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Abstract. The search for good hyper-parameters is crucial for various
deep learning methods. In addition to the hyper-parameter tuning on
validation data, meta-learning provides a promising manner for optimiz-
ing the hyper-parameters, referred to as meta optimization. In all exist-
ing meta optimization methods, the meta data set is directly given or
constructed from training data based on simple selection criteria. This
study investigates the automatic compiling of a high-quality meta set
from training data with more well-designed criteria and the submodular
optimization strategy. First, a theoretical analysis is conducted for the
generalization gap of meta optimization with a general meta data com-
piling method. Illuminated by the theoretical analysis, four criteria are
presented to reduce the gap’s upper bound. Second, the four criteria are
cooperated to construct an optimization problem for the automatic meta
data selection from training data. The optimization problem is proven to
be submodular, and the submodular optimization strategy is employed
to optimize the selection process. An extensive experimental study is
conducted, and results indicate that our compiled meta data can yield
better or comparable performances than the data compiled with existing
methods.

Keywords: Hyper-parameter optimization - Meta optimization - Gen-
eralization gap - Submodular optimization - Selection criteria

1 Introduction

Hyper-parameters have a considerable effect on the final performance of a model
in machine learning. In shallow learning, cross-validation is usually leveraged to
search (near) optimal hyper-parameters; in deep learning, due to the high time
consumption of cross-validation, an independent validation set is constructed,
and the hyper-parameters with the best performance are selected as the final
hyper-parameters. In both strategies, the hyper-parameters are searched in a
pre-defined grid. Recently, meta-learning has provided an effective manner to
directly optimize the hyper-parameters instead of the grid search in existing
strategies. Various hyper-parameters, such as learning rates [1], weights of noisy
or imbalanced samples [3-5], pseudo labels [6-8], and others inside particular
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methods [9,10], have been optimized via meta-learning on an additional small
meta data set. Meta-learning based hyper-parameter optimization is called meta
optimization.

In meta optimization, an independent meta data set is required, and ideally
the meta set is unbiased. For example, in meta semantic data augmentation [10],
which applies meta optimization for the covariance matrix, the meta data set
in an experimental run contains a certain number of images independent of the
training set. Although the leveraged meta set is claimed to be unbiased, no
“unbiased” standard is provided. Most existing studies directly assume that an
independent and high-quality meta set is ready for training. However, indepen-
dent meta data do not usually exist. Recently, Zhang and Pfister [11] combine
two criteria to compile meta data from training data with a simple greedy selec-
tion strategy. Initial promising results are reported in their study. However, their
utilized criteria are still simple and may be insufficient in meta data compiling.

This study proposes a new effective method for compiling meta data only
from the corresponding training datal. First, the generalization gap is analyzed
for compiled meta data. Based on the upper bound of the gap, we analyze the
characteristics that meta data should meet. Four selection criteria are then ob-
tained: cleanness, balance, diversity, and uncertainty. The submodular optimiza-
tion strategy [12] is leveraged to optimize the selection process with the criteria.
Experiments on the two typical meta optimization scenarios, namely, imbalance
learning and noisy label learning, are performed to verify the effectiveness of our
method. The main contributions are summarized as follows:

— The expected generalization gap of the meta optimization is inferred when
the ideal (i.e., not unbiased) meta set is not given, and the employed meta set
is constructed through a meta data compiling method. This gap facilitates
the understanding and explanation of the performances of meta optimization
with different meta data compiling methods. Moreover, the gap provides
theoretical guidance for automatic meta data construction.

— A new meta data compiling method is proposed to select meta data from
training data for meta optimization. In our method, four sophisticated crite-
ria are considered illuminated by the gap, and the submodular optimization
strategy is introduced to solve the optimal subset selection with the fused
criteria. Extensive experiments indicate our compiled meta data yield better
accuracies in typical meta optimization scenarios than existing strategies.

2 Related Work

This section briefly introduces meta optimization, meta data compiling, and
submodular optimization in machine learning.

1 Although our method can be used to compile meta data directly from validation
data, this study limits it to training data because validation data do not exist in
many learning tasks.
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2.1 Meta Optimization

Meta optimization is the instantiation of meta-learning [13, 14], which optimizes
the target hyper-parameters by minimizing the learning error on meta data.
Compared with the grid search, meta optimization is more efficient and has
theoretical advantages over traditional cross-validation [15]. Let T and S be
the training and (unbiased) meta sets, respectively. Let @ and p be the model
parameters and hyper-parameters, respectively. Given p, an optimal ©*(u) can
be subsequently obtained as follows:

0" () = argmin L7(6), u), (1)

where L is the loss. The optimal hyper-parameters p* can thus be obtained by
minimizing the loss on the meta set S:

p' = argmin L5(07 (). (2)

Meta optimization has been widely used in various scenarios, such as imbal-
ance learning and noisy label learning.

2.2 Meta Data Compiling

In existing studies, meta data are assumed to be given in advance, and no stan-
dard for selecting meta data is provided and discussed. Take meta optimization
as an example in imbalance to illustrate how the meta data are compiled in nearly
all existing studies. The benchmark data set CIFAR10 [16] contains 50,000 train-
ing samples on ten balanced categories. In the experiments, a balanced subset of
50,000 images is used as the independent meta set. Then, the rest of the images
are used to build imbalanced training set by different category-wise probabilities.
Unfortunately, the above simulation process is infeasible in real applications.
A promising solution is to define a set of “unbiased” criteria and then select meta
data from training data. So far, only one recent study [11] has investigated this
technical line. However, only the “cleanness” criterion and the “balance” criterion
are considered. For the balance criterion in [11], if the number of samples for
a certain class is not enough, the authors simply repeat the samples to attain
balance. Theoretical guidance for how to compile meta data is still lacking up
till now. This study attempts to construct guidance with a theoretical basis.

2.3 Submodular Optimization

Submodular optimization provides an efficient framework to solve the NP-hard
combination problem with fast greedy optimization. A submodular optimiza-
tion instance LtLG [17] can achieve linear time complexity in the data size,
which is independent of the cardinality constraint in expectation. Submodular
optimization has been widely used in text summarization, sensor placement,
and speech recognition [18]. Joseph et al. [18] proposed an effective submodular
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Fig. 1. Overview of our submodular meta data compiling. Our method is called sub-
modular optimization-based meta data compiling (denoted as SOMC for briefly).

optimization-based method to construct a mini-batch in DNN training. Signifi-
cant improvements in convergence and accuracy with submodular mini-batches
have been observed.

When more sophisticated criteria are considered in automatic meta data
compiling, the optimizing is very likely to become NP-hard, and simple greedy
strategies are ineffective. Submodular optimization provides an effective solution.

3 Methodology

Fig. 1 illustrates the proposed submodular compiling process for the meta data
set. The theoretical analysis for meta data construction is conducted firstly. And
then the meta data selection method is described.

3.1 Theoretical analysis for meta data construction

Ideally, the distribution of samples in a compiled meta set equals that of test-
ing samples. Bao et al. [15] infer a generalization gap for the meta optimiza-
tion associated with independent ideal (i.e., unbiased) meta data. Let X be
the sample space. Let p!" and p™¢ be the distributions of training and meta
data, respectively. Let T be a set of n training samples, and S]'° be a set of
m meta samples. Let R(A(T, S/7¢),p™¢) = Eypme[l(A(T, SI¢), x)] be the ex-
pected risk for the learning on the meta set S™¢, where I(-, z) is the loss on z, A
is a meta optimization method and A(T, S/¢) is the learned hyper-parameters
and model with the training set T and meta set S7¢. Let R(A(T, S7¢), Sme) =
L ZwES’J{E I(A(T, S7¢), x) be the empirical risk for the learning on the meta set
Sye.

The involved meta optimization method is assumed to be S-uniformly sta-
ble [15]. That is, for a randomized meta optimization algorithm A, if for two
arbitrary compiled meta sets ¢ and S,"¢ such that they differ in at most one
sample, then V1T € X",V x € X, we have

|EA[l(A(T, S1%), ) — I(A(T, 8,7"¢), 2)]| < B. (3)
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The generalization gap is defined as
9ap(T, S;i°) = R(A(T, S}°),p™€) — R(A(T, 53°), S7i).- (4)
The expected generalization gap satisfies [15]

|Ear.spelgap(T, S7°)]| < B. (5)

We infer the expected generalization gap when a meta set is not ideal and
constructed from training data, including ours method. As the involved meta
optimization method is not changed in our study, the S-uniform stability is still
assumed. Let S7¢ be the compiled meta set consisting of m samples. Let P¢

and PJ"¢ be the distributions of 57¢ and S;,"¢, respectively.

