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Abstract

Sufficient and necessary conditions are presented for the comparison theorem of
path dependent G-SDEs. Different from the corresponding study in path indepen-
dent G-SDEs, a probability method is applied to prove these results. Moreover, the
results extend the ones in the linear expectation case.
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1 Introduction

The order preservation of stochastic processes is an important property for one to compare
a complicated process with simpler ones, and a result to ensure this property is called
“comparison theorem” in the literature. There are two different type order preservations,
one is in the distribution (weak) sense and another is in the pathwise (strong) sense, where
the latter implies the former.

Under the linear expectation framework, the weak order preservation has been investi-
gated in [2, 20, 21] and references within. There are also lots of results on the strong order
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preservation, see, for instance, [1, 4, 9, 10, 14, 15, 17, 18, 22, 23] and references therein
for comparison theorems on forward/backward SDEs (stochastic differential equations),
with jumps and/or with memory. Recently, the first author and his co-authors extend the
results in [9] to the path-distribution dependent case, one can refer to [8] for more details.

On the other hand, there are some results on the comparison theorem for G-SDEs,
see [11, 12, 13]. Some sufficient condition is presented in [11, Theorem 7.1] for compar-
ison theorem of one-dimensional G-SDEs. In [13], the authors obtain the sufficient and
necessary conditions for comparison theorem by the viability property of SDEs, which is
equivalent to the fact that the square of the distance to the constraint set is a viscosity
supersolution to the associated Hamilton-Jacobi-Bellman equation, see [13, Theorem 2.5]
and references therein for more details.

The aim of this paper is to present sufficient and necessary conditions of the or-
der preservations for path dependent G-SDEs and we provide a probability method to
prove them. The result extends the ones in [9] when the noise is a standard Brown-
ian motion. We will adopt the method in [9] to complete the proof. However, some
essential work needs to been done since the quadratic variation process 〈B〉 of the G-
Brownian motion B is not determined under G-expectation. More precisely, we need
to treat

∫ ·
0
〈h(s), d〈B〉(s)〉 − 2

∫ ·
0
G(h(s))ds which is well known as a non-increasing G-

martingale. This is quite different from the linear expectation case. Moreover, in the
proof of necessary condition of the comparison theorem, we will use the representation
theorem (2.3) below of the G-expectation introduced in [3, 7, 19], by which the order p-
reservation under G-expectation implies that in linear expectation case. Then the existed
result in [9] can be applied to prove the necessary condition on diffusion coefficients.

Before moving on, we recall some basic facts on G-expectation and G-Brownian motion
in the following section.

2 G-Expectation and G-Brownian motion

Let Ω = C0([0,∞);Rm), the Rm-valued and continuous functions on [0,∞) vanishing at
zero, equipped with the metric

ρ(ω1, ω2) =
∞∑
n=1

1

2n

[
max
t∈[0,n]

|ω1
t − ω2

t | ∧ 1

]
, ω1, ω2 ∈ Ω.

For any T > 0, set

Lip(ΩT ) = {ω → ϕ(ωt1 , · · ·, ωtn) : n ∈ N+, t1, · · ·, tn ∈ [0, T ], ϕ ∈ Cb,lip((Rm)n)},

and
Lip(Ω) =

⋃
T>0

Lip(ΩT ),
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where Cb,lip((Rm)n) denotes the set of bounded and Lipschitz continuous functions on
((Rm)n). We denote by |A|2 = ‖A‖2

HS for any matrix A. For two m×m matrices M and
M̄ , define

〈M, M̄〉 =
m∑

k,l=1

MklM̄kl.

Let Mm be the collection of all m×m matrices and Sm (Sm+ ) be the set of the symmetric
(symmetric and positive definite) ones in Mm. Fix two positive constants σ < σ̄ and
define

(2.1) G(A) :=
1

2
sup

γ∈Sm+
⋂

[σ2Im×m,σ̄2Im×m]

〈γ,A〉, A ∈ Sm.

It is not difficult to see that G has the following properties:

(a) (Positive homogeneity) G(λA) = λG(A), λ ≥ 0, A ∈ Sm.

