
Tackling the Imbalance for GNNs
Rui Wang, Weixuan Xiong, Qinghu Hou, Ou Wu

Center for Applied Mathematics, Tianjin University, Tianjin, China
wr wangrui@foxmail.com, weixuan@tju.edu.cn, qh hou@tju.edu.cn, wuou@tju.edu.cn

Abstract—Different from deep neural networks for non-graph
data classification, graph neural networks (GNNs) leverage the
information exchange between nodes (or samples) when repre-
senting nodes. The category distribution shows an imbalance or
even a highly-skewed trend on nearly all existing benchmark
GNN data sets. The imbalanced distribution will cause misclas-
sification of nodes in the minority classes, and even cause the
classification performance on the entire data set to decrease.
This study explores the effects of the imbalance problem on
the performances of GNNs and proposes new methodologies to
solve it. First, a node-level index, namely, the label difference
index (LDI), is defined to quantitatively analyze the relationship
between imbalance and misclassification. The less samples in a
class, the higher the value of its average LDI; the higher the LDI
of a sample, the more likely the sample will be misclassified. We
define a new loss and propose four new methods based on LDI .
Experimental results indicate that the classification accuracies of
the three among our proposed four new methods are better in
both transductive and inductive settings. The LDI can be applied
to other GNNs.

Index Terms—graph neural networks, imbalanced problem,
label difference index

I. INTRODUCTION

As an increasing number of applications involve graph
data, researchers have designed graph neural networks (GNNs)
to process graph data. GNNs generally use the connections
between nodes to exchange information in neighborhoods to
obtain a better representation for each node. Therefore, a
unique problem faced by GNNs is misclassification caused
by neighbor nodes. Nodes in minority classes are more likely
to be neighbored by those in majority classes, resulting in low
accuracies.

Real-world data usually conform to an imbalanced even a
highly-skewed distribution, in which majority classes occupy
most of the data proportion. Deep neural networks also suffer
when the training data are highly imbalanced [1].

This study investigates the imbalance problem for GNNs,
and reveals more details for the relationship between imbal-
ance and misclassification on graph data. Furthermore, based
on the state-of-the-art algorithms for dealing with the im-
balance of non-graph data, new methodologies are proposed.
First, we define the label difference index (LDI) to measure
the likelihood of a node being misclassified based on the
category distribution of its neighborhood. The larger the index,
the more likely the node can be misclassified. The LDI
of a node is determined by the category distribution of its
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neighbor nodes. Nodes neighbored by heterophily nodes1 are
more likely to be with larger LDIs, and easy to be negatively
affected, resulting in misclassification. In addition, LDI is also
affected by the global category distribution of the entire data
set, and statistics show that the average LDIs of the nodes in
minority classes are usually large. Thus, the relationship be-
tween category imbalance and misclassification is established.
Second, we define a new loss and propose four new methods,
namely, improved focal loss (iFL), Graph Re-sampling (GRS),
Graph Re-weighting (GRW), Graph Metric Learning (GML),
and Graph Bilateral-branch Network (GBBN). Experiments
on several graph benchmark data sets show that except for
GML, the new methods are better than the original GNNs.
Imbalanced sampling with LDI can help to further improve
performance.

Our contributions are summarized as follows:
• A node-level index (i.e., LDI) is defined to characterize

the neighborhood of a node (or a sample) in a graph. On
the basis of LDI , the relationship between imbalance and
misclassification is analyzed and useful observations are
obtained.

• A new loss and four new methods are proposed based
on the index LDI . Extensive experiments on benchmark
data sets indicate that the proposed methodology achieves
better results than existing imbalance learning methods on
graphs. Further, several classical GNNs are improved by
utilizing LDI .

II. RELATED WORK

Classical GNNs include GCN [6], SGC [15], GAT [13],
and so on. Kipf et al. [6] expanded the traditional convolution
neural network (CNN) on high-dimensional graph data to ob-
tain GCN. GCN iteratively updated each node’s representation
through the message exchange with their neighbor nodes. Wu
et al. [15] reduced the complexity of GCN by repeatedly
eliminating the nonlinearity between GCN layers and folding
the resulting function into a linear transformation to obtain
SGC. Veličković et al. [13] proposed GAT based on the
attention mechanism to classify graph data.