Definition 1. The distance between two distributions P and P3¢ is defined
as follow:

d(Pre||Py™) = / |P™e(S) — Pme(S)|dS. (6)
S€X7n

To brevity, d(P¢||P5"¢) is denoted as d,. If the two distributions are iden-
tical, then d,, is zero. Let R(A(T, S5me), S5me) = L > zegzme LA(T, S57¢), x)
be the empirical risk for the learning on our compiled meta set S;,"*¢. We first
define the generalization gap for S;"¢ as follows:

gap(T, S, S5") = RA(T, S;i°), ™) = R(A(T, S5¢), S5). - (7)

We obtain the theorem for the expectation of the above generalization gap
as follows:

Theorem 1. Suppose a randomized meta optimization algorithm A is B-uniformly
stable on meta data in expectation, then we have

|Ea,1,5me s3me[gap(T, Sy, Sy )]l < B+ bdy, (8)

where b is the upper bound of the losses of samples in the whole space (following
the assumption in [15]), and d,,, = d(P7¢||Psme).

Compared with the expected generalization gap for independent (ideal) meta
sets given in Eq. (5), our expected generalization gap for automatically com-
piled meta sets contains an additional term bd,,. Naturally, an ideal criterion
for S;¢ should make sure both 8 and bd,, as small as possible. Note that

8= %[%((gj—é?)“ — 1) + 1] (Theorem 2 in [15]), where m, ¢, L, 7, k, and N
remain unchanged and only s(I) = b — a (the range of the loss) may change in
terms of different meta data selection criteria. As a — 0 when the cross-entropy
loss is used, only b and d,,, affect the upper bound of the gap (i.e., the value of
the right-side of (8)). Consequently, we explore the selection criteria according
to the minimization of both d,, and b, separately?. First, we have the following

conclusion.

2 The value of b affects both 3 and bd,,, while d,,, only affects bd,,.
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Corollary 1. The optimal selected meta data distribution P2™¢(S) should sat-
isfy that d,, =0, i.e., P3me(S) = Pe(S).

Accordingly, it is inappropriate to select training data uniformly at random
as meta data as the training data in many scenarios (e.g., imbalance learning)
is biased against the true meta data. In practice, the true distribution of meta
data is unknown. However, two requirements [3-6,8-10] are usually assumed to
be met for an arbitrary meta data set:

— Cleanness. As meta data are assumed to be drawn from the true distribu-
tion without observation noises, meta data should be as clean as possible.

— Balance. The balance over categories is usually taken as a prior in previous
studies utilizing meta optimization. This study also inherits this assumption.

According to Corollary 1, to reduce the value of d,,, cleanness and balance should
be leveraged as two selection criteria in our meta data compiling. We will show
that cleanness and balance may also reduce the value of b in the succeeding
discussion.

As d,, cannot be guaranteed to be zero only with the two criteria mentioned
above, b should also be as small as possible. The value of b is determined by
both the ideal yet unknown meta set (actually the true distribution of meta
data) and the compiled meta set (actually the underlying distribution of our
compiled meta data). Considering that the ideal meta set is not given and our
selection criteria do not affect the distribution of the ideal meta set, the ideal
meta set can be ignored in the discussion for the reduction of b. To reduce the
value of b, the following selection criteria are beneficial:

— Cleanness. If there are noisy samples in the compiled meta set, then the
losses of clean samples will be larger as noisy samples usually damage the
generalization ability [38]. Therefore, keeping the compiled meta data as
clean as possible will also reduce the value of b in a high probability.

— Balance. Even though the balance prior does not hold in a specific learn-
ing task, the balance over categories may reduce the maximum loss of the
samples of tail categories [5]. For this consideration, balance is still useful.

— Uncertainty. Pagliardini et al. [37] show that adding more samples with
high uncertainty will increase the classification margin. Accordingly, the
maximum loss may also be reduced if the meta data are noisy-free. Indeed,
uncertainty sampling [30-32] is prevalent in sample selection in active learn-
ing. It is proven to be more data-efficient than random sampling [34].

— Diversity. Diversity can be seen as the balance prior for the samples within
a category. This balance prior may also reduce the maximum loss of each
category. The maximum loss may subsequently be reduced. Indeed, diversity-
aware selection has other merits. Madan et al. [36] find that using the same
amount of training data, increasing the number of in-distribution combi-
nations (i.e., data diversity) also significantly improves the generalization
ability to out-of-distribution data.
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Fig. 2. An illustrative example of the four selection criteria. There are two classes and
five samples per class with a decision boundary. The samples {3,7} are those with
noisy labels. The cleanness criterion prefers the samples {4,6} to {3, 7}. The balance
criterion promotes to select the samples {4,5,6,10} instead of {2,4,5,6}. Diversity
prefers samples {6, 8,10} to {8,9,10}. The uncertainty criterion promotes the selection
of samples {4,5} instead of {1,2}.

According to the above considerations, two more criteria, namely, uncertainty
and diversity3, are also considered in addition to the cleanness and balance
criteria. Fig. 2 illustrates the roles of each of the four summarized selection
criteria in terms of the reduction of b. There are two classes of points with a
decision boundary between them. There are two noisy samples, 3 and 7. First,
if cleanness is not considered, then the noisy samples {3, 7} may appear in the
meta set. It is highly possible that the losses of clean samples near {3} and {7}
in the whole space are relatively high. Second, if the balance criterion is not
considered, the losses of the samples in the tail categories are high to a certain
extent. For example, if we choose the samples {1,2,4,5,6} as meta data, then
the losses of the samples near {9,10} in Class B will become high with a high
probability. Third, if the diversity criterion is not considered, then the samples
{8,9,10} may be chosen. The samples around the sample {6} may have higher
loss values. Finally, if the uncertainty criterion is not considered (e.g., if {4,5}
are not selected, the decision boundary will move in the direction of the dotted
line.), then the classification margin will decrease [37]. Consequently, the losses
of the samples near {4,5} will increase. Further, uncertainty can avoid selecting
too many clean samples with small losses through Eq. (10), and thus can improve
the update efficiency of meta optimization. Based on the above analysis, if any
of the four summarized criteria are ignored, the losses of samples in specific local
regions of the whole space will increase. As a result, b will increase.

3.2 Details of The Four Selection Criteria

This subsection describes how the four selection criteria are applied in the meta
data compiling from a given training set. Considering that the training sizes in
deep learning tasks are usually large, it is inappropriate to run all four selection

3 Indeed, Ren et al. [29] revealed that the uncertainty and the diversity criteria are
usually used together to improve the model performance in deep active learning.
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criteria on each training sample. Therefore, sampling will firstly be performed
to reduce the size of candidate samples fed to other criteria.

Uncertainty Criterion. Let © be the current model parameter. The output
entropy of a training sample z; is used to measure the uncertainty of z;. Let C
be the set of all classes. The calculation for the out entropy of x; is as follows:

u(w;) = —Zcec P(c|z;, ©)log P(c|zs, 0), (9)

where P(c|z;,©) refers to the probability that the current model predicts the
sample z; as the c-th category. Generally, a sample near the decision boundary
has a high uncertainty score. In our implementation, we sample the data based
on the normalized uncertainty score for each class, respectively. That is, the sam-
pling probability of z; is u(x;)/ > ;. = u(z;). More details about uncertainty
sampling can be found in Algorithm 1 and the experimental implementation
details in supplementary materials.

Cleanness Criterion. This criterion aims to select data with clean labels
or clean features. Many metrics can be used to judge the noisy degree of a
sample, including loss (prediction) [11], loss variance [2], gradient norm [20], etc.
Considering that the loss metric is the most widely used, this study also adopts
it. The cleanness degree of a set is defined as follows:

C(S) = Zzies c(z;) = ines P(y;|z;, 0), (10)

where y; is the label of z;, and © is the model parameter(s). If y; is a noisy label
or x; has non-trivial noisy features, then P(y;|z;,©) is usually small during
training.

Balance Criterion. Imbalance can cause the model to have a good perfor-
mance on the head categories but poor performance on the tail ones. Let n] be
the number of meta samples of the c-th category, and m be the total number of
meta samples. The balance score of a subset is formulated as follows:

m m

BS) = [T .o (i) <mi < T (11)

where C' is the category set. When B(S) = 1, the subset is balanced.

Diversity Criterion. The criterion selects samples with different features by
considering the relationship among samples. The following approach is utilized
to measure the diversity of a subset. Given ¢(-,-) to be any distance metric
between the two data points, a larger value of the minimum distance among
points would imply more diversity in the subset.

