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Abstract

In this paper, by employing Gaussian type estimate of heat kernel, we establish Krylov’s
estimate and Khasminskii’s estimate for EM algorithm. As applications, by taking Zvonkin’s
transformation into account, we investigate convergence rate of EM algorithm for a class of
multidimensional SDEs with low regular drifts, which need not to be piecewise Lipschitz.
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1 Introduction and main results

Strong/weak convergence of numerical schemes for stochastic differential equations (SDEs for short)
with regular coefficients have been investigated considerably; see monographs e.g. [12]. As we
know, (forward) Euler-Maruyama (EM for abbreviation) is the simplest algorithm to discretize
SDEs whose coefficients are of linear growth. Whereas, EM scheme is invalid once the coefficients
of SDEs involved are of nonlinear growth; see e.g. [10] for some illustrative counterexamples.
Whence the other variants of EM scheme were designed to treat SDEs with non-globally Lipschitz
condition; see [7, 8] for backward EM scheme, [2, 11] as for tamed EM algorithm, and [18] concerning
truncated EM method, to name a few. Nowadays, convergence analysis of numerical algorithms
for SDEs with irregular coefficients also receives much attention; see e.g. [5] for SDEs with Hölder
continuous diffusions via the Yamada-Watanabe approximation approach, [31] for SDEs whose drift
terms are Hölder continuous with the aid of Meyer-Tanaka’s formula and estimates on local times,
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and [1, 24] for SDEs whose drifts are Hölder(-Dini) continuous by regularities of the corresponding
backward Kolmogrov equations. In the past few years, numerical approximations of SDEs with
discontinuous drifts have also gained a lot of interest; see, for instance, [6, 16, 17, 20, 21]. Up to
now, most of the existing literatures above on strong approximations of SDEs with discontinuous
drift coefficients are implemented under the additional assumption that the drift term is piecewise
Lipschitz continuous.

Since the pioneer work of Zvonkin [34], the wellposedness for SDEs with irregular coefficients has
been developed greatly in different manners; see e.g. [3, 4, 14, 30, 32] for SDEs driven by Brownian
motions or jump processes, and e.g. [9, 25] for McKean-Vlasov (or distribution-dependent or mean-
field) SDEs. So far, there also exist a number of literatures upon numerical simulations of SDEs
with low regularity. In particular, [22] is concerned with strong convergence rate of EM scheme for
SDEs with irregular coefficients, where the one-sided Lipschitz condition is imposed on the drift
term. Subsequently, the one-sided Lipschitz condition put in [22] was dropped in [23] whereas
the 1-dimensional SDEs are barely concerned. At this point, our goal in this paper has been
evident. More precisely, motivated by the previous literatures, in this paper we aim to investigate
convergence rate of EM for multidimensional SDEs with low regularity, where the drift terms need
not to be piecewise Lipschitz continuity imposed in e.g. [6, 16, 17, 20, 21].

Now we consider the following SDE

(1.1) dXt = b(Xt)dt+ σ(Xt)dWt, t ≥ 0, X0 = x ∈ Rd,

where b : Rd → Rd, σ : Rd → Rd⊗Rm, and (Wt)t≥0 is an m-dimensional Brownian motion on some
filtered probability space (Ω,F , (Ft)t≥0,P). For the drift b and the diffusion σ, we assume

(A1) ‖b‖∞ := supx∈Rd |b(x)| < ∞ and there exists a constant p > d
2 such that |b|2 ∈ Lp(Rd), the

usual Lp-space on Rd;

(A2) there exist constants γ ≥ 2, αγ > 0 and a continuous decreasing function φγ : (0,∞)→ (0,∞)

with
∫ l

0 φγ(s)ds <∞ for arbitrary l > 0 such that

1

s
d
2

∫
Rd
|b(x+ y)− b(x+ z)|γe−

1
s
|x|2dx ≤ φγ(s)|y − z|αγ , y, z ∈ Rd, s > 0;

(A3) There exist constants λ̆0, λ̂0, L0 > 0 such that

λ̆0|ξ|2 ≤ 〈(σσ∗)(x)ξ, ξ〉 ≤ λ̂0|ξ|2, x, ξ ∈ Rd,(1.2)

‖σ(x)− σ(y)‖HS ≤ L0|x− y|, x, y ∈ Rd,(1.3)

where σ∗ means the transpose of σ and ‖ · ‖HS stands for the Hilbert-Schmidt norm.

