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Abstract

Features, logits, and labels are the three primary data when
a sample passes through a deep neural network. Feature per-
turbation and label perturbation receive increasing attention
in recent years. They have been proven to be useful in vari-
ous deep learning approaches. For example, (adversarial) fea-
ture perturbation can improve the robustness or even general-
ization capability of learned models. However, limited stud-
ies have explicitly explored for the perturbation of logit vec-
tors. This work discusses several existing methods related to
logit perturbation. Based on a unified viewpoint between pos-
itive/negative data augmentation and loss variations incurred
by logit perturbation, a new method is proposed to explicitly
learn to perturb logits. A comparative analysis is conducted
for the perturbations used in our and existing methods. Exten-
sive experiments on benchmark image classification data sets
and their long-tail versions indicated the competitive perfor-
mance of our learning method. In addition, existing methods
can be further improved by utilizing our method.

Introduction
There are several main paradigms (which may overlap)
among numerous deep learning studies, including new net-
work architecture, new training loss, new training data per-
turbation scheme, and new learning strategy (e.g., weight-
ing). Training data perturbation mainly refers to feature and
label perturbations.

In feature perturbation, many data augmentation tricks
can be viewed as feature perturbation methods when the
input is the raw feature (i.e., raw samples). For example,
cropped or rotated images can be seen as the perturbed
samples of the raw images in computer vision; sentences
with modified words can also be seen as the perturbed texts
in text classification. Another well-known feature perturba-
tion technique is about the generation of adversarial training
samples (Madry et al. 2018), which attracts great attention
in various AI applications especially in computer vision (Xie
et al. 2020) and natural language processing (Jin et al. 2020).
Adversarial samples are those that can fool the learned mod-
els. They can be obtained by solving the following objective
function:

xadv = x+ argmax
∥δ∥≤ϵ

l(f(x+ δ), y), (1)

*Corresponding author.

where x is the input or the hidden feature, δ is the pertur-
bation term, ϵ is the perturbation bound, y is the label, and
xadv is the generated adversarial sample. A number of meth-
ods have been proposed to optimize Eq. (1) (Goodfellow,
Shlens, and Szegedy 2015; Madry et al. 2018). Adversarial
samples can be used to train more robust models.

In label perturbation, the labels are modified or corrected
to avoid overfitting and noises. For example, a popular yet
simple training trick, label smoothing (Szegedy et al. 2016),
generates a new label for each sample according to y′ =
y + λ( I

C − y), where C is the number of categories, I is a
vector with all elements equaling to 1, ( I

C − y) is the per-
turbation term, and λ is a hyper-parameter. Other methods
such as Boostrapping loss (Reed et al. 2015), label correc-
tion (Patrini et al. 2017; Wang et al. 2021), and Meta label
corrector (Wu et al. 2021b) can be seen as a type of label
perturbation. Mixup (Zhang et al. 2018) can be attributed to
the combination of feature and label perturbation.

Logit vectors (or logits) are the outputs of the final feature
encoding layer in almost deep neural networks (DNNs). Al-
though logits are important in the DNN data pipeline, only
several learning methods in data augmentation and long-
tail classification directly (without optimization) or implic-
itly employ class-level logit perturbation. Based on the loss
variations of these methods, the loss variations incurred by
logit perturbation are highly related to the purpose of pos-
itive/negative augmentation1 on training data. Accordingly,
a new method is proposed to learn a class-level logit pertur-
bation (LPL) in this study. A comparative analysis is con-
ducted for two classical methods and our LPL method. Ex-
tensive experiments are run on benchmark data sets. The re-
sults show the competitiveness of our method. The contribu-
tions of our study are as follows:

• A new method is proposed to learn to perturb logits
which can be used in data augmentation and long-tail
classification contexts. Experimental results show that
our method outperforms existing state-of-the-art meth-
ods related to logit perturbation in both contexts.

• Several classical methods are re-discussed in terms of
1In this study, negative augmentation denotes the augmentation

which aims to reduce the (relative) performances of some cate-
gories. Accordingly, existing augmentation methods are positive.



logit perturbation and positive/negative augmentation.
The differences between existing and our proposed logit
perturbation methods are also analyzed.

Related Work
Data Augmentation
Data augmentation is prevailed in almost all deep learn-
ing approaches. In its early stage, heuristic operations on
raw samples are utilized, such as image flip, image rota-
tion, and word replacing in sentences. Recently, advanced
tricks are investigated, such as mixup (Zhang et al. 2018)
and semantic data augmentation (Wang et al. 2019). In
mixup, given a sample {x1, y1}, its perturbation term is
{λ (x2 − x1) , λ (y2 − y1)}, where λ is a random parameter
(not a hyper-parameter), and {x2, y2} is another randomly
selected sample. Hu et al. (2019) introduced reinforcement
learning to automatically augment data.

In this study, existing data augmentation is called posi-
tive data augmentation. Negative data augmentation, which
is proposed in this study, may be helpful when we aim to re-
strain the (relative) performance of certain categories (e.g.,
to keep fairness in some tasks).

Long-tail Classification
Real data usually conform to a skewed or even a long-tail
distribution. In long-tail classification, the proportions of tail
samples are considerably small compared with those of head
samples. Long-tail classification may be divided into two
main strategies. The first strategy is to design new network
architectures. Zhou et al. (2020) designed a bilateral-branch
network to learn the representations of head and tail sam-
ples. The second strategy is to modify the training loss. In
this way, the weighting scheme (Fan et al. 2017) is the most
common practice. Relatively larger weights are exerted on
the losses of the tail samples. Besides weighting, some re-
cent studies modify the logits to change the whole loss, such
as logit adjustment (LA) (Menon et al. 2021). This new path
achieves higher accuracies in benchmark data corpora com-
pared with weighting (Wu et al. 2021a).