Z min = ¢(Z;, Z;), (12)

$J€S i£]

where Z; is the output of the final feature encoding layer of x;. This score is
dependent on the choice of distance metric. In our implementation, Euclidean
distance (||Z; — Z;]|,) is employed according to the performances of different
distance metrics reported in [18].
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3.3 Submodular Optimization

The four criteria are cooperated to construct an optimization problem for the
final meta data compiling. As previously described, the uncertainty criterion is
first utilized to reduce the candidate training data. The diversity and cleanness
criteria are then combined as follows:

F(S) = AD(S) + (1 = N)C(9), (13)

where A is a hyper-parameter. Let T be the candidate training data which is
passed through the uncertainty criterion. Consequently, an optimal meta set of
size m is selected by solving the following optimization problem:

S* = arg max F(S)
SeT : (14)
st. S| <m; B(S)=1

The maximization of Eq. (14) is a NP-hard problem as the total diversity
score in Eq. (12) cannot be factorized into the sum of diversity scores of each
sample. The simple greedy method leveraged in [11] is inapplicable. Hence, to
conduct an efficient and effective maximization, the submodular optimization
manner is leveraged.

Submodular optimization guarantees a solution for a submodular objective
function which is at least (in the worst case) 1 —1/e of the optimal solution [21],
where e is the base of the natural logarithm. Further, some fast submodular op-
timization algorithms such as LtLG [17] have been put forward. An optimization
problem can be solved with submodular optimization if its objective function is
submodular and monotonically non-decreasing. Therefore, to apply submodular
optimization, we have two lemmas for the objective function.

Definition 2. Let X be a finite set. A set function F(S) : 2% — R is submod-
ular if VA, B C X with A C B and an element a € X \ B, we have

F({a}UA) - F(A) > F{a} U B) — F(B).
Definition 2 indicates that the gain diminishes as we add elements [21].
Lemma 1. F(S) in Eq. (13) is submodular.
Lemma 2. F(S) in Eq. (138) is monotonically non-decreasing.

According to Lemmas 1 and 2, the submodular optimization technique can be
used directly to solve Eq. (14). Inspired by the general submodular optimization
framework SMDL [18], our method consists of three main processes shown in
Algorithm 1. First, a training subset T is obtained based on uncertainty sampling
and is randomly partitioned into K disjoint subsets. Secondly, a subset is further
generated from each of the K subset by maximizing the marginal gain F(a|S) =
F({a}US)—F(S). Lastly, the subsets are merged to generate the final meta data
set by considering the margin gain maximization and the balance constraint.
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Algorithm 1 SOMC

Input: Training set 7', u(z;), i =1,---,|T|, m, K, A\, and F(-) in Eq. (13).
Output: Meta data set S

1: S« 0

2: Obtain a subset (still marked as T') of size @ based on uncertainty sampling;
3: Partition T into K disjoint sets T4, 1%, ..., Tk;

4: Generate a subset Sy (m samples) from T} using LtLG [17], k=1, -+ , K;
5 S «— UkK:15M

6: While |S| <m

7:  Select a sample (z*,y*) € S\ S using LtLG;

8 Ifny < “’"7'] -1

9: S+— {(z*,y")}US;

10: Return S.

The time complexity of our proposed submodular optimization-based meta
data compiling (SOMC) is O((|T'| + Km)md), where d is the feature dimension.
In practice, Algorithm 1 can be implemented in parallel and the time complexity
becomes approximately O((|T'|/K + Km)md). When m is large, the time con-
sumption can be significantly reduced by first compiling a batch of small meta
sets and then merging them as the final meta set S. The entire algorithmic steps
and more details are presented in the supplementary material.

4 Experiments

This section evaluates the performance of SOMC in benchmark image classifi-
cation corpora, including CIFAR [16], ImageNet-LT [22], iNaturelist [23], and
Clothing1M [24]. Details of these corpora and the source code are provided in
the supplementary material.

4.1 Evaluation on CIFAR10 and CIFAR100

Nearly all existing meta optimization studies utilize independent meta sets, and
thus they should be compared. In this part, the independent meta data used in
existing studies are replaced by the data compiled by our SOMC. In addition,
the only existing automatic meta data selection method FSR [11] is also com-
pared. FSR only uses cleanness and balance to select meta data in the training
set. Indeed, FSR also contains multiple data augmentation tricks and a novel
meta optimization method. For a fair comparison, only the module of meta data
compiling of FSR (denoted as “FSRC”) is compared in this experiment.

Results on Imbalance Classification Following [25], we use CIFAR10 and
CIFAR100 to build imbalance training sets by varying imbalance factors p €
{200, 100, 50, 20, 10}, namely, CIFAR10-LT and CIFAR100-LT. The original bal-
anced test sets are still used. The concrete hyper-parameters setting is described
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Table 1. Test top-1 accuracy (%) of ResNet-32 on CIFAR10-LT and CIFAR100-LT

under different imbalance settings.

Data set

CIFAR10-LT

CIFAR100-LT

Imbalance factor

200 100 50 20 10

200 100 50 20 10

Base model (CE)

MCW+100/1000 meta images (CE)
MCW-FSRC (CE)

MCW+SOMC (CE)

MetaSAug +100/1000 meta images (CE)
MetaSAug + FSRC (CE)
MetaSAug+SOMC (CE)

65.87 70.14 74.94 82.44 86.18
70.66 76.41 80.51 86.46 88.85
72.34 77.65 81.31 86.25 88.02
73.71 79.24 82.34 86.98 88.67
76.16 80.48 8352 87.20 88.89)|
75.41 79.28 82.87 86.81 88.37

76.25 80.25 83.61 87.43 89.02

34.70 38.46 44.02 51.06 55.73
39.31 43.35 48.53 55.62 59.58
38.53 44.21 49.72 55.98 60.17
39.95 45.97 51.28 57.32 61.11
42.27 46.97 51.98 57.75 61.75|
42.53 47.02 51.61 57.87 61.35

43.32 48.03 52.36 58.52 61.88

MCW+100/1000 meta images (FL)
MCW+FSRC (FL)
MCW+SOMC (FL)

MetaSAug+100/1000 meta images (FL)
MetaSAug+FSRC (FL)
MetaSAug+SOMC (FL)

74.43 78.90 82.88 86.10 88.37
74.57 79.23 83.06 86.22 88.59
75.26 80.17 83.65 86.52 88.84
75.73 80.25 83.04 86.95 88.61]
75.12 79.87 82.52 85.99 88.21

76.01 80.44 83.41 86.77 88.87

39.34 44.70 50.08 55.73 59.59
39.67 44.85 50.35 55.89 59.87
40.26 45.96 51.13 56.67 60.35
40.42 45.95 51.57 57.65 61.17]
39.77 45.86 51.22 57.25 60.84

40.69 46.90 51.99 57.81 61.65

77.23 80.00 82.23 84.37 87.40

39.53 44.08 49.16 52.38 58.00

MCW-+100/1000 meta images (LDAM)
MCW+FSRC (LDAM)
MCW-+SOMC (LDAM)
[MetaSAug+100/1000 meta images (LDAM)]
MetaSAug+FSRC (LDAM)
MetaSAug+SOMC (LDAM)

76.85 79.97 82.04 85.12 88.03
77.69 80.43 82.86 85.74 88.51
76.4280.43 83.72 87.3288.77|
75.89 79.93 83.21 86.72 87.93

76.56 80.61 83.96 87.45 88.57

40.25 44.83 49.79 53.34 59.46
41.37 45.73 50.62 54.29 60.30
42.87 48.29 52.18 57.65 61.37]
42.69 47.43 51.65 57.54 61.35

43.48 48.17 52.56 58.43 61.93

Table 2. Test top-1 accuracy (%) on CIFAR10 and CIFAR100 of WRN-28-10 with
varying noise rates under uniform noise.

Data set CIFARI10 CIFAR100
Noise rate 0% 40% 60% 0% 40% 60%
Base model (CE) 95.60+0.22 68.07£1.23 53.12£3.03| 79.954+1.26 51.114+0.42 30.92+0.33

95.424-0.07 91.5440.15 87.274+0.27
05.2340.17 88.15+0.31 81.8440.33
95.6540.05 89.38+0.13 83.5640.27
T 94.5240.25  89.27+0.28 84.07+0.33
95.03+£0.23 88.78+0.16 84.26+0.17

95.6910.09 89.814+0.13 85.161+0.12

80.7540.11 71.830.24 65.37+0.53
80.49+0.23 67.86+0.14 59.63+0.42
81.361+0.31 68.75+0.29 61.03+0.17
| 78.76£0.24  67.7310.26 58.750.11]
79.95+0.08 67.88+0.25 59.37+0.28

80.68+0.32 68.63+0.14 60.65+0.19

MSLC+1000 meta images
MSLC+FSRC
MSLC+SOMC
[MWNet+1000 meta images
MWNet+FSRC

MWNet+SOMC

in the supplementary material. The average accuracy of the three repeated runs
is recorded for each method. The meta set for all existing studies contains ten
images for each category. However, the numbers of images in some tail categories
in CIFAR10-LT and CIFAR100-LT are less than ten. Thus, data augmentation
techniques are used to generate more candidates for the successive meta image
selection for these categories for our SOMC and FSRC. ResNet-32 [26] is used
as the base network. The parameter \ of our SOMC is searched in {0.3,0.5,0.7},
and K is searched in {2,5}. More details are described in the supplementary file.

