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Abstract. This paper concerns the dynamical properties of topological defects in 2D
flows of liquid crystals modeled by the Ginzburg-Landau approximations. The fluid is
transported by a nonlocal (an averaged) velocity and is coupled with effects of the elastic
stress. The defects move along the trajectories of the flow associated with this averaged
velocity, that is

d

dt
aj(t) = u(aj(t), t).

1. Introduction

We consider the dynamical properties of topological defects in two dimensional incom-
pressible liquid crystal flows. Because of the elastic turbulence caused by defects and its
motion in liquid crystal configurations, it is mathematically difficult to make sense of the
point-wise value of the fluid velocity at the defects (the velocity function may be in the
VMO space but not necessarily continuous, see [11]). Here we consider an average of
the velocity field u. This nonlocal velocity resembles the well studied lagrangian average
velocity in the study of classical incompressible fluids, [2, 16, 17]. More precisely we study
the following system:

∂tv + u ∧ curlv +∇P = µ∆v − div(∇d⊗∇d)

∂td+ u · ∇d = ∆d+ d(1−|d|2)
ε2

divv = 0

−α∆u + u = v

(1.1)

in Ω × R+ where Ω ⊂ R2 is a smooth and bounded domain. The constants α > 0 in the
last equation may be small but fixed throughout our analysis, and the viscosity µ > 0 for
liquid crystal flows is often pretty large. To simplify notations and presentations we will
be assumed both of these constants to be one since their magnitudes do not play a role in
our analysis. The curl operator curlv is defined to be ∂x1v2−∂x2v1, and the outer product
u ∧ curlv = (u2,−u1)curlv is also specified in two dimensional space. The system (1.1) is
complemented with the initial and boundary data

(v, d)|t=0 = (v0, d0), (v, d)|∂Ω = (0, g), u|∂Ω = 0. (1.2)

The parameter ε > 0 in (1.1) is the main concern of the analysis in this work, and we
focus on the asymptotic behaviour of the Ginzburg-Landau vortices, that is the behaviour
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of the topological defects of d, as ε→ 0. We set |g| = 1 on ∂Ω with deg(g, ∂Ω) = N > 0.
The initial data (v0, d0) satisfies

‖v0‖L2(Ω) ≤ 2A (1.3a)

E(d0) =

∫
Ω
eε(d0)dx ≤ πN log

1

ε
+B. (1.3b)

with two positive constants A and B, and the local energy eε(d) is defined as

eε(d) =
1

2
|∇d|2 +W (d), W (d) =

1

4ε2
(1− |d|2)2.

The system (1.1) is a Lagrangian average of liquid crystal flows [12], and the averaged
velocity u is viewed as the macro-scale averaging of the mesoscale velocity v. We refer the
interested readers to [2, 16, 17] for other models of classical fluids with averaged velocity.
Keeping in mind, the trilinear operator in (1.1)

(u ∧ curlv,u) = 0

shares the similar structure as the classical Navier-Stokes equation, see [2, 17]. For every
fixed parameter ε > 0, the global smooth solution of the system (1.1)-(1.3) could be
constructed in the spirit of [12], see also [10, 13, 14] for other related models. The classical
solution of the system (1.1)-(1.3) satisfies the global energy law

d

dt

(
‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) + 2E(d(t))

)
= −

(
‖∆u‖2L2(Ω) + ‖∇u‖2L2(Ω) + 2‖∂td+ u · ∇d‖2L2(Ω)

)
.

(1.4)

As a consequence of the initial data and the energy law (1.4), the solutions (v, d) satisfies

2E(d(t)) + ‖u(t)‖2L2(Ω) + ‖∇u(t)‖2L2(Ω) ≤ 2πN log
1

ε
+ 2A+ 2B, ∀t ∈ R+. (1.5)

In this work, we are interested in the asymptotic behaviour of the smooth functions dε
as ε → 0. The asymptotic behaviour of solutions associated with the steady Ginzburg-
Landau equation had been systematically studied in [3]. When the velocity v vanishes,
the function dε satisfies the heat flow of Ginzburg-Landau equation, and the dynamic
properties of the solution dε of the heat flow had been considered in [8, 6] for Dirichlet
boundary data and in [9] for Neumann boundary data. They proved that the speed of the
vortex, in the original time scale, is of order | ln ε|, and the trajectories of vortices obey
an ordinary differential equation associated with the renormalized energy. One crucial
estimate in the dynamical motion of vortices of nonzero degree in [3, 6, 8, 9], see Lemma
2.1 in [8] for instance, is the lower energy bound∫

Ω
eε(d)dx ≥ πN | ln ε| −K for all t ≥ 0, (1.6)

which guarantees that the unbounded parts of the upper and the lower bounds of energy
agree. Nevertheless when the averaged velocity u presents, the vortices are transported
both by the heat flow and the macroscopic velocity u. Due to the higher regularity of the
macroscopic velocity u, the flow trajectory associated with u is well-defined. However in
contrast to the heat flow [8, 6], from the dynamical viewpoint, the leading term as ε→ 0
is the convection u · ∇d.
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Our main result is stated as follows.

Theorem 1.1. For the initial data (d0)ε which satisfies (2.5)-(2.8), for any t ∈ R+, as
ε→ 0,

• The convergence

dε(x, t)→ d(x, t) =
N∏
j=1

x− aj(t)
|x− aj(t)|

eih(x,t) (1.7)

holds true in H1
loc(Ω\{a1(t), a2(t), · · · , aN (t)}). Here the convergence is understood

in the sense that for any sequences of ε’s that go to zero, there is a subsequence
for which (1.7) is true.
• Away from the set {aj(t) : j = 1, · · · , N, t > 0} ⊂ Ω × R+, the limit function

(v,u, d) of (vε,uε, dε) satisfies the system
∂td+ u · ∇d = ∆d+ |∇d|d
divv = 0

−α∆u + u = v

(1.8)

in the sense of distributions. Moreover the limit function h(x, t) satisfies a linear
parabolic equation

∂th(x, t) + u · ∇(Θ(x, t) + h(x, t)) +R(x, t) = ∆h(x, t)

in (Ω \ {ai(t), i = 1, · · · , N})× R+ with supt≥0 ‖∇h‖L2(Ω) ≤ K, where

eiΘ(x,t) =
N∏
i=1

x− ai(t)
|x− ai(t)|

=
N∏
i=1

θ(x− ai(t))

and

R(x, t) =
∂Θ

∂t
= −

N∑
i=1

 N∏
i 6=j

θ(x− aj(t))

u(ai(t), t) · ∇θ(x− ai(t)).