Below, we make some comments on the assumptions (A2) and (A3).

Remark 1.1. If φγ is bounded, then we can replace φγ(s) in (A2) by sups∈[0,T ] φγ(s) which is
automatically decreasing. Let

ωn,δ(φγ) = sup
x,y∈[nδ,(n+1)δ]

|φγ(x)− φγ(y)|.
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Instead of that φγ is decreasing, we can assume that φγ satisfies

sup
0<δ≤1

δ bT/δc∑
k=1

ωk,δ(φγ)

 < +∞.(1.4)

Then for any κ0 > 0

bT/δc∑
k=1

φγ(κ0kδ)δ ≤
bT/δc∑
k=1

∫ (k+1)δ

kδ
φγ(κ0t)dt+ δ

bT/δc∑
k=1

ωn,δ(φγ(κ0·))

≤ κ−1
0

∫ κ0T

0
φγ(t)dt+ sup

0<δ≤1

δ bT/δc∑
k=1

ωn,δ(φγ)


<∞.

It is not easy to check (1.4) for φγ with lim
δ→0+

φγ(δ) = +∞. However, if φγ is decreasing, then

sup
0<δ≤1

δ bT/δc∑
k=1

ωn,δ(φγ)

 = sup
0<δ≤1

δ bT/δc∑
k=1

(φγ(kδ)− φγ((k + 1)δ))

 = δφγ(δ).

Hence, in this case, (1.4) holds if and only if there is C > 0 such that φγ(x) ≤ C
x .

Remark 1.2. For x ∈ Rd, let ‖σ(x)‖op = sup|y|≤1 |σ(x)y|, the operator norm of σ(x). By the
Cauchy-Schwarz inequality, it follows from (1.2) that

‖σ(x)‖2op =

d∑
i=1

sup
|y|≤1
〈y, σ(x)∗ei〉2 ≤ ‖σ∗(x)‖2HS =

d∑
i=1

〈(σσ)(x)∗ei, ei〉 ≤ dλ̂0, x ∈ Rd,

where ei, i = 1, · · · , d, is the orthogonal basis of Rd. Then, we arrive at

(1.5) ‖σ(x)‖op ≤ ‖σ(x)‖HS = ‖σ∗(x)‖HS ≤
√
dλ̂0, x ∈ Rd.

Under (A1) and (A3), (1.1) has a unique strong solution (Xt)t≥0; see, for instance, [9, Lemma
3.1]. (A2) is imposed to reveal the convergence rate of EM scheme corresponding to (1.1), which
is defined as below: for any δ ∈ (0, 1),

(1.6) dX
(δ)
t = b(X

(δ)
tδ

)dt+ σ(X
(δ)
tδ

)dWt, t ≥ 0, X
(δ)
0 = X0

with tδ := bt/δcδ, where bt/δc denotes the integer part of t/δ. We emphasize that (X
(δ)
kδ )k≥0 is

a homogeneous Markov process; see e.g. [19, Theorem 6.14]. For t ≥ s and x ∈ Rd, denote

p(δ)(s, t, x, ·) by the transition density of X
(δ)
t with the starting point X

(δ)
s = x. Set

K1 :=
{

(p, q) ∈ (1,∞)× (1,∞) :
d

p
+

2

q
< 2
}
, γ0 :=

1

1− 1/q − d/2p
, (p, q) ∈ K1,

K2 :=
{

(p, q) ∈ (1,∞)× (1,∞) :
d

p
+

1

q
< 1
}
.

Our first main result in this paper is stated as follows.
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Theorem 1.3. Assume (A1)-(A3). Then, for β ∈ (0, γ), (p, q) ∈ K and T > 0, there exist
constants C1, C2 > 0 independent of δ such that

(1.7) E
(

sup
0≤t≤T

|Xt −X(δ)
t |β

)
≤ C1 exp

(
C2

(
1 +

∥∥|b|2∥∥γ0
Lp

))(
δ
β
2 + δ

αγβ

2γ

)
.