Two meta optimization methods, namely, MCW [5] and MetaSAug [10], are
leveraged. Partial results on the early representative method MWNet [4] are
shown in the supplementary file. The original study of both methods provides
source codes and meta sets on the above data sets. Our experimental results are
obtained directly on these codes and hyper-parameter settings.

The classification accuracies of the three meta optimization methods with
independent meta sets, FSRC, and our proposed SOMC on CIFARI10-LT and
CIFARI100-LT are shown in Table 1. The results are organized into three distinct
groups according to the adopted loss functions (i.e., Cross-entropy (CE), Focal
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Table 3. Test top-1 accuracy (%) of ResNet-32 on CIFAR10 and CIFAR100 with
varying noise rates under flip noise.

Data set CIFAR10 CIFAR100

Noise rate 0% 20% 40% 0% 20% 40%
Base model (CE) 92.894+0.32 76.834+2.30 70.774+2.31| 70.50+0.12 50.86+0.27 43.01+1.16
MSLC+1000 meta images 92.75+0.15 91.67+0.19 90.23+0.13| 70.3740.31 67.591+0.06 65.0210.21
MSLC+FSRC 92.46+0.13 89.784+0.32 88.61+0.27| 70.294+0.21 64.97+£0.19 61.154+0.46
MSLC+SOMC 92.83+0.09 91.13+0.21 89.554+0.25(70.82+0.15 66.33+£0.11 62.58+0.28
[MWNet {1000 meta images| 92.04+0.15 90.33+0.61 87.54%+0.23] 70.11£0.33  64.2240.28 58.64+0.47|
MWNet+FSRC 92.42+0.12 90.654+0.36 87.254+0.41| 70.52+0.11 65.264+0.12 59.47+0.22
MWNet+SOMC 93.0640.06 91.37+0.11 88.65+0.26(71.39+0.31 66.69+0.11 60.344+0.19

loss (FL), and LDAM). SOMC can construct more effective meta data only from
training data than both independent meta sets and FSRC in nearly all the cases.

Results on Noisy Labels Learning Two typical types of corrupted training
labels are constructed: 1) Uniform noise. The label of each sample is indepen-
dently changed to a random class with probability p. 2) Flip noise. The label of
each sample is independently flipped to similar classes with total probability p.
Details are described in the supplementary file. Two typical meta optimization
methods, MSLC [6] and MWNet [4], are used. In previous studies, the meta
data for these two methods consist of absolutely clean images. These clean im-
ages will be replaced by the compiled images with our SOMC. ResNet-32 [26]
and WRN-28-10 [27] are used as the base network. The hyper-parameters setting
is presented in the supplementary file.

The classification results under different noise rates are shown in Tables 2
and 3. Our method outperforms the independent meta data in MWNet. As the
noise ratio increases, SOMC degrades more than the independent meta data
in MSLC. It is reasonable to require independent clean meta data in the case
of a high noise rate. Our method SOMC counsistently outperforms FSRC under
different noise rates on both sets.

4.2 Evaluation of Large Data Sets

Four large data sets, iNaturalist2017 (iNat2017), iNaturalist2018 (iNat2018),
ImageNet-LT, and ClothinglM are used. The former three are leveraged for im-
balance learning, while the last is for noisy label learning. MCW and MetaSAug
are utilized for ImageNet-LT, INat 2017 and 2018. MSLC and MWNet are uti-
lized for Clothing1M. The experimental settings, including the hyper-parameters,
are presented in the supplementary material.

Tables 4 and 5 show the results of the competing methods on iNaturalist data
sets and ImageNet-LT. Although 25445 (for iNat2017), 16284 (for iNat2018),
and 10000 (for ImageNet-LT) independent meta data are used for MCW and
MetaSAug, their performances are worse than those of meta data compiled by
our SOMC. FSRC yields the lowest accuracies among the three meta data con-
struction methods for iNat2017 and 2018. In addition, MetaSAug+SOMC with
the pre-trained BBN [28] yields the highest top-1 accuracy for iNat2017 and
2018. For ImageNet-LT, SOMC still yields the best results.
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Table 6 shows the results on ClothinglM. It can be seen that SOMC achieves
better results than 7000 independent meta data and compiled meta data by
FSRC on MWNet. For MSLC, compared with 7000 independent meta data,
SOMC still achieves comparable results. However, FSRC yields the worst results.

Table 4. Test top-1 accuracy (%) on iNaturalist 2017 and 2018.

Method iNat2017 iNat2018
Base model (CE) 56.79 65.76
MCW+25445/16284 meta images 59.38  67.55
MCW+FSRC 58.76 67.52
MCW+SOMC 60.47 68.89
MetaSAug+25445/16284 meta images 63.28 68.75
MetaSAug+FSRC 62.59 68.28
MetaSAug+SOMC 63.53 69.05
MetaSAug+SOMC with BBN model 65.34 70.66
84 —e— IF 100
83 IF 50
S
<82
% 81
<
i /\‘
79
0.1 0.3 0.5 0.7 0.9
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Fig. 3. Effect of A on CIFAR-10-LT under the different imbalance factors (IF) based
on MetaSAug+SOMC (LDAM).

4.3 Discussion

The supplementary file provides more details (including results and analysis) on
the issues discussed in this part.

Table 5. Test top-1 accuracy (%) on ImageNet-LT.

Method ImageNet-LT
Base model (CE) 38.88
MCW-+10000 meta images 44.92
MCW+FSRC 45.05
MCW+SOMC 45.97
MetaSAug+10000 meta images 46.21
MetaSAug+FSRC 45.77

MetaSAug+SOMC 46.68
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Table 6. Test top-1 accuracy (%) on on Clothing1M.

Method ClothinglM
Base model (CE) 68.94
MWNet+7000 meta images 73.72
MWNet+FSRC 73.01
MWNet+SOMC 73.89
MSLC+7000 meta images 74.02
MSLC+FSRC 73.23
MSLC+SOMC 73.67

The above comparisons suggest that the meta data compiled by our SOMC
are more effective than the independent meta data in most cases (except the
cases of high noise rate when MSLC is used) and those compiled by FSRC in
nearly all cases. This conclusion can be explained by Theorem 1. First, let P?™¢
and P/™¢ be the distributions of independent meta data and the FSCR meta
data, respectively. It is very likely that d(P™¢||P*™€) (i.e., d,,) is smaller than
both d(P™¢||P™¢) and d(P™¢||Pf™¢) because our selection criteria are more
elaborately designed. Second, we calculate the upper bounds of the test losses
of the models corresponding to the three meta data compiling methods, namely,
FSRC, IDMD (independent meta data), and our method SOMC, respectively.
Fig. 4 shows the recorded values. SOMC does achieve the minimum upper bound
of test losses (i.e., b) among the three methods. This is consistent with the
theoretical analysis in Section 3.1 that the four criteria mainly aim to reduce d,,
and b. More comparisons of the upper bounds of test losses are presented in the
supplementary file.

s SOMC

[ IDMD
. BN FSRC
4 ‘ '
20 50 100
IF

Fig. 4. The upper bounds of test losses on CIFAR10-LT for the three meta data com-
piling methods under different imbalance factors (IF) based on MetaSAug (LDAM).

Upper bound

©

There are two important hyper-parameters, namely, A and K, in SOMC.
They are tuned with grid search in the experiments. Nevertheless, the perfor-
mances are usually satisfactory when A € {0.3,0.5} (shown in Fig. 3) and K = 5.
In all the experiments, the parameter m in our SOMC equals the size of inde-
pendent meta data used in existing studies for a fair comparison. In addition,
the time cost of SOMC is recorded.
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An ablation study is conducted for the importance of each criterion in SOMC.
The results on imbalance learning (ResNet-32) are shown in Table 7. Removing
each criterion causes a performance drop. This result indicates that each of the
four criteria is useful in SOMC.

