN, and DFO-DuelingDQN are always
significantly better than two greedy algorithms under different
speeds.

Fig. 4: Average time delay in different speeds under different offload-
ing algorithms.

Fig. 5: Average time delay of tasks with different ρ under different
offloading algorithms.

2) Impact of ρ: In this part, we set ρ ∈ [20, 40, 60, 80, 100],
which corresponds to the computational complexities of dif-
ferent types of tasks. Each of ρ is larger than one to make sure
that the tasks are compute-intensive and have high computa-
tional complexity. As shown in Fig. 5, DFO-DDQN performs
best when tasks with different ρ. when ρ is increased, the
average delay of DFO-DDQN method and two greedy-based
methods are decreased although the decreasing trends are not
pronounced, indicating that these methods are insensitive to
the value of ρ.

3) Comparison at Different Speeds: As shown in
Fig. 6(a), the values of IRDFO−DDQN/Seg−Greedy
at different speeds are relatively good, which are
mostly higher than IRDFO−DQN/Seg−Greedy and
IRDFO−DuelingDQN/Seg−Greedy . Compared with Seg-
Greedy, the improvement rates of DFO-DDQN are always
higher than 43.3% at different speeds. As shown in
Fig. 6(b), the values of IRDFO−DDQN/NoSeg−Greedy
at different speeds are relatively good, which are
mostly higher than IRDFO−DQN/NoSeg−Greedy and
IRDFO−DuelingDQN/NoSeg−Greedy. The improvement rates
of DFO-DDQN are always higher than 46.4% at different
speeds compared with NoSeg-Greedy. Overall, for the
performance of DFO-DDQN at different speeds, DFO-DDQN
is better than DFO-DQN and DFO-DuelingDQN.

4) Convergence Performance: Considering the randomness
of results of different random seeds, we set three same seeds 0,
50, 100 for DFO-DDQN, DFO-DQN, and DFO-DuelingDQN
to fix the results so that the comparisons are equitable. As
depicted in Fig. 7, the red scope indicates the average rewards
of different seeds of DFO-DDQN. The narrower the scope, the
smaller the influence by different seeds, which means that the
algorithm is more stable. DFO-DuelingDQN performs poorly
in the low-speed situation, while DFO-DQN utperforms it in
in each speed situation, but not better than DFO-DDQN. DFO-
DDQN is more stable than DFO-DQN and DFO-DuelingDQN.
The average rewards of DFO-DDQN at different speeds go
beyond -0.2 when the episodes are in [4000, 6000], while the
average rewards of DFO-MDQN and DFO-DuelingDQN are
always under -0.2 after training for 10,000 episodes, which
indicates that DFO-DDQN achieves significantly better results
than DFO-DQN and DFO-DuelingDQN.

10

(a) IRDRL/Seg−Greedy

(b) IRDRL/NoSeg−Greedy

Fig. 6: Performance improvement of different DRL-based algorithms
compared with Seg-Greedy and NoSeg-Greedy at different speeds
when M = 15.

5) Comparison under Different Numbers of Vehicles: In
order to further evaluate our DFO-DDQN, we conduct com-
parison experiments under different numbers of vehicles when
v = 15 m/s, and obtain the results as follows:

• Average Waiting Time T
W

: The waiting time is gen-
erated from the chosen edge server when it is occu-
pied by other subtasks. As shown in Fig. 8(a), DRL-
based methods including DFO-DDQN, DFO-DQN, DFO-
DuelingDQN perform obviously better than greedy-based
methods including Seg-Greedy and NoSeg-Greedy. As
the number of vehicles increases, the subtasks congestion
is more and more serious, the waiting time of greedy-
based method increases significantly, while the waiting
time of DRL-based method has slow growth. It shows that
even in the congestion situation, DRL-based methods are
better suited to dynamic sequential subtasks offloading
decisions. This is because DRL-based methods consider
long-term returns, while greedy-based methods only con-
sider the immediate rewards.

