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Abstract. Sample weighting is widely used in deep learning. A large number
of weighting methods essentially utilize the learning difficulty of a training sam-
ple to calculate its weight. In this study, this scheme is called difficulty-based
weighting. Two important issues arise when explaining this scheme. First, a uni-
versal difficulty measure that can be theoretically guaranteed for training samples
does not exist. The learning difficulties of the samples are determined by multiple
factors, including noise level, imbalance degree, margin, and uncertainty. Never-
theless, existing measures only consider a single factor or in part, but not in their
entirety. Second, a comprehensive theoretical explanation is lacking with respect
to demonstrating why difficulty-based weighting schemes are effective in deep
learning. In this study, we theoretically prove that the generalization error of a
sample can be used as a universal difficulty measure. Furthermore, we provide
formal theoretical justifications on the role of difficulty-based weighting for deep
learning, consequently revealing its positive influences on both the optimization
dynamics and generalization performance of deep models, which is instructive to
a number of weighting schemes under active research.

Keywords: Sample weighting - Learning difficulty - Generalization error - Deep
learning interpretability.

1 Introduction

Treating each training sample unequally improves the learning performance. Two cues
are typically considered in designing the weighting schemes of training samples [1].
The first cue is the application context of learning tasks. In applications such as med-
ical diagnosis, samples with high gains/costs are assigned with high weights [2]. The
second cue is the characteristics of the training data [3,4,5]. For example, samples with
low confidence or noisy labels are assigned with low weights [6]. Characteristic-aware
weighting has attracted increasing attention owing to its effectiveness and universality.

Many existing characteristic-aware weighting methods are based on an intrinsic
property of the training samples, i.e., their learning difficulty. Based on this property,
the training samples can be divided into easy/hard or easy/medium/hard ones [7]. In
some schemes, easy samples have higher weights than hard ones, which is called the
easy-first mode [3,6,8]. For example, Curriculum learning [9] is motivated by human
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learning that easy samples should be learned first, which is verified to be effective on
noisy datasets. In some other schemes, hard samples are assigned with high weights,
which is called the hard-first mode [4,10,11]. For example, Lin et al. [10] proposed
Focal Loss in object detection, which significantly improves the detection performance.

Despite the empirical success of various difficulty-based weighting methods, the
process of how difficulty-based weighting positively influences the deep learning mod-
els remains unclear. Three recent studies have attempted to investigate the influence of
weights on deep learning. Byrd and Lipton [12] empirically found that sample weights
affect deep learning by influencing the implicit bias of gradient descent'. However, their
conclusions were drawn only through experimental observations rather than theoretical
analyses. Based on their finding, Xu et al. [13] dedicated to studying how the theoretical
understandings for the implicit bias of gradient descent adjust to the weighted empir-
ical risk minimization (ERM) setting. They concluded that assigning high weights to
samples with small margins may accelerate optimization. In addition, they established
a generalization bound for models that implement learning by using importance weight-
ing. However, their theoretical analyses are only based on the margin-based difficulty
measure, resulting in their conclusion being limited and inaccurate in some cases (dis-
cussed in Section 4). Unlike studies in view of the implicit bias of gradient descent for
ERM, Zhou et al. [1] conjectured that the optimal weight is calculated by the likelihood
ratio popt [d(x)]/per[d(2)], Where pope[d(x)] and py,[d(x)] are the densities of the op-
timal and real difficulty distributions of the training data. However, how to derive the
optimal difficulty distribution is not involved in their study.

Besides the margin-based difficulty measure considered by Xu et al. [13], the exist-
ing difficulty measures can be roughly divided into the following five categories.

— Prediction-based measures. This category directly uses the loss [3,6,8] or the pre-
dicted probability of the ground truth [4,14] as the difficulty measures. Their intu-
ition is that a large loss (a small probability) indicates a large learning difficulty.

— Gradient-based measures. This category applies the loss gradient in the measure-
ment of the samples’ learning difficulty [11,15]. The intuition is that the larger the
norm of the gradient, the harder the sample.

— Category proportion-based measures. This category is mainly utilized in imbal-
anced learning [10], where the category proportion measures the samples’ diffi-
culty. The intuition is that the smaller the proportion of a category, the larger the
learning difficulty of samples in this category [10,16].

— Margin-based measures. The term "margin" refers to the distance from the sample
to the oracle classification boundary. The motivation is that the smaller the margin,
the larger the learning difficulty of a sample [17].

— Uncertainty-based measures. This category uses the uncertainty of a sample to mea-
sure the difficulty. Aguilar et al. [18] identified hard samples based on epistemic
uncertainty and leveraged the Bayesian Neural Network [19] to infer it.

Varying difficulty measures have a significant impact on a difficulty-based weight-
ing strategy. According to the underlying motivations of the five categories of measures,

! The implicit bias of gradient descent studies why over-parameterized models are biased toward
solutions that generalize well [20].
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there are four main factors that greatly influence samples’ learning difficulty, including
noise level [6,8], imbalance degree [10,16], margin [17], and uncertainty [18]. How-
ever, each measure mentioned above only considers a single factor or in part and comes
from heuristic inspirations rather than theoretical verification, hindering the application
scope of these measures. For example, samples with large margins may also be hard-
to-classify in some cases (e.g., with heterogeneous samples in their neighbors). It is
desirable to theoretically explore a universal measure capturing all four factors men-
tioned above, which is essential for our understanding of difficulty-based weighting.

In this study, the manner of how difficulty-based weighting affects deep model train-
ing is deeply investigated. First, our analyses support that the generalization error of a
training sample can be regarded as a universal difficulty measure for capturing all the
four factors described above. Second, based on this unified measure, we characterize
the role of difficulty-based weighting on the implicit bias of gradient descent, espe-
cially for the convergence speed. Third, two new generalization bounds are constructed
to demonstrate the explicit relationship between the sample weights and the generaliza-
tion performance. The two bounds illuminate a new explanation for existing weighting
strategies and characterize the optimal difficulty distribution of the training set formally.
Our study takes the first step of constructing a formal theory for difficulty-based sample
weighting. In summary, our contributions are threefold.

— We theoretically prove that the generalization error captures four main factors influ-
encing the samples’ learning difficulty, indicating that it can be used as a universal
difficulty measure.

— We reveal how the difficulty-based sample weighting influences the optimization
dynamics and generalization performance for deep learning. Our results indicate
that assigning high weights to hard samples may accelerate the convergence. To
enhance the generalization performance, a tradeoff between increasing the weights
of certain samples and keeping the test and the weighted training distributions close
should be found.

— We bring to light the characteristics of a good set of weights from multiple perspec-
tives, illuminating the deep understanding of numerous weighting strategies.

2 Preliminaries

2.1 Description of Symbols

Let X denote the input space and ) a set of classes. We assume that the training and
test samples are drawn i.i.d according to some distributions D" and D' over X x ).
The training set is denoted as T' = {x,y} = {(x;,y;)}}, that contains n training
samples, where x; denotes the i-th sample’s feature, and y; is the associated label.
Let d; and w (d;) be the learning difficulty and the difficulty-based weight of ;. The
learning difficulty can be approximated by several values, such as loss, margin, and
generalization error which will be explained in detail in Section 3.

The predictor is denoted by f (8, ) and F = {f(0,:)|0 € © C R"}. For the
sake of notation, we focus on the binary setting y; € {—1,1} with f(0,z) € R.
However, as to be clarified later, our results can be easily extended to the multi-class
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setting where y; € {1,2,---,C}. For the multi-class setting, we extend our setup
using the softmax function where the logits are now given by { f,; (6, a:)}jczl. Given
a non-negative loss ¢ and a classifier f (0, -), the empirical risk can be expressed as
L(0,w) = L3 w(d;) L (y;, f(6,2;)). We focus particularly on the exponential
loss ¢(u) = exp(—u) and logistic loss ¢ (u) = log (1 + exp (—u)). Let VI(u) be
the loss gradient and f (x|T') be the trained model on 7. The margin is denoted as
~Yir(x;) = y;f (0, xz;|T) for the binary setting, where it is equivalently denoted as
Yi,r (i) = fu, (0, 2;|T) — max;z; fy, (0, 2;|T) for the multi-class setting.

2.2 Definition of Generalization Error

Bias-variance tradeoff is a basic theory for the qualitative analysis of the generalization
error [21]. This tradeoff is initially constructed via regression and mean square error,
which is given by
Err = BayEr(lly — f(=|T)|3]
~ Eayllly — f(@)[3] + Bo y B[l f (=[T) — f(2)][3), @

Bias Variance

where f () = Ez [f (z|T)]. Similarly, we define the generalization error of a single
sample x; as
err; = By [0 (f (2:|T),y:)] = B (x;) + V (x;), )

where B (x;) and V (x;) are the bias and variance of x;.

2.3 Conditions and Definitions

Our theoretical analyses rely on the understanding of implicit bias of gradient descent
in deep learning. The gradient descent process is denoted as

0111 (w) = 6, (w) — VL (0 [w(dt])]) (3)
where 7); is the learning rate which can be a constant or step-independent, VL@ [w(d [t]))
is the gradient of £, and w(d [t]) is the difficulty-based weight of difficulty d at time
t. The weight may be dynamic with respect to time ¢ if difficulty measures, such as
loss [3] and predicted probability [4], are used. To guarantee the convergence of the
gradient descent, two conditions following the most recent study [13] are shown below:

— The loss £ has an exponential tail whose definition is shown in Section A.1 in the
supplementary file. Thus, lim,, o £(—u) = lim, o0 VI(—u) = 0.
— The predictor f (6, ) is a-homogeneous such that f(c-0, ) = ¢* (0, x),Vc > 0.

