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Abstract

By using distribution dependent Zvonkin’s transforms and Malliavin calculus,
the Bismut type formula is derived for the intrinisc/Lions derivatives of distribution
dependent SDEs with singular drifts, which generalizes the corresponding results
derived for classical SDEs and regular distribution dependent SDEs.
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1 Introduction

Due to wide applications in the study of nonlinear PDEs and particle systems, dis-
tribution dependent stochastic differential equations (DDSDEs for short), also called
McKean-Vlasov or mean-field SDEs, have been intensively investigated, see for instance
(7,10, 11, 4, 5, 16, 6, 12, 14, 17, 18, 19, 20, 21, 24] among many other references.
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To characterize the regularity of DDSDEs, Bismut formula and derivative estimates
have been presented for the distribution of solutions with respect to initial data, see for
instance [27, 2, 13, 23, 3, 25]. See also [12] for the study of decoupled SDEs where the
distribution parameter is fixed as the law of the associated DDSDE, and the resulting
regularity estimates apply to the DDSDEs as well (see Remark 2.2 below).

In this paper, we aim to establish Bismut formula for the Lions derivative of singular
DDSDEs, such that existing results derived in more regular situations are extended. This
type formula was first found by Bismut [8] in 1984 using Malliavin calculus for diffusion
semigroups on manifolds, then reproved by Elworthy-Li [15] in 1974 using martingale ar-
guments. Since then the formula has been widely developed and applied for SDEs/SPDEs
driven by Gaussian or Lévy noises. Recently, Bismut formula was established in [28] for
SDEs with singular drifts by using Zvonkin’s transform [29], which is a powerful tool
in regularizing singular SDEs. In this paper, we aim to extend this result for singular
DDSDEs.

Let 2 be the set of all probability measures on R?. Consider the following distribution-
dependent SDE on R%:

(11) dXt = (Bt + bt>(Xt, gXt)dt -+ O't(Xt)th7

where W, is the d-dimensional Brownian motion on a complete filtration probability space
(Q, Z,P;{F: }1>0), L, is the law of X; under P, and

B,b:Ry xR'x 2 5 R% o:R, xR = R R
are measurable. We will consider the SDE (1.1) with initial distributions in the class

Py={pe P u-]*) < oo}

It is well known that £, is a Polish space under the Wasserstein distance

1

Wy (p,v) := inf (/ \x—y\%(dx,dy)) . M,V E Do,
TEE (u,v) RdxRd

where € (u, v) is the set of all couplings of p and v. In the following we will assume that

B is regular and b is singular in the space variable.

We call (1.1) strong (resp. weak) well-posed for distributions in &, i.e. for any initial
value Xy € L*(Q — R, Zy;P) (resp. initial distribution p € £%), if (1.1) has a unique
strong (resp. weak) solution with X. € C([0,00); %). When (1.1) is both strong and
weak well-posed (note that unlike in the classical setting, the strong well-posedness does
not imply the weak one), we call it well-posed. In this case, for any p € &, denote
(Pfu = Zx,)i>o0 for the solution (X;);>o with initial distribution Lx, = u € . For
any f € %,(RY), the class of bounded measurable functions on R?, we aim to establish
Bismut formulas for P, f(p) in p € &5, where

Pf(u) = (Prp) /f Pr)(dy), t>0.



To this end, we first recall the intrinsic/Lions derivatives for real functions on 2.
Definition 1.1. Let f: &, — R.

(1) If for any ¢ € L?(R? — R%; p),
flpo(dd+eg)™) — fu)

€

eR

1 N
D f(p) = lim

exists, and is a bounded linear functional in ¢, we call f intrinsic differentiable at
. In this case, there exists a unique D! f(u) € L*(R? — R% 1) such that

<D f( ) >L2 ,u)—Dqgf( ), ¢€L2(Rd—>Rd,ﬂ)

We call D! f(u) the intrinsic derivative of f at p. If f is intrinsic differentiable at
all u € &5, we call it intrinsic differentiable on &7, and denote

1D £l = 1D £ (1) 2 ( 10 \du).

(2) If f is intrinsic differentiable and for any u € %,

i flpo (Id+¢)~") — f(u) — DLf (1)
111
1]l 2y 20 16| 22 ()

=0,

we call f L-differentiable on Z,. In this case, D’ f(u) is also denoted by D f(u),
and is called the L-derivative of f at pu.

Then intrinsic derivative was first introduced in [1] on the configuration space over
a Riemannian manifold, while the L-derivative appeared in the Lecture notes [9] for the
study of mean field games and is also called Lions derivative in references.

Note that the derivative D! f(u) € L?*(R? — R% i) is p-a.e. defined. In applications,
we take its continuous version if exists. The following classes of L-differentiable functions
are often used in analysis:

(a) f € CH(P,) : if fis L-differentiable such that for every u € 925, there exists a
p-version DT f(u)(-) such that DT f(u)(x) is jointly continuous in (z, u) € RY x Z2,.