In the research of graph, researchers usually define indices
(e.g., degree and centrality) to characterize the properties of
a graph. Likewise, a number of indices are also defined to
measure the properties of the involved graphs in the research
of GNNs. For example, graph homophily was proposed by Pei

1Heterophily nodes are the samples (or nodes) that belong to different
categories [19].



et al. [10] to characterize the degree that similar nodes connect
together. Graph heterophily was proposed by Zhu et al. [20]
to measure the graph homophily level. Two graph smoothness
metrics, namely, feature smoothness and label smoothness,
were proposed by Hou et al. [4] to help understand the use of
graph information in GNNs. Almost all existing graph indices
in GNNs are graph-level or category-level2. These indices are
only used to analyze graph characteristics and the learning
performances. They are not involved in the training process.
To our knowledge, there is no node-level index. This study
will define a node-level index which can be directly used in
both characteristics analyses and model training.

Machine learning has been increasingly applied in recent
years. The imbalance has become a hot research topic. Kang
et al. [5] divided the learning of a classification model into two
steps. Zhou et al. [18] proposed a new learning model with
two branches, both of which involve re-sampling. Zong et al.
[21] proposed GNN-XML to overcome the imbalance problem
in extreme multi-label text classification. Using re-weighting,
Cui et al. [1] used a better weighting design to achieve a better
imbalance classifier. Liu et al. [8] created some virtual samples
around the minority classes samples to increase the number of
minority classes samples. Liu et al. [9] transferred the visual
knowledge of the majority to the minority classes by learning
a set of dynamic element vectors. Lin et al. [7] proposed a new
loss function, namely, focal loss, to deal with the imbalance
problem in object detection.

As to the imbalance of graph data, Min et al. [12] con-
ducted a pilot study for this problem. They proposed DR-
GCN, adopting a conditional adversarial training together with
distribution alignment to learn node representations. They only
investigated the transductive setting. Therefore, DR-GCN is
only compared in the transductive setting in Section V-B.

III. EFFECT OF IMBALANCE FOR GNNS

A. Qualitative analysis.

We first analyze the interaction between the majority and
the minority classes in an imbalanced data set of a non-graph
classification task from the perspective of training loss. The
loss can be expressed as follows:

Ltotal = Lmajority + Lminority, (1)

where Lmajority is the loss of the majority classes and
Lminority is the loss of the minority classes. Because the
number of samples in the majority classes (majority samples
for brevity) is much greater than that of samples in the
minority classes (minority samples for brevity), the loss is
composed mainly of majority samples, and the gradients of
model optimization are determined more by majority samples.
As a result, both the feature representation and the decision
layers of the training model are optimized towards a high
classification accuracy of the majority classes in each training

2Several indices first define a node-level metrics and using the average
of all nodes as the graph-level or category-level index. The node-level index
is then no longer used.

epoch, which may lead to the overfitting of the majority classes
and ignores the minority classes while training. Ultimately, the
performance of the overall model is damaged.

In graph classification tasks, because the loss function can
still be expressed in the above form, the training for GNNs
will also be affected by the imbalance, that is, the majority
samples determine the gradients in training. However, because
the majority and the minority nodes in the graph usually have
direct edge links, in addition to the negative effects of the
loss of coupling on the minority classes, the nodes in the
majority classes may affect the feature representation of the
nodes in the minority classes directly through edges. When
node heterophily holds, this kind of effect between neighbor
nodes is very likely to be negative.

Information exchange between nodes of the same category
is beneficial, while information exchange between nodes of
different categories is likely to be harmful in GNNs. Because
there are fewer minority nodes, the proportion of nodes in
minority classes with heterophily nodes in their neighborhoods
may be relatively larger, which may have a greater negative
effect. In other words, minority nodes are more likely to be
misclassified.

To sum up, imbalance in non-graph data affects both the
decision and the feature representation layers through the
loss minimization; imbalance in graph data affects both the
decision and the feature representation layers according to
both the loss minimization and the direct information exchange
between nodes. Therefore, imbalance in graph data can have
a more serious impact on GNNs training.

