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Abstract

Sufficient and necessary conditions are presented for the comparison theorem of
path dependent G-SDEs. Different from the corresponding study in path indepen-
dent G-SDEs, a probability method is applied to prove these results. Moreover, the
results extend the ones in the linear expectation case.
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1 Introduction

The order preservation of stochastic processes is an important property for one to compare
a complicated process with simpler ones, and a result to ensure this property is called
“comparison theorem” in the literature. There are two different type order preservations,
one is in the distribution (weak) sense and another is in the pathwise (strong) sense, where
the latter implies the former.

Under the linear expectation framework, the weak order preservation has been investi-
gated in [2, 20, 21] and references within. There are also lots of results on the strong order
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preservation, see, for instance, [1, 4, 9, 10, 14, 15, 17, 18, 22, 23] and references therein
for comparison theorems on forward/backward SDEs (stochastic differential equations),
with jumps and /or with memory. Recently, the first author and his co-authors extend the
results in [9] to the path-distribution dependent case, one can refer to [8] for more details.

On the other hand, there are some results on the comparison theorem for G-SDEs,
see [11, 12, 13]. Some sufficient condition is presented in [11, Theorem 7.1] for compar-
ison theorem of one-dimensional G-SDEs. In [13], the authors obtain the sufficient and
necessary conditions for comparison theorem by the viability property of SDEs, which is
equivalent to the fact that the square of the distance to the constraint set is a viscosity
supersolution to the associated Hamilton-Jacobi-Bellman equation, see [13, Theorem 2.5]
and references therein for more details.

The aim of this paper is to present sufficient and necessary conditions of the or-
der preservations for path dependent G-SDEs and we provide a probability method to
prove them. The result extends the ones in [9] when the noise is a standard Brown-
ian motion. We will adopt the method in [9] to complete the proof. However, some
essential work needs to been done since the quadratic variation process (B) of the G-
Brownian motion B is not determined under G-expectation. More precisely, we need
to treat [ (h(s),d(B)(s)) — 2 [, G(h(s))ds which is well known as a non-increasing G-
martingale. This is quite different from the linear expectation case. Moreover, in the
proof of necessary condition of the comparison theorem, we will use the representation
theorem (2.3) below of the G-expectation introduced in [3, 7, 19], by which the order p-
reservation under G-expectation implies that in linear expectation case. Then the existed
result in [9] can be applied to prove the necessary condition on diffusion coefficients.

Before moving on, we recall some basic facts on G-expectation and G-Brownian motion
in the following section.

2 G-Expectation and G-Brownian motion

Let 2 = Cy([0,00); R™), the R™-valued and continuous functions on [0, c0) vanishing at
zero, equipped with the metric

=1
plw,w?) = Z— [max |w} — w?| A 11 , whw?eQ.

te[0,n]
For any T' > 0, set

Liy(Qr) ={w = p(wyy, - w,) :n € NT 1, -+ 6, € [0,T],0 € Chuip(R™)™)},
and

Lyp(Q) = | Lop(Qr),

T>0



where Cj;,((R™)") denotes the set of bounded and Lipschitz continuous functions on
((R™)™). We denote by |A|? = ||A||%¢ for any matrix A. For two m x m matrices M and

M, define

Let M™ be the collection of all m x m matrices and S™ (S7') be the set of the symmetric

(symmetric and positive definite) ones in M™. Fix two positive constants ¢ < ¢ and
define

1
(2.1) G(A) == sup (v,A), AeS™.

2 YEST N[22Lmn xm 2L xm]
It is not difficult to see that G has the following properties:
(a) (Positive homogeneity) G(AA) = A\G(A), A > 0,4 € S™.
(b) (Sub-additivity) G(A+ A) < G(A)+G(A), G(A) - G(A) < G(A—-A), A, AeS™
(©) 1G(A)] < HAISUD,esp gi1, 21,y 111 = SAIVTTT

(d) G(A) — G(A) > Ltrace[A — A], A> A, A, AeSm
Remark 2.1. (b) and (¢) imply that G is continuous.