It is easy to verify that losses, including the exponential loss, log loss, and cross-entropy
loss, satisfy the first condition. The second condition implies that the activation func-
tions are homogeneous such as ReLU and LeakyReL.U, and bias terms are disallowed.
In addition, we need certain regularities from f (6, x) to ensure the existence of critical
points and the convergence of gradient descent.

- ForVx € X, f(0,x) is B-smooth and [-Lipschitz on R®.
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The above condition is a common technical assumption whose practical implications
are discussed in Section A.2 in the supplementary file.

The generalization performance of deep learning models is measured by the gener-
alization error of the test set, which is

L(f) =P gypre [y () < 0. &)

2.4 Experiment Setup

Tllustrated experiments are performed to support or illuminate our theoretical analyses.
For the simulated data (shown in Fig. S-8 in the supplementary file), the linear predictor
is a regular regression model. The nonlinear predictor is a two-layer MLP with five
hidden units and ReLU as the activation function. Exponential loss and standard normal
initialization are utilized. CIFAR10 [23] is experimented with, and ResNet32 [24] is
adopted as the baseline model. For the imbalanced data, the imbalance setting follows
Ref. [10]. For the noisy data, symmetric and pair-flip label noises are used, and the noise
setting follows Ref. [22]. The models are trained with a gradient descent by using 0.1 as
the learning rate. The model uncertainty is approximated by the predictive variance of
five predictions. To approximate the generalization error, we adopt the five-fold cross-
validation method [25] to calculate the average learning error for each sample.

3 A Universal Difficulty Measure

As previously stated, four main factors pointed out by existing studies, namely, noise,
imbalance, margin, and uncertainty, greatly impact the learning difficulty of samples.
Nevertheless, existing measures [10,17,18] only consider one or part of them, and their
conclusions are based on heuristic inspirations or empirical observations rather than
theoretical certifications. We theoretically prove that the generalization error of a sam-
ple can be used as a universal difficulty measure capturing all four factors. Although
generalization error is a well-established concept, this is the first time the relationship
between generalization error and the four factors is built with formal theories. All proofs
are presented in Section B in the supplementary file. Without increasing the ambiguity,
the generalization error of samples is termed as error for brevity.

3.1 Noise Factor

Noise refers to data that is inaccurate in describing the scene [26,27]. Numerous studies
devoted to reducing the influence of noisy samples on deep learning models and they
intuitively consider noisy samples as hard ones without theoretical certification [6,28].
There are two kinds of noise, namely, feature noise [26] and label noise [27]. We offer
two propositions to reveal the relationship between the generalization error and the
noise factor. For feature noise, we offer the following proposition:



6 F. Author et al.

] 7 [=1(Largest
m_Clean 164 2 -
41 14]
e 12 anm
¥ 104 -
S y . 5 5] g
D2 . Tua . i ! aa
l. " |. " ol "Lt 61 o, ﬁﬂ-
L] '\ ]
I T A TR A
X = n " H 24
o AT o] N
, . : , : -2 : ; : , ,
0 50 100 150 200 0 100 200 300 400

il T b i
Fig. 1: (a) Errors of clean and noisy samples on noisy data. 10% symmetric label noise is added.

(b) Errors of samples in ten categories on imbalanced data. The imbalance ratio is 10:1. Fifty
samples are randomly selected to display for each category. CIFAR10 and ResNet32 are used.
Other noise and imbalance settings following Ref. [22] are also experimented with, and the same
conclusions are obtained.

Proposition 1. Ler Ax; be the perturbation of sample (x;,y;), which is extremely
small in that o(Ax;) can be omitted. Let /¢ be the angle between the direction of
Awx; and the direction of Er[f' (x;|T)]. If Er[f’ (;|T) - Azx;] < 0 (ie., Lo > 90°),
then the error of the noisy sample is increased relative to the clean one. Alternatively,
the direction of the perturbation Ax; and that of Er[f' (x;|T)] are contradictory. Oth-
erwise, if Ex[f' (z;|T) - Ax;] > 0, then Zyp < 90°, and the error of the noisy sample
is decreased.

According to Proposition 1, feature noise can be divided into two categories. Noise
increasing the error is called the adversarial type in this paper, which is frequently used
in adversarial learning [29]; otherwise, it is a promoted type, referring to noise that
decreases the errors of samples. Therefore, the variation of the error under feature noise
depends on the noise type. For label noise, we offer the following proposition:

Proposition 2. Let 7w be the label corruption rate (i.e., the probability of each label
flipping to another one). Denote the predicted probability of the ground truth for the
original sample as p. If p > 0.5, then the error of the noisy sample is larger than that
of the clean one.

This proposition implies that the errors of the samples with label noises are larger
than those of the clean ones on average. Specifically, if a sample is more likely to be
predicted correctly, its generalization error increases due to label noise. Let £* be the
global optimum of the generalization error of the clean dataset and 3’ be the corrupted
label. When the noise in Proposition 2 is added, the empirical erroris £’ = (1 — 7) L*+
7L (f (x),y’), where we have taken expectations over the noise. When m — 0, the
noise disappears, and the optimal generalization is attained. Proposition 2 is consistent
with the empirical observation shown in Fig. 1(a), where the noisy samples have larger
errors than the clean ones on average. In summary, the error embodies the noise factor.
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Fig.2: (a) Correlation between error and the avérage margin. (b) Correlation between error and
epistemic uncertainty. CIFAR10 and ResNet32 are used. All values are normalized.

3.2 Imbalance Factor

Besides noise, imbalance is another common deviation of real-world datasets. The cat-
egory distribution of the samples in the training set is non-uniform. Various methods in
deep learning solve this issue by assigning high weights to samples in tail categories
(i.e., categories with a small number of samples), which are intuitively considered to be
hard ones [4,10]. However, a theoretical justification about why these samples are hard
lacks. We offer the following proposition.

Proposition 3. Ifa predictor on an imbalanced dataset (the imbalance ratioc, > e : 1)
is an approximate Bayesian optimal classifier (as the exponential loss is an approxima-
tion for the zero-one loss), which is to minimize the total risk, then the average proba-
bility of the ground truth of the samples in the large category is greater than that of the
samples in the small category.

The imbalance ratio is denoted by ¢, = max{c;,co, -+ ,cc} :min{cy,ca, -+ ,co}
and ¢y, refers to the number of samples in the k-th category. With Proposition 3, it is
easy to obtain Proposition S.1 shown in the supplementary file that the average error
of the samples in the small category is larger than that of the samples in the large
category, indicating that error captures the imbalance factor. This proposition is verified
by experiments, as shown in Fig. 1(b). Tail categories contain a higher proportion of
samples with larger errors. Therefore, samples with larger errors should be assigned
with higher weights. Further experiments shown in Fig. 6 illustrate that the classification
performance of the small category is improved by increasing its sample weights.

3.3 Margin Factor

The samples’ margins measure the distances of the samples from the decision bound-
ary [17]. Some studies in deep learning intuitively consider a small margin indicates a
large learning difficulty and corresponds to low confidence of the prediction [13,17].
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However, there lacks a rigorous characterization of the relationship between the learn-
ing difficulty and margin. We offer the following proposition.

Proposition 4. Let u; be the true margin of sample x; corresponding to the oracle
decision boundary. The condition is that the functional margins of a sample trained
on random datasets obey a Gaussian distribution. In other words, for sample x;, its
functional margin ~y; obey a Gaussian distribution N'(j1;,0?). For sample T Y~

N (5, sz). When the margin variances of the two samples are the same (i.e., 07 = 0‘]2 )

2 =
if 1y < g, then exr; > exrj. When the true margins of the two samples are the same (i.e.,

wi=p;), if o2 > O'j2-, then err; > err;.

Proposition 4 indicates that the true margin of a sample and error are negatively
correlated when the margin variances of the samples are equal. By contrast, the mar-
gin variance and error are positively correlated when the true margins are equal. This
finding corrects the current wisdom. Even a sample with a large true margin, as long
as its margin variance is large, it may also have a large learning difficulty. The conclu-
sion in which samples close to the oracle decision boundary are hard ones [13] is not
completely correct. Indeed, the relation between the margin and error of sample x; con-
forms err; = Er [e*%'(T)] = exp(—u; + %af). For two samples x; and x, if p1; < p;
and 02 < 012», then we cannot judge whether err; is greater than err;. As shown in
Fig. 2(a), the average margin and error are negatively correlated for most samples, but
it is not absolute, which accords with the above analyses.

Proposition 4 is based on the condition that the functional margins of a sample
trained on random datasets obey a Gaussian distribution. We verify this condition via the
Z-scores of Kurtosis and Skewness [30]. The margin distributions are shown in Fig. 3.
More margin distributions and all Z-scores are shown in the supplementary file. As all
Z-scores are in [—1.96, 1.96], the margin distribution obeys the Gaussian distribution
under the confidence level of 95%. In addition, the mean of the distribution and the true
margin are very close, demonstrating the rationality of the assumed condition.

3.4 Uncertainty Factor

Uncertainties [31] in deep learning are classified into two types. The first type is aleatoric
uncertainty (data uncertainty), which is caused by the noise in the observation data. Its
correlation with error has been discussed in Section 3.1. The second type is epistemic
uncertainty (model uncertainty) [18], indicating the consistency of multiple predictions.
We give the analysis of the relationship between error and epistemic uncertainty.

Let T be a training set, and let P(6|T) be the distribution of the training models
based on T The predictive variance Var(f(x;|01),-- , f(x;|@k)) plus a precision
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constant is a typical manner of estimating epistemic uncertainty [32,33]. Take the mean
square loss as an example?, the epistemic uncertainty is

i 20, @100 (@60) ~ ELf @0 Elf @00). )

where 7 is a constant. The second term on the right side of Eq. (5) is the second raw mo-
ment of the predictive distribution and the third term is the square of the first moment.
When K — oo and the constant term is ignored, Eq. (5) becomes

Var () = /9 1F(2:16) — Elf (2:16,)]24P(OIT). ©)

If P(0|T) is approximated by the distribution of learned models on random training
sets conforming to the Gaussian distribution N (T, 61), Eq. (6) is exactly the variance
term of the error defined in Eq. (2) when the mean square loss is utilized.