B. Quantitative analysis.

Suppose a graph G = (V,E) and let xi ∈ V . The
category distribution of the K-neighbor nodes of xi is
PNi

= {pi,1, · · · , pi,c, · · · , pi,C}, where Ni denotes the K-
neighborhood and pi,c represents the proportion of the cth
category in Ni. We use 1-neighborhood to reduce the com-
putation complexity in this study. Meanwhile, if xi belongs
to the cth category, the distribution of itself is marked as a
one-hot vector PIi

= {0, · · · , 0, 1, 0, · · · , 0}, where the cth
element is 1.

We define a node-level index, label difference index (LDI),
on graph to better characterize the relationship between im-
balance and misclassification.

Label Difference Index (LDI): Given a node xi, the LDI
of xi is

LDIi =
1√
2
∥PNi − PIi∥2. (2)

The range of LDIi is [0, 1] with the constant 1√
2

. The
higher the LDI value, the larger the difference between the
two distributions. If xi is an isolated node, then we define its
LDI as the average LDI of nodes in the same category. We
have the following proposition.

Proposition 1: Given a node xi belonging to the cth
category. When the proportion of homophily nodes in its
neighborhood is fixed (i.e., pi,c is fixed), the less the number



Fig. 1: Examples of nodes with different neighborhoods. The
LDI values of node 5 in (a)-(f) are 0, 1
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of categories of the heterophily nodes in its neighborhood, the
larger the LDI of xi.

Proof 1: Let
∑

c′ ̸=c pi,c′ = 1− pi,c = ∆, then

LDIi =
1√
2

√
(1− pi,c)2 +

∑
c′ ̸=c

p2i,c′ . (3)

By using Cauchy Inequality, we have

(
∑

c′ ̸=c pi,c′)
2

C − 1
≤

∑
c′ ̸=c

p2i,c′ ≤ (
∑
c′ ̸=c

pi,c′)
2. (4)

If and only if ∀c′, pi,c′ = ∆
C−1 , then

(
∑

c′ ̸=c pi,c′)
2

C − 1
=

∑
c′ ̸=c

p2i,c′ =
∆2

(C − 1)2
. (5)

If and only if pi,c′′ = 1− pi,c and pi,c = 0(c′ ̸= c′′), then∑
c′ ̸=c

p2i,c′ = (
∑
c′ ̸=c

pi,c′)
2 = ∆2. (6)

Accordingly,

∆

√
1 + (C − 1)2

2(C − 1)2
≤ LDIi ≤ ∆. (7)

The upper bound is attained only when all the heterophily
nodes belong to the same category. To sum up, the more
concentrated the categories of heterophily nodes, the larger
the LDI of xi is. The proof ends.

Fig. 1 shows an illustrative example. The colors denote the
categories. Assume that PI5

= {1, 0, 0, 0}. In Fig. 1(a), PN5
=

{1, 0, 0, 0}, then LDI5 = 0. In Fig. 1(b), PN5
= { 3

4 ,
1
4 , 0, 0},

then LDI5 = 1
4 . In Fig. 1(c), PN5 = { 1

4 ,
1
4 ,

1
4 ,

1
4}, then

LDI5 =
√
6
4 . In Fig. 1(d), PN5

= {0, 1
2 ,

1
4 ,

1
4}, then LDI5 =√

11
4 . In Fig 1(e), PN5 = {0, 1

2 ,
1
2 , 0}, then LDI5 =

√
3
2 . In

Fig. 1(f), PN5 = {0, 1, 0, 0}, then LDI5 = 1. In other words,
node 5 in Fig. 1(f) is the most easiest to be misclassified. The
six LDI values in Fig. 1 indicate that our LDI definition is
reasonable and Proposition 1 holds.

LDI is a node-level index that can be easily applied to
concrete GNN algorithms. Different from the homophily index
mentioned in [10], LDI utilizes the distribution of neighbors,

and is more fine-grained. Proposition 1 verifies this. The
indices of node 5 in Figs. 1 (d), (e), and (f) are the same
(equal to 0) if the homophily index in [10] is used. However,
LDI can distinguish these three cases better.

Based on LDI , we conduct analyses in terms of the
differences among categories, the differences among samples
within specific categories, the relationship between LDI and
accuracies, and the relationship between LDI and misclassi-
fication under different numbers of layers (#layers).