Table 7. Ablation study of MetaSAug+SOMC using CE loss on CIFAR-100-LT.

Imbalance factor 200 100 50

SOMC w/o Uncertainty 42.19 47.14 51.29
SOMC w/o Diversity 41.21 46.23 50.21
SOMC w/o Cleanness 41.37 46.42 50.13
SOMC w/o Balance 40.09 45.59 49.52
SOMC 43.32 48.03 52.36

We use different backbone networks (i.e., ResNet-50, ResNet-101, and ResNet-
152 [26]). The results indicate that our method still achieves competitive perfor-
mances. Comparisons with more competing methods and settings are conducted
in the supplementary file.

5 Conclusions

This study has investigated the automatic compiling of meta data from training
data for meta optimization. A theoretical analysis is firstly conducted for the
generalization gap for automatic meta data compiling methods, and theoreti-
cal guidance for the construction of meta data is obtained. Four sophisticated
selection criteria, namely, cleanness, balance, diversity, and uncertainty, are sum-
marized to reduce the upper bound of the generalization gap. These criteria are
cooperated to construct an objective function for optimal subset selection from
training data. The submodular optimization technique is leveraged to search
for the optimal subset. Extensive experiments on six benchmark data sets verify
the effectiveness and competitive performance of the proposed method compared
with SOTA competing methods.
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1 Supplementary Materials for Section 3.1

In this section, we provide the proofs of Theorem 1.

Proofs of Theorem 1 and its Corollary

Theorem 1. Suppose a randomized meta optimization algorithm A is B—uniformly
stable on meta data in expectation, then we have

|Ear,sme szme [gap(T, Sy, S5 < B+ bdm, (S-1)
where b is the upper bound of the loss and d,, = d(Pl¢||Psme).
Proof. The definition of gap(T, S¢, S5m¢) is as follows:

gap(T, S}, S5") = R(A(T, Si°),p™) — R(A(T, S5), Si™) (5-2)
Hence, by Eq. (S-2), we have

Egpe sgme[gap(T, S, S™)]

= Espe [R(A(T, S7),p™)] = Esame[R(A(T, S57), Si™)]

= Espe [R(A(T, S3i),p™)] = Espe [R(A(T, S7), Sin))]

+ Espe [RIA(T, S31), Sii))] = Esyme [RIA(T, S37°), S37) )]
According to [6], the following Eq. (S-4) holds

| Earsye [RCAT, S3), p™) = RIA(T, S32€), Sii))]| < B (S-4)

| Bspe [RIA(T, S3%), S12))] = Esgne [R(A(T, S37), S )|

m

_| /3 L D UATS). ) B (S) - L > UAT.5), )P ()

<1 [ 2 S AT ) ) (Pe(S) - Pare())as]

<b [ IPRE(S) — P (S)1dS < by,
S

where b is the upper bound of the loss (following the assumption in [6]) and
S ={z1,29, ey Zm}-

Hence, according to the absolute value inequality, Eq. (S-4), and Eq. (S-5)
we have

‘EA,T’Sme,S;me [gap(T gme SSWLe)H

< |Bar,sme [R(A(T, ST¢), p™) — R(A(T, S7¢), S7e))]|
+ |Eaz sme seme [R(A(T, S7€), S7€)) — R(A(T, S5, 55m¢))|

< B+ |Ear(bdn]| = B+ bdy,.

Theorem 1 is proved.

(S-6)
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2 Supplementary Materials for Section 3.3

2.1 Proofs of Lemmas 1 and 2

Definition S-1. Let X be a finite set. A set function F(S) : 2X — R is
submodular if VA, B C X with A C B and an element a € X \ B, we have

F({a}UA) - F(A) > F({a} U B) — F(B).
Definition S-1 indicates that the gain diminishes as we add elements [11].
Lemma 1. F(-) in Eq. (14) is submodular.

Proof. We prove that the Cleanness criterion and the Diversity criterion are
submodular, respectively.

Give two subsets S7 and S of a training set 7' such that S; C S, and a
sample not selected so far: (a/,y") € T'\ Sz, where y’ is the label of 2’. According
to [8], we have

D((«',y")|S1) = D{(«",y")} U S1) — D(S1) = i o(&, 7), (S-7)
D((«',y")|S2) = D{(", ")} U S2) — D(S2) = i o(¥',7), (S-8)

where  is the output of the final feature encoding layer of x.
Since S C S, according to the proof in [8], the following inequality holds:

D((«,y)[S1) = D((',y)]S2). (S-9)

Hence, according to Definition S-1, D(-) is submodular. For C(5), the fol-
lowing equation holds:

C((=",y")I%) = C{(«,y)} U S1) = C(S1) = P(y']a’, O). (S-10)
C((=",y)|%2) = C{(',y)} U S2) — C(S2) = P(y']’, O). (S-11)

Hence, according to Definition S-1, C(-) is submodular. Any conic combination
of submodular functions is submodular [11], and thus F(-) is submodular.

Lemma 2. F(-) in Eq. (14) is monotonically non-decreasing.

Proof. Consider a subset S and an element (z',y') € T\ S. According to [8],
when (2/,y’) is added to S,

D!, y/)} U S) = D(S) + min 6(7, 7). (5-12)

Hence, D(+) is a monotonically non-decreasing function.
For C(-),
CH@",y)}uS) =C(S)+ Py, 0). (5-13)

Due to P(y'|2/,0) > 0 and A > 0, F(-) is a monotonically non-decreasing
function.
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2.2 More Details for SOMC

Details of the Algorithmic Steps Algorithm S-1 contains the entire algo-
rithmic steps. SOMC first use uncertainty sampling to sample a subset of size
@ and renote the subset as T'. Second SOMC divides the data set T into some
disjoint subsets, namely, 71,75, ..., Tx. Then LtLG is run on these subsets [12].
LtLG starts with an empty set and an element from the random set R is added
one by one by maximizing the marginal gain F(a|S) = F({a}US) — F(S). The
above-mentioned set R is created by randomly sampling s = |mﬂ log% samples
from its superset V', where € is a fixed user-defined tolerance level. € is set as 0.2

in our experiments according to the default setting in [12].

Algorithm S-1 SOMC
Input: Training set T, u(z;), i =1,---,|T|, m, K, A\, and F(-) in Eq. (8).
Output: Meta data set S
1S — 0
: Obtain a subset of size

@ is based on uncertainty sampling and re-denoted as T’

1

2

3: Partition 7" into K disjoint sets T4, 1%, ..., Tk;

4: for k =1 to K do

5. Sp=0.

6: forj=1tomdo

7 Randomly sample a subset R with size s from T} \ Sk;
8 (w,y)) = argmax F((z,y)|S0);

(z,y)ER
9: Sk = {27, y; } U Sk;
10: end for
11: end for

12: S «— U, Si;
13: while |S| < m do
14:  Randomly sample a subset R with size s from S \ S
15: (x},yj) = argmax F((z,y)|S);
(z,y)€R

16:  if nyr < % then
17 S ={(@y)Us;
18: end if

19: end while

20: Return S.

Asymptotic Time Complexity of SOMC The main computational com-
plexity of Algorithm S-1 is divided into two parts. The first part is comprised of
steps 4 to 11, and the second part is comprised of steps 13 to 19. The calculation
of the Uncertainty sampling and the Cleanness criterion is related linearly to
the size of the data set. We calculate the time complexity of the feature balance
criterion. The time complexity of the first part is |T|md. And the time complex-
ity of the second part is Km?2d. Hence the total asymptotic time complexity of



SOMC is O((|T'| + Km)md). If we compute in parallel in the first part, then the
time complexity is O((|T|/K + Km)md).

Time Cost. We record the time cost of SOMC on a Linux platform with a
24Gb RTX 3090 GPU. We calculate the ratio of the time for selecting meta data
to the total model training time. For MSLC+SOMC on CIFARI10 with a 40%
flip noise rate, the ratio is 7.73% (639.08 seconds for selecting meta data and
8262.36 seconds for model training). For MetaSAug+SOMC on CIFAR100-LT
with an imbalance factor of 200, the ratio is 6.47% (132.98 seconds for selecting
meta data by SOMC and 2055.35 seconds for model training). We also test
SOMC on Clothing1M. Because ClothinglM contains 1 million images from the
real world, we first use the Cleanness criterion to filter out a balanced subset
with 100,000 images and then build the meta data set by SOMC. ResNet-50 is
the backbone network. For MWNet+SOMC, the model training time is about
120.25 hours, and the total time to select meta data is approximately 1.14 hours.
Hence the ratio of the model training time to the time to select meta data is
0.95%. K is set to 5 for all time cost tests. Compared to model training, the
time to select meta data is acceptable.