(b) feCHP) :if feCHP) and DY f(u)(z) is bounded.

(c) f e CYY(RY x £,) : if f is a continuous function on R? x &2, such that f(-, u) €
CHRY), f(x,-) € CYPPy) with Vf (-, pu)(z) and DEf(x,-)(u)(y) jointly continuous
in (z,y, 1) € RT x R? x 2,. If moreover these derivatives are bounded, we denote

feCH (R x 2,).

We will state the main result in Section 2 and prove it in Section 3.
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2 The main result

We will assume that b;(-, 1) is Dini continuous for which we introduce the following class
as in [26]:

1
9 = {gp 1 [0, 400) = [0, +00)|p* is concave and ¢ is increasing with / &ds < oo}.
0o S

The condition fol @ds < oo is known as the Dini condition. Clearly, for any a € (0, %)
the function ¢;(s) = s* is in Z. Let py(s) := m for constants 6 > 0 and ¢ > 0
large enough such that (32 is concave, then ¢, is also in 2. For any (real or R%valued)

function f on R, let

|f(z) = f(y)]
o(lz —yl)

For a function f : [0,00) X E'— R, where E is an abstract space, we denote

Ifll7ec == sup [fu(x)], T >0.

te[0,T]xE

flo= sup {|f<x>| n

z#y€ERY

}, pE .

Throughout this paper, we make the following assumption.

(H) For each t > 0 and z € R? by(z,-) € CH(P,) with DEb(x, 1u)(y) continuous in
(,y,p) € REX R x Py, By € CVYHRY x D2,), 0, € CHRY) is invertible, such that
for any T > 0,

[loll + llo ™| + 1B(0,00)| + [bly + I Vol + | D"b]| + [VB] + || D" B]| <00

)HT,oo

holds for some ¢ € 2, where dj is the Dirac measure at 0 € R%, [], is the modulus
of continuity in z € R%, and D¥ is Lion’s derivative in y € Z2,.

The following is a simple example for b satisfying (H).

Example 2.1. Let h(z) = arctan|z|*,z € R? for o € (0,3), let f = (f1,++, fm) €
CEHRER™) for some m > 1, and let

F:[0,T] x R x R™ — R
be measurable and locally bounded such that

c:= sup {]&Ft(r, 2)| + |V F(r, Z>|} < 0.
]

reR,zeR™ te[0,T
Then
bt(x) = Ft(h(x)’u(f))7 M(f) = Jdp

Rd



satisfies (H). Indeed, we have

|b¢(, 1) — b (y, p)| < elh(z) — h(y)| < clz —y[*,

and .
Dth(lia :u) - Z <azth(h(x)7 Z)|z:u(f)a vfz>
i=1
satisfies
sup D by(z, )| < €D IV fillso < o0.
te[0,7),z€R, ue Py i=1

Remark 2.2. With the second inequality in (3.6) replacing [19, (27)], and with t re-
placing Ay in [19, (35)], the proof of [19, Theorem 1.1(2)] yields that (H) implies the
well-posedness of (1.1) for distributions in P5. We will show that this assumption also
ensures the intrinsic differentiability of Prf for T > 0 and f € %,(R?). To prove the
L-differentiability of Prf, we make the following additional assumption.

(C) For any T > 0, there exists p > 2 such that

sup |DE(b+ B)i(x, 1) (y)[Pu(dy) < oo

(t,2,1)€[0,T]xRix 25 J R
Obviously, (C) holds if DL (b;+B;)(x, 1) (y) is bounded in (¢, z, y, 1) € [0, T]xRIxR4x 2.
For any T > 0, let 7 := C([0,T];RY) be equipped with the uniform norm. For

e € (0,1) and n, Xy € L*(Q — R Zy;P), let {X;}i50 solve (1.1) with initial value
Xo + en. The main result of the paper is the following.

Theorem 2.3. Assume (H). Then the following statements hold.

(1) For any T > 0, the limit
N
(21) ant —- ll_r)% g()(t777 — Xt)

exists in L*(Q — 67;P), and there exists a constant Cp > 0 such that

te[0,7

(2.2) E ( sup |v77Xt|2> < CrEnf*, n,Xo € L*(Q = R, F; P).

(2) Prf is intrinsically differentiable for any T >0 and f € By(R?), and
T
23) DYPen) =B (100) [ (GaW) . e Puo e LRI RS
0
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holds for X; solving (1.1) with ZLx, = p, and
¢ = at(Xt)_l{g£V¢(XO)Xt + 6B [DY(By + by) (4, Lx, ) (X0) Vg(x0) Xt ‘y:Xt}

fort € [0,T] and g € CL([0,T)) with go = 0, gr = 1. Consequently, there exists an
increasing function C : [0,00) — (0,00) such that

[NIES

(2.4) I(DLRS) ()] s%{aﬁ(m—(aﬂw} >0

(3) Assume further (C). Then Prf is L-differentiable for any T > 0 and f € %,(RY).
As a result, for any t >0 and p,v € P,

(2.5) P p = Bvlar == sup [(Fu)(f) — (Fv)(f)] < %W2(u, V).