As the bias term in error can capture the aleatoric uncertainty and the variance term
captures the epistemic uncertainty, the overall relationship between uncertainty and er-
ror is positively correlated. Nevertheless, the relationship between epistemic uncertainty
and error is not simply positively or negatively correlated. For some samples with heavy
noises, their epistemic uncertainties will be small as their predictions remain erroneous.
However, their errors are large due to their large bias. This phenomenon is consistent
with the experimental results shown in Fig. 2(b). Epistemic uncertainty and error are
positively correlated for some samples, and the two variables are negatively correlated
for others.

Var () =11 +

3.5 Discussion about Generalization Error

The commonly used difficulty measures, such as loss [3] and predicted probability [4],
are mainly related to the bias term. Shin et al. [27] pointed out that using only loss
as the measure cannot distinguish clean and noisy samples, especially for asymmetric
label noise. There are also a few studies utilizing variance [34]. Agarwal et al. [35] ap-
plied the variance of gradient norms as the difficulty measure. Actually, the role of both
variance and bias terms should not be underestimated when measuring samples’ learn-
ing difficulty. Our theoretical analyses support that generalization error, including both
the two terms, captures four main factors that influence samples’ learning difficulty,
revealing that generalization error is a generic measure.

Existing studies generally utilize the average learning error to approximate general-
ization error, which is calculated by the K-fold cross-validation method [25]. Using this
method, experiments under four typical scenarios in deep learning are conducted, as
shown in Section E in the supplementary file, empirically demonstrating the superiority
of generalization error as a universal difficulty measure. More efficient error calculation
algorithms are supposed to be proposed which will be our future work.

4 Role of Difficulty-Based Weighting

Based on our universal difficulty measure (i.e., generalization error), the impacts of
difficulty-based weighting on optimization dynamics and generalization performance

2 For other losses, other methods can be used to calculate the predictive variance [25].
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using the linear predictor on noisy data. The noise ratio is 20%. (g), (h) Cosine distance and the
average margin of equal weights and increased weights for samples in small categories using the
nonlinear predictor on imbalanced data. More results are placed in the supplementary file.

in deep learning are investigated and well revealed. Compared with the most recent
conclusions established only on the margin factor [13], our theoretical findings, which
are based on our universal measure, are more precise and thus adapt to a wider range.

4.1 Effects on Optimization Dynamics

Linear Predictor We begin with the linear predictors allowing for a more refined
analysis. The most recent study conducted by Xu et al. [13] inferred an upper bound of
the convergence speed containing the term D, (p|lw), where D, is the Kullback-
Leibler divergence [36] and p is the optimal dual coefficient vector which is a decreas-
ing function of margin. A smaller value of D (p||w) means that the convergence may
be accelerated. Therefore, they believe that the weights w should be consistent with p.
Alternatively, the samples with small functional margins will have large coefficients and
thus should be assigned with large weights. However, samples with small margins may
not be hard-to-classify, and the functional margin is not the true margin that corresponds
to the oracle decision boundary. Therefore, their conclusion that samples close to the
oracle decision boundary (hard-to-classify) should be assigned with large weights [13]
cannot be well-drawn according to their inference.

We offer a more precise conclusion with our universal difficulty measure (i.e., gen-
eralization error). As before, we assume that the functional margin of a sample x; obeys
a Gaussian distribution N(11;, 02), where y; and o7 are the true margin and margin
variance. We offer the following proposition.

Proposition 5. For two samples x; and x;, if err; > err;, then we have:
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(1) When the optimal dual coefficient p; of x; on a random training set T is a linear
Sfunction of its functional margin v; on T, if p; < p;, then Eplp;] > Erp[p;] (ie.,
Er(w;] > Er[w;]);

(2) When the optimal dual coefficient p; on a random training set T' is a natural
exponential function of its functional margin v; on T, Er[p;] > Er[p;] (i.e., Er[w;] >
Er[w;]) always holds. Notably, even when p; > 1, Er[p;] > Er[p;] still holds.

The proof is presented in the supplementary file. E¢[p;] > E¢[p;] implies that
w; > w; holds on average. The conclusion that samples with small true margins should
be assigned with large weights [13] may not hold on some training sets when p; is not a
linear function of ~;. A sample with a small true margin may have a smaller weight than
a sample with a large true margin yet a large error. Thus, a more general conclusion
when p; is not a linear function of +; is that increasing the weights of hard samples
(i.e., samples with large generalization errors) may accelerate the convergence, rather
than just for samples with small margins. Other factors, including noise, imbalance,
and uncertainty, also affect samples’ learning difficulty. Notably, the weights of the
hard samples should not be excessively increased, as to be explained in the succeeding
section. We reasonably increase the weights of the hard samples shown in Figs. 4 and
S-10 in the supplementary file indicating that the optimization is accelerated.

We also prove that the difficulty-based weights do not change the convergence di-
rection to the max-margin solution shown in the supplementary file. As shown in Fig. 3,
as training progresses, the cosine distance and margin both increase, indicating the di-
rection of the asymptotic margin is that of the max-margin solution.

Nonlinear Predictor Analyzing the gradient dynamics of the nonlinear predictors is
insurmountable. The main conclusion obtained by Xu et al. [13] can also be established
for difficulty-based weights only if the bound of weights is larger than zero. However,
their theorem has only been proven for binary cases as the employed loss is inapplicable
in multi-class cases. We extend the theory to the multi-class setting with a regularization
A||6]|" on the cross-entropy loss denoted as L. Let 0 (w) €argmin Ly (6 (w)). The
dynamic regime for the nonlinear predictor can be described as follows:

Theorem 1. Let w € [b, B]™. Denote the optimal normalized margin as

7= o min(fy, (6(w), z;) — rg,lgf(fyj (O(w), x:))). @)
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Let 0y (w) = 05 (w)/||0x(w)||. Then, it holds that

(1) Denote the normalized margin as
ya(w)=min(fy, (O (w) ,z:) —max fy, (Ox (w), ;). (8)

Then, v (w) —~*, as A — 0;

(2) There exists a X := \ (r,a,v*,w). For a <2, let 8'(w) denote a a-approximate
minimizer of L. Thus, Ly (0" (w)) < aLy (0 (w)). Denote the normalized margin
of 0'(w) by ¥ (w). Then,y' (w) >

The proof is placed in the supplementary file. When A is sufficiently small, the
difficulty-based weighting does not affect the asymptotic margin. According to Theo-
rem 1, the weights do affect the convergence speed. Even though Ly (8 (w)) has not
converged but close enough to its optimum, the corresponding normalized margin has
a reasonable lower bound. A good set of weights can help the deep learning models
achieve this property faster. However, the conditions in which a set of weights can ac-
celerate optimization are not clearly illuminated. Notably, as shown in our experiments
in Figs. 4 and S-10 in the supplementary file, assigning large weights for hard sam-
ples increases the convergence speed. The results on the multi-class cases (CIFAR10)
indicate that assigning large weights on hard samples increases the margin, as shown
in Figs. 5(a-c). However, some particular occasions of difficulty-based weights, such
as Self-paced learning (SPL) [3], do not satisfy the bounding condition because the
lower bounds of these weights are zero instead of a positive real number. This theorem
requires further revision to accommodate this situation.

-
10aa/"*

4.2 Effects on Generalization Performance

Besides optimization dynamics, we are concerned as to whether and how the difficulty-
based weights affect the generalization performance. The generalization bound of Xu et
al. [13] only considers importance weighting which is fixed. Thus it cannot explain why
different weighting strategies are effective. In addition, they assume that the source and
target distributions are unequal, restricting the application scope of their conclusion.
The two generalization bounds we propose offer good solutions to these issues, illumi-
nating how weighting strategies can be well designed and explained.

Let Ps; and P; be the source (training) and target (testing) distributions, with the
corresponding densities of p,(-) and p;(-). Assume that the two distributions have the
same support. The training and test samples are drawn i.i.d according to distributions P
and P, respectively. Learning with sample weights w(x) is equivalent to learning with
a new training distribution P,. The density of the distribution of the weighted training
set Py is denoted as p,(x) and ps(x) ~ w(x)p,(x). Pearson y>-divergence is used to
measure the difference between P, and P, i.c., D,2(P, |P,) = f[(d}gs/dPt)2 —1]dP,.
We consider depth-q (¢ > 2) networks with the activation function ¢. The binary setting
is considered, in that the network computes a real value

fe):=Wep (W16 (¢ (Wiz)---)), ©
where ¢(+) is the element-wise activation function (e.g., ReLU). The training set con-
tains n samples. Denote the generalization error for a network f as ﬁ( f). The general-
ization performance of f with weights can be described as follows:
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Theorem 2. Suppose ¢ is 1-Lipschitz and 1-positive homogeneous. With a probability
at least of 1 — 9, we have

n L-\/Dy (P|P,) +1
L(f) < %Z%E:)l(yiﬂmi) <)+ \/ - ( )
i=14"°

v - q(qfl)/zx/ﬁ
(an

(N
og log., L .
where €(y,n,0) = \/ : glngQ = 44/ log(rlb/é) and L := sup,, |||

The proof is presented in the supplementary file. Compared with the findings of
Xu et al. [13], the generalization bound we propose is directly related to the sample
weights w(x) contained in ps (). In view of reducing the generalization error, a natural
optimization strategy can be implemented as follows: 1) an optimal weight set w(x) (in
Ds(x)) is obtained according to decreasing the right side of Eq. (10) based on the current
f32) f is then optimized under the new optimal weights w(x). Disappointingly, this
strategy heavily relies on the current f, which is unstable. Given a fixed training set, f
depends on random variables (denoted as V) such as hyperparameters and initialization.
To obtain a more stable weighting strategy, we propose the following proposition:

+€(y,n,9d),
(v,n,9),  (10)
(I11)

pi)

Proposition 6. Suppose ¢ is 1-Lipschitz and I-positive homogeneous. With a probabil-
ity of at least 1 — 9, we have

L-\/Dy (PtHISs> +1
Ey[1(y fv(x:) < )]+ N Ve +(II1). an

Ev[£ (fv)] < %g ;Ei%

D an

Accordingly, to decrease the generalization bound, (I) and (IT) of Eq. (11) are
supposed to be decreased. Samples with larger generalization errors will have larger
values of Ey[1(y; fy(x;) < )]. The proof is placed in the supplementary file. Given
that the optimal weight set (or the optimal p,(x)) should minimize the sum of (I) and
(1), the following insights can be obtained:

— Conventional importance weighting only guarantees that (17) of Eq. (11) attains its
minimum rather than the sum of (I) and (I7). Consequently, although importance
weighting is prevalent in previous studies, it may not be the ideal strategy.