Methodology
This section first discusses several typical learning methods
related to logit perturbation.

The notations and symbols are defined as follows. Let
S = {xi, yi}Ni=1 be a corpus of N training samples, where
xi is the input feature and yi is the label. Let C be the num-
ber of category and πc = Nc/N be the proportion of the
samples in the cth category in S. Without loss of generality,
we assume that π1 > · · · > πc > · · · > πC . Let ui be the
logit vector of xi which can be obtained by ui = f(xi,W ),
where f(·, ·) is the deep neural network with parameter W .
Let δi be the perturbation term of xi. Let L be the training
loss and li be the loss of xi. The standard cross-entropy (CE)
loss is used throughout the study.

Logit Perturbation in Existing Methods
Logit adjustment (LA) (Menon et al. 2021). This method
is designed for long-tail classification and achieves compet-

itive performance in benchmark data sets (Wu et al. 2021a).
The employed loss in LA is defined as follows:

L =
∑

i
l(softmax(ui + δi), yi)

= −
∑

i
log

exp(ui,yi + λ log πyi)∑
c exp(ui,c + λ log πc)

.
(2)

In Eq. (2), the perturbation term δi is as follows:

δi=δ̃=λ[logπ1, · · · , logπc, · · · , log πC ]
T , (3)

where δ̃ represents that δi is a corpus-level vector; thus the
values of δi for all the samples in the corpus S are identical.
Eq. (2) can be re-written as follows:

L= −
∑

i
log

exp(ui,yi)∑
c exp(ui,c + λ(log πc−logπyi))

. (4)

Previously, we assumed that π1 > · · · > πc > · · · > πC ;
hence, the losses of the samples in the first category (head)
are decreased, while those of the samples in the last category
(tail) are increased. The variations of the losses of the rest
categories depend on the concrete loss of each sample.

Implicitly semantic data augmentation (ISDA) (Wang
et al. 2019). ISDA is a newly proposed data augmenta-
tion method. Given a sample xi, ISDA assumes that each
(virtual) new sample can be sampled from a distribution
N (xi,Σyi

), where Σyi
is the co-variance matrix for the yith

category. With the M (virtual) new samples for each sample,
the loss becomes

L= − 1

N ·M
∑N

i=1

∑M

m=1
l(f(xi,m,W ), yi), (5)

where xi,m is the mth (virtual) new sample for xi. When
M → +∞, the upper bound of the loss in Eq. (5) becomes

L= − 1

N

N∑
i=1

log
exp(ui,yi)

C∑
c=1

exp(ui,c +
λ
2
(wc − wyi)

TΣyi(wc − wyi))

,

(6)
where wc is the network parameter for the logit vectors and
ui,c =wc

T x̃i+bc, where x̃i is the output of the last feature
encoding layer. In contrast with previous data augmentation
methods, ISDA does not generate new samples or features.
In Eq. (6), there is an implicit perturbation term δi defined
as follows:

δi=δ̃yi=
λ

2

 (w1 − wyi)
TΣyi(w1 − wyi)

...
(wC − wyi)

TΣyi(wC − wyi)

 , (7)

which is a category-level vector. Each element of δi is non-
negative. Therefore, the new loss of each category from Eq.
(7) is larger than the loss from the standard CE loss.

LDAM (Cao et al. 2019). In this method, the new loss is
defined as

L = −
N∑
i=1

log
exp(ui,yi−C(πyi)

−1/4)

exp(ui,yi−C(πyi)
− 1

4 )+
∑

c ̸=yi
exp(ui,c)

.

(8)
The perturbation term δi is as follows:

δi=δ̃yi=λ[0, · · · ,−C(πyi)
− 1

4 , · · · , 0]T , (9)

which is also a category-level vector. The losses for all cat-
egories are increased in LDAM.



Figure 1: The relative loss variations ( l
′−l
l ) of the three methods on different categories on different data sets.

Our Proposed Method LPL
The losses of the three example methods analyzed in the pre-
vious subsection can be written as follows:

L=
∑

i
l(softmax(ui + δ̃yi), yi). (10)

All the three methods directly infer the perturbation term
without a numerical optimization approach. Logit perturba-
tions result in the loss variations. Fig. 1 shows the statistics
for the relative loss variations incurred by ISDA, LA, and
LDAM for each category on a balanced data set (CIFAR100)
and two long-tail sets (CIFAR10-LT and CIFAR100-LT)
which are introduced in the experimental section. The loss
variations of all categories are positive using ISDA. ISDA
achieves the worst results on CIFAR100-LT (shown in
the experimental parts), indicating that the non-tail-priority
augmentation in long-tail problems is ineffective (ISDA
achieves relatively better results on CIFAR10-LT). Only the
curves on CIFAR100-LT are shown for LA and LDAM be-
cause similar trends can be observed on CIFAR10-LT. The
loss variations of head categories are negative, and those of
tail are positive using LA. All the variations are positive yet
there is an obvious increasing trend using LDAM.

We propose two conjectures based on the above observa-
tions and from a unified data augmentation viewpoint:
• If one aims to positively augment the samples in a cate-

gory, the loss of this category should be increased. The
larger the loss increment, the greater the augmentation.

• If one aims to negatively augment the samples in a cat-
egory, then the loss of this category should be reduced.
The larger the loss decrement, the greater the negative
augmentation.