[ fllc<1

Remark 2.1. When b = 0, the Bismut formula and the L-differentiability of Prf for
any f € %,(R?) have been proved in [23]. This is now included in Theorem 2.3 as a special
case. When b # 0, to manage this singular term we have to use Zvonkin’s transforms
depending on the parameter in initial distributions.

Remark 2.2. For fixed p € &, consider the following decoupled SDE:

dX[PH =0 ( X, Prp)dt + of( XM, Prp)dWy, X3t =2 € R™.
Let pl(x,y) be the distribution density function of X;"*. Derivatives of p}'(x,y) in both z
and p have been presented in [12], where b and o are assumed to be n-Holder continuous
for some n € (0,1] with respect to the spatial variable. In particular, these estimates

imply estimates on DYP, f(u) for f € B,(RY). In fact, let P/ be the transition semigroup
of X;"*. Then we have

Pt = [ Pf@ntdn = [ fplte o).
n R" xR™
Consequently,
D"Pf(u)(z) = / F) D" (2, )(2) } dyu(dz) + | fy) Ve (2, y)dy.
R xR” R™
This combined with [12, (3.9),Theorem 3.6] yields

IDEPf (1) (oo < Cllflloc (tf% WJ%) |



3 Proof of Theorem 2.3

By (H), (2.3) implies that Prf is intrinsically differentiable for 7' > 0 and f € %,(R%),
and (2.4) holds for some increasing function C. Then (2.5) follows from the estimate (see

[9]):

(3.1) [f(1) = f()] < sup [ D"F(N)IWa(p,v), v € Py

YEP2
To prove (3.1), let X, Y be two random variables such that
Lx = My Ly = v, E’X o Y’2 = WZ(M?”)Q'

Then by taking X, = (1 — )X + sY for s € [0,1], (3.1) follows from the following chain
rule for distributions of random variables, which is taken from [3, Theorem 2.1], see also
9, Theorem 6.5] and [23, Proposition 3.1] for earlier results under stronger conditions.

Lemma 3.1. Let {XE}EG[OJ] be a family of random wvariables on R? such that XO =
lim.yo 2(X. — Xo) ezists in L*(Q — REP). Let f be a real function on P. If either
w = Lx, is atomless and f is L-differentiable at p, or f € C' in a neighborhood U of u
such that

IDEF() (@) < el + J2l), =€ R peU

holds for some constant ¢ > 0, then

i DT g ) 0x,), X,

Therefore, it suffices to prove Theorem 2.3(1), the formula (2.3), and Theorem 2.3(3).

3.1 Proof of Theorem 2.3(1)

We first explain that we may assume
3
(3.2) By(-, 1) € C}(RY), > IV/Bllre0 < 00, T >0.
j=1

Indeed, for 0 < p € C°(RY) with [g, p(z)dz =1, let

By(x, p) = /d Bi(y, mp(x —y)dy, t>0,z2 R ue Ps.
R

By (H), this implies (3.2) for B replacing B, and that B; — B, is bounded with ||V(B —
B)||7.00 < 00. By combining B, — B; with b, we may and do assume that B satisfies (3.2).



Next, we make the following distribution dependent Zvonkin’s transform to regularize
the SDE (1.1). For any A > 0,7 > 0 and fi € €1 .4, := C([0,T]; P2), let

b?(l’) = bt(x7ﬂt)7 Bf(l’) = Bt(x7/lt> te [O,T],l’ S Rd7
and consider the following PDE for uM : [0, 7] x R — R®:
1 A
(3.3) Ayup™ + §Tr(atafv2ut "+ A\ M = ), = 0.

To solve this equation, we consider the flow induced by B{‘ :
Obe = Bl oty ¥r(z) ==, t€0,T],z € R
By (3.2), v is a diffeomorphism on R? and
(34) sup Z {1V %tlloo + V70 Hloo } < o0
te[0,T],A€6T, 2, =1

Let

5e =/ (Vibe) " (ou07) (1) (Vi) 17,
= (T ) = 5 3 o) GOl(T) ™ T (T )

By [26], (H) and (3.4) imply that the PDE

1 ) )
(3.5) ou™ + §Tr(ata;v2ut "+ Vbuut B bl oy = Mat, ayt =0
has a unique solution with

lim  sup ||[VaM |1 =0, sup V20700 < 00
A0 ebr 5, A>0,4€6T, 2,

So, up™ = " o ;! solves (3.3) with

(3.6) lim sup ||Vu’\”l\|;r;OO =0, sup |’V2UA’ﬂ||T,m < Q.