• The functions aj(t) ∈ Ω, j = 1, · · · , N , are Hölder continuous with Hölder expo-
nent 3

4 and satisfy the following ODE:{
d
dtaj(t) = u(aj(t), t)

aj(0) = bj .
(1.9)

Theorem 1.1 states that assume that initially there are N isolated vortices of degree
one, then, in the limit, these vortices persist and move with the velocity u. The argument
of Theorem 1.1 is based on the second moment (of the local energy density) estimate and
the lower bound of the local energy (1.6). These estimates enable us to conclude that
there are vortices aj(t), which are separated with each other and are Hölder continuous
on t, such that the scaled local energy converges, up to a subsequence; that is,

| ln ε|−1eε(dε)dx
∗
⇀ π

N∑
i=1

δ{aj(t)}
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in the sense of distribution. Away from the vortices dε converges uniformly to a function
d(x, t) ∈ S11, and eε(dε) converges to 1

2 |∇d|
2. The ODE equations of vortices (1.9) are

consequences of the associated evolutions of the first moments of the local energy density
More precisely the uniform convergence of dε away from vortices and the energy identity
(3.1), with an appropriately chosen test function, yield the ordinary differential equation
(1.9) satisfied by the vortices in the original time scales. Moreover the verification of the
equation (1.9) also relies on the convergence of the Hopf differential

ω =

∣∣∣∣ ∂d∂x1

∣∣∣∣2 − ∣∣∣∣ ∂d∂x2

∣∣∣∣2 − 2i
∂d

∂x1
· ∂d
∂x2

,

which admits a cancellation in the scale of | ln ε|, where x = (x1, x2) ∈ R2, i is the
imaginary unit, and the dot product refers to the scalar product of vectors.

We remark that the uniform estimate (2.3) implicitly implies the regularity of the flow
map associated with the averaged velocity u, and actually the flow map is almost Lipschitz
with respect to the space variables, see Theorem 2 in [4]. From this viewpoint, we conclude
that the vortices also satisfy

|aj(t)− ai(t)| ≤ Kγ−1|bj − bi|γ as 1 ≤ i 6= j ≤ N

for all γ ∈ (0, 1) and t ∈ R+. Another remark concerns the limit as the parameter α
approaches zero in (1.1). The limit system as α→ 0 is the incompressible nematic liquid
crystal system, and the dynamic property of defects of the limit system is out of reach of
this work. Though by the theory of Di Perna - Lions [15] and recent extensions [1], one
expects that the main result may valid for, at least, generic initial locations for defects.

The rest of this work is organized as follows. Section 2 focuses on the preliminary of the
steady Ginzburg-Landau theories and properties of initial data. Section 3 is devoted to
the proof of the main result. Throughout this work, the constant K denotes the universal
positive constant which is independent of the parameter ε and may vary from line to
line. The notation K(·, ·) stands for the dependence of K in terms of the argument. The
convention in the summation over the repeated index is applied. The notation G : H =∑2

i,j=1GijHij is the inner product between the matrix G and the matrix H, and the

notation α · β =
∑2

i=1 αiβi stands for the inner product between two vectors α and β.

Moreover the convention (∇d⊗∇d)ij stands for the quantity
∑2

k=1 ∂idk∂jdk.

2. Preliminary

We begin by introducing several functions. For θ ∈ R, and ξ = (b, c) ∈ R2, let

ξ⊥ = (−c, b), ~n(θ) = (cos θ, sin θ), ~t(θ) = ~n(θ)⊥.

For a non-zero vector x ∈ R2, let θ(x) be the multi–valued function satisfying

~n(θ(x)) =
x

|x|
, ∀x 6= 0.

1S1 stands for the unit sphere in R2.
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Note that, locally on R2 \ {0}, there are smooth, single-valued representatives of θ(·) and
each representative satisfies

∇θ(x) =
~t(θ(x))

|x|
=

x⊥

|x|2
, ∀x 6= 0. (2.1)

Observe that a direct computation shows that θ(x) is a harmonic function as x 6= 0.
We recall a technical result for the existence of vortices and the local lower bound of

the steady Ginzburg-Landau energy around vortices, see for instance Lemma 4.1 in [6]
and also [3, 8].

Lemma 2.1. For a fixed constant σ > 0, let 0 < ε < min{1, σ} and d : B2σ 7→ B1 be a
continuously differentiable function satisfying

|∇d| < K

ε
, deg(d, ∂Bσ) 6= 0, |d(x)| ≥ 1

2
∀|x| ∈ [σ, 2σ].

Then there is a constant K, independent of ε, such that∫
B2σ

eε(d)dx ≥ π ln
(σ
ε

)
−K.

Moreover there exists x∗ ∈ Bσ such that d(x∗) = 0 and for every λ ∈ [ε, σ]∫
Bλ(x∗)

eε(d)dx ≥ π ln

(
λ

ε

)
−K.

The gradient ∇d and the potential energy W (d) satisfies the following uniform bounds,
see Theorem III.2, Theorem VII.3, and Theorem IX.4 in [3] respectively.

Lemma 2.2. Under the same condition as Lemma 2.1, up to a subsequence, one has∫
Ω
|∇|dε||2dx+

∫
Ω
W (dε)dx ≤ K

and in the weak ? topology of C(Ω)

1

| ln ε|
|∇dε|2 → 2π

N∑
j=1

δaj

1

4ε2
(|dε|2 − 1)2 → π

2

N∑
j=1

δaj

as ε→ 0.

In terms of Lemma 2.1, the Ginzburg-Landau energy E(d(t)) has a lower bound

E(d(t)) ≥ πN log
1

ε
−K, (2.2)

which, combined with the estimate (1.5), yields(
‖u(t)‖2L2(Ω) + ‖∇u(t)‖2L2(Ω)

)
+

∫ ∞
0

(
‖∆u‖2L2(Ω) + ‖∇u‖2L2(Ω) + 2‖∂td+ u · ∇d‖2L2(Ω)

)
ds

≤ 2A+ 2B + C,
(2.3)
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where A,B,C are independent of ε. For the function dε with the estimate (1.3b), the
general Ginzburg-Landau theory in [3] yields

‖∇dε‖Lp(Ω) ≤ K(p,Ω, g, A,B,C) for all p ∈ [1, 2), (2.4)

and there is a subsequence εm, which converges to 0, such that

dεm →
N∏
j=1

x− aj(t)
|x− aj(t)|

eih(x,t)

in L2(Ω) ∩ H1
loc(Ω \ {a1(t), · · · , aN (t)}) for each t ∈ R+. Moreover in the heat flow of

Ginzburg-Landau theories the function h(x, t) satisfies, see [3, 8]

‖h(t)‖H1(Ω) ≤ K,

and the trajectory aj(t) of the vortex aj , j = 1, · · · , N , are continuous in t ∈ R+.

Remark 2.1. In view of the uniform estimate (2.4), the elastic stress term ∇dε ⊗ ∇dε is
not known to be integrable uniformly in ε. From this viewpoint, in the large-time scale or
in the limit as ε → 0, the vortices would produce a highly singular external force in the
momentum equation. Moreover in contrast with [5, 7], the lack of uniform estimates on
∇d⊗∇d induces the loss of the uniform information on ∂tv, which makes the convergence
of the quadratic term u∧curlv hard to be justified. This phenomenon would be the source
of the possible turbulence of the fluid flow as ε→ 0.