Average LDIs of different categories. We calculate the
average LDIs of different categories on five benchmark
graph data sets, as shown in Fig. 2. Although the trend of
the category distribution (Fig. 2 (up)) is not completely the
opposite of the trend of the LDI distribution (Fig. 2 (middle))
on each data set, the overall trend is that the LDIs of minority
classes are large, indicating that the proportions of heterophily
nodes around the nodes in the minority classes are relatively
high. In Fig. 2 (down), the categories with large average LDIs
usually have low accuracies.

LDI distributions within specific categories. Within a
category, the LDIs of different samples are also distinct. We
arbitrarily select a majority class and a minority class from
the graph data set Citeseer [12]. As shown in Fig. 3, samples
in the majority class are more concentrated in the small LDI
intervals. Contrarily, samples in the minority class not only
concentrate in the large LDI intervals. That is, samples with
large LDIs can be found in the majority classes and samples
with small LDIs can be found in the minority classes.

Average accuracies of different LDI intervals. Further-
more, we analyze the average accuracies of nodes in different
LDI intervals. As shown in Fig. 4, nodes concentrate in small
LDI intervals, and the classification accuracy decreases as the
LDI increases on different data sets. Nodes with large LDIs
are more likely to exchange information with heterophily
nodes in their neighborhoods, resulting in low accuracies.
As shown in Fig. 3, within a specific category, the average
accuracies of different LDI intervals show that samples with
large LDI values in the majority classes can also be more
likely to be misclassified. Thus establishing a reasonable node-
level index to supplement the existing category-level index is
necessary.

Relationship between LDI and misclassification under
different #layers. The performance of GNNs decreases with
the increase of layers (e.g., #layers > 4), which is mainly
caused by oversmoothing. We explore the relationship between
LDI and the misclassification caused by oversmoothing. Let
the correctly predicted sample set be Rn when the number of
layers equals to n. We calculate the ratio of the average LDI
of the newly wrongly predicted samples (i.e., Rn ∩ Rn−1)
when the layers increase by one to the average LDI of the
correctly predicted samples before the layer increases, that is,

rn =
LDIavg(Rn ∩Rn−1)

LDIavg(Rn−1)
, (8)

where LDIavg(Ω) represents the average LDI of set Ω.



Fig. 2: Category distributions (up), average LDIs (middle), and average accuracies (down) of the five different data sets used
in this study. Categories with small average LDIs always have high accuracies. On Flickr, Category 5 has a small average
LDI but a small average accuracy. This is mainly because loss minimization and feature exchange between nodes negatively
affect the accuracy of minority classes, and loss minimization plays a main role.

Fig. 3: Sample distributions and average accuracies for differ-
ent LDI intervals of the majority (left) and the minority class
(right) of Citeseer. In the majority class, samples concentrate
in small LDI intervals. In the minority class, samples disperse
more uniformly.

In Fig. 5, as the #layers increases, the value of rn is greater
than 1 in nearly all cases. It shows that as the number of
layers increases, samples with large LDIs are more likely to
be misclassified.

To sum up, the category distribution of neighbor nodes
that LDI relies on is related closely to the global category
distribution as shown in Fig. 2. LDI reflects the possibility of
each node being misclassified as shown in Fig. 4. Therefore,
on the basis of the global distribution and LDI , we proposed
several new methods to tackle the imbalance for GNNs in the
succeeding section.

IV. METHODOLOGY

A new loss and four new methods, namely, iFL, GRS, GRW,
GML, and GBBN, are proposed in this section.

A. Improved Focal Loss (iFL).

Focal loss is designed to solve the imbalance problem in
object classification. For binary classification, the focal loss
can be defined as

LFL = −
∑
i

αyi
(1− pi,yi

)γ log(pi,yi
), (9)

where pi,yi
is the probability that node i is correctly classified;

αyi
and γ are hyperparameters. For binary classification, the

value of αyi is easy to set. Nevertheless, the number of
categories for GNN benchmark data sets is ususally large,
resulting in that it is difficult to set αyi

properly. Therefore,
to avoid the manually setting for αyi

, an improved focal loss
is defined as follows:

LiFL = −
∑
i

(1− pyi
)γ log(pi,yi

), (10)

where pyi
can be seen as the average probability that nodes

in the category yi are correctly classified. For a category with
a low classification accuracy, the value of (1 − pyi

)γ will be
large.