(b) (Sub-additivity) G(A+ Ā) ≤ G(A) +G(Ā), G(A)−G(Ā) ≤ G(A− Ā), A, Ā ∈ Sm.

(c) |G(A)| ≤ 1
2
|A| supγ∈Sm+

⋂
[σ2Im×m,σ̄2Im×m] |γ| = 1

2
|A|
√
mσ̄2.

(d) G(A)−G(Ā) ≥ σ2

2
trace[A− Ā], A ≥ Ā, A, Ā ∈ Sm.

Remark 2.1. (b) and (c) imply that G is continuous.

Let ĒG be the nonlinear expectation on Ω such that coordinate process (B(t))t≥0, i.e.
B(t)(ω) = ωt, ω ∈ Ω, is an m-dimensional G-Brownian motion on (Ω, L1

G(Ω), ĒG), where
L1
G(Ω) is the completion of Lip(Ω) under the norm ĒG| · |. One can refer to [19] for details

on the construction of ĒG. For any p ≥ 1, let LpG(Ω) be the completion of Lip(Ω) under

the norm (ĒG| · |p)
1
p . Similarly, we can define LpG(ΩT ) for any T > 0.

Let

Mp,0
G ([0, T ]) =

{
ηt :=

N−1∑
j=0

ξjI[tj ,tj+1)(t); ξj ∈ LpG(Ωtj), N ∈ N+,

0 = t0 < t1 < · · · < tN = T
}
,

and Mp
G([0, T ]) be the completion of Mp,0

G ([0, T ]) under the norm

‖η‖Mp
G([0,T ]) :=

(
ĒG
∫ T

0

|ηt|pdt
) 1

p

.

Let M be the collection of all probability measures on (Ω,B(Ω)). According to [3, 7],
there exists a weakly compact subset P ⊂M such that

ĒG[X] = sup
P∈P

EP [X], X ∈ L1
G(Ω),(2.2)

3



where EP is the linear expectation under probability measure P ∈ P . P is called a set
that represents ĒG. In fact, let W 0 be an m-dimensional Brownian motion on a complete
filtered probability space (Ω̂, {Ft}t≥0,P), and define

H := {θ : θ is an Mm-valued progressively measurable

stochastic process, θsθ
∗
s ∈ [σ2Im×m, σ̄

2Im×m], s ≥ 0},

here (·)∗ stands for the transpose of a matrix. For any θ ∈ H, define Pθ as the law of∫ ·
0
θsdW

0
s . Then by [3, 7], we can take P = {Pθ, θ ∈ H}, i.e.

ĒG[X] = sup
θ∈H

EPθ [X], X ∈ L1
G(Ω).(2.3)

The associated Choquet capacity to ĒG is defined by

C(A) = sup
P∈P

P (A), A ∈ B(Ω).

A set A ∈ B(Ω) is called polar if C(A) = 0, and we say that a property holds C-quasi-
surely (C-q.s.) if it holds outside a polar set, see [3] for more details on capacity.

Finally, letting 〈B〉 be the quadratic variation process of B, then by the property (d)
and [16, Chapter III, Corollary 5.7], we have C-q.s.

σ2Im×m ≤
d

dt
〈B〉(t) ≤ σ̄2Im×m.(2.4)

3 Main Results

Let r0 ≥ 0 be a constant and d ≥ 1 be a natural number. C = C([−r0, 0];Rd) is equipped
with uniform norm ‖ · ‖∞. For any continuous map f : [−r0,∞) → Rd and t ≥ 0, let
ft ∈ C be such that ft(s) = f(s + t) for s ∈ [−r0, 0]. We call (ft)t≥0 the segment of
(f(t))t≥−r0 .