To study the asymptotic properties of vortices, we consider the initial data (d0)ε with
the following properties:

• There is a positive constant K such that

|(d0)ε| ≤ 1, |∇(d0)ε| ≤
K

ε
for all x ∈ R2. (2.5)

•

(d0)ε →
N∏
i=1

x− bj
|x− bj |

eih0(x) (2.6)

weakly in H1
loc(Ω \ {b1, · · · , bN}) for some N distinct points b1, · · · , bN in Ω and

N = deg(g, ∂Ω) > 0;
• ∫

Ω
ρ(x)2

(
|∇(d0)ε|2 +

1

2ε2
(|(d0)ε|2 − 1)2

)
dx ≤ K (2.7)

for a constant K which is independent of ε, where

ρ(x) = min{|x− bj |, j = 1, · · · , N};
•

E((d0)ε) =

∫
Ω

(
|∇(d0)ε|2 +

1

2ε2
(|(d0)ε|2 − 1)2

)
dx ≤ πN | log ε|+ 2B. (2.8)

The existence of the initial data (d0)ε with the properties (2.5)-(2.8) could be guaranteed
as in [3, 6]. We denote the distance between the initial vortices as

0 < 16σ = min
0<ε≤1

min
i 6=j
{|biε − bjε|, dist(biε, ∂Ω)}.
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For convenience, we shall also assume the natural compatibility condition (d0)ε = g(x) for
all x ∈ ∂Ω.

Due to the uniform estimate (2.3) and the assumption (2.5), the maximal principle of
(1.1), see for instance Lemma 1 in [7], implies that

|dε|(x, t) ≤ 1 for all (x, t) ∈ Ω× R+. (2.9)

Moreover this uniform L∞ estimate of dε further guarantees the uniform pointwise estimate
on the gradient of dε.

Lemma 2.3. For initial data ((v0)ε, (d0)ε) with the uniform estimates (2.3), (2.9) and
the property (2.5), as ε is sufficiently small, there holds true

|∇dε|(x, t) ≤
K

ε
for all (x, t) ∈ Ω× R+. (2.10)

Proof. In terms of the boundary condition for (v, d), we extend the functions (v, d) into
R2 × R+ by setting (v, d)(x, t) = (0, e) if x ∈ R2 \ Ω and t ≥ 0 with a constant vector
e ∈ S1. We can also extend the function u to be zero in R2 \Ω. Since for each fixed ε, the
solution (v, d) is smooth for t > 0, we differentiate the equation of d in (1.1) with respect
to the variable x to get

∂t∂idj −∆∂idj = −∂i(u · ∇dj) + ∂i

((1− |d|2)dj
ε2

)
,

and hence in terms of Gaussan’s kernel G(x, t) associated with the heat equation, for any
fixed point (x, t) ∈ R2 × R+ and for any σ ∈ (0, t], one has

∂idj(t, x) = [G(·, σ) ∗ ∂idj(·, t− σ)](x)

+

∫ σ

0

[
G(·, τ) ∗

[
−∂i(u · ∇dj) + ∂i

((1− |d|2)dj
ε2

)]
(·, t− τ)

]
(x)dτ

= [∂iG(·, σ) ∗ dj(·, t− σ)](x)

+

∫ σ

0

[
∂iG(·, τ) ∗

[
−u · ∇dj +

(1− |d|2)dj
ε2

]
(·, t− τ)

]
(x)dτ.

(2.11)

Notice that for any τ > 0, there holds

√
τ‖∇G(·, τ)‖L1 = π−1

∫
R2

|y|e−|y|2dy = K.

Therefore Young’s inequality for the convolution operator and the pointwise estimate (2.9)
yield

|[∂iG(·, σ) ∗ dj(·, t− σ)]| (x) ≤ K√
σ
, (2.12)

and ∣∣∣∣∫ σ

0

[
∂iG(·, τ) ∗

[
(1− |d|2)dj

ε2

]
(·, t− τ)

]
(x)dτ

∣∣∣∣
≤ 1

ε2

∫ σ

0
‖∂iG‖L1(τ)dτ ≤ K

ε2
σ

1
2 .

(2.13)
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Moreover the uniform estimate (2.3) and the embedding ‖u‖L∞(R2) ≤ ‖u‖
1
2

L2(R2)
‖∆u‖

1
2

L2(R2)

give∣∣∣∣∫ σ

0
[∂iG(·, τ) ∗ [−u · ∇dj ] (·, t− τ)] (x)dτ

∣∣∣∣
≤
∫ σ

0
‖∂iG‖L1(τ)‖u(t− τ)‖L∞(R2)|∇dj(t− τ)‖L∞(R2)dτ

≤ K
(

sup
s∈R+

‖∇dj(s)‖L∞(R2)

)∫ σ

0

1√
τ
‖u(t− τ)‖

1
2

L2‖∆u(t− τ)‖
1
2

L2dτ

≤ K
(

sup
s∈R+

‖∇dj(s)‖L∞(R2)

)(
sup
s∈R+

‖u(s)‖L2

) 1
2

×
(∫ σ

0

1

τ
2
3

dτ

) 3
4
(∫ σ

0
‖∆u(t− τ)‖2L2(R2)dτ

) 1
4

≤ Kσ
1
4

(
sup
s∈R+

‖∇dj(s)‖L∞(R2)

)(
sup
s∈R+

‖u(s)‖L2

) 1
2
(∫ ∞

0
‖∆u(τ)‖2L2(R2)dτ

) 1
4

≤ K(A,B,C)σ
1
4

(
sup
s∈R+

‖∇dj(s)‖L∞(R2)

)
.

(2.14)

Furthermore if σ = t, there holds

|[∂iG(·, σ) ∗ dj(·, t− σ)](x)| = |[G(·, t) ∗ ∂idj(·, 0)](x)| ≤ ‖∇d0‖L∞ . (2.15)

If t ≥ ε2, we set σ = ε2 in (2.11)-(2.14) and obtain

|∇d|(t, x) ≤ K

ε
+K(A,B,C)ε

1
2

(
sup
s∈R+

‖∇d(s)‖L∞(R2)

)
.

If t < ε2, we set σ = t in (2.11) and (2.13)-(2.15) to get, using (2.5)

|∇d|(t, x) ≤ ‖∇d0‖L∞ +
K

ε2
t
1
2 +K(A,B,C)t

1
4

(
sup
s∈R+

‖∇d(s)‖L∞(R2)

)
≤ K

ε
+K(A,B,C)ε

1
2

(
sup
s∈R+

‖∇d(s)‖L∞(R2)

)
.

Therefore, in both cases, there holds

|∇d|(t, x) ≤ K

ε
+K(A,B,C)ε

1
2

(
sup
s∈R+

‖∇d(s)‖L∞(R2)

)
,

which yields the desired result (2.10) by letting ε be sufficiently small so that

K(A,B,C)ε
1
2 <

1

2
.

�

From now on, we assume that ε is sufficiently small so that the pointwise estimate (2.10)
holds true for all t ∈ R+.



DEFECTS IN LIQUID CRYSTAL 9

3. Proof of Theorem 1.1

Let η(x) be a smooth function with η(x) = |∇η| = 0 for x ∈ ∂Ω. We multiply the
second equation in (1.1) by η(∂td+ u · ∇d) and integrate by parts to obtain

d

dt

∫
Ω
ηeε(d)dx =

1

2

d

dt

∫
Ω
η

(
|∇d|2 +

(1− |d|2)2

2ε2

)
dx

= −
∫

Ω
η|∂td+ u · ∇d|2dx+

∫
Ω

(
∇2η : ∇d⊗∇d−∆ηeε(d)

)
dx

+

∫
Ω

u · ∇ηeε(d)dx−
∫

Ω
η∂juk∂kdi∂jdidx.