A= (ebr, 5, A>0,1E€ 6T, 52,

By the uniqueness of (3.5) and that a solution u}™ to (3.3) also gives a solution )" :=
w0 1y to (3.5), (3.3) has a unique solution. By (3.4) and (3.6), there exists a universal
constant A\g > 0 such that

N 1 N
(3.7) sup || VUM || 7,00 < 5> Sup V2N 700 < Aoy A > Ao

PECT, 2, PECT, 2,
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For any p € &, let Xy be Fp-measurable with £x, = i, and simply denote
upt = u" for fi; = P, b(x) = by(x, Pfp), B(x):= By(x, Pu), (t,z)€[0,T] xR

Let 0" (x) = x + u)*(x). By (3.3) and Itd’s formula, we derive

(38) A0 (Xy) = { BI(Xy) + A (X) Yt + {(VO")o, }(X,) AW,
Then
(3.9) Y, = 0"(X,), tel0,T]

solves the SDE

(3.10) dY; = 0 (Yy)dt + 6(Y;) dWs, Yo = 037 (Xo)

where

(3.11) b= (B M) o (007, &)= {(V0 oy} o (0071, t e [0,T].
By (H) and (3.7), we have

(3.12) sup {||VB“||T,Oo + ||V&“||T,Oo} < 0.

KEP2
Let n, Xy € L*(Q — R? .%y; P). For any € > 0, let X solve the SDE
(3.13) AX7 = (B, + b)) (X7, Ly:)dt + 0(XO)AW,, XE = Xo +en.
By Ito’s formula and (3.11), Y§ := 6;"*(X¢) solves the SDE
gy BN T VOB b 2) - B U (67 () o
+ ol (YE)AW,, t € [0,T],Ys = 05" (X, + en).

Lemma 3.2. Under (H), the family {& = e 'Y — Vi) hepr)ce0,1) @5 L*-uniformly
integrable, i.e.

(3.15) lim sup E ( sup &7 1°1¢ sup §f|2>n}> =0.
te[0,T]

=00 £ (0,1] te[0,7]

Proof. By (3.1), (3.11), (3.12) and (3.14), we find a constant ¢ > 0 such that for any
e € (0,1], the Itd’s formula gives

(3.16) dIgF)* < (I + EIE 1) dt + el [*dME, t € [0,T], |&517 < elnl?,

9



for some martingale M; with d(M¢), < dt. By BDG’s inequality, this implies
(3.17) ]E[ sup |§§ﬂ < Bl &€ l0,1]
te[0,7)
for some constant ¢; > 0. Combining this with (3.16) we obtain
d{ [ Pe MDY < cey (Blyf?)e MO,

so that for . .
N.:= = sup &*M 4 _ sup e M,
2 sefo,1) s€[0,T]
we find a constant ¢s > 0 such that
D.:= sup |&2 < e |n|2N. + cci(Eln|?)Te N.
(3.18) Xy
< e(Inf* + Eln*) N, € € (0,1].

For any n > m > 1, by BDG’s inequality and d{M¢), < dt, we find a constant K > 0
such that this implies

E(D: — can)" < E[((In]* + Elnf*)N. —n)*]
< omB {1y spp<my (Ne = n/m) "] + B[ (I + Enl*) L2 s pinpzm BN Fo)

Comn
< ]E(NEZ) + KE[(|77|2 + E|n|2)1{\n|2+ﬂﬂ|n\2>m}}7 €€ (07 1]
n/m
Taking supremum with respect to € € (0, 1] on both sides, and letting first n — oo then
m — oo we finish the proof. O

For (L-)differentiable (real, vector, or matrix valued) functions f on R¢ and g on £y,
let

(319)  E50) = (9(L) — 0(£x,) ~ E{D (£ )(X), VM) (V).
(3.20) =) = () ~ F(0) = Ve f(Y), <> 0,0 € [0,7].

The following lemma can be proved by using Lemma 3.1, (3.2) and the argument in the
proof of [23, Lemma 3.4], we omit the details to save space.

Lemma 3.3. Assume (H). For any function f € CY(R?) and g € CH(P3) with ||V fl|ee +

sup || DFg(u)|| < oo, there exists a constant C > 0 such that
HEP

S50)° < CIVFILIEP, [E5(0 < CID gILEIEP, te[0,T],

—g
and
: —e 2 —e 2\
lin(E[Z5(1) + [25()) =0, € [0,7)

10



Lemma 3.4. Assume (H). Then the limit
N .
(3.21) V.Y = lim = (F — Y))
exists in L*(Q — 6r;P), and is the unique solution to the linear equation

t
o = [V (Xo)n + / {Vabi(v) + Fe(X.)vl fds
(3.22) . 0
+/ Vdt (Y,) AW, ¢ € [0,T),
0

where for any random variables X,v on R and s € [0,T],

(323)  FE(X)v:= (V) (X)E[DX(B. + b)(y, L) (X)(VO) " (X)]|

y=X"

Consequently, for any p > 1 there exists a constant ¢ > 0 such that

(3.24) E( sup |V, Y|”

t€[0,7

Fo) < (Il + EIn)%), 0, Xo € L3 — RY, F;P).