• Average Transmission Time T
Tr

: As shown in
Fig. 8(b), the transmission time of greedy-based methods
is significantly higher than that of DRL-based methods,
which means that DRL-based methods can find edge
servers that are more suitable for offloading. It is worth
mentioning that the transmission time of the NoSeg-
Greedy method is higher than that of the Seg-Greedy
method. This is because the Seg-Greedy method can
refine the offloading decision and choose different edge
servers to execute subtasks, while the NoSeg-Greedy
method can only choose one edge server because of the
need to offload the entire task.

• Average Execution Time T
E

: As shown in Fig. 8(c),
the execution time of the NoSeg-Greedy method is sig-

nificantly higher than other methods. This is because
offloading the whole task may lose the wide optimization
space of choosing edge servers. The average execution
time of Seg-Greedy is close to but higher than that of
DRL-based methods, which means that task segmentation
is an effective method of optimizing execution time.
This is because partial offloading can offload subtasks
according to the combination of a more suitable decision,
instead of offloading the whole task to an edge server,
especially in the dynamic situation of vehicle movement.

• Average Delay except Start Time 4T : As shown in
Fig. 8(d), the 4T of greedy-based methods are signif-
icantly higher than that of DRL-based methods under
different numbers of vehicles. The seg-Greedy method
performs better than the NoSeg-Greedy method when
M = 10, 15, 20, while it performs worse than the NoSeg-
Greedy method when M = 25, 30, indicating that task
segmentation is not a good choice when the traffic con-
gestion is heavy. This is because partial offloading may
enlarge the shortcomings of greedy-based methods when
applied to solve the MDP problem, while this problem
can be well solved by DRL-based methods.

• Average Start Time: The average simulation value of
TStart is shown in Fig. 8(e). The average start time is not
flat but instead rises and falls with the random settings of
the computing capability of vehicles. Different methods
share the same start time to be fair.

• Average Finish Time T : As shown in Fig. 8(f), the
average delay of different methods increases with the
increase in the number of vehicles, and the NoSeg-Greedy
method and DRL-based methods perform diminishing
growth, which may mainly be because of the influence of
the random start time. The average delay of greedy-based
methods is significantly higher than that of DRL-based
methods under different numbers of vehicles.

6) Impact of the Number of Vehicles at Different
Speeds: To further study the impact of congestion
at different speeds, we conduct experiments under
different numbers of vehicles at different speeds and
compare the values of IRDFO−DDQN/Seg−Greedy and
IRDFO−DDQN/NoSeg−Greedy . As shown in Fig. 9(a), the
values of IRDFO−DDQN/Seg−Greedy at different speeds
increase with the number of vehicles. When M = 10,
DFO-DDQN performs best in lowest speed 10 m/s because
it is more likely to occur congestion under lower speed
than under higher speed and DFO-DDQN performs well,
especially in the congestion situation. When M = 20,
DFO-DDQN performs best in highest speed 25 m/s because
the Seg-Greedy method performs worse in the high-speed
situation, while DFO-DDQN is less affected by speed than
the Seg-Greedy method. As shown in Fig. 9(b), DFO-DDQN
performs better in high speed and heavier task congestion
than in low speed and lighter task congestion when compared
with the NoSeg-Greedy method.

7) Convergence Performance at Different Speeds and Dif-
ferent Numbers of Vehicles: As shown in Fig. 10, the dif-
ference in rewards at different speeds when M = 10 is
greater than that when M = 30, and the difference in rewards

11

(a) v = 10 m/s (b) v = 15 m/s (c) v = 20 m/s (d) v = 25 m/s

Fig. 7: Comparison of the average rewards under DF0-DDQN, DFO-DQN and DFO-DuelingDQN when v = [10, 15, 20, 25] m/s

(a) Average Waiting Time (b) Average Transmission Time (c) Average Execution Time

(d) 4T (e) Average Start Time (f) Average Finish Time

Fig. 8: Comparison of different types of delay under different M = [10, 15, 20, 25, 30] when v = 15 m/s.