(3.1)

Formally with η = 1 in (3.1), the global energy law (1.4) is established with the help of
the momentum equation to cancel the last integral. In order to verify the separation and
the evolution of vortices, we apply different test functions η in (3.1).

3.1. Second momentum of the local energy. We begin with the second momentum
of the local energy eε(d); that is the identity (3.1) with the function η being a quadratic
function near vortices. For this purpose, let η = ησ : Ω→ R+ be a smooth function such
that

ησ(x) =


1
2 |x− bj |

2 if x ∈ Bσ(bj)

≥ 1
4σ

2 if x = Ωσ \ ∪Nj=1Bσ(bj)

0 if x ∈ Ω \ Ωσ,

where

Ωσ = {x ∈ Ω : dist(x, ∂Ω) > σ}.
Note that ησ(x) = |∇ησ|(x) = 0 as x ∈ ∂Ω, and ‖∇ησ‖L∞(Ω) + ‖∇2ησ‖L∞(Ω) ≤ K.

Moreover ∇2ησ = I in ∪Nj=1Bσ(bj) and hence

∇2ησ : ∇d⊗∇d−∆ησeε = −2W (d) in ∪Nj=1 Bσ(bj). (3.2)

Furthermore, for x ∈ Ω \ ∪Nj=1Bσ(bj), there holds

|∇2ησ : ∇d⊗∇d−∆ησeε(d)| ≤ Keε(d). (3.3)

The estimate of the second momentum is stated as follows.

Lemma 3.1. Suppose that for 0 ≤ t ≤ T and for j, l = 1, · · · k, j 6= l, we have

min{|aj(t)− al(t)|, dist(aj(t), ∂Ω)} ≥ 4σ.

Then there holds true

A(t) ≤ A(0) +K(σ,A,B,C)(t+ t
1
2 )

(
sup
s≥0

∫
Ω
eε(dε)(x, t)dx

)
for all 0 ≤ t ≤ T , where

A(t) =

∫
Ω
ησ(x)eε(dε(x, t))dx



10 ZAIHUI GAN, XIANPENG HU, FANGHUA LIN

Proof. Using integration by parts, one has

d

dt
A(t) =

∫
Ω
ησ(x)

[
∂idε · ∂i

∂

∂t
dε +

(|dε|2 − 1)

ε2
dε ·

∂

∂t
dε

]
dx

= −
∫

Ω
ησ(x)

∣∣∣∣ ∂∂tdε + uε · ∇dε
∣∣∣∣2 dx− ∫

Ω
∂iησ∂idε ·

∂

∂t
dεdx

+

∫
Ω
ησ(x)

( ∂
∂t
dε + uε · ∇dε

)
· [uε · ∇dε]dx.

(3.4)

Since

∂iησ∂idε ·
∂

∂t
dε = ∂iησ∂idε ·

[
−uε · ∇dε + ∆dε +

dε
ε2

(1− |dε|2)

]
= ∂iησ

[
− ∂idε(uε)j∂jdε + ∂j(∂idε∂jdε)−

1

2
∂i|∂jdε|2 − ∂i

(1− |dε|2)2

4ε2

]
,

an integration of both sides of the identity above by parts gives, using |∇ησ| = 0 on ∂Ω

−
∫

Ω
∂iησ∂idε ·

∂

∂t
dεdx =

∫
Ω
∂iησ(uε)j∂idε · ∂jdεdx−

∫
Ω

∆ησeε(dε)dx

+

∫
Ω
∂i∂jησ∂idε · ∂jdεdx.

(3.5)

Adding (3.4) and (3.5), we get

d

dt
A(t) = −

∫
Ω
ησ(x)

∣∣∣∣ ∂∂tdε + uε · ∇dε
∣∣∣∣2 dx+

∫
Ω
∂iησ(uε)j∂idε · ∂jdεdx

−
∫

Ω
∆ησeε(dε)dx+

∫
Ω
∂i∂jησ∂idε · ∂jdεdx

+

∫
Ω
ησ(x)

( ∂
∂t
dε + uε · ∇dε

)
· [uε · ∇dε]dx.

(3.6)

The identity (3.2) implies that if x ∈ ∪Nl=1Bσ(bl), one has

∂i∂jησ∂idε∂jdε −∆ησeε(dε) ≤ 0.

The estimate (3.3) tells that if x ∈ Ω \ ∪Nj=1Bσ(bj), then we have

|∂i∂jησ∂idε∂jdε −∆ησeε(dε)| ≤ K(σ)eε(dε).

Moreover the Cauchy-Swartz inequality implies∣∣∣∣∫
Ω
ησ(x)

( ∂
∂t
dε + uε · ∇dε

)
· [uε · ∇dε]dx

∣∣∣∣
≤ 1

2

∫
Ω
ησ(x)

∣∣∣∣ ∂∂tdε + uε · ∇dε
∣∣∣∣2 dx+K

∫
Ω
ησ(x)|uε · ∇dε|2dx

≤ 1

2

∫
Ω
ησ(x)

∣∣∣∣ ∂∂tdε + uε · ∇dε
∣∣∣∣2 dx+K‖uε‖2L∞(Ω)

∫
Ω
ησ(x)eε(dε)dx.
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Therefore we deduce from (3.6) that

d

dt

∫
Ω
ησeε(dε)dx ≤ −

1

2

∫
Ω
ησ(x)

∣∣∣∣ ∂∂tdε + uε · ∇dε
∣∣∣∣2 dx+K(σ)(1 + ‖uε‖2L∞(Ω))

∫
Ω
eε(dε)dx

≤ K(σ)(1 + ‖uε‖2L∞(Ω))

∫
Ω
eε(dε)dx,

which, after integrating over t and using ‖u‖L∞ ≤ ‖u‖
1
2

L2‖∆u‖
1
2

L2 , further gives

A(t) ≤ A(0) +K(σ)

(∫ t

0
(1 + ‖uε‖2L∞(Ω))ds

)(
sup
s≥0

∫
Ω
eε(dε)(x, t)dx

)
≤ A(0) +K(σ)

(
t+ t

1
2

(
sup
s∈R+

‖uε‖L2

)(∫ t

0
‖∆uε‖2L2dt

) 1
2

)(
sup
s≥0

∫
Ω
eε(dε)(x, t)dx

)
≤ A(0) +K(σ,A,B,C)(t+ t

1
2 )

(
sup
s≥0

∫
Ω
eε(dε)(x, t)dx

)
as desired. �

The following lemma concerns the L2 integrability of the gradient of h in Ω.

Lemma 3.2. Suppose that |d| ≥ 1
2 on Ω̃√ε = Ω√ε \ ∪Nj=1B

√
ε(bj) with ε ≤ σ2, and that

there is a constant K, independent of ε, satisfying∫
Ω̃√ε

eε(d)dx ≤ 1

2
πN | ln ε|+K, (3.7)

∫
∂B√ε(bj)

eε(d)dH1(x) ≤ K√
ε
, 1 ≤ j ≤ N, (3.8)

and ∫
∂Ω√ε

eε(d)dH1(x) ≤ K. (3.9)

Then, there is a single-valued, smooth function h(x) defined on Ω̃σ such that

d(x) = |d(x)|
N∏
j=1

x− bj
|x− bj |

eih(x) (3.10)

and ∫
Ω̃√ε

|∇h|2dx ≤ K

with a constant K depending only on the boundary data g.