B. Graph Re-sampling (GRS) and Graph Re-weighting
(GRW).

Re-sampling/re-weighting essentially resamples/reweights
training samples during network training to strengthen the
learning of the minority classes.

Our proposed GRS and GRW are based on re-sampling and
re-weighting, respectively. In this study, re-sampling and re-
weighting are performed according to the numbers of samples
in different categories, and give more weights to the minority
classes with smaller sample sizes. LDI is also utilized.
Suppose the category of xi is c. Nc is the number of samples
of category c. N is the total number of samples of the data
set. For xi, there are three weighting strategies:

W1: Label-based weighting:

wL
i =

N

Nc
. (11)



Fig. 4: For all data sets, nodes concentrate in small LDI intervals. Nodes with large LDIs have low accuracies.

Fig. 5: Variations in r (solid lines) and accuracy (dot lines)
with increasing #layers using GCN and GAT under insductive
(left) and transductive (right) settings on the Citeseer data set.

W2: LDI-based weighting3:

wD
i = eLDIi . (12)

W3: Combination of label and LDI:

wLD
i = wL

i · wD
i . (13)

C. Graph Metric Learning (GML).

Metric learning aims to learn a feature space in which
the distances between homophily samples are close and the
distances between heterophily samples are far. Dong et al. [2]
applied a triplet loss-based metric learning to deal with the
imbalance problem in image classification.

Triplet loss is used in this study. The key to triplet loss-based
metric learning is to select the appropriate triplets as training
samples. When choosing a triplet, the anchor point is first
selected; the positive and negative sample pairs corresponding
to it are then selected from other samples. According to the
probability of being easy to be classified correctly, anchor
points are divided into easy ones and hard ones. Because the
hard triplets are not conducive to the learning of the model,
Wang et al. [14] proposed that only choosing the easy anchors
would obtain better performance.

In this study, LDI is used to measure the hardness of a
sample. The top 10% samples with the highest LDI values
are removed (i.e. the top 10% hardest samples are removed).
For the remaining samples, the larger the LDI of a sample,
the more likely it is to be selected. For each anchor, in its
K-neighborhood, the negative samples are selected according
to the closeness of distances. Outside its K-neighborhood,

3Because LDIs of some samples are zero, to prevent the weights from
being zero, eLDIi is used as the weight.

the positive samples are selected according to the further
distances. The candidates are shown in Fig. 6. Let the tth
triplet be (xt, xt+, xt−), its score can be calculated by

scoret = max(0,m+ d(xt, xt+)− d(xt, xt−)), (14)

where m refers to margin, and d(·) represents the distance
between two feature vectors. Assume that T is the set of
selected triplets with relatively high scores. The triplet loss
can be represented as

LML =
1

|T |
∑
t

scoret. (15)

The triplet loss and the focal loss form the final loss function.
Following the setting of Zhou et al. [18], we also adopt a
cumulative learning strategy to combine the above two losses:

LGML = f(e)LML + LiFL, (16)

where f(e) refers to the weight in the current epoch.

1

2

3

4

5

8

7

Fig. 6: Node 1 is the selected anchor. Let K = 2, nodes 2, 3,
4, and 5 represent negative candidate nodes, and the outermost
two red nodes 7 and 8 are positive candidate nodes.

D. Graph Bilateral-Branch Network (GBBN).

Our GBBN is based on the bilateral-branch network pro-
posed by Zhou et al. [18] to solve the imbalance in visual
recognition tasks. The network consists of two branches: the
conventional learning branch and the re-balancing branch. The
conventional branch samples uniformly from the original data,
maintaining the original data distribution for feature learning.
The re-balancing branch is a reverse sampling, which aims to



increase the probability of minority classes and reduce data
imbalance [3].

Fig. 7 shows the structure of GBBN. The conventional
(upper) branch uses conventional models such as GCN and
GAT. The re-balancing (lower) branch no longer adopts the
same structure as the upper branch, but uses DropEdge
GNN [11] to reduce information exchange between nodes. In
the experiments of this study, we drop all edges to reduce
the training complexity. In addition, the proposed iFL is used
rather than the standard cross entropy loss. Comparing with
GNN-XML proposed in [21] which aims to overcome the
imbalance for text classification, the settings of two branches
and the loss functions are different.