— Increasing the weights of hard samples (i.e., samples with large T\ [1(y; fy(2;) <
~)]) will reduce the impact of these samples on (I) and thus may decrease (/). In
this case, if D, 2 (PtHIBS) in (I1) also decreases or its increase is relatively small,
the value of (I) 4+ (II) will decrease, indicating that assigning large weights on
hard samples (i.e., hard-first mode) takes effect, as shown in Fig. 5(d). The weights
of hard samples cannot be increased arbitrarily as D, (|| Ps) may be large.

— When there are noises in the training set, the values of p, for noisy samples are zero.
Therefore, reducing the values of ps (or sample weights) of noisy samples does not
increase the generalization bound. Meanwhile, the values of p, for clean samples
will increase as ), ps(x;) = 1. Consequently, (I) will decrease. As decreasing

the weights of noise samples makes P, and P; close, (11) will also decrease. Thus,
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ratio is 10:1. The same conclusion can also be obtained for other imbalance ratios.
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increasing the weights of easy samples (i.e., easy-first mode) is suitable for noisy
data, as shown in Figs. S-12 and S-13 in the supplementary file. This conclusion
is in accordance with the observations from an empirical study conducted by Wu
et al. [37] that the easy-first paradigm curriculum learning mainly takes effect in
noisy scenarios.

— Zhou et al. [1] did not exhibit how to pursue the optimal difficulty distribution of the
training samples. Proposition 6 offers a reasonable solution to this issue. Specifi-
cally, the optimal weight w* can be obtained by minimizing the generalization
bound (i.e., attaining the tradeoff between (/) and (I/7)). Meanwhile, the difficulty
distribution corresponding to w* is the optimal difficulty distribution.

It is worth mentioning that our conclusions are still insightful when P, = P, while
the conclusion of Xu et al. [13] assumes P; # P,. Apparently, even when P; = P;,
assigning weights according to samples’ learning difficulties is also beneficial as the
tradeoff between (I) and (I1) still takes effect. An illustrative example with a brief
theoretical analysis is presented in the supplementary file to show how the weights of
the easy and hard samples affect the sum of (I) and (I7).

5 Discussion

Our theoretical analyses in Sections 3 and 4 provide reasonable answers to the concerns
described in Section 1.

First, the generalization error has been theoretically guaranteed as a generic diffi-
culty measure. It is highly related to noise level, imbalance degree, margin, and un-
certainty, which significantly affect samples’ learning difficulty. Consequently, two di-
rections are worth further investigating. The first direction pertains to investigating a
more efficient estimation method for the generalization error, enhancing its practicality.
This will be our future work. As for the second direction, numerous existing and new
weighting schemes can be improved or proposed using the generalization error as the
difficulty measure. Our theoretical findings supplement or even correct the current un-
derstanding. For example, samples with large margins may also be hard-to-classify if
they have large margin variances (e.g., with heterogeneous samples in their neighbors).

Second, the existing conclusions on convergence speed have been extended. For
linear predictors, the existing conclusion is extended by considering our difficulty mea-
sure, namely, the generalization error. For the nonlinear predictors, the conclusion is
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extended into multi-class cases. Furthermore, the explicit relationship between the gen-
eralization gap and sample weights has been established. Our theorem indicates that
assigning weights on training samples according to the learning difficulty is also effec-
tive even when the source P; and target distributions P; are equal.

Our theoretical findings of the generalization bounds provide better explanations for
existing weighting schemes. As discussed before, if heavy noise exists in the dataset,
then the weights of the noisy samples should be decreased to better match the source
and target distributions. The experiments on noisy data are shown in Figs. S-12 and
S-13 in the supplementary file in which decreasing the weights of noisy samples ob-
tains the best performance. In imbalanced learning, samples in small categories have
higher generalization errors on average. Increasing the weights of the hard samples will
not only accelerate the optimization but also improve the performance of the small cat-
egory, as shown in Figs. 5(d) and 6. These high-level intuitions justify a number of
difficulty-based weighting methods. Easy-first schemes, such as SPL [3], Superloss [6],
and Curriculum learning [9], perform well on noisy data. Hard-first schemes, such as
Focal Loss [4], Class-balance [10], and G-RW [16], are suitable for imbalanced data.

6 Conclusion

This study has theoretically investigated difficulty-based sample weighting. First, the
generalization error is verified as a universal difficulty measure that can reflect four
main factors influencing the learning difficulty of samples. Second, on the basis of the
universal difficulty measure, the role of the difficulty-based weighting strategy for deep
learning is characterized in terms of convergence dynamics and generalization perfor-
mance. Theoretical findings are also presented. Increasing the weights of the hard sam-
ples may accelerate the optimization. A good set of weights should attain the trade-
off between assigning large weights on certain samples and keeping the test and the
weighted training distributions close. These findings enlighten the deep understanding
and design of existing and future weighting schemes.
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A Supplementary Material for Section 2

A.1 Definition of the Exponential-tail Loss

Following Lyu and Li [1], there is a general definition of the exponential loss, where
€ (u) = exp (= f (u)),

e fissmooth and f’ (u) > 0, Vu,
e there exists ¢ > 0 such that f’ (u) w is non-decreasing for v > c and f' (u) u — o0
as u — oo.

It is easy to verify that losses including the exponential loss, log loss, and cross-entropy
loss satisfy the definition.

A.2 Practical Implications of the Third Condition

The third condition in Section 2.3 asserts the Lipschitz and smoothness properties. The
Lipschitz condition is rather mild assumption for neural networks, and several recent
paper are dedicated to obtaining the Lipschitz constant of certain deep learning mod-
els [2,3].

The S-smooth condition, on the other hand, is more technical-driven such that we
can analyze the gradient descent. In practice, neural networks with ReLU activation
do not satisfy the smoothness condition. However, there are smooth homogeneous ac-
tivation functions, such as the quadratic activation o(z) = 22 and higher-order ReLU
activation o (z) = ReLU(z)¢ for ¢ > 2. Still, in our experiments, we use ReLU as the
activation function for its convenience.

B Supplementary Material for Section 3

In this section, we provide the omitted proofs and discussions of Section 3. Take the
exponential loss £ = exp(—y; f(x;)) as an example in the subsequent analyses. Let T’
be a random training set from some distributions over X x ) and let f (-|T") be the
trained model on T'. The generalization error of sample x; is

exr; = Ex [£(f (@lT) )] = /T o SR @ (T). (A
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For the sake of notation, we focus on the binary setting y € {—1,1}. The positive
samples are taken as examples in the succeeding discussion. It is easy to verify that our
conclusions are also valid for multi-class setting and other loss unctions.

B.1 Proof of Proposition 1
In this section, we offer the proof of Proposition 1.

Proof. According to the definition of the generalization error, the error of a clean posi-
tive sample is

err; = Ex [£(f (@) )] = /T e @ TAP@). ()

Denote the perturbation of x; as Ax;, which is usually sufficient small. After adding
feature noise, the sample becomes (x; + Ax;,y; = 1) . Its error is

erry = B [0(f (zi + Azi|T) ,y:)] = /TGX yeXp(*f(wi + Az;|T))dP (T).

(A.3)
Based on the definition of the exponential-tail loss, the Taylor expansion of f can be
adopted. Let f/(x;|T") denote the first-order derivative. As we mainly concern about the
direction of f'(a;|T") and the perturbation Ax; is small, the first-order Taylor expansion
can be adopted. Thus, we have

Here, f(x;) is the output of the sigmoid layer, i.e., f(z;) € (0,1). Applying the first-
order Taylor expansion on exp(—zx), we yield exp(—z) = 1 — « + R(x). Then, the
generalization error turns to

err; = By [exp(—f (@:[T))] = Br [1 — f (@:|T) + R(f (:]T))] - (A.5)
After adding feature noise, its generalization error becomes
erryy = BEr [exp(—f (x; + Az;|T))]
=Er[1 - f (@i + Azi|T) + R(f (@; + Azi|T))].

To compare the generalization error of the clean sample and the feature-noised sample,
we separately study the first two terms and the residual term of the Taylor expansion
shown in Formula (A.6).