Proof. Since |d| ≥ 1
2 on Ω√ε, the definition of Θ(x) implies that there is a single-valued,

smooth function h(x) defined on Ω such that the polar form (3.10) holds true.

By (3.7), (3.10) and the orthogonality between ieif(x) and eif(x), there holds∫
Ω̃√ε

|d|2[
1

2
|∇Θ(x)|2 +

1

2
|∇h(x)|2 +∇h(x) · ∇Θ(x)]dx ≤ 1

2
πN | ln ε|+K. (3.11)
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Since Θ(x) is harmonic in Ω̃√ε, we use the integration by parts to get∫
Ω̃√ε

∇h · ∇Θdx =

∫
∂Ω√ε

h∇Θ · ~n+

N∑
i=1

∫
∂B√ε(bi)

h∇Θ · ~ni,

where ~n and ~ni are, respectively, the outward unit normal vectors of ∂Ω and ∂B√ε(bi).
The definition of Θ yields∫

∂B√ε(bi)
∇Θ · ~nidH1(x) = 0, ∀ 1 ≤ i ≤ N,

and hence, for any λ,∣∣∣∣∣
∫
∂B√ε(bi)

h∇Θ · ~ni
∣∣∣∣∣ =

∣∣∣∣∣
∫
∂B√ε(bi)

[h− λ]∇Θ · ~ni
∣∣∣∣∣

≤ Kε sup
∂B√ε(bi)

|∇Θ · ~ni| sup
∂B√ε(bi)

|h− λ|.

For any fixed i, we choose

λ =
1

2π
√
ε

∫
∂B√ε(bi)

hdH1(x),

and then on ∂B√ε(bi), there holds, using (3.8) and (3.10),

|h− λ| ≤ K
∫
∂B√ε(bi)

|∇h|dH1(x)

≤ K|∂B√ε(bi)|
1
2

(∫
∂B√ε(bi)

|∇h|2dH1(x)

) 1
2

≤ K.

We observe that ~ni = − x−bi
|x−bi| , and it follows from (2.1)

∇Θ(x) · ~ni(x) = −
N∑
j=1

~t(θ(x− bj)) · θ(x− bi)
|x− bj |

.

Therefore, on ∂B√ε(bi), ∣∣∇Θ(x) · ~ni(x)
∣∣ ≤ N∑

i 6=j

1

|x− bj |
≤ K

σ
,

and hence ∣∣∣∣∣
N∑
i=1

∫
∂B√ε(bi)

h∇Θ · ~ni
∣∣∣∣∣ ≤ K. (3.12)

A similar argument as (3.12), with (3.8) replaced by (3.9), yields∣∣∣∣∣
∫
∂Ω√ε

h∇Θ · ~n

∣∣∣∣∣ ≤ K.
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Therefore ∣∣∣∣∣
∫

Ω̃√ε

∇h · ∇Θ(x)dx

∣∣∣∣∣ ≤ K, (3.13)

with a constant K depending only on g and σ.
Moreover the definition of Θ yields∫

Ω̃√ε

1

2
|∇Θ|2dx ≥

N∑
i=1

∫ σ

√
ε

∫
∂Bτ (bi)

1

2
|∇θ(x− bi)|2dH1(x)dτ

=

N∑
i=1

∫ σ

√
ε

π

τ
dτ =

1

2
πN | ln ε| −K,

where K = πN | lnσ|. This, combined with (3.11) and (3.13), gives,∫
Ω̃√ε

1

8
|∇h|2dx ≤

∫
Ω̃√ε

|d|2
[1

2
|∇Θ|2 +

1

2
|∇h|2 +∇h · ∇Θ

]
dx+K −

∫
Ω̃√ε

1

2
|d|2|∇Θ|2dx

≤ K +
1

2
πN | ln ε| − 1

2

∫
Ω̃√ε

|d|2|∇Θ|2dx

≤ K +
1

2

∫
Ω̃√ε

(1− |d|2)|∇Θ|2dx.

The definition of Θ(x) implies

|∇Θ(x)| ≤ K√
ε
, x ∈ Ω̃√ε,

we conclude by using (3.7) that∫
Ω̃√ε

(1− |d|2)|∇Θ|2dx ≤ K

ε

(∫
Ω
W (d)dx

) 1
2

≤ K.

�

Since the estimate on ∇h in Lemma 3.2 is independent of ε, it follows that ‖∇h‖L2(Ω) ≤
K. Next we turn to the localization of the energy.

Lemma 3.3. There are constants t0 > 0, K, and functions

aiε : [0, t0]→ Bσ/2(biε), ∀i = 1, · · · , N,

with aiε(0) = biε such that dε(a
i
ε(t), t) = 0. Moreover for any ε ∈ (0, 1], t ∈ [0, t0], λ ∈ [ε, σ],

µε(t)
(
Bλ(aiε(t))

)
≥ π ln

(
λ

ε

)
−K, ∀i = 1, · · · , N, (3.14)

where

µε(t) = eε(dε)(x, t)dx.

Proof. For each fixed ε, the continuity of dε, the property (2.6), and the properties of the
topological degree imply that

deg(dε(·, t); ∂Bσ(biε)) = 1 ∀i = 1, · · · , N,
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and

|dε(x, t)| ≥
1

2
as |x− aiε(t)| ∈ (σ/2, σ) and ∀i = 1, · · · , N.

This, combined with the pointwise gradient estimate in Lemma 2.3 and Lemma 2.1, further
imply that for every ε ∈ (0, 1] there exists

aiε(t) ∈ Bσ(biε)

such that dε(a
i
ε(t), t) = 0 and (3.14) holds true.

The lower bound estimate (3.14) with λ = σ
2 , combined with the global energy estimate

(1.5), yields

µε(t)(Ω̃ε) ≤ µε(t)
({
x : |x− aiε(t)| ≥

1

2
σ, ∀i = 1, · · · , N

})
≤ K.

Moreover the second momentum estimate in Lemma 3.1 and the energy estimate (1.5)
give ∫

Ω
ηeε(dε)dx ≤

∫
Ω
ηeε(d0)dx+K(σ,A,B,C)(t+ t

1
2 ) sup

s≥0

∫
Ω
eε(dε)dx

≤
∫

Ω
ηeε(d0)dx+K0| ln ε|(t

1
2 + t).

The property (2.7) of the initial data d0 gives

lim
ε→0
| ln ε|−1

∫
Ω
ηeε(d0)dx = 0,

and hence∫
Ω
ηeε(dε)(x, t)dx ≤ [K(ε) +K0(t+ t

1
2 )]| ln ε| with lim

ε→0
K(ε) = 0. (3.15)

We now define

t0 = sup{t ≥ 0 : aiε(t) ∈ Bσ/2(biε) i = 1, · · · , N}.
The continuity of dε implies that t0 > 0 and at t0 there exists some i0 ∈ {1, · · · ,M} such
that

|ai0ε (t0)− bi0ε | =
σ

2
.

For this i0, we apply Lemma 3.1. Indeed we note that

η ≥ K1 :=
σ2

32
∀x ∈ Bσ/4(ai0ε (t0)),

and hence the lower bound estimate (3.14) with λ = σ/4 gives∫
Ω
ηeε(dε)(x, t0)dx ≥ K1µε(t0)

(
Bσ/4(ai0ε (t0))

)
≥ K2| ln ε| −K3.