(a) IRDFO−DDQN/Seg−Greedy

(b) IRDFO−DDQN/NoSeg−Greedy

Fig. 9: Performance improvement compared with Seg-Greedy and
NoSeg-Greedy at different speeds when M = [10, 15, 20, 25].

decreases as the number of vehicles increases. This is because
the congestion is mainly caused by the number of vehicles
rather than the speed when the number of vehicles is large,
while the congestion of a small number of vehicles is mainly
affected by the speeds of vehicles because vehicles are more
likely to be scattered at high speeds.

8) Convergence Performance at High Speeds: In this
part, we set M = 15, seed ∈ [0, 50, 100] and v ∈
[10, 15, 20, 25, 30, 35, 40, 45]m/s. As shown in Fig. 11, DFO-
DDQN performs best when it is compared with other algo-
rithms. Tasks cost an initial decreased average delay which
was followed by a subsequent increase in average delay when
the speeds are increased under the NoSeg-Greedy algorithm.
Because the congestions are more serious when in lower
speeds which cause higher waiting time, while the transmis-
sion distances are farther when in higher speeds which cause
higher transmission time. However, when the task is divided
into several subtasks, the trends of increasing average delay
are slow down, which means task segmentation contributes to
optimizing the average delay of the computation-intense task
when in high speeds environment. In addition, the average
delays of DRL-based methods are all lower than the average
delays of greedy-based methods, which have again proved that
DRL-based methods are better at solving the MDP problem

12

(a) M = 10 (b) M = 15 (c) M = 20

(d) M = 25 (e) M = 30

Fig. 10: Comparison of the average rewards of DFO-DDQN at different speeds when M = [10, 15, 20, 25, 30].

Fig. 11: Average time delay in high speeds under different offloading
algorithms.

Fig. 12: Average time delay of ARkit and ARCore.

than greedy-based methods.

E. Results on ARkit and ARCore

ARkit can be divided into six sequential modules, namely,
UIView, ARSCNView, SCNScene, ARCamera, ARSession

Fig. 13: 4T of ARkit and ARCore.

and ARFrame [21], while ARCore can be divided into five se-
quential modules, namely, SCNScene, Environment Tracking,
ARSession, ARFrame and Render [22]. AR tasks of vehicles
are generated by initial subtasks on local where different
vehicles have different initial subtasks, so that the generation
time of AR tasks are different.

Considering the speeds of vehicles are different in the
reality, we set different speeds for different vehicles, whose
values are randomly taken from [10, 20] m/s. The amount of
computation and data size of each subtask are set as the former
simulations. The entire task of ARCore is set to the same
amount of computation and data size as ARkit. The number
of M is unfixed, it is randomly taken from [10, 20], and the
number of subtasks L is set as 7 for ARkit, where the former 6
subtasks correspond to the 6 modules of ARkit, while the last
subtask is the result of the last module of ARkit that needs to
be transmitted back to the vehicle. ARCore has fewer modules
than ARkit, which means that the state set of ARCore can be

13

regarded as a subset of ARkit’s state, so we can directly utilize
the trained network of ARkit to make offloading decisions of
ARCore. As shown in Fig. 12 and Fig. 13, DFO-DDQN is
obviously much better than two greedy-based methods.

VI. CONCLUSION AND FUTURE WORK

In this paper, aiming to minimize the total delay and
waiting time of tasks from moving vehicles, we build a
dynamic offloading model for multiple moving vehicles whose
tasks can be divided into sequential subtasks, and further
propose a DFO-DDQN algorithm to offload these sequential
subtasks. By doing this, fine-grained offloading decisions can
be achieved based on the frame-based process for offload-
ing compute-intensive tasks in complex VEC environments
considering V2R. Experimental results demonstrate that the
proposed DFO-DDQN algorithm is far superior to other DRL-
based offloading algorithms and greedy-based offloading algo-
rithms, regardless of whether the congestion is mainly caused
by the number of vehicles or the low speed.