(A.6)

=Er[1 - f(z:|T) + R(f(z:|T))]
—Er[1— f(zi + Azy|T) + R(f(z; + Azy[T))]

=Er[l — f(z:|T) — 1 + f(z;i + Az;|T) (A7)
+ R(f(z:|T)) — R(f(z; + Az;|T))]

=E7[l — f(z:[T) — 1+ f(z; + Azy|T)]
+ Er[R(f(x:|T)) — R(f(z; + Azy[T))].
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For the first two terms,

Er[l — f(zi|T) = 1+ f (z; + Az;|T)]
=Er[l1 — f(@i|T) = 1+ f (2| T) + f' (|T) - Az; + o(Ax)] (A.8)

Comparing the residual term R(x) = exp(—z) + = — 1,

Er[R(f(2i|T)) — R(f(z; + Az;|T))]

= Erlexp(—f (z:[T)) + f (z:[T)]

— Erlexp(—f (z; + Az;|T)) + f (z; + Az;|T)) (A.9)
= Ep[—f' (2| T) Azx; — o(Az;)]

+ Erlexp(—f (2i|T)) — exp(—f (x; + Azy[T))].

When z € (0, 1), considering the relationship between the two functions y = exp(—x)
andy = —x + 1+ 1, exp(—f(w;|T)) — exp(— f(x; + Aw;|T)) can be bounded.
For the upper bound, when f(x; + Ax;|T) > f(xz;|T),
exp(—f(z;|T))— exp(—f(x; + Az;|T)) < f' (2|T) - Az; + o(Ax;);  (A.10)
otherwise, when f(x; + Ax;|T) < f(x;|T),
exp(—f(x;|T)) — exp(—f(x; + Ax;|T)) < 0+ o(Ax;). (A.11)
Thus, we yield

err; —erry < CiEr[f'(x;|T) - Az; + o( Ax;)], (A.12)

where C; € [0, 1].
For the lower bound, when f(x; + Ax;|T) > f(x;|T),

exp(—f(@i|T)) — exp(—f(z; + Az;|T)) > 0+ o(Ax;); (A.13)
when f(z; + Az;|T) < f(zi|T),
exp(—f(@i|T)) — exp(—f(®i + Azi|T)) > f' (%] T) - Az + o(Az;).  (A.14)
Thus, we yield
err; — erry > CoEr[f'(x;|T) - Azx; + o( Ax;)], (A.15)
where Cs € [0, 1].
Obviously, Co < C;. We consider the most cases, where C; # 0 and Cy # 0. The

difference between the two errors satisfies the following formula:

CoEr[f'(x;i|T) - Az; + o(Ax;)] < err; — erry

< CLEp[f (x;|T) - Az; + o( Axy)]. (A.16)
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Ignore the higher-order term o(Ax;), we have
CEr[f' (x;|T) - Azx;] < err; — erry < CiEq[f'(x|T) - Az;]. (A.17)

From the formula above, there are three cases. Let £y be the angle between the
direction of Ax; and the direction of Ep[f’ (x;|T)]. The cases are summarized as
below.

1. fEp[f’ (x;|T) Ax;] > 0, then Ly < 90°. In this case, the direction of the pertur-
bation Az; and the direction of Er[f’ (x;|T") are consistent. Thus, the generaliza-
tion error of the noisy sample is smaller than that of the clean one.

2. HEp[f (z;|T) Az;] < 0, then Lo > 90°. In this case, the direction of the pertur-
bation Az; and the direction of Er[f’ (x;|T) are contradictory. Thus, the general-
ization error of the noisy sample is larger than that of the clean one.

3. fEp[f (;|T) Ax;] = 0, then Zp = 90° or Az; = 0. The generalization error
does not change in this case.

Therefore, the change of the generalization error with feature noise is dependent on
the angle between the direction of the perturbation Ax; and the direction of Er[f/ (a;|T)].

B.2 Proof of Proposition 2
In this section, we offer the proof of Proposition 2.

Proof. Let 7 be the label corruption rate, that is, the probability of each label flip-
ping to another one. When label noise is added, the generalization error of the sample
(x;,y; = 1) after adding label noise (i.e., (x;,y; = —1)) becomes

ertin = By [0 (f (2] T) , y;)]

_ / (1 — 1) e~ @IT) | el @ Dgp (1), (A.18)
TEX XY

The sign of the output f(x;) indicates the predicted label. For samples which are clas-
sified correctly, y; f(x;) > 0, otherwise, y; f(x;) < 0. To clearly distinguish between
correctly predicted and wrongly predicted samples, the absolute value of f(x;) is uti-
lized. Therefore, if a sample is correctly predicted, if loss is e~ /(@) otherwise, the loss
is el /@)l As the probability of a sample being correctly classified is p and p > 0.5,
the generalization error of the original sample (x;,y; = 1) is

err; = Er [ (f (x:[T) , yi)]

A.19
:/ pe @I 4 (1 _ )l @Dl gp (7). (A.19)
TEX XY
After flipping the label of the sample, its generalization error becomes
erry = By [0 (f (@] T) , )]
— 1—m)pe @D L (1 — 1) (1 = plel/ @ Dlgp (T
f 0= (1-m) () 1) a0

n / 7(1 — p)e-@IDI 4 rpel @Dl gp (7).
TexXxy
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Comparing the two generalization errors above, we yield

erryr — err; = m(2p — 1)/ elf @D _ o=l @Dl p (T) > 0. (A.21)
TeXx)Y

Therefore, for a sample that is more likely to be predicted correctly (i.e., the probability
of being correctly classified p is greater than 0.5), its generalization error after adding
label noise is larger than that of the original one. Therefore, the generalization errors of
the samples with label noises are larger than those of the clean ones on the average.

B.3 Proof of Proposition 3
In this section, we offer the proof of Proposition 3.

Proof. Take the output of the sigmoid layer as the model’s output f(x) and f(xz) €
(0, 1). The disproved method is adopted to prove this proposition. We prove that if the
average probability of ground truth of the large category, which contains the majority
of samples, is smaller than that of the small category, then the classifier must not be the
approximate Bayesian optimal classifier. There are two categories which are y = 1 and
y = —1. The numbers of samples in the two categories are ¢; and c5. The condition
is that ¢; > ecs (¢; > e : 1), which means that the number of samples in the large
category is e times the number of samples in the small category. Denote the average
probabilities of ground truth for the large and small categories as f; and f5, and f; <
f2. The total error is

C2

DO @)y + Y (=5),95)
i=1 j=1 (A.22)

L:

SRS

= % [cle*fl + (]:Qelifz] . (@)

Denote + [c1e7/2 + eoe! 7] as (i4). (i) — (ii) gives

1
il [@167f1 +¢2€1*f2 _ (Ble*fz _ @Qelffl}

[@1 (effl _ effz) + @y (elffz _ elff1)]

ef2 _oh e (eft — ef2) (A.23)
+ Co

C1

SI= 3=

e.flefQ 6f1€f2

1 ef 2 ef 1
= ﬁm [(D]_ —@26] >0
Obviously, if the average probability of the ground truth for the large category is smaller
than that of the small category, then the predictor is not an approximate Bayesian op-
timal classifier. Thus, if a predictor is an approximate Bayesian optimal classifier, the
average probability of the ground truth for the large category is greater than that of the
small category, that is f; > f5. Proposition 3 holds.
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Proposition 3 indicates that the average probability of the ground truth of samples
in the large category fi is greater than that of samples in the small category f, for an
approximate Bayesian optimal classifier. According to Proposition 3, it is natural to get
the following proposition.

Proposition A.1. The average generalization error ert of samples in the large category
erry is larger than that of samples in the small category erts .

The proof is shown below.

Proof. If the positive category is the large category, the average generalization error of
samples in this category is

&), = / e~ 11dP(T), (A.24)
TEX XY

If the positive category is the small category, the average generalization error of samples
in this category is
Ty = / e 2dP(T), (A.25)
TEX XY

where ert; denotes the average generalization error of samples in the large category,
and erry denotes the average generalization error of samples in the small category. All
sampled datasets are imbalanced, in which ¢, > e : 1. The difference between the two
average generalization errors equals to

€IT| — erTy = / e~ — e P2dP(T). (A.26)
TexXxy

From Proposition 3, we know that f; > f5. Thus, erT; < errs, which means that
the average generalization error of samples in the large category is smaller than that of
samples in the small category.

B.4 Proof of Proposition 4
In this section, we offer the proof of Proposition 4.

Proof. According to the moment-generating function, there is

E[e] = 3770 0 o N (n,07) . (A.27)
When ¢t = —1, it can be drawn that

Ele™"] = e_“+%"2, z~N(u, 02) ) (A.28)

For sample x;, its generalization error and margin are denoted as err; and -y;, respec-
tively. As the condition that the functional margins ; of sample «; trained on random
datasets obey the Gaussian distribution /, and the mean of the distribution p; is the
true margin corresponding to the oracle decision boundary. Although this condition is
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intuitively, we verify it by a lot of experiments, in which the results are shown in Section
E.1.

Thus, for samples x; and x», there are v; ~ N (u1,02) and vo ~ N(pu2,03).
Based on the moment-generating function, we yield

E; [e*%m} — emmtiol (A.29)

and
Ep [e*wm} — eH2t3ol (A.30)

Therefore, when o1 = 09, if 1 < o, then we have
Erfe=" )] > Bple™21)], (A31)

which indicates that err; > errs.
For the second case, when j11 = i, if 07 > 03, we obtain

Erfe )] > Bple=21)], (A.32)

which also indicates err; > errs.

Thus, the true margin (the mean of the functional margin distribution) of a sam-
ple and its generalization error are negatively correlated when the margin variances of
samples are equal, while the margin variance and the generalization error are positively
correlated when the true margins are equal.

This proposition indicates that the conclusion of [4] that samples close to the oracle
decision boundary are hard ones does not always hold. Even samples that have large
true margins may have large errors.

B.5 Proof of Section 3.4

In this section, we analyze the relationship between the epistemic uncertainty and the
generalization error. The epistemic uncertainties can be formulated as a probability dis-
tribution over model parameters. The aim is to optimize the parameters, i.e., 8 of a
function y = fg(x) that can produce the desired output. Then, we prove that the epi-
demic uncertainty is exactly the variance term in the generalization error following
some reasonable conditions.