Proof. For the existence of V,Y; in L*(Q — €r; P), it suffices to verify

(3.25) lim E( sup |¢ ~ &) =0.

E,(S*)O tE[O,T]

By (3.23), (3.14) and (3.20), we obtain
1 t t
(3.26) & = 2O (Xo+=n) — 0" (X)) + [ Azds+ [ Braw,
0 0
where for (Z,Z) in (3.19) and (3.20),

Az = HLBHOT) — ) + [V + )0, 2) — BE - @) (V)

S

= Z5.(s) + Ve DA (V2) + FPXD)EE + {VOIM(X)YE, 100y (x:(5),

1
Be = —(00(Y7) = 00(Y5)) = Z5p(s) + Ve o (Vo).

Since || V2605"||oc < 0o due to (3.7), we have
0" (Xo +en) — 3" (Xo) 63" (Xo + 6n) — 0" (Xo) |2

li 0 = 0.
sgﬂJ E € 1 0

11



Moreover, by Lemma 3.3, (H) and (3.7) imply
Jim {5, 40050 () + [E5 ()] + 25, (s)I?
42 s O +1Z56) P+ 25 () + [FE(XE) — FECXDPY =0

Combining these with (3.26) and applying BDG’s inequality, we find a constant ¢ > 0
such that

t
limsupE| sup [& —§§|2] < c/ limsupE[ sup &5 —§§|2]dr, t 10,77
0

£,010 s€[0,t] £,010 s€[0,r]
Since Lemma 3.2 ensures

limsupE sup [|§§ - §§|2} < 00,
£,640 s€[0,T]

by Gronwall’s lemma we prove (3.25).
Finally, by (H), Lemma 3.3 and the definitions of F¥, V,Y;, A%, BS and the fact X, =
(0M)7L(Y}), we may let € | 0 in (3.26) to derive (3.22), which together with (H) implies

Elv/|* < aEn®, te€0,T].

Combining this with (3.22), (H) and BDG’s inequality, we prove (3.24) for some constant
c>0. O]

Proof of Theorem 2.3(1). By (3.21), Lemma 3.3 and (3.7), we can find a constant ¢ > 0
such that

. 1 - i
lim ( sup |=(X7 = Xo) = {V(6;") " HY)V, Y )
=0 teo,1] | €
. L ity - . ’
—limE ( sup |=((6;") 71 (YF) = (7)1 (Y) = {V(6;") T H YD)V, Y )
=0 teo,1] | €
<climE sup [& — V,Y;|* = 0.
=0 4ef0,1)
This implies
N . _
(3.27) Vi Xy 1= lim — (X7 = Xe) = (V") HY)V,Y,
exists in L?(Q2 — €r; P), together with (3.7) and (3.24), yields (2.2). O

12



3.2 Proof of (2.3)
Lemma 3.5. Assume (H). Let k € [0,T) and g € CL([0,T]) with g = 0 and gr = 1.

Then
VL E(f(Yr)|F) = lim E(f(Y7) = f(Y7)|F%)
(3.28) . c
- E(f(YT)/k (¢, dwy) %), f e By(RY, € L2(Q — R, Fy: P),
where
(3.29) ¢ = at(Xt)*l{géant + GE[DY(B, +b,)(y, Zx,)(X1)V, Xt]\yzxt}.

Consequently, it holds
E(f(XT) — f(X7)|-Fk)

3

5?) f € ByRY, € LX(Q - RY, Fy;P),

VoE(f(X7)[F) = lim

(3.30) _ E(f(XT) /kT@;v, dw,)

Proof. Simply denote v, = ¢,V,)Y; for t € [0,T]. By Ito’s formula, (3.22) and (3.27), we
obtain

dv, =V, 0" (V) dt + V,,6(Y;) AW, + gluv,dt

(3.31)
+ gtvei\yu(Xt)E[DL(Bt + bt)(ya gXt)(Xt)VnXt”y:Xtdta Vi = 07 le [kv T]

On the other hand, let b, = [, (ds for t € [k, T]. By (3.12) and [22, Theorem 2.2.1], the
Malliavin derivative D,Y; of Y; along h satisfies

ADLY; = Vp,y, 0t (Y,)dt + Vp, v, (Y) AW, 4 6/(Y;) dhy, DYy, = 0,t € [k, T).