Compared with [22], in Theorem 1.3 we get rid of the one-sided Lipschitz condition put on the
drift coefficients. On the other hand, [23] is extended to the multidimensional setup. We point out
that an A approximation is given in advance in [22, 23] to approximate the drift term. So, with
contrast to the assumption set in [22, 23], the assumption (A2) is much more explicit. On the
other hand, by a close inspection of the argument of Lemma 2.2 below, the assumption (A2) can
indeed be replaced by the other alternatives. For instance, (A2) may be taken the place of (A2’)
below.

(A2’) there exist constants γ ≥ 2, βγ , θγ > 0 such that for some constant C > 0,

1

(rs)d/2
sup
z∈Rd

∫
Rd×Rd

|b(x)− b(y)|γe−
|x−z|2
s e−

|y−x|2
r dydx ≤ Crθγsβγ−1, s, r > 0.

The drift b satisfying (A2’) is said to be the Gaussian-Besov class with the index (βγ , θγ),
written as GBγ

βγ ,θγ
(Rd). The index θγ is used to characterize the order of continuity and βγ is used

to characterize the type of continuity. Remark that functions with the same order of continuity
may enjoy different type continuity; see, for instance, f(x) = |x|

1
2 with (1, 1/2), and f(x) =

1[c,d](x), c, d ∈ R, with (1/2, 1/2). We refer to Example 4.2 below for the drift b ∈ GB2
β2,θ2

(Rd).
For θ ∈ (0, 1) and p ≥ 1, let W θ,p(Rd) be the fractional order Sobolev space on Rd. Nevertheless,
W θ,p(Rd) ( GB2

1− d
p
,θ

(Rd), θ > 0, p ∈ [2,∞)∩(d,∞); see Example 4.3 for more details. Furthermore,

[29, Example 2.3] shows that the drift b constructed therein satisfies (A2’) but need not to be
piecewise Lipschitz continuous (see e.g. [16, 17]).

In Theorem 1.3, the integrable condition (i.e., |b|2 ∈ Lp(Rd)) seems to be a little bit restrictive,
which rules out some typical examples, e.g., b(x) = 1[0,∞)(x). In the sequel, by implementing
a truncation argument, the integrable condition can indeed be dropped. In such a setup (i.e.,
without integrable condition), we can still derive the convergence rate of the EM algorithm, which
is presented as below.

Theorem 1.4. Assume (A1)− (A3) without |b|2 ∈ Lp(Rd). Then, for β ∈ (0, 2), (p, q) ∈ K2 and
T > 0, there exist constants C1, C2 > 0 independent of δ such that

(1.8) E
(

sup
0≤t≤T

|Xt −X(δ)
t |β

)
≤ C1

{
e
C2(−β

2
(1∧αγ

γ
) log δ)

dγ0
2p

+ 1
}(
δ
β
2 + δ

αγβ

2γ

)
.

We remark that the right hand side of (1.8) approaches zero since

lim
δ→0

e
C2(−β

2
(1∧αγ

γ
) log δ)

dγ0
2p

δ
β
2

(1∧αγ
γ

)
= 0

due to the fact that limx→∞
eC2x

dγ0
2p

ex = 0 whenever (p, q) ∈ K2.
The remainder of this paper is organized as follows. In Section 2, by employing Zvonkin’s

transform and establishing Krylov’s estimate and Khaminskii’s estimate for EM algorithm, which
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is based on Gaussian type estimate of heat kernel, we complete the proof of Theorem 1.3; In Section
3, we aim to finish the proof of Theorem 1.4 by adopting a truncation argument; In Section 4 we
provide some illustrative examples to demonstrate our theory established; In the Appendix part, we
show explicit upper bounds of the parameters associated with Gaussian type heat kernel estimates
concerned with the exact solution and the EM scheme.