For a given dataset T' over 0, the posterior distribution is p(@|T"). A class label with
regard to the p(@|T") for a given test sample x* can be predicted:

Pl |2, T) = / p(y* | 2*.0)p(0 | T)d6 (A33)

This process is called inference or marginalization. However, p(6|T") cannot be com-
puted analytically, but it can be approximated by various methods.
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The predictive variance Var(f(x;|01),--- , f(x;|0k)) plus a precision constant is
a typical manner to approximate the epistemic uncertainty [5,6]. Take the mean square
loss as an example', the epistemic uncertainty is

— 1
Var [x;] :=7"1 + & Zk f(@il0r)T f(2:|6)

— E[f(2i|0x)]TE[f (2:]65)];

(A.34)

where 7 is a precision constant. The second term in Eq. (A.34) is the second raw mo-
ment of the predictive distribution and the third term is the square of the first moment.
When K — oo and the constant term is ignored, Eq. (A.34) becomes

Var ] == /9 1/ (2118) — Folw:)|2dP(OIT), (A35)

where fo(x;) = Eg[f(x:]0)]. If P(6|T) is approximated by the distribution of the
learned models on random training sets which conform to the Gaussian distribution
N(T,8I), Eq. (A.35) becomes

Var ;] = /T D) = T ap(r), (A36)

where f(xz;) = Er[f(z;|T)]. Formula (A.36) is exactly the variance term of the gen-
eralization error when the mean square loss is adopted.

C Supplementary Material for Section 4.1

In this section, we offer the omitted discussions and proofs of Section 4.1.

C.1 Linear Predictor
Proof of Proposition 5 In this section, we offer proof of Proposition 5.

Proof. Following [8], the decision boundaries of the linear predictors share certain char-
acteristics with the support vector machine (SVM) since they rely on the same support
vectors. As a matter of fact, the current understandings of the implicit bias of gradi-
ent descent are mostly established on the connection with the hard-margin SVM [9].
Denote 8™ as the optimal solution to the hard-margin SVM:

min 0]z st yif0,x)>1 Vi=1,2,...,n. (A37)
OcRd

Define the corresponding margin v* =+ (6*) := min; y; f (0, x;).
The convergence speed of the linear predictors satisfies the following proposition:

! For other losses, there are other methods to calculate the predictive variance [7].
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Proposition A.2. (Proposition 1 of Xu et al. [4]) With a constant learning rate 1y <
B~ and the normalized weights w € [1/M, M|™, such that 3", w; = 1, without loss
of generality, it holds that:

0:(w)
[6:(w)ll,

logn + Dk, (p||w) + M

—0*
logt - v*

S (A.38)

where p = [p1, . .., pn] characterizes the dual optimal for the hard-margin SVM such
that " = Y7 | yix; - p; and satisfies: p; > 0 and >, p; = 1. Here, Dy, is the
Kullback-Leibler divergence.

The decrease of the upper bound in the right side of Formula (A.38) may accelerate
the convergence speed. To reduce D, (p|lw), samples with high dual coefficients
(samples with small functional margins) should be assigned with large weights. The
optimal dual coefficient vector is a monotonically decreasing function of the functional
margin which is denoted as g. Thus, p; = g(+;). The concrete form of g is unknown.
Here, we consider two typical types, including the linear and the exponential forms.
The condition of Proposition 5 is that err; > err;.

First, we prove (1) in Proposition 5 that is when g is a linear function, if pu; <
wj, then Eplp;] > Ep[p;]. It means that samples with small true margins should be
assigned large weights on the average.

As before, we assume that the functional margins of random datasets obey a Gaus-
sian distribution, thus, we have

vi ~ N (i, 07), (A.39)
and
v~ N(pj,02). (A.40)

As g is a linear decreasing function of the functional margin, we have p; = g(v;) =
av; + b (a < 0). Thus, the optimal dual coefficients of random datasets also obey a
Gaussian distribution. There are

pi ~ N(ap; +b,a%c?), (A41)

and
p;j ~ N(ap; +b,a’0?). (A.42)

Then, if 4; < p;, we obtain that ap; +b > ap; + b, ie., Elp;] > E[p;]. Thus,
(1) holds, that is, if p; is a linear function of ;, samples close to the oracle decision
boundary should be assigned with large weights on the average.

Next, we prove (2) in Proposition 5, in which the dual optimal p; of sample x; is a
negative exponential function of the functional margin ;, i.e.,

p; = ae” i, (A.43)
where a > 0. According to the moment-generating function, we have

E[p;] = aEle™ "] = ae *+2% = q- err, (A.44)
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) * Learned boundary

(b)

Fig. A-1: The situation where samples with small true margins have small weights on a specific
training set. (a) shows the oracle decision boundary of the two categories. (b) shows the learned
boundary on a sampled training set. Although p; is larger than p; shown in (a), the margin
variance of sample x; is large as there are heterogeneous nodes around it. Therefore, err; > err;
and E[pz} > E[p]]

and ]
Elp;] = aBle™] = ae™"¥2% = a - err;, (A.45)

Thus, as err; > err;, E[p;] > E[p;].
For the two samples described in Proposition 5, there are three typical situations.

o Ifo? = O'J2», then p; < pj as err; > err;.

e If y; = p;, then o?
o If y; > pi;, then o2 > aj? as err; > erT;.

> 0]2 as err; > err;.

In the third situation, although x; has a smaller true margin f;, its generalization
error is still smaller than that of «; as ; has a small margin variance. Fig. A-1 shows
an illustrative example for the third case.

Convergence Direction of Linear Predictor For the convergence direction of the
linear predictor with difficulty-based weights, we offer the following proposition:

Theorem A.1. For the linear predictor with difficulty-based weights on separable data,
if 0" is the Ly max-margin vector (the solution to the hard margin SVM), we have
lim;_, o 0 [w(d)] = 6"

Theorem 1 indicates that the difficulty-based weighting scheme does not change
the parameters’ convergence direction to the max-margin solution. We give the proof
sketch of it.

Proof. To simplify the notation, in this proof we assume that all labels are positive, this

is true without loss of generality. Following our assumption shown in the body, the loss

function £(-) is a Bo2,,,-smooth function, where o« (X) is the maximal singular
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value of the data matrix X € R®X" with d is the feature dimension. The Gradient
Descent with a fixed learning rate 7 is used to achieve the minimum of the loss by the
following schema

0:11 (w) =0, (w) —nVL(O; (w)). (A.46)
And the gradient descent satisfies the following lemma.

Lemma A.1. (Lemma I of Soudry et al. [8]) Let 8; be the iterates of gradient descent
withn < 287102 (X)) and any starting point 6y. Under assumptions shown in the
body and above, we have:

2. limy 00 ||0: (w) || = o0,

3. Vi limg o0 01 (w)T ; = oo

According to Lemma A.1,Vi : 6, (w)" @; — oo, if 8; (w) /|0 (w) || converges
to 0. We then have 0, (w) = g0 + p,, such that with g, — o0, Vi,x] 05 > 0. If
the difficulty measure d is not a function of 6,, the gradient can be written as

—VL(O: (w) =Y w(di)exp(—6]w) a;
= Z;l w (d;) exp (—gi0oo ;) exp (—p, ;) T4,

From the above formula, only samples with the least negative exponents which are
called support vectors, and non-zero difficulty-based weights will contribute to the gra-
dient. Thus, the difficulty-based weights influence the convergence value of the param-
eter. 8, will then be dominated by gradients of the samples with the least negative ex-
ponents and it will be the linear combination of support vectors with non-zero weights.
So will its scaling 8* = 0, /min,, (0T x,,). Thus, we have

0" = Zi:l ;W (dl)iliz
Vi (zw (d;) > 0 and 0*Tx; = 1), (A.48)
or (aw (d;) = 0 and 0*Tx; > 1),

which is exactly the KKT conditions for SVM. Thus, we know that the parameters
converge to the max-margin solution. When the difficulty measure d is a function of 6,
the loss gradient is

(A.47)

—VL(0) =— Z w' (d;) exp (—OT ;) — w (di) exp (—OT ;) x4

n ) (A.49)
=37~ (d) exp (—gi0Las) exp (—pl )
+w (d;) exp (—gi0% . x;) exp (—plx;) x;

As g, — oo and the exponents become more negative, only those with the largest ex-
ponents will contribute to the gradient which is the same as the occasion where the
weighting function does not require derivation. The difference is that even a sample’s
weight is zero, as long as the weighting function’s derivative is non-zero, this sample
still has an influence on the gradient when the weighting function requires derivation.
Therefore, 8., will also be dominated by these gradients and will be the linear combi-
nation of support vectors. Therefore, the parameters still converge to the max-margin
solution. In summary, Theorem A.1 is proved.



12 Xiaoling Zhou, Ou Wu, Weiyao Zhu, Ziyang Liang

C.2 Nonlinear Predictor

This section provides proofs of Theorem 1 under the multi-class setting where the cross-
entropy loss is used.

The only assumption we need to make is that the training data can be separated
by f at some point during gradient descent. As stated in Section 2.1, under multi-class
setting, F = {f (0,-)|60 € ©® C R}, where C is the number of categories. Now, we
focus on the A-regularized cross-entropy loss, defined as

L0 (02— 1S 0 (d) log (Z exp (fy. (0,:)) ))> LAl6lT, (AS0)

c
nia j=1XP (fyj (6, z;

for fixed » > 0. First, we state two technical lemmas that characterize the loss function.
From Xu et al. [4], we know the following two lemmas hold.

Lemma A.2. argming £ (0) exists.

Lemma A.3. There exists a critical (stationary) point such that limy_,o L (6*;w) =
0, and ||0 (w) || — oo is the critical point.