Let E¢ be the nonlinear expectation on € such that coordinate process (B(t));so, i.e.
B(t)(w) = ws,w € £, is an m-dimensional G-Brownian motion on (Q, L5(2), EY), where
LL(€2) is the completion of L;,(€2) under the norm E¢|-|. One can refer to [19] for details
on the construction of E¢. For any p > 1, let L% (Q) be the completion of L;,(2) under
the norm (E¢| - |p)%. Similarly, we can define L% () for any T > 0.
Let
N-1
ME0,7]) = {mn = 3 &T0,0(8); & € LE(R), N € NV,

J=0

0:t0<t1<"'<tN:T},

and M%([0,T]) be the completion of ME’([0,T]) under the norm

1
_ T P
17l a2z, 0,17y == <EG/ !nt!pdt)
0

Let M be the collection of all probability measures on (2, Z(f2)). According to [3, 7],
there exists a weakly compact subset P C M such that

(2:2) EY[X] = sup Ep[X], X € Lo(®),



where Ep is the linear expectation under probability measure P € P. P is called a set
that represents E¢. In fact, let W° be an m-dimensional Brownian motion on a complete
filtered probability space (2, {%;}:>0,P), and define

H:={6: 0 is an M™-valued progressively measurable

stochastic process, 0,0% € [0°Luxm, 0 Luxm], s> 0},

here (-)* stands for the transpose of a matrix. For any 6 € H, define Py as the law of
Jo 0sdW?. Then by [3, 7], we can take P = {Py,0 € H}, i.e.

(2.3) EY[X] = supEp,[X], X € LL(Q).

The associated Choquet capacity to E¢ is defined by

C(A) =sup P(A), Aec B(Q).
PeP
A set A € B(Q) is called polar if C(A) = 0, and we say that a property holds C-quasi-
surely (C-q.s.) if it holds outside a polar set, see [3] for more details on capacity.

Finally, letting (B) be the quadratic variation process of B, then by the property (d)
and [16, Chapter III, Corollary 5.7], we have C-q.s.

d
(2.4) L < E<B>(1t) < s

3 Main Results

Let o > 0 be a constant and d > 1 be a natural number. € = C([—ry, 0]; R?) is equipped
with uniform norm || - ||o. For any continuous map f : [~79,00) — R? and ¢ > 0, let
ft € € be such that fi(s) = f(s+1t) for s € [—19,0]. We call (f;)i>0 the segment of

(f(t))tz—ro'
Consider the following path dependent SDEs:

51) {dX(t)

(t, Xi) dt + (h(t, Xo), d(B)(t)) + o(t, X) dB(t),

b
b(t, X;)dt + (h(t, X;),d(B)(t)) + o(t, X;) dB(t),

dX (1)

where

b,b:[0,00) x € =R h,h:[0,00) x € — (R" @ R™)%
0,6 :[0,00) x € — R'@R™

are measurable.



Without loss of generality, we assume that for any i = 1,--- ,d, h* and h? are symmet-
(h")*

5—— and Bi+gi)* respectively to symmetrize

ric. Otherwise, we can replace h? and ki by 2=
them.

For any s > 0 and &, € €, a solution to (3.1) for t > s with (X, X,) = (£,€) is a
continuous process (X (t), X (¢))s>s such that for all ¢ > s,

X(¢) —5(0)—1—/ b(r,Xr)dr—l—/ (h(r, XT),d<B>(7")>+/ o(r, X, )dB(r),

X (1) =§(0)+/ b(r,)_(r)dr%—/ <h(r,X,,),d<B)(r))+/ a(r, X,)dB(r),

where (X;, X;);>s is the segment process of (X(t), X(t))i>s—r, With (X, X,) = (&,€).
Throughout the paper, we make the following assumptions.

(H1) There exists an increasing function a : R, — R, such that for any t > 0,£,n € €,

[b(t, €) = b(t,m)[* + [b(t, &) — b(t, n)|* + |h(t,€) — h(t,m)|* + |A(t, &) — h(t, )|
+lo(t,€) — ot n)llis + 15(t,8) — a(t, s < at)lE -l

(H2) There exists an increasing function K : R, — R, such that

|b(¢,0)% + |b(t,0)* + |h(t, 0)]* + |A(t,0)|* + |lo(t,0)||7g + 15(¢,0)||7rg < K(t), t>0.