The above two conjectures are supported in the aforemen-
tioned three methods. To handle a long-tail problem, LA
should positively augment tail samples and negatively aug-
ment head samples; hence, the losses of tails are increased,
and those of heads are decreased. ISDA aims to positively
augment samples in all categories; thus, the losses for all
categories are increased. LDAM aims to positively augment
tail samples more than head samples. Hence, the increments
of tail categories are larger than those of the head.

On the basis of our conjectures, we establish the following
new learning loss with logit perturbation:

L=
∑

c∈Na

∑
xi∈Sc

min
‖δ̃c‖≤εc

l(softmax(ui + δ̃c), c)

+
∑

c∈Pa

∑
xi∈Sc

max
‖δ̃c‖≤εc

l(softmax(ui + δ̃c), c),
(11)

Figure 2: Overview of the logit perturbation-based new loss.
Four solid circles denote four categories. Two categories are
positively augmented via loss maximization and the rest two
are negatively augmented via minimization.

where εc is the perturbation bound related to the extent of
augmentation;Na is the index set of categories which should
be negatively augmented; Pa is the index set of categories
which should be positively augmented; and Sc is the set
of samples in the cth category. The loss maximization for
the Pa categories is actually the category-level adversarial
learning on the logits; the loss minimization for the Na cat-
egories is the opposite. Fig. 2 illustrates the calculation of
the logit perturbation-based new loss in Eq. (11).

The split of the category set (i.e., Na and Pa) and the
definition (calculation) of εc are crucial for the learning with
Eq. (11). Category set split determines the categories that
should be positively or negatively augmented. Meanwhile,
the value of εc determines the augmentation extent.

Category set split. The split depends on specific learning
tasks. Two common cases are explored in this study. The
first case splits categories according to their performances.
In this case, Eq. (11) becomes the following compact form:

L =
∑

c
{S(τ − q̄c)×∑

xi∈Sc

max
‖δ̃c‖≤εc

[l(softmax(ui + δ̃c), c)S(τ − q̄c)]},
(12)

where S(·) is the signum function (if a ≥ 0, then S(a) = 1),
τ is a threshold, and q̄c is calculated by

q̄c=
1

Nc

∑
xi∈Sc

qi,c =
1

Nc

∑
xi∈Sc

exp(ui,c)∑
c′ exp(ui,c′)

. (13)

When τ = mean(q̄c) =
∑C
c=1 q̄c/C, Eq. (12) indicates

that if the performance of a category is below the mean per-
formance, it will be positively augmented. Meanwhile, when
the performance is above the mean, it will be negatively aug-
mented. When τ > max

c
{q̄c}, all the categories will be pos-

itively augmented as in ISDA.
The second case is special for a long-tail problem, and it

splits categories according to the proportion order of each



Algorithm 1: Learning to Perturb Logits (LPL)
Input: S, τ , max iteration T , hyper-parameters for PGD-
like optimization, and other conventional training hyper-
parameters.

1: Randomly initialize Θ.
2: for t = 0 to T do
3: Sample a mini-batch from S.
4: Update τ if it is not fixed (e.g., mean(q̄c) is used) and

split the category set.
5: Compute εc for each category using (18) if varied

bounds are used.
6: Infer δc for each category using a PGD-like optimiza-

tion method for (12) in balanced classification or (14)
in long-tail classification.

7: Update the logits for each sample and compute the
new cross entropy loss.

8: Update Θ with SGD.
9: end for

Output: Θ

category. Eq. (11) becomes the following compact form:

L =
∑

c
{S(c− τ)×∑

xi∈Sc

max
‖δ̃c‖≤εc

[l(softmax(ui + δ̃c), c)S(c− τ)]}, (14)

where τ is a threshold for the category index. In (14), the tail
categories locate in Pa and will be positively augmented.

Eqs. (12) and (14) can be solved with an optimization ap-
proach similar to PGD (Madry et al. 2018). First, we have

∂l(softmax(ui + δ̃yi), yi)

∂δ̃yi
= softmax(ui)− ŷi, (15)

where ŷi is the one-hot vector of yi. In the maximization of
(12) and (14), δ̃yi is updated by

δ̃′yi=δ̃yi+
λ

Nyi

∑
j:yj=yi

(softmax(uj)− ŷj), (16)

where λ is the hyper-parameter. In the minimization part, δ̃yi
is updated by

δ̃′yi=δ̃yi−
λ

Nyi

∑
j:yj=yi

(softmax(uj)− ŷj). (17)

The details are introduced in the supplementary file.
Bound calculation. The category with a relatively

low/high performance should be more positively/negatively
augmented; the category closer to the tail/head should be
more positively/negatively augmented. We define

εc=ε+∆ε |τ − q̄c| or

εc=

{
ε+ ∆ε q̄cq̄1 c ≤ τ
ε+ ∆ε q̄Cq̄c c > τ

.
(18)

In Eq. (18), the larger the difference between the perfor-
mance (q̄c) of the current category and the threshold τ , or the

Figure 3: Illustrative example for LA. All samples are per-
turbed by the average sample.

Figure 4: Illustrative example for ISDA. Both categories are
positively augmented (new samples are virtually generated)
according to feature distributions.

larger the ratio q̄c/q̄1 (and q̄C/q̄c), the larger the bound εc.
This notion is in accordance with our previous conjecture.
When ∆ε in Eq. (18) equals to zero, the bound is fixed.

The algorithmic steps of our LPL are in Algorithm 1. The
optimization in Step 6 is detailed in the supplementary file.