Lemma A.2 indicates that £ indeed has a global minimizer and Lemma A.3 shows
that as A decrease, the norm of the solution ||@ (w)]|| grows. Let @ (w) € argminCly (),
the normalized margin is defined as:

M (w) & min (fyi (Ox (w), i) — max (fy; (6 (w),mj))> , (A.51)
where 0 (w) = 0 (w)/||@x(w)]||. The || - ||-max normalized margin is defined as:
N = H%ﬁ?%cl miin (fyi (6, x;) — max (fy, (6715]')))) ) (A.52)

Proof of Theorem 1

Proof. To prove (1) in Theorem 1, the exponential scaling of the cross entropy is
adopted. £ can be lower bounded that scales with exp (—[|@x (w) ||yx (w)) and it
can also be upper bounded that scales with exp (—||0x (w) ||7*). By Lemma A.3, a
large enough ||0, (w) || can be taken, so the gap v* — ~, (w) vanishes. The weight
w € [b, B]" and b > 0. Then, for any M > 0,

sl o exp (M f,, (0, :))
L)\ (Me) = n ; w (dz) long:l exp (Mafyj (07:32))

1 <& 1
= - —w (d;) I
w1 (7, 0w~ (0.20))

< Blog (1 + (C — 1) exp (—=M"ve (w))) + AM"[|6]]",

+ AM"||6]]"

+ AM"||0]]"

(A.53)
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where g (w) £ min; (fy, (0(w), ;) — max,, -, f,, (B(w),z;)) and B(w) = O(w)/||0(w)]|.
Below we calculate the lower bound of the loss function. According to

37 exp (M2 (fy, (B(w), ) — £, (B(w),z;)))

Yi#Yi

A.54
> maxexp (M? (£, (0(w), z:) — fy, (0(w), z.))) (A->9
=exp (—M*yp(w)),

a lower bound can be obtained:

Ly (MB(w)) > % log (14 exp (— M%yp(w))) + AM"[|0(w)|[".  (A55)

Given M = ||0, (w) || and @ = 0", noting that ||@*|| < 1, the upper bound of the
loss function is

Lx(67]16x (w)[[) < Blog (14 (C' — 1) exp (—[|0x (w) [|*7")) + All6x (w) ||".
(A.56)
Next, we lower bound £ (6 (w)) by applying Formula (A.55).

£ (03 (w) >~ log (1-+ exp (103 (w) 13 (w))) + N[0 (w) 7. (ASD

With £ (8) < L (07]|0x (w) |]), the following inequality can be drew:

nB log (1 + (C —1)exp (—[|0x (w) [|*77)) + All6x (w) [|" (A.58)
>b log (1 + exp (—[|0x (w) [[*7x (w))) + A[|0x (w) [|". '

When A — 0, ||6) (w)]|| — oo. Therefore, exp (— ||@x (w)||“v*) — 0 and
exp (— [|0x (w)||* va (w)) — 0. The Taylor formula can be applied:

nB(C — 1) exp (=[x (w) [|*7") = bexp (=6 (w) [|* 7 (w))

o 2 . ) (A.59)
— O (max{exp (~[165 (w) 1) .exp (~[[65 (w) || (w))?} )
which reveals v* < liminfy_,o v (w). By contradiction, i.e., liminfy_,o vy (w) <

. . . . . 2(C—1)Bn\ /®
7*. However, it is inconsistent with the occasion when ||0 (w)|| >> (log === .

According to the definition of v, (w), we have v, (w) < ~4*. Thus, lim infy ¢ vx (w)
exists and equals to v*.

Proof of Optimization Accuracy Because £ is generally hard to precisely optimize
for deep learning, we provide that even if the loss has not yet converged but is close
enough to its optimal, the corresponding normalized margin has a reasonable lower
bound.
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Proof. Now we prove (2) in Theorem 1. Based on the cross entropy loss, considering

*\7r/a l/a
D2 (7% log W) , an upper bound of loss is

L (0" (w)) < aly (Or(w))
< oLy (D6Y)
< aBlog(1+ (C —1)exp(—D“y")) + aAD"
<aB(C —1)exp(—=D*y") +aXD"

) -\
< QBW (1 + <log )\> )

2 cWUB),

(A.60)

The third step is based on Formula (A.53), and the fourth step is based on log (1 + z) <
2. A lower bound can also be obtained:

Ly (6" (w))

v

%log( 1+ exp (= (w) |0 (w)[|*))
é eXp( ( |0/ ||a) (A.61)
- n1+exp( "(w )Hal(w)Ha)

The second step is based on the fact that log () >
las (A.60) and (A.61), we obtain

T4~ Thus, combining Formu-

nC(UB)

—log X5 zwmy
v (w) > —. (A.62)
16" (w)]|"

Furthermore, it holds that \||§’ (w) ||” < LYZ. Now we note that

Ly (6 (w)) < £UP)

r/a
1 r/a
< 2aB( A) - <log © )A(V ) ) (A.63)
,y*
1
< a0
— 2n
for sufficiently small \. Thus, we obtain
n L(UB) n
, —log Py zwe _ —log (21371£(UB)>
7 (w) > (A.64)

> a
16" (w)][* 6" ()|
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Then, we have

a/r 2n UB
. /" log 522 LUB)

v (w)
= ([,(UB) )u./'r
r/a r/a
n (©-n(v*)"
—log <23a%_1(’y*;/a (1 + (log #) ))
- a/r
Bae/r (c—l)ww“)r/“
v (1 + (log =5 (A.65)

r/a\ T/a
1) ()"
. —log <2Boz2b"1(w*?,,/a <1 + (log %) ))
v

ra\ @/T :
“ B (1 - (1og <071><;*>r/a) / )

(1)

Sle

This proof is adapted from Proposition 3 of [4]. Above lower bound indicates that
the numerator is at the scale of log (Alog (3)) and the denominator is at the scale of
log (% )- Thus, the difficulty-based weights only influence the value of the bound. (I) can

*

be bounded by %, for sufficiently small A. Thus, it can be drew that: v/ (w) > 107 e
aa s

This theorem indicates that the difficulty-based weights affect the convergence speed,
which is reflected in £, (8’ (w)) < aLy (0, (w)). With a good set of weights, this
criteria (by approaching global optimum) can be achieved faster.

D Supplementary Material for Section 4.2

We prove the generalization error can be bounded which is stated in Theorem 2 via
Rademacher complexity and the margin theory. The Rademacher complexity stated by
Golowich et al. [10] is adopted which is shown below:
For a real-valued function class F, the empirical Rademacher complexity R, g (F)
is as follows:
1 n
Rp (F) £ Be |sup = & (i) f ()], (A.66)
fer i
where ¢; are independent Rademacher random variables. The classical theorem about

the generalization error in terms of the Rademacher complexity and margin loss is
shown in Theorem A.2.

Theorem A.2. Given F a set of functions such thatVf € F, Y .+ |f ()| < L. Then
with a probability at least of 1 — §, for all margins v > 0, the following holds:
1 n
Play~pre (yf () < 0) = Zﬁ (i) I (yif (zi) <)
i=1 (A.67)

Rn’i(ﬂﬂ(%n,é),
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where € (y,n,0) = \/ Lo 10g2 —= 4 log(l/é) . R, p (F) is the weighted Rademacher
complexity.

Proof of Theorem 2

Proof. Let P, and P; be the source (training) and target (testing) distributions, respec-
tively, with the corresponding densities of ps(-) and p;(-). Assume that the two distri-
butions have the same support. The training and test samples are drawn i.i.d according
to distributions P, and P;, respectively.

Learning with sample weights w(x) is equivalent to learning with a new tramlng
distribution P,. The density of the dlstrlbutlon of the weighted training set P, is de-
noted as ps(x) ~ w(x)p,(x). Pearson x2-divergence is used to measure the difference
between P, and P, i.c., D,» (P||P,) = f[(dﬁs/dPt)2 — 1]dP,. We consider depth-q
(g > 2) networks with the activation function ¢. The binary setting is considered, in
that the network computes a real value

flx) =Wyp (Wye_1¢ (- Wiz)---)), (A.68)

where ¢(-) is the element-wise activation function (e.g., ReLU). The training set
contains n samples. Denote the generalization error for a network f as L(f). Let

Blz;) = I?;:Ef}; Each parameter matrix W (j) has Frobenius norm at most Mp(j).

From Theorem 1 of Golowich et al. [10], we yield

1 n
R (F) < log <2q [Ecexp (M/\H Pt ($i)wi|>> ; (A.69)
i=1
with M = H Mfp (j). i.e., the sum of weight matrix of each layer. Define a stochastic

variable:

Z=M-||Y ep (i) il (A.70)

Then the following equation holds:

1
nRy.5 (F) < —log[2? - Eexp (\Z)]
’ A
los?2 1 (A.71)
=1 Ag + 5 log[Eexp A (Z — EZ) + EZ).
With the help of Jessen inequality, F [Z] can be upper bounded by:
M\j Ee |[|>_eiB (i) wz’ll} =M |E. [ > Eiwﬂ(%z‘)2|lfﬂz‘||2]
i=1 i,4/ =1 (A72)

=M, | > @)l
=1
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For the purpose of solving log[E exp A (Z — EZ)], we define a function Z over a set
of i.i.d. random variables {1, €3, ..., €,, } which satisfies:

Z(er, €0 em) = Z (€1, s —€iy e Em) S 2MB () |2l (AT3)

It reveals that Z is bounded and is partially Gaussian, owning the following variance
factor:

1w n
v=1 Z:; (2MB () [[ai]|)* = M ;ﬁ(mi)mmiu?. (A74)
The following formula satisfies:

n

A M? Zlﬁ(wi)zH%HQ

ilog[EeXp)\(Z—EZ)} S% = 5
) (AT5)
AM? Zl Bl;)? |||
2
Let
A= 2log(2)g (A.76)

M,/;”l Blai) |2

the upper bound is then found in the following form:

% log[2? - Eexp (\2)] <EZ + v/2log2)q, | 3 Bla:)?|lai||2
=1

<M (\/210g(2)q+1) > Bla)? | (A7)
<VaLM (v20og@)q +1) | =3 Bai)”

with L := sup,, ||x||. Based on the law of large numbers, we have

% > B(:)*=D (Ptllfjs) t140 (%) . (A.78)
1=1

Then, the desired result follows, and the generalization bound is

P oy (0 (2) < 0) < = 37 B (@) 1 (3 (1) <)
=1

L\/DX2 (Pt||15s> +1

v -q@ D2 /n

(A.79)

+

+e(v,n,0),
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where €(y,n,d) = 4/ Lo log2 —— + 4/ Log( 1/ 9 is a small quantity compared to (I) and

(II). Here, L := supy, ||z||. As Blx;) = 11( ) we can rewrite Formula (A.79) as
pt (yif(x:) <)
I
~ (A.80)
L. \/DXQ (Pt||PS) 1
+ RN +e(y,m,9).
(I11)

(1)

Thus, Theorem 2 is proved. This proof is adapted from Theorem 1 of Golowich et
al. [10].