Remark 3.1. According to [6, Lemma 2.1], under (H1)-(H2), the equation (3.1) is
strongly well-posed. For any s > 0 and &,& € €, let {X(5,6;t), X(5,&) }issp, denote
the unique solution to (3.1) with X, = & and X, = £. Moreover, the segment process
{X<Sv g)ta X(S7 g)t}tZS satisﬁes

(3.2) EY sup (|IX(5,€)ell3 + X (s, €)ell3) < 00, T € [s,00).

te(s,T)

To characterize the order preservation for solution of (3.1), we introduce the partial-order
on €. Firstly, for x = (z%,--- ,2%) and y = (v*,--- ,9%) € R we write v < y if 2 < ¢/
holds for all 1 <i < d. Similarly, for £ = (¢L,--- %) and n = (nt,--- ,n?) € €, we write
£ <nif&(s) < n'(s) holds for all s € [—rg, 0] and 1 < i < d. Moreover, for any &;,& € €,

&1 N& € € is defined by

(&N &) =min{é, &}, 1<i<d

Definition 3.1. The stochastic differential system (3.1) is called order-preserving, if for
any s > 0 and £, £ € € with £ <&, it holds C-q.s.

X(s,&t) < X(s,61), t > s.



We first present the following sufficient conditions for the order preservation, which
reduce back to the corresponding ones in [9] when the noise is an m-dimensional standard
Brownian motion and in [13] where the system is path independent.

Theorem 3.2. Assume (H1)-(H2). The system (3.1) is order-preserving provided that
the following two conditions are satisfied:

(1) Forany 1 <i<d, &n €€ with& <n and £(0) = n'(0),
b'(t,€) = b'(t, ) + 2G(R'(t,€) = h'(t,n)) <0, ae t>0.
(2) For a.e. t > 0 it holds o(t,-) = &(t,-) and o (t,&) = o¥(t,n) for any 1 < i < d,
1<j<m,&ned with £(0) = n'(0).

U]
Condition (2) means that for a.e. t >0, o(t,&) = 5(t,€) and (¢, €) only depends on
t and £°(0).
The next result shows that these conditions are also necessary if all coefficients are
continuous on [0,00) X €.

Theorem 3.3. Assume (H1)-(H2) and that (3.1) is order-preserving. If in addition,
b,h,o and b, h, are continuous on [0,00) X €, then conditions (1) and (2) in Theorem
3.2 hold.

These two theorems will be proved in Section 4 and Section 5 respectively.

4 Proof of Theorem 3.2

Assume (H1)-(H2), and let conditions (1) and (2) hold. For any T' > t, > 0 and &,£ € €
with £ < &, it suffices to prove

(4.1) EC sup (X'(to,&;t) — X'(to, &))" =0, 1<i<d,

te(to,T)
where sT := max{0, s}. In fact, by (4.1) and (2.2), for any P € P, it holds

(4.2) Ep sup (X'(tg, &) — X' (to, &) =0, 1<i<d.

te(to,T)

This implies ' N B
P{Xz(t(hé'at) > Xz<t07€;t)7 le [t07T]} = 07

from which we have

C{Xl<t0a§>t) > Xl(t0,€_7 t)? te [thT]} = 0.



So the order preservation holds. For simplicity, in the following we denote X(t) =
X(to,&;t) and X (t) = X (to,&;t) for t >ty — ro. Then it holds

(4.3) X(t) = €t —to), X(8) = &(t —to), ¢ € [to — o, o).

To prove (4.1) using It6’s formula, we take the following C-approximation of s* as in the
proof of [9, Theorem 1.1]. For any n > 1, let 1, : R — [0, 00) be constructed as follows:
Un(s) = (s) =0 for s € (—o0, 0], and

4n?s, s €10, 5],

’ 2n
Un(s) = —4n’(s — ), s €[5,
0, otherwise.

It is not difficult to see that
(4.4) 0 <) <1y, andasntoo: 0 <ah,(s) Tsh, spli(s) < Lig,1)(s) 4 0.

In view of ' N 4 B
(X" (to) = X*(to)) = ¥n(€°(0) = £°(0)) = 0,
and due to (2) o(t,-) = a(t,-) for a.e. t >0, it follows from It6’s formula that

Ya(X'(2) — X'(1))?