3 Supplementary Materials for Section 4

3.1 Details About the Benchmark Data Sets

CIFAR. CIFAR10 (CIFAR100) [9] contains 50,000 images uniformly sampled
from 10 (100) classes and has 5,000 (500) images per class.

ImageNet-LT. ImageNet-LT is built by Liu et al. [14] from ImageNet [13],
which contains 1,281,167 training images and 50,000 validation images. ImageNet-
LT consists of 115,846 training samples in 1,000 classes. The imbalance factor is
1,280/5. Following [5], we adopt the original balanced validation to test meth-
ods.

INaturalist. The iNaturalist datasets are collected from the real world and
thus have an extremely imbalanced class distribution. The iNaturalist 2017
[21] (iNaturalist 2018[35]) is composed of 579,184 (435,713) training images in
5,089 (8,142) classes with an imbalance factor of 3,919/9 (1,000/2). Following
MetaSAug [5], we adopt the original validation set to test our method.
Clothing1M. Clothing1M [31] contains 1 million images of clothing obtained
from online shopping in real world. It includes 14 categories, including Shirt,
Sweater, and so on. The labels of the samples are generated from the descrip-
tion of the corresponding clothes and hence contain a large number of incorrect
annotations.

3.2 Details and More Results in Section 4.1

Experiments on Imbalance Classification In this section, we show the
hyper-parameters setting of imbalance classification and how to compile some
data from the training set to build the meta data using our method.
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Table S-1. Test top-1 accuracy (%) of varying K on CIFAR10-LT under the different
imbalance factors based on MetaSAug+SOMC (CE).

K 1 2 4 5 8 10

200 76.32 76.25 76.22 76.23 76.11 76.02
100 80.38 80.24 80.22 80.17 80.09 79.94
50 83.52 83.49 83.37 83.32 83.17 83.05
20 87.54 87.42 87.41 87.38 87.35 87.27

Data Augmentation Method. In the imbalanced learning experiments,
the number of images in some tail categories is too small to choose a balanced
meta data set. Hence, we introduce data augmentation techniques to generate
new samples for the tail categories. The data compiled from the training set do
not participate in any training process except for meta optimization to ensure
a fair comparison and highlight the effectiveness of our method. We use four
simple data augmentation techniques (i.e., resize, crop, flip and color jittering,
denoted as “RCFC") to generate candidate images for SOMC and FSRC.

Implementation details. To demonstrate the advantages of our method,
we discard the original meta data set used in [5, 3, 2] from the training set, and
they do not participate in any model training process. For MetaSAug [5], we
reproduce them with the source code released by authors. Following MetaSAug
[5], we train the ResNet-32 [19] on a single GPU with standard stochastic gra-
dient descent (SGD) with momentum 0.9 and weight decay of 5 x 10~* for all
experiments for 200 epochs. The initial learning rate is 0.1 and is decayed by 0.01
at the 160-th and 180-th epochs. The batch size is set as 100 for all experiments.
For SOMC, M\ is searched in {0.3,0.5,0.7} and K is searched in {2,5}. To select
the meta data, we use RCFC to make 1,000 images per class for CIFAR10-LT
and 100 images per class for CIFAR100-LT (10,000 images in total for both
CIFARI10-LT and CIFAR100-LT). Following MetaSAug, we select 10 images per
class as meta data from the augmented images. We compile the meta data per 4
epochs for CIFAR10-LT and CIFAR100-LT. The meta data size m in our SOMC
is the same as the competing methods in all experiments.

More Results About MWNet. More results about MWNet are presented
in Table 3.4. It can be observed that SOMC is better than the independent meta
data based on MWNet. And the test top-1 accuracy results of SOMC achieve
an absolute advantage over FSRC.

Details for Hyper-parameter K We study the effect of hyper-parameter
K on model performance. Table S-1 shows the accuracy variations on different
K values. When K increases, the accuracy demonstrates a slightly downward
trend. This is reasonable because when K increases, the quality of the selected
meta data will decrease. When K = 1, we just use steps 4 to 11 in Algorithm S-1
to select meta data. For efficiency, K is searched in {2,5} in our experiments.



Tables S-2 shows the results on ImageNet-LT. The results obtained by SOMC
are still better than those obtained with 10,000 images (10 independently anno-
tated meta data per class) and meta data compiled with FSRC.

Experiments on Noisy Labels Learning Implementation Details. Fol-
lowing the strategy used in MWNet [2], we randomly select two classes as sim-
ilar classes with equal probability in flip noise simulation. Wide ResNet-28-10
(WRN-28-10) [23] and ResNet-32 [19] are adopted as the base network in learn-
ing with uniform and flip noises, respectively. SGD is used with momentum 0.9,
a weight decay of 5 x 107%, and an initial learning rate 0.1. Following MSLC
[4], the max epoch is 120 for both ResNet-32 and WRN-28-10, and the learning
rate is decayed with 0.1 at the 80-th epoch and the 100-th epoch. A is searched
in {0.3, 0.5, 0.7} and K is set to 5. The meta data is compiled per 10 epochs
for ResNet-32 and WRN-28-10 when running our SOMC. Since the number of
images per category is sufficient, we directly use SOMC to select meta data from
the training set.

3.3 Details and More Results in Section 4.2

Hyper-parameter Settings of Large Data Sets Implementation Details
on ImageNet-LT. Following MCW [3] and MetaSAug [5], ResNet-50 [19] is
used as the backbone network. We reproduce the competing methods based on
the code released by Li et al. [5]. The results of MCW are directly from the
MetaSAug [5]. The batch size is 64, and the learning rate is decayed by 0.1
at 60-th and 80-th epoch (for a total epoch 90 as MetaSAug). In addition, we
only finetune the last full-connected layer and fix the representations in the meta
optimization stage for efficiency as MetaSAug. Except for our hyper-parameters,
other hyper-parameters are the same as the baseline. We augment 50 images for
each category by using RCFC to select the meta data and construct the meta
data by SOMC per 10 epochs in training. The hyper-parameter A is searched in
{0.3,0.5} and K is set to 2.

Implementation Details on INaturalist 2017 and 2018. Following
MCW [3] and MetaSAug [5], ResNet-50 [19] is used as the base network for
both iNaturalist 2017 and 2018. We perform this part of the experiments on a
Linux platform with 4 RTX 3090 GPUs, and each GPU has a capacity of 24Gb.
Following MetaSAug and MCW, the networks are pre-trained on ImageNet for
iNaturalist 2017 and ImageNet plus iNaturalist 2017 for iNaturalist 2018. We use
stochastic gradient descent (SGD) with momentum to train models. The batch
size is 64, and the initial learning rate is 0.01. The number of training epochs is
the same as that of MetaSAug. Except for our hyper-parameters, other hyper-
parameters are the same as the baseline. Using RCFC, we augment 15 images
per class for iNaturalist 2017 and 10 for iNaturalist 2018 to select the meta data.
The meta data are compiled per 10 epochs. The hyper-parameter A is searched
in {0.3,0.5} and K is set to 2.

Implementation Details on Clothing1M. Following MSLC [4], the pre-
trained ResNet-50 on ImageNet is used; SGD is used with a momentum 0.9, a
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Table S-2. Test top-1 accuracy (%) on ImageNet-LT.

Method ImageNet-LT
Base model (CE) 38.88
MCW-+10000 meta images 44.92
MCW+FSRC 45.05
MCW+SOMC 45.97
MetaSAug+10000 meta images 46.21
MetaSAug+FSRC 45.77
MetaSAug+SOMC 46.68

Table S-3. Test top-1 accuracy (%) on ImageNet-LT of methods with different back-
bone networks.

Network ~ MCW MetaSAug MetaSAug+SOMC

ResNet-50 44.92 46.21 46.68
ResNet-101 46.24 49.05 49.52
ResNet-152 46.82 50.03 50.38

weight decay 1073, an initial learning rate 0.01, and batch size 32. The learning
rate is divided by 10 after five epochs (for a total epochs 10). X is searched in
{0.3,0.5} and K is set to 5. Since ClothinglM contains one million pictures, for
efficiency, we use Cleanness criterion to filter out a balanced subset with a size
of 100,000, and then use SOMC to select meta data in this subset. We select
meta data per 2 epochs.

Results of Deeper Backbone Networks Different deeper backbone networks
are utilized to evaluate our method as [5]. Table S-3 shows the results of MCW
and MetaSAug with ResNet-50, ResNet-101, and ResNet-152. SOMC is run
based on MetaSAug, and it can be observed that our method can achieve better
results without independent meta data.