This, combined with (3.15), implies that for all 0 ≤ t ≤ t0, there holds

[K(ε) +K0(t+ t
1
2 )]| ln ε| ≥ K2| ln ε| −K3,

which suggests the definition of t0 as

t0 = min

{
K2

2K0
,min

{
1,

(
K2

2K0

)2
}}

.
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�

Let t0 be as in the previous lemma. By a diagonalization argument, up to a subsequence,
we set

ai(t) := lim
ε→0

aiε(t) ∀i = 1, · · · , N.

Denote

νε(t) = | ln ε|−1eε(dε)(x, t)dx.

The energy law (1.5) implies that νε(t) is a bounded Radon measure for t ∈ R+ and
Lemma 3.3 implies that

νε(t)
∗→ π

N∑
i=1

δai(t), t ∈ [0, t0]

in the sense of Radon measures.
The next lemma concerns the regularity of the trajectories of vortices.

Lemma 3.4. For every i ∈ {1, · · · , N}, ai(·) is a Hölder continuous function with the
Hölder exponent 1

4 on [0, t0]. In particular aiε(t) converges to ai uniformly on [0, t0].

Proof. For any fixed i and for any 0 < s < t < t0 with t− s being sufficiently small, there
is a smooth function φ with suppφ(x) ⊂ Bσ(bi) such that

φ(ai(t)) = 2, φ(ai(s)) = 1, ‖∇φ‖L∞ = |ai(t)− ai(s)|−1.

As a consequence, the function φ(x) is bounded by

‖φ‖L∞ ≤ σ‖∇φ‖L∞ ≤ σ|ai(t)− ai(s)|−1.

Moreover for any t ∈ [0, t0],

φ2(ai(t)) = lim
ε→0

1

π

∫
Ω
φ2(x)dνε(t). (3.16)

The definition of νε(t) gives

d

dt

∫
Ω
φ2dνε(t) = −| ln ε|−1

∫
Ω
φ2|∂tdε + uε · ∇dε|2dx− | ln ε|−1

∫
Ω
∂jφ

2∂tdε · ∂jdεdx

+ | ln ε|−1

∫
Ω
φ2(∂tdε + uε · ∇dε) · (uε · ∇dε)dx

≤ −1

2
| ln ε|−1

∫
Ω
φ2|∂tdε + uε · ∇dε|2dx

+K| ln ε|−1‖∇φ‖2L∞
∫

Ω
|∂jdε|2dx

+K| ln ε|−1‖φ‖2L∞‖uε‖2L∞(Ω)

∫
Ω
|∂jdε|2dx,
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which yields, as 0 ≤ s ≤ t∫
Ω
φ2dνε(t)−

∫
Ω
φ2dνε(s)

≤ K‖∇φ‖2L∞(t− s)
(

sup
τ≥0
| ln ε|−1

∫
Ω
|∇dε|2dx

)
+K‖φ‖2L∞

(∫ t

s
‖uε‖2L∞(Ω)dτ

)(
sup
τ≥0
| ln ε|−1

∫
Ω
|∇dε|2dx

)
.

The global energy estimate (1.5) implies∫
Ω
|∇dε|2dx ≤ K(| ln ε|+ 1),∀t ≥ 0

and the uniform estimate (2.3) yields

sup
τ≥0
‖u‖2L2(Ω)(τ) +

∫ ∞
0
‖∆u‖2L2(Ω)dτ ≤ K.

Using ‖u‖2L∞ ≤ ‖u‖L2‖∆u‖L2 , we have

sup
τ≥0
| ln ε|−1

∫
Ω
|∇dε|2dx+ (t− s)−

1
2

∫ t

s
|uε|2L∞(Ω)dt ≤ K.

Therefore, ∫
Ω
φ2dνε(t)−

∫
Ω
φ2dνε(s) ≤ K‖∇φ‖2L∞(t− s) +K‖φ‖2L∞

√
t− s,

which, combined with (3.16), yields

φ2(ai(t))− φ2(ai(s)) ≤ K‖∇φ‖2L∞(t− s) +K‖φ‖2L∞
√
t− s (3.17)

for all 0 ≤ s ≤ t ≤ t0. The Hölder continuity of ai(t) with Hölder exponent 1
4 follows from

the definition of φ and (3.17). The uniform convergence of aiε follows from the Hölder
continuity of ai(t) on [0, t0]. �

3.2. Hopf differential. Recall that in the introduction, we introduce the Hopf differential

ω(d) =

∣∣∣∣ ∂d∂x1

∣∣∣∣2 − ∣∣∣∣ ∂d∂x2

∣∣∣∣2 − 2i
∂d

∂x1
· ∂d
∂x2

,

and the potential function

W (d) =
1

4ε2
(1− |d|2)2.

A straightforward computation shows that any solution of

∂td+ u · ∇d = ∆d+
1

ε2
(1− |d|2)d

satisfies
∂ω(d)

∂z
=

∂

∂z

(
2W (d)

)
+ 2

∂d

∂z
(∂td+ u · ∇d), (3.18)

where, as usual,

∂

∂z
=

1

2

(
∂

∂x1
+ i

∂

∂x2

)
and

∂

∂z
=

1

2

(
∂

∂x1
− i ∂

∂x2

)
.
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In terms of Lemma 2.2, for any given time t ∈ R+, the limit of the scaled measure
| ln ε|−1ω(dε) is a sum of Dirac measures with concentration on the locations of vortices.
However the differential identity (3.18) implies that the measure limε→0 | ln ε|−1ω(dε) ac-
tually vanishes.

Lemma 3.5. Under the same conditions as in Theorem 1.1, the scaled measure | ln ε|−1ω(dε)
converges to 0 in the sense of Radon measures. In other words, for any φ ∈ C(Ω× R+),

lim
ε→0

∫
R2×R+

| ln ε|−1ω(dε)φ(x, t)dxdt = 0.

Proof. Lemma 2.2 implies that the limit of | ln ε|−1ω(dε) is a sum of Dirac measure with
concentration on the locations of vortices {a1(t), · · · , aN (t)} for each fixed time. Since
these points are separated with each other, it is enough to consider one point, says a1(t).

At a1(t), we choose a smooth spatial cut-off function φ(x) ∈ C∞0 (Bσ(a1(t))) with φ(x) =
1 as x ∈ Bσ/2(a1(t)). For any smooth function ψ(t) ∈ C0(R+), we multiply the identity

(3.18) by x1φ(x)ψ(t) and integrate on R2 × R+ to obtain∫ ∞
0

∫
Bσ(a1(t))

∂ω(dε)

∂z
x1φ(x)ψ(t)dxdt

=

∫ ∞
0

∫
Bσ(a1(t))

∂

∂z

(
2W (dε)

)
x1φ(x)ψ(t)dxdt

+ 2

∫ ∞
0

∫
Bσ(a1(t))

∂dε
∂z

(∂tdε + uε · ∇dε)x1φ(x)ψ(t)dxdt.