By the definition of h we see that D,Y; solves (3.31), so that the uniqueness implies
v, = DY, In particular, V,Yr = v} = D,Ypr. Thus, for any f € C}(R?), by the
dominated convergence theorem due to (3.24), and the integration by parts formula for
Malliavin derivative ([22, Lemma 1.2.1]), we obtain

VoE(f (Y1) Fk) = B(V f(Y7)|F)

=E(Vp,vy f(Y1)|F)
— B(D ()| = B(1(Yr) [ (G2, i) |7

So, (3.28) holds for f € C}(R?). By an approximation argument (see [23, Page 4764]),
the formula also holds for f € %,(R%). Since 6 = Id, we have (X7, X5) = (Y7, Y5) so
that this implies (3.30).

O]
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Proof of (2.3). Let n = ¢(Xy). We have
gxg = $X0+5¢(X0) =po(Id+ 8¢)71, e €[0,1].

Moreover, (3.29) with n = ¢(X,) implies ¢/ = ¢ for ¢/ in (2.3). So, letting k = 0 in
(3.30) and taking expectation on both sides, we prove (2.3). ]

3.3 Proof of Theorem 2.3(3)
Let uM" solve (3.3) for i € 67 5, We first characterize the Lipschitz continuity of u**
in pu.

Lemma 3.6. Assume (H) and let T > 0. There exists a constant ¢ > 0 such that for
any I[:L’ vE C([O7T]a 4@2>7

T ef)\(tfs)
s Vt—s

Proof. Let Pslft be the Markov semigroup associated with the SDE:

(3.32)  |lud® — ud?||oe + || Vud? — VUl ||o < ¢ Wo(fie, y)dt, s € 1[0,T).

dX,; = {Bl + /N X, )dt + 0p( X, )dW;, t > s> 0.
By (2.4) with B+b= B” +b” and u = 6, for x € R we find a constant ¢; > 0 such that

. 1
3.33 VP fllo <
(33 VPl < o

Next, by Duhamel’s formula, the unique solution to (3.3) satisfies

1 flloos f € Bp(RY),0<s<t<T.

T
MNi —\(t—s) pi o At fi - ,
US - / (§ Ps,t(vaﬁ-b?—B?—b?ut ‘l— bt )dt, M S CKT“gJQ.
S

Moreover, by (3.1) and (H), we find a constant ¢ > 0 such that
|BE +0f = B = blloc < Wa(ju,in), ¢ €[0,7].
Combining these with (3.7) and (3.33), we find a constant ¢ > 0 such that

T
(i 1% —A(t—s 1% A0 7 1%
jud™ —u)?| < / | eI PV i gy B = b7)|dt
T
< 62/ ef/\(tfs)wﬂﬂt,ﬁt)dta

T
[Vuh — Vul?| S/ ‘eﬂ(tis)vpsu,t(VBﬁbffB?fbfutA’y U= )|t

S

T e—)\(t—s)
SCQ/ \/m WZ(IELt) ﬁt)dt, t e [07 T]

Therefore, (3.32) holds for some constant ¢ > 0. O

14



For r € [0,1],u € P, Xy € L322 — RY Fy; P) and ¢ € LA2(R? — R% ), let X7 be
the solution of (1.1) with initial value X = Xy + r¢(Xo), and denote

(3.34) py = Lxr, tel0,T].
We have
(335) :U'z(t) = ZLx,, Mg = $X0+T¢(Xo) =Hpo (Id + T¢)_17 re [07 1]7t S [07 T]

Let 0" :=1d 4+ u}*" for u}*" solving (3.3) with x" replacing /i, and let

(3.36) YS = 0 (XTHE), ree0,1),t € [0,T).
Then
(3.37) Y =Y =0M(X,), Y=Y =0 (XT), relo,1],tel0,T).

By (3.22) and (3.27) for the solution to (1.1) with initial value Xo+r¢(Xy) and n = ¢(Xo),
we obtain

(3.38) Voo X7 = (VO )Xo, o) = Vo) Y/,

t
U?7T — [veé)#r](XO —+ Tgb(Xo))Qb(Xo) + / va,ra'éﬂ (Y::) dWs
(3.39) . 0
+ / {vvf,rég(f{:) + F7 (X;")vf”"}ds, te[0,7], re[0,1],
0

where F* is defined in (3.23) with p" replacing pu.
Lemma 3.7. Assume (H).
(1) There exists a constant ¢ > 0 such that

(3.40) sup  Wa(ul, i) < cl|éllrzg, ¢ € L*(RY — R p).
r€[0,1],t€[0,7]

Moreover, for any p > 2 there exists a constant c¢(p) > 0 such that

i E( sup (V7 = YilP + [of" P + [ X} = XofP + | Voxo) X[ ") )970)
(3.41) ref0,1]  Ntel0,T)