Consider the following path dependent SDEs:

(3.1)

{
dX(t) = b(t,Xt) dt+ 〈h(t,Xt), d〈B〉(t)〉+ σ(t,Xt) dB(t),

dX̄(t) = b̄(t, X̄t) dt+ 〈h̄(t, X̄t), d〈B〉(t)〉+ σ̄(t, X̄t) dB(t),

where

b, b̄ : [0,∞)× C → Rd; h, h̄ : [0,∞)× C → (Rm ⊗ Rm)d;

σ, σ̄ : [0,∞)× C → Rd ⊗ Rm

are measurable.
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Without loss of generality, we assume that for any i = 1, · · · , d, hi and h̄i are symmet-

ric. Otherwise, we can replace hi and h̄i by hi+(hi)∗

2
and h̄i+(h̄i)∗

2
respectively to symmetrize

them.
For any s ≥ 0 and ξ, ξ̄ ∈ C , a solution to (3.1) for t ≥ s with (Xs, X̄s) = (ξ, ξ̄) is a

continuous process (X(t), X̄(t))t≥s such that for all t ≥ s,

X(t) = ξ(0) +

∫ t

s

b(r,Xr)dr +

∫ t

s

〈h(r,Xr), d〈B〉(r)〉+

∫ t

s

σ(r,Xr)dB(r),

X̄(t) = ξ̄(0) +

∫ t

s

b̄(r, X̄r)dr +

∫ t

s

〈h̄(r, X̄r), d〈B〉(r)〉+

∫ t

s

σ̄(r, X̄r)dB(r),

where (Xt, X̄t)t≥s is the segment process of (X(t), X̄(t))t≥s−r0 with (Xs, X̄s) = (ξ, ξ̄).
Throughout the paper, we make the following assumptions.

(H1) There exists an increasing function α : R+ → R+ such that for any t ≥ 0, ξ, η ∈ C ,

|b(t, ξ)− b(t, η)|2 + |b̄(t, ξ)− b̄(t, η)|2 + |h(t, ξ)− h(t, η)|2 + |h̄(t, ξ)− h̄(t, η)|2

+ ‖σ(t, ξ)− σ(t, η)‖2
HS + ‖σ̄(t, ξ)− σ̄(t, η)‖2

HS ≤ α(t)‖ξ − η‖2
∞.

(H2) There exists an increasing function K : R+ → R+ such that

|b(t, 0)|2 + |b̄(t, 0)|2 + |h(t, 0)|2 + |h̄(t, 0)|2 + ‖σ(t, 0)‖2
HS + ‖σ̄(t, 0)‖2

HS ≤ K(t), t ≥ 0.

Remark 3.1. According to [6, Lemma 2.1], under (H1)-(H2), the equation (3.1) is
strongly well-posed. For any s ≥ 0 and ξ, ξ̄ ∈ C , let {X(s, ξ; t), X̄(s, ξ̄; t)}t≥s−r0 denote
the unique solution to (3.1) with Xs = ξ and X̄s = ξ̄. Moreover, the segment process
{X(s, ξ)t, X̄(s, ξ̄)t}t≥s satisfies

(3.2) ĒG sup
t∈[s,T ]

(
‖X(s, ξ)t‖2

∞ + ‖X̄(s, ξ̄)t‖2
∞
)
<∞, T ∈ [s,∞).

To characterize the order preservation for solution of (3.1), we introduce the partial-order
on C . Firstly, for x = (x1, · · · , xd) and y = (y1, · · · , yd) ∈ Rd, we write x ≤ y if xi ≤ yi

holds for all 1 ≤ i ≤ d. Similarly, for ξ = (ξ1, · · · , ξd) and η = (η1, · · · , ηd) ∈ C , we write
ξ ≤ η if ξi(s) ≤ ηi(s) holds for all s ∈ [−r0, 0] and 1 ≤ i ≤ d. Moreover, for any ξ1, ξ2 ∈ C ,
ξ1 ∧ ξ2 ∈ C is defined by

(ξ1 ∧ ξ2)i = min{ξi1, ξi2}, 1 ≤ i ≤ d.

Definition 3.1. The stochastic differential system (3.1) is called order-preserving, if for
any s ≥ 0 and ξ, ξ̄ ∈ C with ξ ≤ ξ̄, it holds C-q.s.