=2 ; /t (07 (5, Xs) — 0™ (s, X)){bnt, H X (5) — X'(s))dB ()

2 / (i (5, X.) — (5, ), d(B) () {thntt!} (X7 (5) — X(s))ds

to

(4.5) n Q/t (b'(s, X,) — b (s, X)) {0l H(X(s) — X'(s))ds
0 [ X () - X))
j=1,k=1"1t0

X (0%(s,X;) = 0% (s, X)) (0" (5, X;) — 0™ (s, X,))d(B) ju(5)
= M;(t)+ M;(t)+ I, + I,

forany n > 1,1 <17 <d and t > ty, where

Mi(0) =23 [ (075, X) = (5. Kbt} (X'(s) = X' (5)AB(s),

Mi(t) = 2/ ((h'(s, Xs) = B'(s, X,)), d(B) (s){nt)), HX " (5) — X'(s))ds

to

7



— 4 [ GHH(s) = X015, X0) = Bi(s, X))l
=2 [ (5,0 = ¥l S0 HX(5) = X (9)ds

+ 4/t G{hnt, HX(s) = X'(5))(h' (5, X,) = h'(s, X,))]ds,

= > t {nthy, + U7 HX (s) = X'(s))
x (09 (s, X,) — 0% (s, X)) (0% (s, Xs) — 0™ (5, X)) d(B) ju(s).

Noting that 0 < 4, (X'(s) — X'(s)) < 1

(xi(s)>Xi(sy and when X(s) > X'(s) one has
(Xs A X,)H0) = (X,)¥(0), it follows from (1)

hat for a.e. s € [to,T], and n > 1
(4.6) [b'(s, X AX,)—b' (s, Xo)+2G[h" (5, XsAX)—h' (s, X)|J[{thntt!, } (X (s) = X(5)) < 0.
In view of {¥, 1 }(X(s) — X(s)) > 0, it follows from the property (a) of G that

(4.7) Gl{¥nt }(X (5) — X'(s)) (W' (s, X) — h'(s, X,))]
- {¢n }( (S) XZ(S))G(hZ(S’XS) - Bi(sa Xs))

For simplicity, let ®" = {1,/ }(X!(s) — X(s)). Combining (4.6) with (4.7), (H1),
0 <! <1 and properties (b) and (c) of G, there exists a constant C'(T',5) > 0 such that
for any n > 1,t € [to, T1,

I =2 /tt[bi(s,xs) (s, X.) + 2G(hi(s, X.) — Bi(s, X)) ®"ds
<2 /tt[bi(s, X,) = bi(s, Xs A X,) +2G(h' (s, X,) — h'(s, X, A X,))|@"ds
o /t (s, X. A %) — B(s, X.) + 2G(hi (5, X A X.) — Bi(s, X.))]0nds
(48) <2 /t (5, X) — B(s, Xo A )+ 2G(h(s, X.) — hi(s, X, A X)]00ds
/t[bi(s X,) —b'(s, X A X,) + 2G(R' (s, X,) — h' (s, Xs A X))]ds
/ Un (X (s (s5))%ds

< / Co(T,5) || Xs — Xo A X% ds + /t Vo (X'(5) — X'(s))%ds

to

8



t
</ C(T,5)|[ X, — X A X2 ds,
to

here in the last step we used the fact ¢, (s) < s™. Next, by condition (2) in Theorem 3.2,
for a.e. s € [to,T)], 0% (s,X,) = 69(s, X,) and 0%(s, X,) depends only on s and X'(s).
So, (4.4), (H1) and the positive definite property of (B) yield

t
I S/ (hxi@)ii@)e(o,%)} + 1{X1’(s)—)’<i(s)6(0,oo)})

to

(49) X Z (O-ij(sv Xs) - Uij(sa Xs))(a-ik(sv Xs) - O-ik(sa XS))d<B>]k(S)

j=1k=1

< /tC’(T, ){(X(s) — X'(s))TY3ds, n>1,t€ [ty,T].

to

By the Burkholder-Davis-Gundy inequality in [5, Theorem 2.1} or [16, Lemma 8.1.12], we
deduce

EC sup M;(s)

s€|[to,t]

<o a)Be{ [ )00 - XD 3 106X - 05, X, P

1
2

N

(110) < C(T,0)EC ( [ ) = X6 P () - X"<s>>2ds)

t
< C(T, a)I‘EG/ 1 X — Xo A X, |2 ds
to

1- . _
+ g]EG sup Un(X'(s) — X'(s))?, n>1,t € [ty, T].

sE€[to,t]
Finally, since M; is a non-increasing G-martingale, we obtain from (4.7) that