Comparative Analysis
This subsection compares the perturbations in LA, ISDA,
and our LPL in terms of data augmentation. We first have
the following Lemma for LA.
Lemma 1. Assume that there is an average sample xavg that
satisfies softmax(uavg) = {π1, · · · , πC}. The perturbation
term on the logit vector of xi in LA equals to λuavg .

The proof is in the supplementary file. Fig. 3 presents an
illustrative example. The two categories in the left case are
balanced, while they are imbalanced in the right. With LA,
all samples are perturbed by the average sample xavg .

In the ISDA’s rationale, new samples are (virtually in-
stead of really) generated based on the distribution of each
category. Fig. 4 shows the (virtually) generated samples by
ISDA. In the right case, the positive augmentation for head
category may further hurt the performance of the tail cate-
gory. ISDA failed in the long-tail problem. Li et al. (2021)
leveraged meta learning to adapt ISDA for the long-tail
problem.

In contrast with the above-mentioned two methods, our
proposed LPL method conducts positive or negative aug-
mentation according to the directions of loss maximiza-
tion and minimization. Theoretically, loss maximization will
force the category to move close to the decision boundary
(i.e., the category is positively augmented or virtual samples
are generated for this category). By contrast, loss minimiza-
tion will force the category to be far from the boundary (i.e.,
the category is negatively augmented or samples are virtu-
ally deleted for this category). Fig. 5 shows an illustrative
example.



Figure 5: Illustrative example for LPL. Samples near the
classification boundary are virtually generated or deleted.

Experiments
Our proposed LPL is first evaluated on data augmentation
and long-tail classification tasks. The properties of LPL are
then analyzed with more experiments. All the codes are
available and attached in the supplementary file.

Experiments on Data Augmentation
Datasets and competing methods. In this subsection, two
benchmark image classification data sets, namely, CIFAR10
and CIFAR100, are used. Both data consist of 32×32 nat-
ural images in 10 classes for CIFAR10 and 100 classes for
CIFAR100. There are 50,000 images for training and 10,000
images for testing. The training and testing configurations
used in (Wang et al. 2019) are followed. Several classi-
cal and state-of-the-art robust loss functions and (seman-
tic) data augmentation methods are compared: Large-margin
loss (Liu et al. 2016), Disturb label (Xie et al. 2016), Focal
Loss (Lin et al. 2017), Center loss (Wen et al. 2016), Lq
loss (Zhang and Sabuncu 2018), CGAN (Mirza and Osin-
dero 2014), ACGAN (Odena, Olah, and Shlens 2017), info-
GAN (Chen et al. 2016), ISDA, and ISDA + Dropout.

The Wide-ResNet-28 (Zagoruyko and Komodakis 2016)
and ResNet-110 (He et al. 2016) are used as the base neu-
ral networks. Considering that the training/testing configura-
tion is fixed for both sets, the results of the above competing
methods reported in the ISDA paper (Wang et al. 2019) are
directly presented (some are from their original papers). The
training settings for the above base neural networks also fol-
low the instructions of ISDA paper and its released codes.
Our methods have two variants.

• LPL (mean+fixed bound). In this version, the optimiza-
tion in Eq. (12) is used. Mean denotes that the threshold
is mean(q̄c). Fixed bound means that the value of εc is
fixed and identical for all categories during optimization.
It is searched in {0.1, 0.2, 0.3, 0.4}.

• LPL (mean+varied bound). In this version, the optimiza-
tion in Eq. (12) is used. Theoretically, varied bound
means that the value of εc is varied according to Eq. (18).
However, the varied bounds in the same batch make the
implementation more difficult and increase the training
complexity. In our implementation, we choose to set a
varied number of updating steps for each category in our
PGD-like optimization, which is described in the supple-
mentary file. The value of ∆ε is searched in {0.1, 0.2}.

The PGD-like optimization in Algorithm 1 contains two
hyper-parameters, namely, step size and #steps. The setting
of these parameters is introduced in the supplementary file.

Method Wide-ResNet-28-10 ResNet-110
Basic 3.82 ± 0.15% 6.76 ± 0.34%
Large Margin 3.69 ± 0.10% 6.46 ± 0.20%
Disturb Label 3.91 ± 0.10% 6.61 ± 0.04%
Focal Loss 3.62 ± 0.07% 6.68 ± 0.22%
Center Loss 3.76 ± 0.05% 6.38 ± 0.20%
Lq Loss 3.78 ± 0.08% 6.69 ± 0.07%
CGAN 3.84 ± 0.07% 6.56 ± 0.14%
ACGAN 3.81 ± 0.11% 6.32 ± 0.12%
infoGAN 3.81 ± 0.05% 6.59 ± 0.12%
ISDA 3.58 ± 0.15% 6.33 ± 0.19%
ISDA+DropOut 3.58 ± 0.15% 5.98 ± 0.20%
LPL (mean+
fixed εc)

3.39 ± 0.04% 5.83 ± 0.21%

LPL (mean+
varied εc)

3.37 ± 0.04% 5.72 ± 0.05%

Table 1: Mean values and standard deviations of the test Top-
1 errors for all the involved methods on CIFAR10.