< c(p)(|6(Xo)[” + 18ll72,)): ¢ € LAR? = RY o).
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(2) Let k €10,T) and g € CL([0,T]) with gv =0 and gr = 1. For any f € %,(R?) and
b€ 2R - RY ),

d ]E( (XT)‘/I@) — lim E(f(XYTj_s) — f(X;>|yk)
dr e—0 £
(3.42) T
~5(sexp) [ (namyiz). re o
k
holds for
(3.43) P = N X))Voxop Xy, r€[0,1],¢€[0,T],

where for X, v € L*(Q — R%:P),
(3.44) N(X)v:= at(X)’l{ggv + g EDE(B, + bt)(y,.,zﬂXxX)v\y:X}, t e [0, 7).

Consequently, it holds
d T
345 LPrefee G+ ro) ) =E( D) [ (@am)), re

Proof. (1) Recall that Y, = 0(X7). Since Wy (ul, pe)? < E|X7 — X,|?, (3.40) follows
from (3.17) and (3.7). To prove (3.41), let n = ¢(Xo) and denote u = Zx,. By (3.36) for
e =0, we have

(3.46) X7 =07, relo],telo,T],

and by (3.18),
e =Y =Y, te|0,T],ee]0,1].

Then (3.18), (3.32), (3.40), (3.39) and Lemma 3.4 with Y, u" replacing Y;, i respectively
E( sup {|YT YilP + o P}

imply
%)
te[0,T

< c<p>]E( sup {[V7 =Y+ 7 =V [} |7
te[0,T

< ¢(p) (|¢(Xo)[? + 101172, )

for some constant c(p) > 0. By (3.7) and (3.46), this implies (3.41).
(2) By (3.36) and Lemma 3.5 for Y;" replacing Y; and p” replacing u, we obtain

E(f(Y75) — Ef(YF)|F)
19

Voo B(f (Y1) F) = lim
(3.47) )
—E (s [ @ amlR), g e mE e DLk E T
k
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Combining this with (3.34), (3.36) and (3.37), we derive

r+ey _ ™\ | or
3 xplm) — i ELOE) — BT
i BUS 0 (07) Y (OFF) — E(f 0 (077) (V) .F)
el0 c

—(s00p) [ @ amyiz).

In particular, for k& = 0, taking expectation on both sides of (3.42), we get (3.45). Then
the proof is finished. O

Having Lemmas 3.6 and 3.7 in hands, we prove the L-differentiability of Prf as follows
by modifying step (c) in the proof of [23, Theorem 2.1].

Proof of Theorem 2.3(3). Let {Ctd)’r}re[o,l] be in Lemma 3.7. By (H), (3.41) and the Riesz
representation theorem, there exists v € L?(R? — RY; i) such that

T
<77 ¢>L2(,u) = ]E(f<XT>/O <<1?707 th>>> ¢ € LQ(Rd - Rd; :U’)

By (3.45) and (3.35), we obtain

|Prf(po(Id+¢)") — Prf(u) — (v, 0) 2]

191l 2
1 1
< oo
9l 22y Jo

dr

E (f(Xi?) / Lo awy — 1) / K f’o,dwg)
< 1(6) + £a(9) + 5(6),

where, by (3.43) and (3.38)

o 1 ! ry g 9,0 r
o) = o [ [B((rn = e [ e aw ) o
P 1 N N w5108 vy |
o0 = s 8] [N - NN e aw
L Hf”oo ! g r AuTy—1 rvqﬁm_ Ay —1 U¢ r
£(0) = ol JE [ o o — (907 (X} aw ar

So, it suffices to prove

lim  {e1(¢) +e2(8) +e3(¢)} =

||¢HL2(M)HO
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a) We first modify the proof of [23, (2.3)] to verify

(3.48) lim &(¢) = 0.

Hd’”L?(M)_)O

Denote

I ::/0 <Cf§’0,th>, [,f’r = |E[[k{f(X’}) - f(XT>}]|: k€ <O7T)7T S (07 1]'

By (3.42) with g, := % for ¢t € [k, T], (H), (3.27) and (3.41), and noting that I is
F-measurable, we find constants ¢y, ca > 0 such that

R =[e|n [ RGOS

A E(f(X:?) / (coe,aw ]

T T %
€ 2 €
501||f||oo/0 E{W(/k {IVoxo X | +E|V¢(X0)th2}dt) ]d5
< C2HfHOOH¢H%2(M)7 ke [07T)7 f € %baRd)

< E[Uk\ : %) de

So,

1
lim / Id)’rdr:()? k€ (OvT)'
161200 @l L2y Jo "

Combining this with (3.41) and (3.43), we obtain

81(@5) < dr

1
lim < lim —/
16120y —0 181120 —0 |1 L2y Jo

< fllVT —k, ke (0,T)

o6 - 1000) [ (6amy)

for some constant ¢ > 0. By letting k 1 T we prove (3.48).
b) For any ¢ € L2(RY — R%; u), s € [0,T] and r € [0, 1], let

hs,r(¢) = (E|DL(BS + bs)(y7 gX;)(X§> - DL(BS + bs)(z7$Xs)(Xs)|2)%’(%z):

(X5, Xs)

Noting that h,.(¢)* < 4(]|D¥B|* + |D*b||*) 10 due to (H), by (C), (3.41) and the
dominated convergence theorem, we obtain

(3.49) lm  hy,(¢) =0, sup sup D (9)? < 0.