2 Proof of Theorem 1.3

Before finishing the proof of Theorem 1.3, we prepare several auxiliary lemmas. Set

Λ1 : = 2
{‖b‖∞√

λ̆0

+ 2
√
dL0(λ̂0/λ̆0)2 + d

d
2

+1d!(λ̂0/λ̆0)dL0

}
e
‖b‖2∞T
λ̂0

∨
{

2

√
λ̂0‖b‖∞ +

(
‖b‖2∞ + 2λ̂0L0

√
d
)(√

d+ 2
)

+ 2m+11λ̆−1
0

(
L0 + 2‖b‖∞

)
×
(
‖b‖3∞ + (dλ̂0)

3
2 + λ̆

1
2
0

(
‖b‖2∞ + dλ̂0

))}2
d+1
2

λ̆0

e
(‖b‖∞+‖b‖2∞)T

λ̂0 ,

(2.1)

and

(2.2) Λ2 := e
‖b‖∞T
2λ̂0

∞∑
i=0

(
Λ1

√
πT
(
(1 + 24d)λ̂0/λ̆0

)d)i
Γ(1 + i

2)
,

where Γ(·) denotes the Gamma function. Due to Stirling’s formula: Γ(z + 1) ∼
√

2πz(z/e)z, we
have Λ2 <∞.

The lemma below provides an explicit upper bound of the transition kernel for (X
(δ)
t )t≥0.

Lemma 2.1. Under (A1) and (A3),

(2.3) p(δ)(jδ, t, x, y) ≤ Λ3e
− |y−x|2
κ0(t−jδ)

(2πλ̆0(t− jδ))d/2
, x, y ∈ Rd, t > jδ, δ ∈ (0, 1),

where

(2.4) κ0 := 4(1 + 24d)λ̂0, Λ3 := Λ2e
‖b‖2∞
2λ̂0

( κ0

2λ̆0

)d/2
.

Proof. For fixed t > 0, there is an integer k ≥ 0 such that [kδ, (k + 1)δ). By a direct calculation, it
follows from (1.2) and (1.3) that

p(δ)(kδ, t, x, y) ≤ e
− |y−x−b(x)(t−kδ)|

2

2λ̂0(t−kδ)

(2πλ̆0)(t− kδ)d/2
≤ e

‖b‖2∞
2λ̂0

e
− |y−x|2

4λ̂0(t−kδ)

(2πλ̆0(t− kδ))d/2
,(2.5)

where in the second inequality we used the basic inequality: |a− b|2 ≥ 1
2 |a|

2 − |b|2, a, b ∈ Rd. Next,
by invoking Lemma A.2 below, one has

(2.6) p(δ)(jδ, j′δ, x, x′) ≤ Λ2e
− |x′−x|2
κ0(j

′δ−jδ)

(2πλ̆0(j′δ − jδ))d/2
, j′ > j, x, x′ ∈ Rd,
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where Λ2, κ0 were given in (2.2) and (2.4), respectively. Subsequently, (2.3) follows immediately by
taking advantage of the Chapman-Kolmogrov equation

p(δ)(jδ, t, x, y) =

∫
Rd
p(δ)(jδ, bt/δcδ, x, u)p(δ)(bt/δcδ, t, u, y)du,

and the fact that

∫
Rd

e
− |u−x|2
κ0(kδ−jδ)

(2πλ̆0(kδ − jδ))d/2
e
− |y−u|2

4λ̂0(t−kδ)

(2πλ̆0(t− kδ))d/2
du ≤

( κ0

2λ̆0

)d/2 e
− |y−x|2
κ0(t−jδ)

(2πλ̆0(t− jδ))d/2
, k > j.

Lemma 2.2. Under (A1)-(A3), for any T > 0, there exists a constant C > 0 such that

(2.7)

∫ T

0
E
∣∣b(X(δ)

t )− b(X(δ)
tδ

)
∣∣γdt ≤ Cδ1∧αγ

2 ,

where α > 0 was introduced in (A2).

Proof. Observe that∫ T

0
E
∣∣b(X(δ)

t )− b(X(δ)
tδ

)
∣∣γdt =

∫ δ

0
E
∣∣b(X(δ)

t )− b(X(δ)
0 )
∣∣γdt

+

bT/δc∑
k=1

∫ T∧(k+1)δ

kδ
E
∣∣b(X(δ)

t )− b(X(δ)
kδ )
∣∣γdt.