Method Wide-ResNet-28-10 ResNet-110
Basic 18.53 ± 0.07% 28.67 ± 0.44%
Large Margin 18.48 ± 0.05% 28.00 ± 0.09%
Disturb Label 18.56 ± 0.22% 28.46 ± 0.32%
Focal Loss 18.22 ± 0.08% 28.28 ± 0.32%
Center Loss 18.50 ± 0.25% 27.85 ± 0.10%
Lq Loss 18.43 ± 0.37% 28.78 ± 0.35%
CGAN 18.79 ± 0.08% 28.25 ± 0.36%
ACGAN 18.54 ± 0.05% 28.48 ± 0.44%
infoGAN 18.44 ± 0.10% 27.64 ± 0.14%
ISDA 17.98 ± 0.15% 27.57 ± 0.46%
ISDA+DropOut 17.98 ± 0.15% 26.35 ± 0.30%
LPL (mean+
fixed εc)

18.19 ± 0.07% 26.09 ± 0.16%

LPL (mean+
varied εc)

17.61 ± 0.30% 25.87 ± 0.07%

Table 2: Mean values and standard deviations of the test Top-
1 errors for all the involved methods on CIFAR100.

The Top-1 error is used as the evaluation metric. The per-
formances of the base neural networks with the standard
cross-entropy loss are re-run before running our methods
to conduct a fair comparison. Almost identical results are
obtained compared with the published results in the ISDA
paper.

Results. Tables 1 and 2 present the results of all com-
peting methods on the CIFAR10 and CIFAR100, respec-
tively. Our LPL method (two versions) achieves the best
performance almost under both the two base neural net-
works. ISDA achieves the second-best performance. Only
in the case of Wide-ResNet-28-10 on CIFAR100, LPL
(mean+fixed εc) is inferior to ISDA. However, the former
still achieves the fourth lowest error.

The results of LPL with varied bounds are better than
those of LPL with fixed bounds. This comparison indicates
the rationality of our motivation that the category with rel-
atively low (high) performance should be more positively
(negatively) augmented. In the final part of this section,
more analyses will be conducted to compare ISDA and our



Ratio 100:1 10:1
Class-balanced CE loss 61.23% 42.43%
Class-balanced fine-tuning 58.50% 42.43%
Meta-weight net 58.39% 41.09%
Focal Loss 61.59% 44.22%
Class-balanced focal loss 60.40% 42.01%
LDAM 59.40% 42.71%
LDAM-DRW 57.11% 41.22%
ISDA + Dropout 62.60% 44.49%
LA 56.11% 41.66%
LPL (varied τ + fixed εc) 58.03% 41.86%
LPL (varied τ + varied εc) 55.75% 39.03%

Table 3: Test Top-1 errors on CIFAR100-LT (ResNet-32).

Ratio 100:1 10:1
Class-balanced CE loss 27.32% 13.10%
Class-balanced fine-tuning 28.66% 16.83%
Meta-weight net 26.43% 12.45%
Focal Loss 29.62% 13.34%
Class-balanced focal loss 25.43% 12.52%
LDAM 26.45% 12.68%
LDAM-DRW 21.88% 11.63%
ISDA + Dropout 27.45% 12.98%
LA 22.33% 11.07%
LPL (varied τ + fixed εc) 23.97% 11.09%
LPL (varied τ + varied εc) 22.05% 10.59%

Table 4: Test Top-1 errors on CIFAR10-LT (ResNet-32).

method. Naturally, the varied threshold will further improve
the performances. More results are in the supplementary file.

Experiments on Long-tail Classification
Datasets and competing methods. In this experiment, the
long-tail version of CIFAR10 and CIFAR100 compiled by
Cui et al. (2019) are used and called CIFAR 10-LT and
CIFAR 100-LT, respectively. The training and testing con-
figurations used in (Menon et al. 2021) are followed. Sev-
eral classical and state-of-the-art robust loss functions and
semantic data augmentation methods are compared: Class-
balanced CE loss (Wang et al. 2019), Class-balanced fine-
tuning (Cui et al. 2018), Meta-weight net (Shu et al. 2019),
Focal loss (Lin et al. 2017), Class-balanced focal loss (Cui
et al. 2019), LDAM (Cao et al. 2019), LDAM-DAR (Cao
et al. 2019), ISDA, and LA.

Menon et al. (2021) released the training data when the
imbalance ratio (i.e., π1/π100) is 100:1; hence, their data
and reported results for the above competing methods are
directly presented. When the ratio is 10:1, the results of
ISDA+Dropout and LA are obtained by running their re-
leased codes. The results of the rest methods are from the
study conducted by Li et al. (2021). The hyper-parameter λ
in LA is searched in {0.5, 1, 1.5, 2, 2.5} according to the
suggestion in (Menon et al. 2021). Similar to the experi-
ments in (Menon et al. 2021), ResNet-32 (He et al. 2016) is
used as the base network. The results of ISDA, LA, and LPL
are the average of five repeated runs.

Our methods have two variants: LPL (varied threshold +
fixed bound) and LPL (varied threshold + varied bound).

Ratio 100:1 10:1
LA 56.11% 22.33% 41.66% 11.07%
LPL 55.75%

(-0.36%)
22.05%
(-0.28%)

39.03%
(-2.63%)

10.59%
(-0.48%)

Table 5: The error reduction of LPL (varied τ+varied ε) over
LA on the two data sets.

Method CIFAR10-LT100 CIFAR100-LT100
LA 22.33% 56.11%
LPL 22.05% 55.75%

LA+LPL 21.46% 53.89%
Table 6: Test Top-1 errors of three methods on two data sets.

The threshold τ is searched in {0.4C, 0.5C, 0.6C}. The pa-
rameters step size and #steps for the PGD-like optimization
are detailed in the supplementary materials. The value of ε
is set to 0, and ∆ε is searched in {1.5, 2.5, 5}.