(3.19)

Integration by parts gives∫ ∞
0

∫
Bσ(a1(t))

∂ω(dε)

∂z
x1φ(x)ψ(t)dxdt

= −
∫ ∞

0

∫
Bσ(a1(t))

ω(dε)
∂(x1φ(x)ψ(t))

∂z
dxdt

= −1

2

∫ ∞
0

∫
Bσ(a1(t))

ω(dε)φ(x)ψ(t))dxdt−
∫ ∞

0

∫
Bσ(a1(t))

ω(dε)
∂φ(x)

∂z
(x1ψ(t))dxdt

(3.20)

and∫ ∞
0

∫
Bσ(a1(t))

∂

∂z

(
2W (dε)

)
x1φ(x)ψ(t)dxdt

= −
∫ ∞

0

∫
Bσ(a1(t))

(
2W (dε)

)∂(x1φ(x)ψ(t))

∂z
dxdt

= −1

2

∫ ∞
0

∫
Bσ(a1(t))

(
2W (dε)

)
φ(x)ψ(t)dxdt−

∫ ∞
0

∫
Bσ(a1(t))

(
2W (dε)

)
x1ψ(t)

∂φ(x)

∂z
dxdt.

(3.21)



18 ZAIHUI GAN, XIANPENG HU, FANGHUA LIN

The identity (3.21), combined with the uniform bound
∫

ΩW (dε)dx ≤ K in Lemma 2.2,
implies that

| ln ε|−1

∣∣∣∣∣
∫ ∞

0

∫
Bσ(a1(t))

∂

∂z

(
2W (dε)

)
x1φ(x)ψ(t)dxdt

∣∣∣∣∣→ 0 as ε→ 0.

Since the limit of | ln ε|−1ω(dε) is a Dirac measure at locations of vortices and ∂φ(x)
∂z vanishes

at Bσ/2(a1(t)), we have

| ln ε|−1

∫ ∞
0

∫
Bσ(a1(t))

ω(dε)
∂φ(x)

∂z
(x1ψ(t))dxdt→ 0 as ε→ 0.

Moreover the uniform estimate (2.3) implies

| ln ε|−1

∣∣∣∣∣
∫ ∞

0

∫
Bσ(a1(t))

∂dε
∂z

(∂tdε + uε · ∇dε)x1φ(x)ψ(t)dxdt

∣∣∣∣∣
≤ K| ln ε|−

1
2

(
sup
t∈R+

| ln ε|−1

∫
Ω
|∇dε(t)|2dx

) 1
2
(∫ ∞

0

∫
R2

|∂tdε + uε · ∇dε|2dxdt
) 1

2

≤ K| ln ε|−
1
2 → 0 as ε→ 0.

Therefore the identity (3.19), dividing by | ln ε| and using (3.20)-(3.21), implies

| ln ε|−1

∫ ∞
0

∫
Bσ(a1(t))

ω(dε)φ(x)ψ(t))dxdt→ 0 as ε→ 0

as claimed. �

In view of Lemma 2.2, the measures

νij(dε) = | ln ε|−1∂idε · ∂jdεdx

are well defined in the sense of Radon measures, and their limits are actually Dirac mea-
sures concentrated on the locations of vortices. Moreover Lemma 3.5 implies that the
matrix with the ij−th entry

νij = lim
ε→0

νij(dε)

is actually diagonal and ν11 = ν22. In other words, the matrix (νij) = νI, where I is the
identity matrix.

Remark 3.1. A similar identity as (3.18) for Hopf differential also hold true for the steady
and parabolic Ginzburg-Landau equations. Therefore the statement in Lemma 3.5 about
the matrix of Radon measures νij(dε) is still true for the steady and parabolic Ginzburg-
Landau equations.
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3.3. First momentum of energy and ODE (1.9). We calculate the first momentum
of eε(dε) near the vortices bi. In fact we have

d

dt

∫
Br(bi)

xeε(dε)φ(x)dx

= −
∫
Br(bi)

x|∂tdε + uε · ∇dε|2φ(x)dx+

∫
Br(bi)

x(∂tdε + uε · ∇dε) · (uε · ∇dε)φ(x)dx

−
∫
Br(bi)

∂tdε · ∂ldε∂l(xφ(x))dx+

∫
∂Br(bi)

x
∂dε
∂~n
· ∂tdεφ(x)dx,

(3.22)

where φ(x) is a positive smooth function in R2. Next we choose φ(x) ∈ C∞0 (Br(bi)) with
φ(x) = 1 as x ∈ Br/2(bi) in (3.22) with r = σ and integrate with respect to t on [0, t] to
get

| ln ε|−1

∫
Bσ(bi)

xeε(dε)(x, t)φ(x)dx− | ln ε|−1

∫
Bσ(bi)

xeε(dε)(x, 0)φ(x)dxds

= −| ln ε|−1

∫ t

0

∫
Bσ(bi)

x|∂tdε + uε · ∇dε|2φ(x)dxds

+ | ln ε|−1

∫ t

0

∫
Bσ(bi)

x(∂tdε + uε · ∇dε) · (uε · ∇dε)φ(x)dxds

− | ln ε|−1

∫ t

0

∫
Bσ(bi)

∂tdε · ∂ldε∂lxφ(x)dxds− | ln ε|−1

∫ t

0

∫
Bσ(bi)

∂tdε · ∂ldεx∂lφ(x)dxds.

(3.23)

The uniform estimate (2.3) implies that the first term in the right hand side of (3.23)
tends to zero as ε→ 0. For the second term in the righthand side of (3.23), we have

| ln ε|−1

∣∣∣∣∣
∫ t

0

∫
Bσ(bi)

x(∂tdε + uε · ∇dε) · (uε · ∇dε)φ(x)dxds

∣∣∣∣∣
≤ K| ln ε|−1

∫ t

0
‖∂tdε + uε · ∇dε‖L2(Ω)‖uε‖L∞‖∇dε‖L2(Ω)ds

≤ K| ln ε|−
1
2 ‖∂tdε + uε · ∇dε‖L2(Ω×R+)

(
sup
t≥0
| ln ε|−1‖∇dε‖2L2(Ω)

) 1
2
(∫ t

0
‖uε‖2L∞

) 1
2

≤ K| ln ε|−
1
2

(
sup
t∈R+

‖u‖L2(Ω)

) 1
2

t
1
4 ‖∆u‖

1
2

L2(Ω×R+)

→ 0 as ε→ 0.

The fourth term in the righthand side of (3.23) is equal to the sum of

−| ln ε|−1

∫ t

0

∫
Bσ(bi)

(∂tdε + uε · ∇dε) · ∂ldεx∂lφ(x)dxds (3.24)
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and

| ln ε|−1

∫ t

0

∫
Bσ(bi)

uε · ∇dε · ∂ldεx∂lφ(x)dxds. (3.25)

Due to the convergence of | ln ε|−1|∇dε|2 to a sum of Dirac measures and ∇φ vanishes near
the vortices, the quantity (3.25) converges to zero as ε→ 0. For the quantity (3.24), there
follows

|(3.24)| ≤ K| ln ε|−
1
2 ‖∂tdε + uε · ∇dε‖L2(Ω×R+)

(
sup
t≥0
| ln ε|−1‖∇dε‖2L2(Ω)

) 1
2

t
1
2

≤ K| ln ε|−
1
2 → 0 as ε→ 0.