For future work, we will introduce cloud computing into
our model and consider the intelligent optimization of end-
edge-cloud collaboration among different vehicles [39]–[41].
In addition, introducing content caching into task offloading
may further reduce delay and save energy, which is in favor
of a low-carbon VEC system.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant Number 62071327 and JSPS
KAKENHI under Grant Number 19H04105.

REFERENCES

[1] M. Xue, H. Wu, G. Peng, and K. Wolter, “Ddpqn: An efficient dnn of-
floading strategy in local-edge-cloud collaborative environments,” IEEE
Transactions on Services Computing, vol. 15, no. 2, pp. 640–655, 2022.

[2] Z. Xu, L. Zhao, W. Liang, O. F. Rana, P. Zhou, Q. Xia, W. Xu, and
G. Wu, “Energy-aware inference offloading for dnn-driven applications
in mobile edge clouds,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 4, pp. 799–814, 2021.

[3] H. Tang, H. Wu, Y. Zhao, and R. Li, “Joint computation offloading
and resource allocation under task-overflowed situations in mobile edge
computing,” IEEE Transactions on Network and Service Management,
pp. 1–1, 2021.

[4] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation and
communication cooperation for energy-efficient mobile edge comput-
ing,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4188–4200,
2019.

[5] Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading
scheduling and power allocation for mobile edge computing systems,”
IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6774–6785, 2019.

[6] S. Sundar and B. Liang, “Offloading dependent tasks with communica-
tion delay and deadline constraint,” in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, pp. 37–45, 2018.

[7] H. Huang, K. Peng, and P. Liu, “A privacy-aware stackelberg game ap-
proach for joint pricing, investment, computation offloading and resource
allocation in mec-enabled smart cities,” in 2021 IEEE International
Conference on Web Services (ICWS), pp. 651–656, 2021.

[8] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282,
2016.

[9] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO:
An energy-efficient dynamic task offloading algorithm for blockchain-
enabled iot-edge-cloud orchestrated computing,” IEEE Internet of Things
Journal, vol. 8, no. 4, pp. 2163–2176, 2021.

[10] H. Wang, X. Li, H. Ji, and H. Zhang, “Dynamic offloading scheduling
scheme for mec-enabled vehicular networks,” in 2018 IEEE/CIC Inter-
national Conference on Communications in China (ICCC Workshops),
pp. 206–210, 2018.

[11] S. Raza, S. Wang, M. Ahmed, M. R. Anwar, M. A. Mirza, and W. U.
Khan, “Task offloading and resource allocation for IoV using 5G NR-
V2X communication,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[12] X. Huang, K. Xu, C. Lai, Q. Chen, and J. Zhang, “Energy-efficient
offloading decision-making for mobile edge computing in vehicu-
lar networks,” Journal on Wireless Communications and Networking,
vol. 2020, feb 2020.

[13] W. Zhan, C. Luo, J. Wang, C. Wang, and Q. Zhu, “Deep reinforcement
learning-based offloading scheduling for vehicular edge computing,”
IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5449–5465, 2020.

[14] X. Huang, L. He, and W. Zhang, “Vehicle speed aware computing task
offloading and resource allocation based on multi-agent reinforcement
learning in a vehicular edge computing network,” in 2020 IEEE Inter-
national Conference on Edge Computing (EDGE), pp. 1–8, 2020.

[15] L. Huang, L. Zhang, S. Yang, L. P. Qian, and Y. Wu, “Meta-learning
based dynamic computation task offloading for mobile edge computing
networks,” IEEE Communications Letters, vol. 25, no. 5, pp. 1568–1572,
2021.

[16] D. Tang, X. Zhang, M. Li, and X. Tao, “Adaptive inference reinforce-
ment learning for task offloading in vehicular edge computing systems,”
in 2020 IEEE International Conference on Communications Workshops
(ICC Workshops), pp. 1–6, 2020.

[17] Y. Wu, J. Wu, L. Chen, J. Yan, and Y. Luo, “Efficient task scheduling
for servers with dynamic states in vehicular edge computing,” Computer
Communications, vol. 150, pp. 245–253, 2020.