By ‖b‖∞ <∞ due to (A1), it follows that

(2.8)

∫ δ

0
E
∣∣b(X(δ)

t )− b(X(δ)
0 )
∣∣γdt ≤ 2γ‖b‖γ∞δ.

For t ∈ [kδ, (k+ 1)δ), by taking the mutual independence between X
(δ)
kδ and Wt−Wkδ into account

and employing Lemma 2.1, we derive that

E
∣∣b(X(δ)

t )− b(X(δ)
kδ )
∣∣γ

= E
∣∣b(X(δ)

kδ + b(X
(δ)
kδ )(t− kδ) + σ(X

(δ)
kδ )(Wt −Wkδ))− b(X

(δ)
kδ )
∣∣γ

=

∫
Rd

∫
Rd
|b(y + z)− b(y)|γp(δ)(0, kδ, x, y)

×
exp(− 1

2(t−kδ)〈(σ
∗σ)−1(y)(z − b(y)(t− kδ)), z − b(y)(t− kδ)〉)√

(2π)ddet((t− kδ)(σσ∗)(y))
dydz

≤ C1

(kδ(t− kδ))d/2

∫
Rd

∫
Rd
|b(y + z)− b(y)|γe

− |z|2

4λ̂0(t−kδ) e
− |x−y|

2

κ0kδ dydz,

(2.9)

for some constant C1 > 0, where κ0 was given in (2.4). With the aid of the fact that

(2.10) sup
x≥0

(xγe−βx
2
) =

( γ

2eβ

) γ
2
, γ, β > 0,
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we infer from (A2) and (2.9) that

E|b(X(δ)
t )− b(X(δ)

kδ )|2 ≤ C2φγ(κ0kδ)

(t− kδ)d/2

∫
Rd
|z|αγe

− |z|2

4λ̂0(t−kδ) dz

≤ C3φγ(κ0kδ)δ
αγ
2

(t− kδ)d/2

∫
Rd

e
− |z|2

8λ̂0(t−kδ) dz ≤ C4φγ(κ0kδ)δ
αγ
2

for some constants C2, C3, C4 > 0. Whence, we arrive at

(2.11)

bT/δc∑
k=1

∫ T∧(k+1)δ

kδ
E
∣∣b(X(δ)

t )− b(X(δ)
kδ )
∣∣γdt ≤ C4δ

αγ
2

∫ T

δ
φγ(κ0bt/δcδ)dt.

Observe that ∫ T

δ
φγ(κ0bt/δcδ)dt =

bT/δc∑
i=1

∫ ((1+i)δ)∧T−δ

(i−1)δ
φγ(κ0iδ)dt

≤
bT/δc∑
i=1

∫ iδ

(i−1)δ
φγ(κ0iδ)dt

≤
bT/δc∑
i=1

∫ iδ

(i−1)δ
φγ(κ0t)dt ≤

1

κ0

∫ κ0T

0
φγ(t)dt,

where in the second inequality we utilized that φγ : (0,∞) → (0,∞) is decreasing. Whence, (2.7)

holds true by combining (2.8) with (2.11) and by utilizing
∫ κ0T

0 φγ(t)dt <∞.

For any p, q ≥ 1 and 0 ≤ S ≤ T , let Lpq(S, T ) = Lq([S, T ];Lp(Rd)) be the family of all Borel
measurable functions f : [S, T ]× Rd → Rd endowed with the norm

‖f‖Lpq(S,T ) :=

(∫ T

S

(∫
Rd
|ft(x)|pdx

) q
p

dt

) 1
q

<∞.

For simplicity, in the sequel, we shall write Lpq(T ) in place of Lpq(0, T ). Compared with (1.1),

in (1.6) we have written the drift term as b(X
(δ)
tδ

) in lieu of b(X
(δ)
t ) so that the classical Krylov

estimate (see e.g. [4, 9, 14, 30, 32]) is unapplicable directly. However, the following lemma manifests

that (X
(δ)
t )t≥0 still satisfies the Khasminskii estimate by employing Gaussian type estimate of heat

kernel although the Krylov estimate for (X
(δ)
tδ

)t≥0 is invalid as Remark 2.5 below describes.