3.4 Details and more comprehensive results in Section 4.3

Ablation Study under Flip Noise We also test the effectiveness of our
method in the presence of corrupted labels. Table S-6 shows the results on
CIFAR-10 with the different flip noise rates based on MSLC+SOMC. It can
be observed that removing each criterion causes a performance drop. This re-
sults indicate that each of the three criteria and uncertainty sampling are useful
in SOMC.

More Comprehensive Comparison Comprehensive Results on Imbal-
ance Classification. We conduct a comprehensive comparison with the fol-
lowing methods: Base model (CE), Class-balanced CE [10], Class-balanced fine-
tuning [15], BBN [18], Mixup [20], L2RW [1], MWNet [2], MCW [3], MetaSAug



Table S-4. Ablation study of MSLC+SOMC on CIFAR10 under flip noise.

Noise rate 20% 40%

SOMC w/o Uncertainty 89.62 87.99
SOMC w/o Diversity = 89.48 87.84
SOMC w/o Cleanness 88.94 86.77
SOMC w/o Balance 89.87 88.07
SOMC 91.13 89.55

Table S-5. Test top-1 accuracy (%) of ResNet-32 on CIFAR10-LT and CIFAR100-LT
under different imbalance settings. CE, FL. and LDAM mean Cross-entropy loss, Focal
loss and LDAM loss respectively.

Data set \ CIFAR10-LT \ CIFAR100-LT

Imbalance factor | 200 100 50 20 10| 200 100 50 20 10
Base model (CE) 65.87 70.14 74.94 82.44 86.18| 34.70 38.46 44.02 51.06 55.73
Class-balanced CE 68.77 72.68 78.13 84.56 86.90| 35.56 38.77 44.79 51.94 57.57
Class-balanced fine-tuning 66.24 71.34 77.44 83.22 83.17| 38.66 41.50 46.22 52.30 57.57
BBN - 79.82 82.18 - 88.32 - 42,56 47.02 - 59.12
Mixup - 73.06 77.82 - 87.10 - 39.54 44.99 - 58.02
L2RW 66.25 72.23 76.45 81.35 82.12( 33.00 38.90 43.17 50.75 52.12
MWNet+100/1000 meta images (CE) 67.20 73.57 79.10 84.55 87.55 36.62 41.61 45.66 53.04 58.91
MWNet+FSRC (CE) 68.25 74.94 79.56 84.86 87.89| 36.87 41.68 45.84 53.83 58.97
MWNet +SOMC (CE) 69.53 75.88 80.77 85.98 88.58| 38.21 42.59 46.93 54.71 59.21
MCW +100/1000 meta images (CE) 70.66 76.41 80.51 86.46 88.85| 39.31 43.35 48.53 55.62 59.58
MCW-+FSRC (CE) 72.34 77.65 81.31 86.25 88.02| 38.53 44.21 49.72 55.98 60.17
MCW-+SOMC (CE) 73.71 79.24 82.34 86.98 88.67| 39.95 45.97 51.28 57.32 61.11
MetaSAug+100/1000 meta images (CE) | 76.16 80.48 83.52 87.20 88.89| 42.27 46.97 51.98 57.75 61.75
MetaSAug+FSRC (CE) 75.41 79.28 82.87 86.81 88.37| 42.53 47.02 51.61 57.87 61.35
MetaSAug+SOMC (CE) 76.25 80.25 83.61 87.43 89.02|43.32 48.03 52.36 58.52 61.88
FL 65.29 70.38 76.71 82.76 86.66| 35.62 38.41 44.32 51.95 55.78
Class-balanced FL 68.15 74.57 79.22 83.78 87.48| 36.23 39.60 45.21 52.59 57.99
MCW+100/1000 meta images (FL) 74.43 78.90 82.88 86.10 88.37| 39.34 44.70 50.08 55.73 59.59
MCW+FSRC (FL) 74.57 79.23 83.06 86.22 88.59| 39.67 44.85 50.35 55.89 59.87
MCW-+SOMC (FL) 75.26 80.17 83.65 86.52 88.84| 40.26 45.96 51.13 56.67 60.35
MetaSAug+100/1000 meta images (FL) 75.73 80.25 83.04 86.95 88.61| 40.42 45.95 51.57 57.65 61.17
MetaSAug+FSRC (FL) 75.12 79.87 82.52 85.99 88.21( 39.77 45.86 51.22 57.25 60.84
MetaSAug+SOMC (FL) 76.01 80.44 83.41 86.77 88.87|40.69 46.90 51.99 57.81 61.65
LDAM 66.75 73.55 78.83 83.89 87.32[ 36.53 40.60 46.16 51.59 57.29
LDAM-DRW 74.74 78.12 81.27 84.90 88.37| 38.45 42.89 47.97 52.99 58.78
MCW-+100/1000 meta images (LDAM) 77.23 80.00 82.23 84.37 87.40( 39.53 44.08 49.16 52.38 58.00
MCW+FSRC (LDAM) 76.85 79.97 82.04 85.12 88.03| 40.25 44.83 49.79 53.34 59.46
MCW+SOMC (LDAM) 77.69 80.43 82.86 85.74 88.51| 41.37 45.73 50.62 54.29 60.30
MetaSAug+100/1000 meta images (LDAM)| 76.42 80.43 83.72 87.32 88.77| 42.87 48.29 52.18 57.65 61.37
MetaSAug+FSRC (LDAM) 75.89 79.93 83.21 86.72 87.93| 42.69 47.43 51.65 57.54 61.35
MetaSAug+SOMC (LDAM) 76.56 80.61 83.96 87.45 88.57|43.48 48.17 52.56 58.43 61.93

[5], and FSRC [7]. Table 3.4 shows the comprehensive comparison. For FSRC,
we only compare the proposed meta data selection criteria for a fair comparison.
For MetaSAug, we reproduce the comparison method based on the code released
by the authors. Other results are obtained directly from the study of MetaSAug.

Results. These results are divided into three groups according to different
loss functions. Table 3.4 shows that our method achieves better results in almost
all cases. Our method can further improve the accuracy of the model or achieve
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Table S-6. Test top-1 accuracy (%) comparison on CIFAR10 and CIFAR100 of
ResNet-32 with varying noise rates under flip noise.

Data set CIFAR10 CIFAR100

noise rate 0% 20% 40% 0% 20% 40%
Base model (CE) 92.89+0.32 76.83+2.30 70.77+2.31| 70.504+0.12 50.86+£0.27 43.01+1.16
Reed-Hard 92.31+£0.25 88.2840.36 81.06+£0.76| 69.02+0.32 60.27+0.76 50.40£1.01
S-Model 83.61+£0.13 79.254+0.30 75.73+0.32| 51.46+0.20 45.45+0.25 43.814+0.15
SPL 88.52+0.21 87.03+0.34 81.63+0.52| 67.55+0.27 63.63+0.30 53.51£0.53
Focal Loss 93.03+£0.16 86.451+0.19 80.45+0.97| 70.02+0.53 61.874+0.30 54.13£0.40
Co-teaching 89.87+£0.10 82.83+0.85 75.41+0.21| 63.31+0.05 54.13+0.55 44.85+0.81
D2L 92.02+0.14 87.66+0.40 83.89+0.46| 68.11+0.26 63.484+0.53 51.83£0.33
Fine-tining 93.2340.23 82.47+3.64 T74.07+1.56| 70.72+0.22 56.98+0.50 46.37+0.25
MentorNet 92.13+£0.30 86.364+0.31 81.76+0.28| 70.24+0.21 61.974+0.47 52.66£0.56
L2RW 89.25+0.37 87.86+0.36 85.66+0.51| 64.11+1.09 57.474+1.16 50.98£1.55
GLC 91.02+£0.20 89.68+0.33 88.92+0.24| 65.424+0.23 63.07£0.53 62.224+0.62
MWNet+1000 meta images| 92.04+0.15 90.33+£0.61 87.54+0.23| 70.11+0.33 64.224+0.28 58.64+0.47
MWNet+FSRC 92.4240.12 90.654+0.36 87.25+0.41| 70.524+0.11 65.26+£0.12 59.474+0.22
MWNet+SOMC 93.06+0.06 91.37+0.11 88.654+0.26/71.39+0.31 66.69+0.11 60.34+0.19
MSLC+1000 meta images 92.7540.15 91.67+0.19 90.23+0.13| 70.3740.31 67.59+0.06 65.0240.21
MSLC+FSRC 92.46+0.13 89.784+0.32 88.61+0.27| 70.29+0.21 64.974+0.19 61.15£0.46
MSLC+SOMC 92.83+£0.09 91.134+0.21 89.55+0.25| 70.82+0.15 66.33+0.11 62.58+0.28

comparable performance without independent metadata. SOMC also achieves
better performance than FSRC in all cases.