X(s, ξ; t) ≤ X̄(s, ξ̄; t), t ≥ s.
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We first present the following sufficient conditions for the order preservation, which
reduce back to the corresponding ones in [9] when the noise is an m-dimensional standard
Brownian motion and in [13] where the system is path independent.

Theorem 3.2. Assume (H1)-(H2). The system (3.1) is order-preserving provided that
the following two conditions are satisfied:

(1) For any 1 ≤ i ≤ d, ξ, η ∈ C with ξ ≤ η and ξi(0) = ηi(0),

bi(t, ξ)− b̄i(t, η) + 2G(hi(t, ξ)− h̄i(t, η)) ≤ 0, a.e. t ≥ 0.

(2) For a.e. t ≥ 0 it holds σ(t, ·) = σ̄(t, ·) and σij(t, ξ) = σij(t, η) for any 1 ≤ i ≤ d,
1 ≤ j ≤ m, ξ, η ∈ C with ξi(0) = ηi(0).

Condition (2) means that for a.e. t ≥ 0, σ(t, ξ) = σ̄(t, ξ) and σij(t, ξ) only depends on
t and ξi(0).

The next result shows that these conditions are also necessary if all coefficients are
continuous on [0,∞)× C .

Theorem 3.3. Assume (H1)-(H2) and that (3.1) is order-preserving. If in addition,
b, h, σ and b̄, h̄, σ̄ are continuous on [0,∞) × C , then conditions (1) and (2) in Theorem
3.2 hold.

These two theorems will be proved in Section 4 and Section 5 respectively.

4 Proof of Theorem 3.2

Assume (H1)-(H2), and let conditions (1) and (2) hold. For any T > t0 ≥ 0 and ξ, ξ̄ ∈ C
with ξ ≤ ξ̄, it suffices to prove

(4.1) ĒG sup
t∈[t0,T ]

(X i(t0, ξ; t)− X̄ i(t0, ξ̄; t))
+ = 0, 1 ≤ i ≤ d,

where s+ := max{0, s}. In fact, by (4.1) and (2.2), for any P ∈ P , it holds

(4.2) EP sup
t∈[t0,T ]

(X i(t0, ξ; t)− X̄ i(t0, ξ̄; t))
+ = 0, 1 ≤ i ≤ d.

This implies
P{X i(t0, ξ; t) > X̄ i(t0, ξ̄; t), t ∈ [t0, T ]} = 0,

from which we have

C{X i(t0, ξ; t) > X̄ i(t0, ξ̄; t), t ∈ [t0, T ]} = 0.
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So the order preservation holds. For simplicity, in the following we denote X(t) =
X(t0, ξ; t) and X̄(t) = X̄(t0, ξ̄; t) for t ≥ t0 − r0. Then it holds

X(t) = ξ(t− t0), X̄(t) = ξ̄(t− t0), t ∈ [t0 − r0, t0].(4.3)

To prove (4.1) using Itô’s formula, we take the following C2-approximation of s+ as in the
proof of [9, Theorem 1.1]. For any n ≥ 1, let ψn : R→ [0,∞) be constructed as follows:
ψn(s) = ψ′n(s) = 0 for s ∈ (−∞, 0], and

ψ′′n(s) =


4n2s, s ∈ [0, 1

2n
],

−4n2(s− 1
n
), s ∈ [ 1

2n
, 1
n
],

0, otherwise.

It is not difficult to see that

(4.4) 0 ≤ ψ′n ≤ 1(0,∞), and as n ↑ ∞ : 0 ≤ ψn(s) ↑ s+, sψ′′n(s) ≤ 1(0, 1
n

)(s) ↓ 0.