Proof of Proposition 6 In this section, we give the proof of Proposition 6.

Proof. Given a fixed training set, f depends on random variables (denoted as V) such as
hyper-parameters and initialization. The model trained under a given set of V is denoted
as fy. Taking the expectation of the random variables ) at both ends of Formula (A.80),
we have

n
VIE(P) < T Z Vyafv(@s) <]+ (D) + (1), (AS8])
= P
where the expectation of terms (II) and (III) are their own since the two terms are
independent of V.

Then, we proof that the a large error err; indicates a large Ey[1 (y; f () < )]
Assume that the margins under random datasets and random variables obbey the Gaus-
sian distribution, there are v; y ~ N(uiy,0:v2) and v, 7 ~ N (i1, 05 72%). As the
generalization error is often computed using methods such as cross-validation, the ran-
dom training sets can be assumed to obbey the Gaussian distribution A(T', §1). There-
fore, the two distributions (i.e., N'(ui 7, 0% 7) and N (p;,v, 07,)) are similar because
training models on different datasets are essentially different in parameters and the
random training sets conform the Gaussian distribution . According to the moment-
generating function, we have

l

Ey [e77V] & By [e7707] = ¢ #ir+3%0r, (A.82)

Therefore, when all samples’ distributions of margins have the same margin variances,
a large generalization error err; = Ep[e~7(?)] indicates a small j; 7. For a fixed y
in Formula (A.81), for two samples x; and x;, if u; 7 < p; 7, then it is obvious that
p(vi,r <) = p(v;r < 7). Thus, we have

Ey[l (vi,y <) = Er[l(vir <7)]
=p(yir <) X 1+ (1 =plyr<7v)x0 (A.83)
=p(vir <),
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Fig. A-2: The distribution curves of the margins of eight samples on different datasets. Red and
green lines refer to the mean of the distribution and the true margin, respectively.

and

Ev[1 (v;v <)) = Er[L (v <7)]

=p(vr <7) x14+ 1 =plyr <7v)x0 (A.84)
=p(vir <7)-
Therefore, we have
Ey[L (i, <) 2 Ev[L (vip <)) (A.85)

According to above analyses, it can be drew that if err; > err;, then Ey [1(y; fy () <
7) 2 Ev[L(y; fv(z;) < 7).

E Experiments for the Effectiveness of Generalization Error

F More Experimental Results

In this section, we present more experimental results and discussions.

F.1 Distributions of margin

The Z-scores of the distributions’ Kurtosis and Skewness are used to examine if the dis-
tributions of margin obey Gaussian distribution. Fig. A-2 shows the distribution curves
of the margins of eight samples on different datasets. In addition, Table A-1 demon-
strates the Z-scores of skewness and kurtosis of these eight distributions. As all Z-
scores are in [—1.96,1.96], under the test level of & = 0.05, the margin distribution
obeys the Gaussian distribution.
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Table A-1: Z-scores of skewness and kurtosis of these eight distributions. The order is top to
bottom and left to right.
Id 1 2 3 4 5 6 7 8
Z-score(skewness) -0.035 0.227 0.969 -0.267 -1.131 -1.641 1.712 1.257
Z-score(kurtosis) -1.644 -1.238 1.352 1.555 1.710 1.847 1.005 1.675

F.2 Experiments for the Increasing Weights of Hard Samples on the Simulated
Data

In this section, we increase the weights of the samples with small margins, samples
in small categories, and noisy samples, as they are hard ones that have been analyzed
in Section 3. The experimental results are shown in Fig. A-3. The cosine distances
are all increasing to 1 indicating that the angle between the decision boundary and the
max-margin solution is decreasing to 0. Thus, the finding reveals that the directions of
the parameters (for the linear predictor) and the normalized margin (for the nonlinear
predictor) converge to the max-margin solution. As shown in Fig. A-3, increasing the
weights of the hard samples (samples with large errors) increases the convergence speed
of both the linear and nonlinear predictors. The results are consistent with our theoret-
ical analysis for linear predictors in Section 4.1. Deeper analyses should be conducted
for the nonlinear case to explore the conditions in which the difficulty-based weights
can accelerate the speed.

F.3 Accuracy, Loss and Margin of the CIFAR10 Data in the Training Process

Fig. A-4 shows the epoch-wise training performances measured by accuracy, loss, and
margin, using the ResNet32 on CIFAR10 data. The margin shows an increasing trend
during the training.

hied (1:10) | —_ ghied (1:10)

Epoch

©

Fig. A-3: “Cosine distance" represents the cosine of the angle between the decision boundary (at
that epoch) and the max-margin solution. (a), (b) Cosine distance and average margin of equal
weights and increasing weights of noisy samples using the linear predictor on noisy data. (c), (d)
Cosine distance and average margin of equal weights and increasing weights of samples in the
small category using the nonlinear predictor on imbalanced data. Uniform label noise is adopted.
The noise ratio and imbalance ratio are 20% and 10:1. Other noise and imbalance settings are
also used and the same conclusions are obtained.

(@) Epoch (b) Epoch Epoch



Supplementary Material 21

0014 I
002
0010

% oo

3
06 0.006

Accuracy

0.004 02

0.002 00

@ % 10 10 1o T % 4 @ s 10 10 1o 1 ) W0 10 10 1k
Epoch ) Epoch

! * “ (a) ! (b " ” (©) Epoch
Fig. A-4: (a) The accuracy of CIFAR10 data during the training process. (b) The loss oprIFARIO
data during the training process. (¢c) The margin of CIFAR10 data during the training process.

F.4 Model Performance Pertaining to Noisy Data with Different Difficulty-Based
Weights

We add 10% noise to the simulated data and compare the accuracies under equal weights,
large weights on noisy samples, and small weights on noisy samples. The results are
shown in Fig. A-5, indicating that assigning small weights on noisy samples, alterna-
tively, the easy-first mode can achieve the best performance. The worst performance
is observed when the weights of noisy samples are by increased, which belongs to the
hard-first scheme. Therefore, it reveals that although increasing the weights of the hard
samples may increase the convergence speed, it is not always the optimal strategy.

References

1. Lyu, K., Li, J.: Gradient Descent Maximizes the Margin of Homogeneous Neural Networks.
arXiv preprint arXiv:1906.05890 (2019)

2. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.: Efficient and accurate estimation
of lipschitz constants for deep neural networks. In: NeurIPS, pp. 11427—11438. NeurIPS
foundation, America (2019)

3. Virmaux, A., Scaman, K.: Lipschitz regularity of deep neural networks: analysis and efficient
estimation. In: NeurIPS, pp.3835-3844. NeurIPS foundation, America (2018)

4. Xu, D., Ye, Y., Ruan, C.: Understanding the role of importance weighting for deep learning.
In: ICLR, pp. 1-20. ICLR foundation, America (2020)

0.9

081 —— Increase

Decrease

071 —— Equal

0.6

Accuracy

0.5+

0.4+

0.3

0 500 600 700 800

024 , , , , , , , ,
0 100 200 300 400 500 600 700 800

Epoch
Fig. A-5: The performances of models with equal weights, large weights for noisy samples, and

small weights for noisy samples. Simulated data is used here and the noise ratio is set to 10%.




22 Xiaoling Zhou, Ou Wu, Weiyao Zhu, Ziyang Liang

5. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In: ICML, pp. 1050-1059. International Machine Learning Society,
America (2016)

6. Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth,
P, Cao, X., Khosravi, A., Acharya, U.-R., Makarenkov, V., Nahavandi, S.: A review of uncer-
tainty quantification in deep learning: Techniques, applications and challenges. Information
Fusion 76(1), 243-297 (2021)

7. Yang, Z., Yu, Y., You, C., Jacob, S., Yi, M.: Rethinking bias-variance trade-off for generaliza-
tion of neural networks. In: ICML, pp. 10767-10777. International Machine Learning Society,
America (2020)

8. Soudry, D., Hoffer, E., Nacson, M.-S., Gunasekar, S., Srebro, N.: The implicit bias of gradient
descent on separable data. Journal of Machine Learning Research 19(1), 1-14 (2018)

9. Wei, C., Lee, J.-D., Liu, Q., Ma, T.: Regularization Matters: Generalization and Optimization
of Neural Nets v.s. their Induced Kernel. In: NeurIPS, pp. 1-14. NeurIPS foundation, America
(2019)

10. Golowich, N., Rakhlin A., Shamir, .: Size-independent sample complexity of neural net-
works. Information and Inference: A Journal of the IMA 9(2), 473-504 (2020)