Comprehensive Results on Corrupted Labels Classification. We com-
pare our method with the following methods: CE (Cross-Entropy), Reed-Hard
[24], S-Model [25], SPL [26], Focal Loss [17], Co-teaching [27], D2L [28], Fine-
tining, fine-tuning the result of Base model on the meta data with clean labels to
further enhance its performance; MentorNet [29], L2RW [1], GLC [30], MWNet
[2], MSLC [4], and FSRC [7]. Tables S-6 and S-7 show the competing results. For
FSRC, we only compare its proposed meta data selection criteria for a fair com-
parison. For MSLC, because the base network and noise types in MWNet and
MSLC are different, we reproduce their results through the author’s open-source
code.

Results. Tables S-6 and S-7 show that SOMC can achieve better results
than the independent meta data based on MWNet. When the noise rate is 0%,
SOMC can achieve better results than the independent meta data based on
MSLC. When the noise rate increases, the performance of SOMC degrades more
than the independent meta data based on MSLC, which indicates in the case of a
high noise rate, independent meta data is required. SOMC achieves an absolute
advantage over FSRC.

Comprehensive Results on Large Data Sets. For ImageNet-LT, we
compare our method with CE, Class-balanced CE [10], OLTR [14], LDAM [16],
LDAM-DRW [16], MCW [3], MetaSAug [5], and FSRC [7]. For FSRC, we only
compare its proposed meta data selection criteria for a fair comparison. For
MetaSAug, we reproduce the comparison method based on the code released by
the authors. Other results are obtained from MetaSAug.

For iNaturalist 2017 and 2018, we compare SOMC with the following meth-
ods: CE (Cross-Entropy Loss), Class-balanced CE [10], Class-balanced focal [10],
cRT [22], BBN [18], LDAM [16], LDAM-DRW [16], MCW [3], MetaSAug [5],
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Table S-7. Test top-1 accuracy (%) comparison on CIFAR10 and CIFAR100 of WRN-
28-10 with varying noise rates under uniform noise.

Data set CIFAR10 CIFAR100

noise rate 0% 40% 60% 0% 40% 60%
Base model (CE) 95.60+£0.22 68.07+1.23 53.12+3.03| 79.95+1.26 51.11+£0.42 30.92+0.33
Reed-Hard 94.3840.14 81.264+0.51 73.53+1.54| 64.45+1.02 51.27+1.18 26.95+0.98
S-Model 83.79+0.11 79.584+0.33 -l 52.864+0.99 42.12+0.99 -
SPL 90.81+0.34 86.414+0.29 53.10+1.78 59.79+0.46 46.314+2.45 19.08+0.57
Focal Loss 95.704+0.15 75.96+1.31 51.87+1.19| 81.04+0.24 51.19+£0.46 27.70+3.77
Co-teaching 88.67+£0.25 74.81+0.34 73.06+0.25| 61.80+0.25 46.204+0.15 35.67£1.25
D2L 94.64+0.33 85.601+0.13 68.02+0.41| 66.17+1.42 52.104+0.97 41.11£0.30
Fine-tining 95.65+£0.15 80.474+0.25 78.75+2.40, 80.88+0.21 52.4940.74 38.16£0.38
MentorNet 94.35+£0.42 87.33+0.22 82.80£1.35| 73.26+1.23 61.394+3.99 36.87£1.47
L2RW 92.38+£0.10 86.924+0.19 82.24+0.36| 72.99+0.58 60.794+0.91 48.15£0.34
GLC 94.30+£0.19 88.284+0.03 83.49+0.24| 73.75+0.51 61.31£0.22 50.81+1.00
MWNet+1000 meta images| 94.524+0.25 89.27+0.28 84.07+0.33| 78.76+0.24 67.73+0.26 58.75+0.11
MWNet+FSRC 95.03+£0.23 88.784+0.16 84.26+0.17| 79.95+0.08 67.88+0.25 59.37£0.28
MWNet+SOMC 95.69+0.09 89.814+0.13 85.164+0.12| 80.68+0.32 68.63+0.14 60.65+0.19
MSLC+1000 meta images 95.4240.07 91.54+0.15 87.27+0.27| 80.754+0.11 71.8340.24 65.37+0.53
MSLC+FSRC 95.23+0.17 88.15+0.31 81.84+0.33| 80.49+0.23 67.864+0.14 59.63£0.42
MSLC+SOMC 95.654+0.05 89.384+0.13 83.56+0.27|81.36+0.31 68.754+0.29 61.034+0.17

FSRC [7]. For FSRC, we only compare its proposed meta data selection criteria
for a fair comparison. Other results are from MetaSAug.

Table S-8. Test top-1 accuracy (%) on ImageNet-LT of different models.

Method

ImageNet-LT

Base model (CE)

Class-balanced CE
OLTR
LDAM
LDAM-DRW
MCW+10000 meta images
MCW-+FSRC

MCW-+SOMC

MetaSAug+10000 meta images
MetaSAug+FSRC
MetaSAug+SOMC

38.88
40.85
40.36
41.86
45.74
44.92
45.05
45.97
46.21
45.77
46.68

For ClothinglM, we compare our method with the following: Base model,
Bootstrapping [24], U-correction [33], Joint Optimization [32], MWNet [2], FSRC
[7], MSLC [4]. For FSRC, we only compare its proposed meta data selection
criteria for a fair comparison. Other results are obtained from MSLC.

Results. Table S-8 shows the results of different models on ImageNet-LT.
It can be observed that SOMC can achieve better results than the independent
meta data used in baselines. And SOMC can select higher quality data than
FSRC. Table S-9 shows the results on iNaturalist 2017 and 2018. From the re-
sults, we can see that although 25445 (for iNat2017) and 16284 (for iNat2018)
independent annotated images are used for MCW and MetaSAug, their perfor-
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Table S-9. Test top-1 accuracy (%) on iNaturalist (iNat) 2017 and 2018 of different
models. * indicates that the results are from the original paper.

Method iNat 2017 iNat 2018
Base model (CE) 56.79 65.76
Class-balanced CE 57.98 66.43
Class-balanced FL* 58.08 61.12
cRT* - 67.60
BBN* 63.39 66.29
LDAM* - 64.58
LDAM 60.85 65.87
LDAM-DRW* - 68.00
LDAM-DRW 62.16 67.88
MCW+25445/16284 meta images 59.38 67.55
MCW-+FSRC 58.76 67.52
MCW+SOMC 60.47 68.89
MetaSAug+25445/16284 meta images 63.28 68.75
MetaSAug+FSRC 62.59 68.28
MetaSAug+SOMC 63.53 69.05
MetaSAug+SOMC with BBn model 65.34 70.66

Table S-10. Test top-1 accuracy (%) on on ClothinglM.

Method Clothing1l M
Base model (CE) 68.94
Bootstrapping 69.12
U-correction 71.00
Joint Optimization 72.23
MWNet+7000 meta images 73.72
MWNet+FSRC 73.01
MWNet+SOMC 73.89
MSLC+7000 meta images 74.02
MSLC+FSRC 73.23
MSLC+SOMC 73.67

mances are inferior to those when the meta data are compiled by our SOMC,
which indicates that the quality of meta data in meta-optimization is critical.
When the BBN pre-train model [18] is used, the combination of MetaSAug+SOMC
achieves the best results. Table S-10 shows the results of different models on
ClothinglM. The table shows that SOMC can achieve better or comparable
performance than the independent meta data and FSRC.

3.5 Study for the Robustness of Meta Optimization Methods

Ghosh and Lan [34] think that using the mean square error loss can improve the
robustness of meta-optimization to noise. In this section, we take MSLC as an
example to test its robustness to noise. Table S-11 shows the accuracy of injecting
the same proportion of noise into meta data. The table shows that even if the
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meta data are injected with the same ratio of noisy labels, it still achieves better
performance than Base model (CE). The results show that meta-optimization
can allow meta data to have noisy labels to a certain extent. However, higher
quality metadata can achieve better performance.

Table S-11. Test top-1 accuracy (%) on CIFAR10 and CIFAR100 of ResNet-32 under
flip noise. In this experiment, meta data are injected with the same proportion of noisy
labels.

Data set CIFAR10 | CIFAR100
Noise rate 20% 40%| 20% 40%
Base model (CE) 76.83 70.77|50.86 43.01

MSLC+1000 clean meta images|91.67 90.23|67.59 65.02
MSLC+1000 noisy meta images|87.45 85.92(63.56 60.37
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