In view of
ψn(X i(t0)− X̄ i(t0)) = ψn(ξi(0)− ξ̄i(0)) = 0,

and due to (2) σ(t, ·) = σ̄(t, ·) for a.e. t ≥ 0, it follows from Itô’s formula that

ψn(X i(t)− X̄ i(t))2

= 2
m∑
j=1

∫ t

t0

(σij(s,Xs)− σij(s, X̄s)){ψnψ′n}(X i(s)− X̄ i(s))dBj(s)

+ 2

∫ t

t0

〈hi(s,Xs)− h̄i(s, X̄s), d〈B〉(s)〉{ψnψ′n}(X i(s)− X̄ i(s))ds

+ 2

∫ t

t0

(bi(s,Xs)− b̄i(s, X̄s)){ψnψ′n}(X i(s)− X̄ i(s))ds

+
m∑

j=1,k=1

∫ t

t0

{ψnψ′′n + ψ′2n }(X i(s)− X̄ i(s))

× (σij(s,Xs)− σij(s, X̄s))(σ
ik(s,Xs)− σik(s, X̄s))d〈B〉jk(s)

= Mi(t) + M̄i(t) + I1 + I2

(4.5)

for any n ≥ 1, 1 ≤ i ≤ d and t ≥ t0, where

Mi(t) := 2
m∑
j=1

∫ t

t0

(σij(s,Xs)− σij(s, X̄s)){ψnψ′n}(X i(s)− X̄ i(s))dBj(s),

M̄i(t) := 2

∫ t

t0

〈(hi(s,Xs)− h̄i(s, X̄s)), d〈B〉(s)〉{ψnψ′n}(X i(s)− X̄ i(s))ds
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− 4

∫ t

t0

G[{ψnψ′n}(X i(s)− X̄ i(s))(hi(s,Xs)− h̄i(s, X̄s))]ds,

I1 := 2

∫ t

t0

(bi(s,Xs)− b̄i(s, X̄s)){ψnψ′n}(X i(s)− X̄ i(s))ds

+ 4

∫ t

t0

G[{ψnψ′n}(X i(s)− X̄ i(s))(hi(s,Xs)− h̄i(s, X̄s))]ds,

I2 :=
m∑

j=1,k=1

∫ t

t0

{ψnψ′′n + ψ′2n }(X i(s)− X̄ i(s))

× (σij(s,Xs)− σij(s, X̄s))(σ
ik(s,Xs)− σik(s, X̄s))d〈B〉jk(s).

Noting that 0 ≤ ψ′n(X i(s) − X̄ i(s)) ≤ 1{Xi(s)>X̄i(s)} and when X i(s) > X̄ i(s) one has
(Xs ∧ X̄s)

i(0) = (X̄s)
i(0), it follows from (1) that for a.e. s ∈ [t0, T ], and n ≥ 1

(4.6) [bi(s,Xs∧X̄s)−b̄i(s, X̄s)+2G[hi(s,Xs∧X̄s)−h̄i(s, X̄s)]]{ψnψ′n}(X i(s)−X̄ i(s)) ≤ 0.

In view of {ψnψ′n}(X i(s)− X̄ i(s)) ≥ 0, it follows from the property (a) of G that

G[{ψnψ′n}(X i(s)− X̄ i(s))(hi(s,Xs)− h̄i(s, X̄s))](4.7)

= {ψnψ′n}(X i(s)− X̄ i(s))G(hi(s,Xs)− h̄i(s, X̄s)).

For simplicity, let Φn
s = {ψnψ′n}(X i(s) − X̄ i(s)). Combining (4.6) with (4.7), (H1),

0 ≤ ψ′n ≤ 1 and properties (b) and (c) of G, there exists a constant C(T, σ̄) > 0 such that
for any n ≥ 1, t ∈ [t0, T ],

I1 = 2

∫ t

t0

[bi(s,Xs)− b̄i(s, X̄s) + 2G(hi(s,Xs)− h̄i(s, X̄s))]Φ
n
sds

≤ 2

∫ t

t0

[bi(s,Xs)− bi(s,Xs ∧ X̄s) + 2G(hi(s,Xs)− hi(s,Xs ∧ X̄s))]Φ
n
sds

+ 2

∫ t

t0

[bi(s,Xs ∧ X̄s)− b̄i(s, X̄s) + 2G(hi(s,Xs ∧ X̄s)− h̄i(s, X̄s))]Φ
n
sds

≤ 2

∫ t

t0

[bi(s,Xs)− bi(s,Xs ∧ X̄s) + 2G(hi(s,Xs)− hi(s,Xs ∧ X̄s))]Φ
n
sds(4.8)