[18] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Collaborative data scheduling
for vehicular edge computing via deep reinforcement learning,” IEEE
Internet of Things Journal, vol. 7, no. 10, pp. 9637–9650, 2020.

[19] H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, “Deep reinforcement
learning-based adaptive computation offloading for mec in heteroge-
neous vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 7, pp. 7916–7929, 2020.

[20] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation
for mobile edge computing-based augmented reality applications,” IEEE
Wireless Communications Letters, vol. 6, pp. 398–401, June 2017.

[21] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial compu-
tation offloading scheme for mobile edge computing enabled internet of
things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4804–4814,
2019.

[22] J. Wang, T. Lv, P. Huang, and P. T. Mathiopoulos, “Mobility-aware
partial computation offloading in vehicular networks: A deep reinforce-
ment learning based scheme,” China Communications, vol. 17, no. 10,
pp. 31–49, 2020.

[23] G. Qu, N. Cui, H. Wu, R. Li, and Y. Ding, “Chainfl: A simulation
platform for joint federated learning and blockchain in edge/cloud
computing environments,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 5, pp. 3572–3581, 2022.

[24] Z. Zhou, S. Yang, L. J. Pu, and S. Yu, “CEFL: Online admission control,
data scheduling and accuracy tuning for cost-efficient federated learning
across edge nodes,” IEEE Internet of Things Journal, vol. 7, no. 10,
pp. 9341–9356, 2020.

[25] X. Wang, Z. Ning, and S. Guo, “Multi-agent imitation learning for
pervasive edge computing: A decentralized computation offloading algo-
rithm,” IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 2, pp. 411–425, 2021.

[26] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computation
offloading,” IEEE Wireless Communications, vol. 27, no. 1, pp. 92–99,
2020.

[27] Z. Zhou, K. Luo, and X. Chen, “Deep reinforcement learning for
intelligent cloud resource management,” in IEEE INFOCOM 2021 -
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 1–6, 2021.

[28] X. Zhang, Y. Xiao, Q. Li, and W. Saad, “Deep reinforcement learning
for fog computing-based vehicular system with multi-operator support,”
in ICC 2020 - 2020 IEEE International Conference on Communications
(ICC), pp. 1–6, 2020.

[29] T. Cai, Z. Yang, Y. Chen, W. Chen, Z. Zheng, Y. Yu, and H.-N.
Dai, “Cooperative data sensing and computation offloading in uav-
assisted crowdsensing with multi-agent deep reinforcement learning,”
IEEE Transactions on Network Science and Engineering, pp. 1–1, 2021.

[30] H. Huang, Q. Ye, and Y. Zhou, “Deadline-aware task offloading with
partially-observable deep reinforcement learning for multi-access edge

14

computing,” IEEE Transactions on Network Science and Engineering,
pp. 1–1, 2021.

[31] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A deep meta reinforcement
learning-based task offloading framework for edge-cloud computing,”
IEEE Transactions on Network and Service Management, vol. 18, no. 3,
pp. 3448–3459, 2021.

[32] Z. Zhang, N. Wang, H. Wu, C. Tang, and R. Li, “Mr-dro: A fast
and efficient task offloading algorithm in heterogeneous edge/cloud
computing environments,” IEEE Internet of Things Journal, pp. 1–1,
2021.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” Computer Science, 2013.

[34] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAI’16, p. 2094–2100, AAAI Press, 2016.

[35] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in neural information processing systems, vol. 30,
p. 6382–6393, 2017.

[36] L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang, and
M. Gruteser, “Cutting the cord: Designing a high-quality untethered vr
system with low latency remote rendering,” in Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’18, (New York, NY, USA), p. 68–80, 2018.

[37] Y. Wang, S. Min, X. Wang, W. Liang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282,
2016.

[38] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning, pp. 1995–2003, PMLR,
2016.

[39] K. Peng, H. Huang, B. Zhao, A. Jolfaei, X. Xu, and M. Bilal, “Intelligent
computation offloading and resource allocation in IIoT with end-edge-
cloud computing using NSGA-III,” IEEE Transactions on Network
Science and Engineering, pp. 1–1, 2022.