The upper branch learns the representations of the nodes ac-
cording to uniform sampling. The sampled nodes also present
an imbalanced distribution. The reverse sampling of the lower
branch takes the label and LDI of a node into account. For
samples with higher LDIs, the sampling probabilities are
greater, which not only balances the data from the category-
level, but also focuses on the samples that are easily misclassi-
fied from the node-level. For this branch, this study leverages
the three weighting strategies defined in Section IV-B, namely,
W1, W2, and W3.

The graph is entered into the two branches. Two logit
outputs of each sample under GNN and DropEdge GNN are
obtained and denoted as xG and xDE , respectively. Then, a
weighted logit vector is obtained by controlling the adaptive
weight parameter α. The final output logit vector can be
obtained by using the following formula:

z = αxG + (1− α)xDE , (17)

where z ∈ RC refers to the final logic vector. The prediction
is p̂ = Softmax(z).

The classification loss of GBBN can be expressed as fol-
lows:

LGBBN = αLiFL(p̂, y
G) + (1− α)LiFL(p̂, y

DE). (18)

The network training also adopts the cumulative learning
strategy. By changing the parameter α, the output logit and
the loss also vary, resulting in that different training stages
have different learning emphases. In the early stage, the
emphasis is on the upper branch. Then, the emphasis gradually
shots to the minority categories and the lower branch. This
is reasonable. With the increase of training epoch, minority
nodes (especially nodes with large LDIs) should rely on their
own representations more than neighborhoods because their
neighborhoods contain more heterophily nodes than others. In
our experiments, we use linear decay, i.e. α = 1− e/Epoch,
where e is the current epoch and Epoch is the expected max
epoch.

V. EXPERIMENT

We design extensive experiments to evaluate the effective-
ness of the four proposed methods. Both transductive and
inductive settings are tested4.

4The code can be seen in https://github.com/wasdfghjklr/Tackling-the-
Imbalance-for-GNNs

A. Experimental setting.

Data sets. Five5 benchmark data sets in Fig. 2 are used:
Cora [12], Citeseer, Pubmed [17], CoauthorCS (CS) [17], and
Flickr [16]. For Cora and Citeseer, the train, validation, and
test division ratio is 2:4:4; for others, the division ratio is
0.5:4.5:5. Previous transductive studies on the above data sets
do not shuffle training data in their experiments. Data sets with
and without shuffle are considered in the experiments. When
data shuffle is adopted, the average results of five randomly
shuffle are recorded. The data statistics are shown in Table I.
All five graphs are class-imbalanced as shown in Fig. 2.

TABLE I: Data statistics of the five Graph data sets.
Name #Node #Edge #Features #Class
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
CoauthorCS 18,333 81,894 6,805 15
Flickr 89,250 899,756 500 7

Hyperparameters. For GCN, SGC, and GAT, the #hidden
units of Cora, Citeseer, and Pubmed, dropout rate, and l2
regularization penalty settings are the same as [17]. For Flickr,
the #hidden unit is set the same as [16]. The max epoch is set
to 1500. For GML, K is set to 2, the margin is set to 0.2, ϵ
is set to 0.001, and ρ is set to 0.3. For GBBN, α is set to 0.5
in the validation and testing phrases. In the comparison with
DG-GCN, the settings in [12] are followed.

B. Results.

Comparison with DR-GCN. DR-GCN [12] only focuses
on the transductive setting. Therefore, only the weighting
strategy W1 is used in GRS, GRW, and the lower branch of
GBBN. The reason why W2 and W3 are not used is because
the input data under transductive setting is the entire graph,
when calculating the LDIs of the training set, the labels of
the validation set and the test set will be referred to, resulting
in label leak in the validation and test sets. The CS data set is
not involved because this data set is not used in the DR-GCN
study. The results in Table II show that our methods are better
than DR-GCN on Cora, Citeseer, and Pubmed data sets. The
accuracies of DR-GCN are directly from [12].

Results on the transductive setting without shuffle. For
the same reason for why W2 and W3 are not used in the trans-
ductive setting, GML is also not utilized in this experiment.
The accuracy, G-mean, and macro F1-score are used as the
evaluation metrics. The results are shown in Tables III and
IV.