For the third term in the righthand side of (3.23), it can be decomposed into the sum of
two terms:

−| ln ε|−1

∫ t

0

∫
Bσ(bi)

(∂tdε + uε · ∇dε) · ∂ldε∂lxφ(x)dxds (3.26)

and

| ln ε|−1

∫ t

0

∫
Bσ(bi)

(uε · ∇dε) · ∂ldε∂lxφ(x)dxds. (3.27)

We can proceed as in (3.24) to verify that (3.26) converges to zero as ε→ 0. In terms of
Lemma 3.5 and the fact that uε(t) ∈ H2

0 (Ω) ⊂ C(Ω), for each time t, we know that

Iε(t) = | ln ε|−1

∫
Bσ(bi)

(uε · ∇dε) · ∂ldε∂lxkφ(x)dx→
∫

Ω
uj(x, s)νjk(s)dx = uk(ai(s), s).

Since Iε(t) is bounded as a function of t, the dominated convergence theorem implies that

(3.27)→
∫ t

0
uk(ai(s), s)ds.

For the quantities in the left hand side of (3.23), as ε→ 0, it converges to ai(t)− ai(0).
Therefore letting ε→ 0 in (3.23), we arrive at

ai(t)− ai(0) =

∫ t

0
u(ai(s), s)ds. (3.28)

The desired ordinary differential equation (1.9) follows from (3.28) by taking the derivative
with respect to t in the sense of distributions since ai(t) is Hölder continuous.

3.4. Proof of Theorem 1.1. We focus on the time interval [0, t0], where t0 is given in
Lemma 3.3. The conclusion for all t ∈ R+ follows from the classical iteration since at t0
all requirements in (2.5)-(2.8) are satisfied and we can use the data at t0 as the initial data
to continue on [t0, 2t0].

For any sequence εm ↘ 0, there is a subsequence (still denoted by εm) so that dεm(x, t)→
d(x, t) weakly in H1

loc(Ω \ ∪Ni=1{bi} × R+) and strongly in L2
loc(Ω × R+) due to the fact

that |dε| ≤ 1. Moreover |d(x, t)| = 1 a.e. in Ω× R+.
In term of the uniform estimate (2.3), the velocity (vε,uε) converges weakly to (v,u)

in L2(Ω× R+) and L∞(R+, H1
0 (Ω)) ∩ L2(R+, H2(Ω)) respectively. Due to the identity

dε ∧ (∂tdε + uε · ∇dε) =
2∑
j=1

∂j(dε ∧ ∂jdε) in Ω× R+,
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we take the limit as εm ↘ 0 to get, using |d|(x, t) = 1 a.e.,
∂td+ u · ∇d = ∆d+ |∇d|2d in Ω \ ∪Ni=1{bi} × R+,

d(x, 0) =
∏N
i=1

x−bj
|x−bj |e

ih0(x),

d = g on ∂Ω× R+.

We remark that in the limit of dε ∧ (∂tdε + uε · ∇dε), the strong convergence of dε away
from the vortices and the divergence free condition divu = 0 are applied. More precisely,
due to the incompressibility, one knows ∂tdε + uε · ∇dε = ∂tdε + div(uεdε) and hence
its weak limit in L2(R2 × R+) takes the form ∂td + div(ud) = ∂td + u · ∇d by applying
the Aubin-Lions lemma. This, combined with the strong convergence of dε, yields the
convergence of dε ∧ (∂tdε + uε · ∇dε) away from vortices as claimed.

The Hölder continuity of ~a(t) with the exponent 1
4 follows from Lemma 3.4 and the

evolutional equation (1.9) of ~a(t) is justified in (3.28). Moreover as a consequence of the
identity (3.23), the trajectories of ai(t) is indeed 3

4− Hölder continuous since∫ t

0
‖u‖L∞dxds ≤ K

(
sup
t∈R+

‖u‖L2

) 1
2
(∫ ∞

0
‖∆u‖2L2dxds

) 1
4

t
3
4 ≤ Kt

3
4 .

Since the images d(x, t) lie in the unit circle, the function d(x, t) is smooth in Ω \
{b1, · · · , bN} × R+. Moreover, by Lemma 3.1, we know that for any t > 0, the degrees
deg(d(·, t), ∂Bσ(bj)), 1 ≤ j ≤ N are well-defined and all equal to 1 by the property (2.6).
Therefore we could write

d(x, t) =
N∏
j=1

x− bj
|x− bj |

eih(x,t).

The differential equation (1.9) implies that

∂tθ(x− ai(t)) = −∂xjθ(x− ai(t))∂t(ai(t))j = −uj(ai(t), t)∂xjθ(x− ai(t))
= −u(ai(t), t) · ∇θ(x− ai(t)),

and hence a direct computation shows that the function h(x, t) satisfies
∂th(x, t) + u · ∇(Θ(x, t) + h(x, t)) +R(x, t) = ∆h(x, t) in Ω \ {b1, · · · , bN} × R+,

R(x, t) = −
∑N

i=1

(∏N
i 6=j θ(x− aj(t))

)
u(ai(t), t) · ∇θ(x− ai(t)),

h(x, t) = h0(x) on ∂Ω× R+,

h(x, 0) = h0(x),

(3.29)
where Θ(x, t) is a multivalued-harmonic function on Ω so that

eiΘ(x,t) =
N∏
i=1

x− ai(t)
|x− ai(t)|

=
N∏
i=1

θ(x− ai(t)).

We are left to verify that the function h(x, t) satisfies the equation (3.29) in Ω × R+,
and that the function h(x, t) is determined by the limit of the whole family dε instead of
a special subsequence dεm .
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Proposition 3.1. The function h(x, t) in (3.29) satisfies

sup
t≥0
‖∇h(x, t)‖2L2(Ω) ≤ K, (3.30)

where K depends only on g, A,B,C, and Ω. Consequently, there follows

dε(x, t)→
N∏
i=1

x− bj
|x− bj |

eih(x,t)

in L2
loc(Ω× R+) and weakly in H1

loc(Ω \ {b1, · · · , bN}) as ε→ 0.

Proof. It is sufficient to verify the estimate (3.30) by justifying the conditions in Lemma
3.2. The estimate (3.7) is a direct consequence of the Ginzburg-Landau theory, see for
instance Theorem V.1 in [3]. The estimate (3.9) follows from the fact that the vortices
~a(t) are away from the boundary ∂Ω.

For the estimate (3.8), we fix i ∈ {1, · · · , N} and we set

l(i) = inf

{
r

∫
∂Br(ai(t))

eε(dε)(x, t)dH1(x) : r ∈ [ε,
√
ε]

}
.

Since

µε(t)({x ∈ Ω : |x− aεi (t)| ∈ [
√
ε, λ
√
ε]}) ≤ µε(t)(Ω√ε) ≤ K + 2πN | ln

√
ε|,

we have

l(i)| ln
√
ε| ≤

∫ √ε
ε

l(i)

r
dr ≤ µε(t)({x ∈ Ω : |x− aεi (t)| ∈ [

√
ε, λ
√
ε]}) ≤ K + 2πN | ln

√
ε|.

Therefore l(i) ≤ K as ε is sufficiently small and hence∫
∂Bδ(a

ε
j(t))

eε(dε)dH1(x) ≤ K

δ

for some δ ∈ (ε,
√
ε), which we can take δ to be

√
ε for simplicity, see Theorem 2.4 in

[8]. �
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