[40] M. Xue, H. Wu, R. Li, M. Xu, and P. Jiao, “Eosdnn: An efficient
offloading scheme for dnn inference acceleration in local-edge-cloud
collaborative environments,” IEEE Transactions on Green Communica-
tions and Networking, vol. 6, no. 1, pp. 248–264, 2022.

[41] I. Attiya, M. A. Elaziz, L. Abualigah, T. N. Nguyen, and A. A.
Abd El-Latif, “An improved hybrid swarm intelligence for scheduling
iot application tasks in the cloud,” IEEE Transactions on Industrial
Informatics, pp. 1–1, 2022.

Huijun Tang received the BSc degree from Jinan
University, China in 2016 and the M.S. degree from
Tianjin University, China in 2018. She is currently
pursuing the PhD degree at the Center for Ap-
plied Mathematics, Tianjin University, China. Her
research interests include internet of things, mobile
edge computing and deep learning.

Huaming Wu received the B.E. and M.S. degrees
from Harbin Institute of Technology, China in 2009
and 2011, respectively, both in electrical engineer-
ing. He received the Ph.D. degree with the highest
honor in computer science at Freie Universität Berlin
(FU Berlin), Germany in 2015. He is currently
an Associate Professor in the Center for Applied
Mathematics, Tianjin University, China. His research
interests include wireless networks, mobile edge
computing, internet of things and deep learning.

Guanjin Qu received the bachelor’s degree from
Taiyuan University of Technology, China in 2019.
He is currently working towards the Master’s de-
gree at the Center for Applied Mathematics, Tianjin
University, China. His research interests include
distributed deep learning and edge computing.

Ruidong Li is an associate professor at Kanazawa
University, Japan. Before joining this university, he
was a senior researcher at the National Institute
of Information and Communications Technology
(NICT), Japan. He received the M.Sc. degree and
Ph.D. degree in computer science from the Univer-
sity of Tsukuba in 2005 and 2008, respectively. He
serves as the secretary of IEEE ComSoc Internet
Technical Committee (ITC), and are the founders
and chairs of IEEE SIG on Big Data Intelligent
Networking and IEEE SIG on Intelligent Internet

Edge. He is the associate editor of IEEE Internet of Things Journal, and also
served as the guest editors for a set of prestigious magazines, transactions,
and journals, such as IEEE communications magazine, IEEE network, IEEE
TNSE. He also served as chairs for several conferences and workshops, such
as the general co-chair for IEEE MSN 2021, AIVR2019, IEEE INFOCOM
2019/2020/2021 ICCN workshop, TPC co-chair for IWQoS 2021, IEEE MSN
2020, BRAINS 2020, IEEE ICDCS 2019/2020 NMIC workshop, and ICCSSE
2019. His research interests include future networks, big data, intelligent In-
ternet edge, Internet of things, network security, information-centric network,
artificial intelligence, quantum Internet, cyber-physical system, and wireless
networks. He is a senior member of IEEE and a member of IEICE.

	Introduction
	Related work
	System Model and Problem Formulation
	Execution Time
	Transmission Time
	Vehicle m to RSUl
	RSUl' to RSUl
	RSUl to Vehicle m

	Waiting Time
	Problem Formulation

	Dynamic Framing Offloading Algorithm based on Double-DQN
	State Space
	Action Space
	Reward

	Performance Evaluation
	Experimental Settings
	Baselines
	Evaluation Indicators
	Experimental Results
	Impact of the Speeds of Vehicles
	Impact of
	Comparison at Different Speeds
	Convergence Performance
	Comparison under Different Numbers of Vehicles
	Impact of the Number of Vehicles at Different Speeds
	Convergence Performance at Different Speeds and Different Numbers of Vehicles
	Convergence Performance at High Speeds

	Results on ARkit and ARCore

	Conclusion and Future Work
	References
	Biographies
	Huijun Tang
	Huaming Wu
	Guanjin Qu
	Ruidong Li