Only one meta-based method, Meta-weight net, is in-
volved, because we mainly aim to compare methods that
only modify the training loss. In addition, meta-based meth-
ods require an auxiliary high-quality validation set (Li et al.
2021). Other methods, such as BBN (Zhou et al. 2020),
which focus on the new network structure are also not in-
cluded in the comparisons.

Results. The Top-1 error is also used. Table 3 shows the
results of all the methods on the CIFAR100-LT data. On the
ratios 100:1 and 10:1, LPL (varied τ + varied εc) yields the
lowest Top-1 errors. It exceeds the best competing method
“LA” by 0.36% and 2.63% on the ratios 100:1 and 10:1, re-
spectively. Table 4 shows the results of all the methods on
the CIFAR10-LT data. LPL (varied τ + varied εc) still ob-
tains the lowest Top-1 errors on both ratios. On all the com-
parisons, the semantic augmentation method ISDA obtains
poor results. On CIFAR100-LT, ISDA achieves the worst
performances on both ratios. This result is expected because
ISDA aims to positively augment all categories equally and
does not favor tail categories, which may lead to tail cate-
gories suffering from this positive augmentation. Neverthe-
less, ISDA has a better performance on CIFAR10-LT than
on CIFAR100-LT. In Fig. 1(b), the loss increments of tail
categories are larger than those of the head ones. That is,
larger augmentations are exerted on tail categories.

We listed the Top-1 errors of LA and LPL (varied τ + var-
ied εc) on Table 5 to better present the comparison. When
the ratio is smaller, the improvements (error reductions) are
relatively larger. This result is reasonable because when the
ratio becomes small, the effectiveness of LA will be subse-
quently weakened. When the imbalance ratio is one, indicat-
ing that there is no imbalance, LA will lose effect; however,
our LPL can still augment the training data effectively.
More Analysis for Our Method
Improvements on existing methods. Our LPL method
seeks the perturbation via an optimization scheme. In ISDA
and LA, the perturbations are directly calculated rather than
optimization. A natural question arises, that is, whether the
perturbations in existing methods further improved via our
method. Therefore, we propose a combination method with
the following loss in imbalance image classification:



Method #Params CIFAR10 CIFAR100
ResNet-32+ISDA 0.5M 7.09 ± 0.12% 30.27 ± 0.34%
ResNet-32+LPL (mean + fixed εc) 0.5M 7.01 ± 0.16% 29.59 ± 0.27%
ResNet-32+LPL (mean + varied εc) 0.5M 6.66 ± 0.09% 28.53 ± 0.16%
SE-Resnet110+ISDA 1.7M 5.96 ± 0.21% 26.63 ± 0.21%
SE-Resnet110+LPL (mean + fixed εc) 1.7M 5.87 ± 0.17% 26.12 ± 0.24%
SE-Resnet110+LPL (mean + varied εc) 1.7M 5.39 ± 0.10% 25.70 ± 0.07%
Wide-ResNet-16-8+ISDA 11.0M 4.04 ± 0.29% 19.91 ± 0.21%
Wide-ResNet-16-8+LPL (mean + fixed εc) 11.0M 3.97 ± 0.09% 19.87 ± 0.02%
Wide-ResNet-16-8+LPL (mean + varied εc) 11.0M 3.93 ± 0.10% 19.83 ± 0.09%

Table 7: Number of parameters and test Top-1 errors of ISDA and LPL with different base networks.

∑
c∈Na

∑
xi∈Sc

min
‖δ̃yi‖≤εc

l(softmax(ui + λ log πyi + δ̃yi), yi)

+
∑

c∈Pa

∑
xi∈Sc

max
‖δ̃yi‖≤εc

l(softmax(ui + λ log πyi + δ̃yi), yi).

When all εcs are zero, the above-mentioned loss becomes
the loss of LA; when λ is zero, the above loss becomes
our LPL (with fixed bound). We conducted experiments
on CIFAR10-LT100 and CIFAR100-LT100. The results are
shown in Table 6. ResNet-32 is used as the basic model. The
value of λ is searched in {0.5, 1, 1.5, 2, 2.5} and other pa-
rameters are detailed in the supplementary file.

The combination method LA+LPL achieves the lowest er-
rors on both comparisons, indicating that our LPL can fur-
ther improve the performances of existing SOTA methods.
ISDA can likewise be improved with the same manner.

More comparisons with ISDA. ISDA claims that it does
not increase the number of parameters compared with the di-
rect learning with the basic DNN models. Our method also
does not increase the number of model parameters. The rea-
son lies in that the perturbation terms are no longer used in
the final prediction.

Table 7 shows the comparisons between ISDA and
LPL (two variants) on three additional base DNN models,
namely, SE-ResNet110 (Hu, Shen, and Sun 2018), Wide-
ResNet-16 (Zagoruyko and Komodakis 2016), and ResNet-
32. The numbers of parameters are equal for ISDA and LPL.
Nevertheless, the two variants of our method LPL outper-
form ISDA on both data sets under all the five base models.

Loss variations of LPL during training. We plot the
loss variations of LPL on two balanced and two long-tail
data sets to assess whether our method LPL is in accordance
with the two conjectures. The curves are shown in Fig. 6. On
the balanced data, the relative loss variations are similar to
those of ISDA; on the long-tail data, the losses of head cate-
gories are reduced, whereas those of tail ones are increased,
which is similar to those of LA. The two variations indicate
that LPL can implement appropriate positive/negative aug-
mentation according to the characteristics of training data.