≤
∫ t

t0

[bi(s,Xs)− bi(s,Xs ∧ X̄s) + 2G(hi(s,Xs)− hi(s,Xs ∧ X̄s))]
2ds

+

∫ t

t0

ψn(X i(s)− X̄ i(s))2ds

≤
∫ t

t0

C0(T, σ̄)‖Xs −Xs ∧ X̄s‖2
∞ds+

∫ t

t0

ψn(X i(s)− X̄ i(s))2ds
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≤
∫ t

t0

C(T, σ̄)‖Xs −Xs ∧ X̄s‖2
∞ds,

here in the last step we used the fact ψn(s) ≤ s+. Next, by condition (2) in Theorem 3.2,
for a.e. s ∈ [t0, T ], σij(s,Xs) = σ̄ij(s,Xs) and σij(s,Xs) depends only on s and X i(s).
So, (4.4), (H1) and the positive definite property of 〈B〉 yield

I2 ≤
∫ t

t0

(
1{Xi(s)−X̄i(s)∈(0, 1

n
)} + 1{Xi(s)−X̄i(s)∈(0,∞)}

)
×

m∑
j=1,k=1

(σij(s,Xs)− σij(s, X̄s))(σ
ik(s,Xs)− σik(s, X̄s))d〈B〉jk(s)

≤
∫ t

t0

C(T, σ̄){(X i(s)− X̄ i(s))+}2ds, n ≥ 1, t ∈ [t0, T ].

(4.9)

By the Burkholder-Davis-Gundy inequality in [5, Theorem 2.1] or [16, Lemma 8.1.12], we
deduce

ĒG sup
s∈[t0,t]

Mi(s)

≤ C(T, σ̄)ĒG
{∫ t

t0

∣∣(ψnψ′n)(X i(s)− X̄ i(s))
∣∣2 m∑

j=1

|σij(s,Xs)− σij(s, X̄s)|2ds

} 1
2

≤ C(T, σ̄)ĒG
(∫ t

t0

{(X i(s)− X̄ i(s))+}2ψn(X i(s)− X̄ i(s))2ds

) 1
2

(4.10)

≤ C(T, σ̄)ĒG
∫ t

t0

‖Xs −Xs ∧ X̄s‖2
∞ds

+
1

8
ĒG sup

s∈[t0,t]

ψn(X i(s)− X̄ i(s))2, n ≥ 1, t ∈ [t0, T ].

Finally, since M̄i is a non-increasing G-martingale, we obtain from (4.7) that

ĒG sup
s∈[t0,t]

M̄i(s) ≤ 0.(4.11)

Combining (4.5) with (4.8)-(4.11), and noting that ψn(X i(r)− X̄ i(r)) = 0, r ∈ [t0− r0, t0]
due to (4.4), (4.3) and ξ ≤ ξ̄, we arrive at

ĒG sup
r∈[t0−r0,t]

ψn(X i(r)− X̄ i(r))2 = ĒG sup
r∈[t0,t]

ψn(X i(r)− X̄ i(r))2

≤ CĒG
∫ t

t0

‖Xs −Xs ∧ X̄s‖2
∞ds+

1

8
ĒG sup

s∈[t0,t]

ψn(X i(s)− X̄ i(s))2,
(4.12)
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for some constant C > 0 and all n ≥ 1, t ∈ [t0, T ], 1 ≤ i ≤ d. Letting

φ(s) = sup
r∈[t0−r0,s]

|X(r)−X(r) ∧ X̄(r)|2, s ∈ [t0, T ],

(4.12) yields

(4.13)
d∑
i=1

ĒG sup
r∈[t0−r0,t]

ψn(X i(r)− X̄ i(r))2 ≤ C

∫ t

t0

ĒGφ(s)ds, n ≥ 1, t ∈ [t0, T ].

By (4.4), it is not difficult to see that

lim
n→∞

sup
r∈[t0−r0,t]

ψn(X i(r)− X̄ i(r))2 = sup
r∈[t0−r0,t]

{(X i(r)− X̄ i(r))+}2.