The following observations can be obtained: (1) Overall,
GRS, GRW, and GBBN performed better as compared to the

TABLE II: Accuracy of the competing methods.
Data set Cora Citeseer Pubmed
DR-GCN [12] 0.741 0.677 0.817
GRS(GCN, W1) 0.745 0.685 0.820
GRW(GCN, W1) 0.780 0.657 0.817
GBBN(GCN, W1) 0.756 0.703 0.827

5The rest three data sets Reddit [16], Amazon-Computer [16], and
Amazon-Photo [16] are relatively large. A subgraph sampling-based strategy
(e.g., GraphSAINT [16]) should be employed. We leave it as our future work.



Fig. 7: The network structure of GBBN.
TABLE III: Accuracy and G-mean on transductive setting without shuffle.

Data set Cora Citeseer Pubmed CS
Acc G-mean Acc G-mean Acc G-mean Acc G-mean

GCN 0.849 0.903 0.748 0.814 0.841 0.878 0.918 0.938
GRS(GCN,W1) 0.854 0.905 0.744 0.812 0.840 0.878 0.917 0.936
GRW(GCN,W1) 0.845 0.901 0.748 0.819 0.828 0.871 0.882 0.928
GBBN(GCN,W1) 0.839 0.898 0.737 0.812 0.831 0.891 0.929 0.939
SGC 0.847 0.894 0.736 0.802 0.816 0.858 0.881 0.880
GRS(SGC,W1) 0.848 0.894 0.739 0.804 0.816 0.858 0.904 0.924
GRW(SGC,W1) 0.713 0.864 0.706 0.795 0.775 0.834 0.111 0.522
GBBN(SGC,W1) 0.796 0.860 0.736 0.802 0.842 0.884 0.906 0.914
GAT 0.855 0.904 0.748 0.810 0.846 0.881 0.914 0.934
GRS(GAT,W1) 0.849 0.905 0.743 0.810 0.845 0.880 0.914 0.936
GRW(GAT,W1) 0.857 0.907 0.754 0.824 0.858 0.892 0.894 0.940
GBBN(GAT,W1) 0.835 0.890 0.735 0.804 0.855 0.875 0.930 0.934

original models. (2) GRW performed better than GRS and
GBBN overall. (3) The effectiveness of these three methods
indicates that our label-based weighting strategy (W1) is
effective.

Results on the inductive setting with shuffle. In this part,
we compare the effect of the model considering whether the
LDI is used in the inductive setting. Accordingly, all the
weighting strategies (W1, W2, and W3) are leveraged. The
macro F1-score and accuracy/G-mean based on SGC with
shuffle are shown in Tables V and VI, respectively.

The following observations can be obtained: (1) The overall
performances of our three methods (i.e., GRS, GRW, and
GBBN) are better than the conventional model SGC. (2) When
with shuffle, GBBN achieved the best performance. GML
did not improve the performance of its base models. The
reason is discussed in the next subsection. (3) Among the
three weighting strategies, the combination of label and LDI
weighting strategy (i.e., W3) performed best overall, indicating
that the index LDI does contain useful cues for training.

C. Discussion.

The better performances of our three methods (GML is
poor) over existing methods indicate the importance of con-
sidering the distribution characteristics of the imbalance. The
combination of label and LDI weighting strategy W3 is better
in most cases under the inductive setting, indicating that LDI
contains meaningful training cues. Our future research will
study the significance of this index in terms of larger sizes of
the neighborhood (only 1-neighborhood is considered in this
study) and more layers.

Further, we discuss why GML failed in the experiment.
The principle of metric learning is to decrease the distance

between samples of the same category and increase the dis-
tance between samples of different categories. However, in
the graph data, edge connections exist among samples. The
network in training exchanges information among the feature
representations of connected samples during training, which
will cause metric learning to reduce the distance between an
anchor and a positive sample. However, it is also likely to
reduce the distance between the anchor and the heterophily
samples in the positive sample’s neighbors. The feature cou-
pling caused by data connection causes the metric learning
strategy proposed in this study to be unsuitable for graph data
sets. As far as we know, there is currently no research on
metric learning specifically for GNNs, and exploring more
sophisticated methods in the future would be a worthwhile
step.