Performances of LPL under different τ and εc. Both
the threshold for category set split and the bound for aug-
mentation extent are two important hyper-parameters in
LPL. Based on our experiments, the following observations
are obtained. On the balanced data sets, the results are rela-
tively stable when the bound locates in [0.1, 0.5]; when the

Figure 6: Relative loss variations of our LPL on two bal-
anced and two long-tail data sets.

threshold is searched around the mean(q̄c), the results are
usually better. On the long-tail data sets, the results are rela-
tively stable when the bound locates in [1.5, 5.0]. When the
threshold is searched in {0.4C, 0.5C, 0.6C}, the results are
usually good in our experiment. Long-tail problems require
larger extent of data augmentation.

Training time consumption. Our proposed LPL is effi-
cient as the optimization is directly run on logits. In balanced
data, the time consumption of LPL is about 35% lower than
that of ISDA. In long-tail data, the time consumption of LPL
is about 15% higher than those of LA and vanilla CE loss.

Conclusions
This study investigates the category-level logit perturbation
in deep learning. A conjecture for the relationship between
(logit perturbation-incurred) loss increment/decrement and
positive/negative data augmentation is proposed. Based on
this conjecture, a new method is introduced to learn to per-
turb logits (LPL) during DNN training. Two key components
of LPL including category-set split and boundary calcula-
tion are investigated. The differences between our proposed
LPL and two existing methods are analyzed. Extensive ex-
periments on data augmentation (for balanced classification)
and long-tail classification are conducted. LPL achieves the
best performances in both situations under different basic
networks. Existing methods with logit perturbation (e.g. LA)
can also be improved by using our method.
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Supplementary material to the paper “Logit Perturbation”

S.1. Section “Methodology”
1) More details and typo-corrections to Eqs. (15)-(17)
We propose a more specific optimization method called PGD-like optimization based on PGD. According to the derivative

of the cross-entropy loss function with respect to logit vector, our PGD-like optimization method can be implemented simply.
There are typos in Eqs. (15)-(17) in the submission. They are corrected and the inference details are described below.

First, we have

l(softmax(ui + δ̃yi), yi) = − log
exp(ui,yi + δ̃yi,yi)∑
c′ exp(ui,c′ + δ̃yi,c′)

= log
∑
c′ exp(ui,c′ + δ̃yi,c′)− (ui,yi + δ̃yi,yi). (s-1)

Then we get the following Eq. (s-2):

∂l(softmax(ui + δ̃yi), yi)

∂δ̃yi

= [
exp(ui,1 + δ̃yi,1)∑
c′ exp(ui,c′ + δ̃yi,c′)

, ...,
exp(ui,yi + δ̃yi,yi)∑
c′ exp(ui,c′ + δ̃yi,c′)

− 1, ...,
exp(ui,C + δ̃yi,C)∑
c′ exp(ui,c′ + δ̃yi,c′)

]T

= softmax(ui + δ̃yi)− ŷi. (s-2)

According to Eq. (s-2) and Gradient Descent, we can solve the maximization and minimization in Eq. (12) and Eq. (14).
Let uki be the logit vector after perturbation at the step k. In the maximization of Eqs.(12) and (14), δ̃k+1

yi is updated by

δ̃k+1
yi =

λ

Nyi

∑
j:yj=yi

∂l(softmax(ukj + δ̃yi), yj)

∂δ̃yi

∣∣∣∣
0

=
λ

Nyi

∑
j:yj=yi

(softmax(ukj )− ŷj), (s-3)

where λ is the hyper-parameter. In the minimization of Eqs. (12) and (14), δ̃k+1
yi is updated by

δ̃k+1
yi = − λ

Nyi

∑
j:yj=yi

∂l(softmax(ukj + δ̃yi), yj)

∂δ̃yi

∣∣∣∣
0

= − λ

Nyi

∑
j:yj=yi

(softmax(ukj )− ŷj). (s-4)

Then, in the next update, uk+1
i = uki + δ̃k+1

yi . Eqs.(15)-(17) are revised to the following equations:

∂l(softmax(u′i + δ̃yi), yi)

∂δ̃yi

∣∣∣∣
0

= softmax(u′i)− ŷi. (15’)



δ̃′yi =
λ

Nyi

∑
j:yj=yi

(softmax(u′j)− ŷj). (16’)

δ̃′yi = − λ

Nyi

∑
j:yj=yi

(softmax(u′j)− ŷj). (17’)

2) The optimization in Step 6 in Algorithm 1
First, we calculate the perturbation bound εc according to Eq. (18), where c is the category. Let α be the step size. Then,

the number of steps (#steps) for category c is calculated by

Kc = bεc
α
c. (s-5)

With step size α and #steps, the PGD-like optimization is detailed in Algorithm S1.

Algorithm S1 PGD-like Optimization
Input: The logit vectors (ui) for the cth category in the current mini-batch, εc, and α.

1: Let u0i = ui for the input vectors;
2: Calculate Kc according to Eq. (s-5);
3: for k = 0 to Kc − 1 do

4: Calculate ∂l(softmax(uk
i +δ̃c),c)

∂δ̃c

∣∣∣∣
0

= softmax(uki )− ĉ.

5: Calculate δ̃k+1
yi according to Eq. (s-3) for maximization and Eq. (s-4) for minimization;

6: uk+1
i := uki + δ̃k+1

yi .
7: end for=0

Output: δc = uKc
i − ui

3) The proof of Lemma 1
Lemma 1. Assume that there is an average sample xavg that satisfies softmax(uavg) = {π1, · · · , πC}. The perturbation term
on the logit vector of xi in LA equals to λuavg .