161l 2 () =0 (s,m)€0,T]%[0,1] [|6]l L2(,,) <1
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Moreover, by (H) and (3.44), we find a constant ¢; > 0 such that

[Ns(X{)v — No(Xo)vl|

3.50 \ .
(350 < a{lX] = Xl(Jo] + (E[o])2) + hsr (9)(Elv]*)2 }, v € LX(Q = REP).

Combining (3.41), (3.49) and (3.50), we may find a constant c; > 0 such that the domi-
nated convergence theorem yields

1 T

. . Ca r

limsup es(¢) < limsup —/ E(/ {1021 + [10/l72() - 1XE = X

62,0 6120 91l L2(0) Jo 0
1

+ hs,r(¢)2||¢||iz(u)}ds> “ar

1 1
. C 1
< limsup —2— / {(E[ sup !vf]Q] +H¢Hiz(m)2(ﬂi
H‘bHL?(u) 0 s€[0,T]

||¢HL2(H)_>O

T 2
/ |XT — X3|2ds)
0

T 2
+ H¢||L2(u) (/0 Ehs,r(¢)2d3) }d?” =0.

(3.51) lim  e3(¢) = 0.

W)”LZ(H)HO

¢) It remains to prove

Noting that
[N(XD VO ) (XDl = (V) (X! }
< [l(VO)THXT) = (VO T XD [0f] + [of " = o] ]
+ B[ D (B, + o) (y, L (XD (VO ) THXT) = (VO T (XD Iof 1],_xy

+ B[ D (By + 0o) (y, Ly ) (XD = o7 1],y

according to BDG’s inequality, (3.41) and (3.7), it suffices to prove
B {B [+ DM+ 0y L) (XD supiepory 1 = o] | }
im

191l 2,y =0 D1l 22 ()
= 0.

By (C), this is implied by

=
(E SUP¢e0,7) |U§5’T - Uﬂ”’l) ’

lim =0.
1]l 2,y =0 161l 22(u)

(3.52)
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To prove (3.52), we observe that
[P (X" — FE(X)ve|
< RS (XDuET = FUXO0E"| + [FUX v — FUXDve| + [FEH X0 — FHX)v?|
= Ji1+ Jy+ Js.
By (3.23), (H), Lemma 3.6, (3.7) and (3.41), we find a constant ¢; > 0 such that
Ji S V(0 = 02 (XDE[D® (B, + ) (y, Ly ) (XD (V) XD y=x
< c1lldllzz
J2 < e1E[|D*(By + ) (y, Ly ) (X))o — o2 ]|

Moreover, similarly to (3.50), by (H), (C), (3.41) and (3.7), we find a nonnegative random
variables {hg,(®)}scom,refo) satisfying (3.49) such that

Js < he (D)0l 20
So, there exists a constant ¢y > 0 such that
[FI (X" = FIN(X)og|
< E[|D*(Bs + b)(y, L) (X)|Jd = ofll],_y,
+ea(hsr (@) + 19l 2 )10l L2y, 5 € [0, T, € [0,1].

Combining this with (H), (3.7), (3.32), (3.11) and (3.39), we find some constant ¢z > 0, a
martingale M with d(M"); < d¢ and nonnegative random variables {/h,(®)}scjo,7],rc[0,1]
satisfying (3.49) such that

[0 = 0| < el ¢ (Xo)[([19]] 2y + [VE™)(Xo + 76(Xo)) — [V *](X0))

+63/ {|v¢r v?| + E[|D*(B +b)(y7$XT)(XT)||U¢T—U |y Xr}ds

y=XI"

3.53
B83) / {har(@) (0] + 1]l 20) }ds

/{]v‘“— V| + hyy () 02| }AML |, t €[0,T],r € [0,1].

By BDG’s inequality, Hélder’s inequality, (3.41), (3.7) and (3.49), we find a constant
cs > 0 and e(¢) with Hmyg -0 e(¢) = 0 such that

Uy = sup |Uf7r_vf|pp%17 te [OvT]

s€[0,t]
satisfies .
1
B, < [61753,(6) + s | BUds+ 3BU;, te0.T),
By Gronwall’s lemma, we obtain (3.52) and the proof is completed. O
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