VI. CONCLUSION

This study focuses on the imbalanced distribution in learn-
ing with GNNs for graph data. Most benchmark data sets used
in GNN studies exhibit an imbalanced distribution over cate-
gories. A node-level index called LDI is defined to establish
the connection between the imbalance and misclassification.
Initial qualitative and quantitative analyses between LDI and
GNNs performances are conducted to reveal that samples
with high LDI values are more likely to be misclassified
when layers increase. A new loss and four new methods (i.e.
iFL, GRS, GRW, GML, and GBBN) are proposed based on
LDI . Comparative experiment results show that the proposed
methods are better than DR-GCN. Overall, the proposed GRW
with iFL performs better than the other methods when without
shuffle on the transductive setting. The proposed GBBN with
iFL and LDI performs better than the other methods when
with shuffle on the inductive setting. The effectiveness of W3



TABLE IV: Macro F1-score on transductive setting without
shuffle.

Dataset Cora Citeseer Pubmed CS

GCN 0.836 0.696 0.835 0.895
GRS(GCN,W1) 0.841 0.692 0.835 0.893
GRW(GCN,W1) 0.833 0.706 0.824 0.858
GBBN(GCN,W1) 0.827 0.694 0.827 0.901

SGC 0.834 0.672 0.811 0.813
GRS(SGC,W1) 0.835 0.676 0.811 0.874
GRW(SGC,W1) 0.724 0.673 0.774 0.158
GBBN(SGC,W1) 0.771 0.673 0.841 0.867

GAT 0.843 0.683 0.840 0.889
GRS(GAT,W1) 0.837 0.685 0.839 0.892
GRW(GAT,W1) 0.845 0.714 0.854 0.871
GBBN(GAT,W1) 0.820 0.678 0.852 0.902

TABLE V: Macro F1-score on the inductive setting based on
SGC with shuffle.

Data set Cora Citeseer Pubmed CS Flickr

SGC 0.329 0.439 0.606 0.164 0.124
GML 0.330 0.436 0.607 0.166 0.124

GRS(W1) 0.439 0.495 0.631 0.327 0.140
GRS(W2) 0.321 0.478 0.608 0.154 0.126
GRS(W3) 0.447 0.498 0.633 0.358 0.138

GRW(W1) 0.458 0.508 0.640 0.403 0.118
GRW(W2) 0.183 0.202 0.499 0.072 0.091
GRW(W3) 0.455 0.459 0.642 0.382 0.103

GBBN(W1) 0.637 0.639 0.837 0.849 0.140
GBBN(W2) 0.631 0.626 0.836 0.811 0.142
GBBN(W3) 0.662 0.644 0.838 0.853 0.197

TABLE VI: Accuracy and G-mean on the inductive setting based on SGC with shuffle.
Data set Cora Citeseer Pubmed CS Flickr

Acc G-mean Acc G-mean Acc G-mean Acc G-mean Acc G-mean
SGC 0.450 0.529 0.504 0.633 0.642 0.692 0.346 0.386 0.440 0.372
GML 0.449 0.530 0.503 0.633 0.643 0.693 0.347 0.387 0.440 0.372
GRS(W1) 0.482 0.643 0.529 0.670 0.648 0.710 0.469 0.530 0.338 0.385
GRS(W2) 0.454 0.528 0.527 0.658 0.643 0.694 0.334 0.375 0.440 0.373
GRS(W3) 0.502 0.635 0.527 0.670 0.650 0.711 0.490 0.568 0.329 0.417
GRW(W1) 0.518 0.641 0.542 0.679 0.652 0.716 0.508 0.598 0.353 0.369
GRW(W2) 0.367 0.448 0.332 0.488 0.598 0.637 0.291 0.336 0.424 0.353
GRW(W3) 0.493 0.653 0.468 0.645 0.652 0.719 0.462 0.611 0.178 0.400
GBBN(W1) 0.666 0.762 0.675 0.770 0.835 0.878 0.894 0.905 0.448 0.384
GBBN(W2) 0.675 0.757 0.669 0.761 0.835 0.876 0.882 0.881 0.441 0.380
GBBN(W3) 0.687 0.784 0.683 0.774 0.837 0.879 0.896 0.908 0.456 0.389

indicates that the index LDI does contain useful cues for
training.
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