Proof: Assume that there is an average sample xavg who satisfies

softmax(uavg) = [
exp(uavg,1)∑
c′ exp(uavg,c′)

, ...,
exp(uavg,c)∑
c′ exp(uavg,c′)

, ...,
exp(uavg,C)∑
c′ exp(uavg,c′)

]T

= [π1, ..., πc, ..., πC ]T . (s-6)

Therefore, uavg,c = logπc + ∆, where ∆ is an arbitrary constant. We have the following equation:

exp(ui,c + uavg,c + ∆)∑
c′ exp(ui,c′ + uavg,c′ + ∆)

=
exp(ui,c + uavg,c)∑
c′ exp(ui,c′ + uavg,c′)

. (s-7)

The arbitrary constant ∆ does not affect the loss value. Therefore, ∆ is set as zero and we have

{uavg,1, · · · , uavg,C} = {logπ1, · · · , logπC}. (s-8)

We further assume that xavg is the output of the last feature encoding layer. Therefore,

WT (xi + λxavg)) + bi + λbavg = ui + λuavg. (s-9)

According to Eqs. (s-8) and (s-9) and LA, the perturbation term on the logit vector of xi equals to λuavg . The proof is
done.



4) Explanation of why xavg locates in the first head category.
In our submission, we assume π1 > π2 > ... > πC for the long-tail problem. For the average sample, we have

softmax(uavg) = {π1, ..., πC}. Naturally, xavg locates in the (first) head category as π1 is the largest in the prediction.
According to Lemma 1, we have following proposition 1.
Proposition 1: If λ→ +∞, then each training sample will be classified into the (first) head category.
Proof: According to Lemma 1, we get the u′i as follows:

u′i = ui + λuavg. (s-11)

Then we calculate the softmax value of u′i as follows:

softmax(u′i) = [
exp(ui,1 + λuavg,1)∑
c′ exp(ui,c′ + λuavg,c′)

, ...,
exp(ui,c + λuavg,c)∑
c′ exp(ui,c′ + λuavg,c′)

, ...,
exp(ui,C + λuavg,C)∑
c′ exp(ui,c′ + λuavg,c′)

]. (s-12)

Then we calculate the limits of softmax(u′i) as follows:

lim
λ→+∞

exp(ui,1 + λuavg,1)∑
c′ exp(ui,c′ + λuavg,c′)

= lim
λ→+∞

1∑
c′ exp(ui,c′ − ui,1 + λ(uavg,c′ − uavg,1))

= lim
λ→+∞

1

1 +
∑
c′≥2 exp(ui,c′ − ui,1 + λ(uavg,c′ − uavg,1))

= 1. (s-13)

However, ∀c ≥ 2, we get the limits as follows:

lim
λ→+∞

exp(ui,c + λuavg,c)∑
c′ exp(ui,c′ + λuavg,c′)

= lim
λ→+∞

1∑
c′ exp(ui,c′ − ui,c + λ(uavg,c′ − uavg,c))

= lim
λ→+∞

1

1 +
∑
c′>c exp(ui,c′ − ui,c + λ(uavg,c′ − uavg,c)) +

∑
c′<c exp(ui,c′ − ui,c + λ(uavg,c′ − uavg,c))

= 0. (s-14)

Therefore, when λ→ +∞, xi will be classified into the (first) head category. In summary, the proof is completed.

S.2. Subsection “Experiments on Data Augmentation”
1) Explanation for using varied #steps instead of varied εc
If varied εc is used, the implementation is complicated and the time consumption is relatively large according to our

empirical observations. It is simplier and more efficient to control the perturbation bound directly based on the varied #steps
according to Eq. (s-5). In our future work, we will explore how to directly set the varied εc in the codes.

2) Parameter settings for PGD-like optimization. The step size is searched in {0.01, 0.02, 0.03}.
3) Results with varied thresholds.
Fig. S-1 shows the results under different thresholds on CIFAR10 and CIFAR100. The thresholds are {0.8mean, 0.9mean,

mean, 1.1mean, 1.2mean}. ResNet32 is used. The performances are stable under the five thresholds. On CIFAR10, when the
threshold is 0.9mean, the performance is the best.

S.3. Subsection “Experiments on Long-tail Classification”
1) The parameters step size and steps for the PGD-like optimization The step size is searched in {0.1, 0.2, 0.3} because

the augmentation extent should be large in long-tail classification.
2) The parameter setting for the combination method LA+LPL The value of λ is searched in {0.1, 1, 2}. The threshold

τ is set as 4 and 40 on CIFAR10 and CIFAR100, respectively. Other parameters follow the setting in the previous experiments.



Figure S-1. Test Top-1 errors under different thresholds on CIFAR10 (left) and CIFAR100 (right).

model CIFAR10 CIFAR100
ResNet32+LA 15.18s 16.17s
ResNet32+LPL 17.56s 18.41s
ResNet32+ISDA 26.85s 27.72s

Table S-1. Average time consumption in an epoch.

S.4. Subsection “More Analysis for Our Method”
Table S-1 shows the average time consumption in an epoch of the three methods ResNet32, ResNet32+LTP, and ResNet32+ISDA

on the two data sets of CIFAR10 and CIFAR100. On CIFAR10 and CIFAR100, the time costs of LPL are 34.59% and 33.58%
lower than ISDA, respectively. The time costs of LPL are 15.67% and 13.8% larger than the LA algorithm, respectively.

S.5. Section “Experiments”
All codes can be found in the ”code.zip” compressed package.