So, letting n ↑ ∞ in (4.13), by the monotone convergence theorem in [16, Theorem 6.1.14],
the sub-additivity of G, we arrive at

ĒGφ(t) ≤
d∑
i=1

ĒG sup
r∈[t0−r0,t]

{(X i(r)− X̄ i(r))+}2 ≤ C

∫ t

t0

ĒGφ(s)ds, t ∈ [t0, T ].

By the definition of φ and (3.2), Gronwall’s inequality implies

ĒGφ(T ) = 0.

Thus, we prove (4.1).

5 Proof of Theorem 3.3

Proof of (1). Let 1 ≤ i ≤ d be fixed. For any t0 ≥ 0 and ξ, η ∈ C with ξ ≤ η and
ξi(0) = ηi(0), it holds C-q.s.

X(t0, ξ; t) ≤ X̄(t0, η; t), t ≥ t0.(5.1)

For simplicity, let X(t) = X(t0, ξ; t) and X̄(t) = X̄(t0, η; t) for t ≥ t0 − r0. For any
γ ∈ Sm+

⋂
[σ2Im×m, σ̄

2Im×m], take θs =
√
γ, s ≥ 0 and denote EPθ = EPγ . Then Pγ-a.s.

〈B〉(r) = rγ. By (3.1), (2.3) and (5.1), for any s ≥ 0, we obtain Pγ-a.s.

0 ≥ X i(t0 + s)− X̄ i(t0 + s) = ξi(0)− ηi(0)

+

∫ t0+s

t0

[bi(r,Xr)− b̄i(r, X̄r)] dr +

∫ t0+s

t0

〈hi(r,Xr)− h̄i(r, X̄r), d〈B〉(r)〉

+
m∑
j=1

∫ t0+s

t0

[σij(r,Xr)− σ̄ij(r, X̄r)] dBj(r)

=

∫ t0+s

t0

[bi(r,Xr)− b̄i(r, X̄r)] dr +

∫ t0+s

t0

〈hi(r,Xr)− h̄i(r, X̄r), γ〉dr

+
m∑
j=1

∫ t0+s

t0

[σij(r,Xr)− σ̄ij(r, X̄r)] dBj(r).

(5.2)
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By (H1), (H2) and (3.2), taking expectation in (5.2) under Pγ, we obtain

1

s

∫ t0+s

t0

EPγ{[bi(r,Xr)− b̄i(r, X̄r)] + 〈hi(r,Xr)− h̄i(r, X̄r), γ〉}dr ≤ 0, s > 0.(5.3)

Thus, taking s ↓ 0 in (5.3), it follows from (3.2), (2.3), the continuity of b, b̄, h, h̄ and
dominated convergence theorem that

[bi(t0, ξ)− b̄i(t0, η)] + 〈hi(t0, ξ)− h̄i(t0, η), γ〉 ≤ 0.

By the definition of G in (2.1), we derive

[bi(t0, ξ)− b̄i(t0, η)] + 2G(hi(t0, ξ)− h̄i(t0, η))

= [bi(t0, ξ)− b̄i(t0, η)] + 2 sup
γ∈Sm+

⋂
[σ2Im×m,σ̄2Im×m]

1

2
〈hi(t0, ξ)− h̄i(t0, η), γ〉 ≤ 0.

The proof is completed.

Proof of (2). For any t0 ≥ 0 and ξ, ξ̄ ∈ C with ξ ≤ ξ̄, it holds C-q.s.

X(t0, ξ; t) ≤ X̄(t0, ξ̄; t), t ≥ t0.

Taking θs = σ̄, (2.3) implies Pθ-a.s. X(t0, ξ; t) ≤ X̄(t0, ξ̄; t), t ≥ t0. Noting that Pθ-a.s.
〈B〉(r) = σ̄2r, (3.1) reduces to the SDE driven by Brownian motion under Pθ. According
to the necessary condition of order preservation for functional SDEs in [9, Theorem 1.2
(II)], we immediately get the results desired.
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