(4.11) ES sup M;(s) <0.

sE[to,t]

Combining (4.5) with (4.8)-(4.11), and noting that ¢, (X*(r) — X*(r)) = 0,r € [to — ro, t]
due to (4.4), (4.3) and £ < &, we arrive at

EC  sup 9, (X'(r) — X'(r))? = EC sup ¢, (X'(r) — X'(r))?
TE[t()f’l’o,t] T‘G[to,t]

(412) _ t B 1_ ) -
< CEG/ 1 Xs — X A X, |2 ds + glEG sup ¥, (X'(s) — X'(s))?,
to

se [t() ,f,]

9



for some constant C' > 0 and all n > 1,¢ € [ty,T],1 < i < d. Letting
p(s) = sup |X(r)—X()AX(r)]?, s€ [t,T),

TE[t[)—T(),S]

(4.12) yields
d t
(4.13) Z]EG sup U (X(r) — X'(r))? < C/ ECo(s)ds, n>1,t¢€ [ty,T).

i=1 Te[t077’07d to

By (4.4), it is not difficult to see that
lim  sup @/Jn(Xi(T) — )_(i(r))Q = sup {(Xj’(r) — )_(i(r))+}2.

=00 re&to—ro,t] refto—ro,t]

So, letting n 1 oo in (4.13), by the monotone convergence theorem in [16, Theorem 6.1.14],
the sub-additivity of GG, we arrive at

d
ECo(t) < Z sup {(X'(r) = X'(r)"}* < C’/tEng(s)dS, t € [to, T].
i1 re(to—ro,t] to
By the definition of ¢ and (3.2), Gronwall’s inequality implies
E°H(T) =
Thus, we prove (4.1).

5 Proof of Theorem 3.3

Proof of (1). Let 1 < i < d be fixed. For any t; > 0 and &,n € € with £ < 7 and
£'(0) = n*(0), it holds C-q.s.

(5.1) X(to,&t) < X(to,m3t), ¢ > to.

For simplicity, let X () = X(to,&;t) and X(t) = X(tg,m;t) for t > tq — ry. For any
v € ST Ne*Lixm: 0 Lyxm], take 0, = /7, s > 0 and denote Ep, = Ep . Then P,-a.s.
(B)(r) =ry. By (3.1), (2.3) and (5.1), for any s > 0, we obtain P,-a.s.

0> X'ty +8) — X'(to + 5) = £(0) — n*(0)

T / W X,) — B (X)) dr + / T X)) — i X)), A(B)(r)
77? t0+5 .. .. — i .
o (r, X,) —a"(r, X,)|dB’(r
. +Z/ (09 (r, X,) — o (r, X,)] dB (1)
tot+s . _ to+s ] o B
= /t [b'(r, X,) = b'(r, X,-)] dr +/t (h'(r, X)) — h'(r, X,),y)dr
m to+s
+ /t [0 (r, X,) —a"(r, X,)| dB’(r)



By (H1), (H2) and (3.2), taking expectation in (5.2) under P., we obtain
1 [lots , o . o
(5.3) g/ Ep {[0'(r, X;) — 0'(r, X,)] + (R*(r, X,) — W'(r, X,),y) }dr <0, s> 0.

to

Thus, taking s | 0 in (5.3), it follows from (3.2), (2.3), the continuity of b,b, h, h and
dominated convergence theorem that

[b' (o, &) — b'(to, )] + (h'(to, &) — h'(to, m),~) < 0.
By the definition of G in (2.1), we derive
6 (t0, €) — B (to, )] + 2G (' (1, €) — B (k0. m))
— [ (t0,€) — B'(to, )] + 2 sup !

YEST M0 Lo xm 2L m] 2<hi(to,5) — h'(to,n),7y) < 0.
The proof is completed. O
Proof of (2). For any t, > 0 and £, € € € with € < ¢, it holds C-q.s.
X(tg, &) < X(to, &51), t>tg.

Taking 6, = &, (2.3) implies Pg-a.s. X (to,&;t) < X(t,&;t), t > to. Noting that Pg-a.s.
(B)(r) = a*r, (3.1) reduces to the SDE driven by Brownian motion under Py. According
to the necessary condition of order preservation for functional SDEs in [9, Theorem 1.2
(IT)], we immediately get the results desired. ]
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