Lemma 2.3. Assume (A1) and (A3). Then, for f ∈ Lpq(T ) with (p, q) ∈ K1 and T > 0, the
following Khasminskii type estimate

(2.12) E exp

(
λ

∫ T

0
|ft(X(δ)

t )|dt
)
≤ 2

1+T (2λα0‖f‖Lpq (T )
)γ0
, λ > 0

holds, where γ0 := 1
1−1/q−d/2p and

(2.13) α0 :=
(1− 1/p)

d
2

(1−1/p)

(λ̆0(2π)
1
p )

d
2

{
λ̂
d
2

(1−1/p)

0 + Λ3

(
γ0(1− 1/q)

) q−1
q (κ0/2)

d
2

(1−1/p)
}
.
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Proof. For 0 ≤ s ≤ t ≤ T , note that

E
(∫ t

s
|fr(X(δ)

r )|dr
∣∣∣Fs

)
= E

(∫ t∧(sδ+δ)

s
|fr(X(δ)

r )|dr
∣∣∣Fs

)
+ E

(∫ t

t∧(sδ+δ)
|fr(X(δ)

r )|dr
∣∣∣Fs

)
=: I1(s, t) + I2(s, t).

Since

X(δ)
r = X(δ)

sδ
+ b(X(δ)

sδ
)(r − sδ) + σ(X(δ)

sδ
)(Ws −Wsδ) + σ(X(δ)

sδ
)(Wr −Ws), r ∈ [s, sδ + δ),

we derive from (1.2) and Hölder’s inequality that

I1(s, t) =

∫ t∧(sδ+δ)

s

∫
Rd
fr(yx,w + z)

×
exp

(
− 1

2(r−s)〈(σσ
∗)−1(x)(z − yx,w), z − yx,w〉

)
√

(2π(r − s))ddet((σσ∗)(x))
dz
∣∣∣w=Ws−Wsδ

x=X
(δ)
sδ

dr

≤ ‖f‖Lpq(T )

(∫ t∧(sδ+δ)

s

(
1√

(2π(r − s))ddet((σσ∗)(x))

×
(∫

Rd
exp

(
− p

2(p− 1)(r − s)
〈(σσ∗)−1(x)z, z〉

)
dz

) p−1
p
) q
q−1

dr

) q−1
q
∣∣∣
x=X

(δ)
sδ

≤ (2π)
− d

2p ((p− 1)/p)
d
2

(1− 1
p

)
(λ̂

1− 1
p

0 /λ̆0)
d
2 (t− s)

1
γ0 ‖f‖Lpq(T ),

(2.14)

where yx,w := x+b(x)(r−sδ)+σ(x)w, x ∈ Rd, w ∈ Rm, and γ0 := 1
1−1/q−d/2p . For r ≥ kδ, let X

(δ),x
kδ,r

be the EM scheme determined by (1.6) with X
(δ),x
kδ,kδ = x. From the tower property of conditional

expectation, one has

I2(s, t) ≤
∫ t

sδ+δ
E
(∣∣fr(X(δ)

r )
∣∣∣∣∣Fs

)
dr =

∫ t

sδ+δ
E
(
E
(∣∣fr(X(δ)

r )
∣∣∣∣∣Fsδ+s

)
|Fs

)
dr

=

∫ t

sδ+δ
E
(
E
∣∣fr(X(δ),x

sδ+δ,r
)
∣∣∣∣∣
x=X

(δ)
sδ+δ

∣∣∣Fs

)
dr.

In terms of Lemma 2.1, besides Hölder’s inequality, one obtains that

E|fr(X(δ),x
sδ+δ,r

)| ≤ Λ3

(2πλ̆0(r − sδ − δ))d/2

∫
Rd
|fr(y)|e−

|x−y|2
κ0(r−sδ−δ) dy

≤ Λ3

((2π)
1
p λ̆0)d/2

(κ0(p− 1)

2p

) d
2

(1−1/p)
(r − sδ − δ)−

d
2p

(∫
Rd
|fr(y)|pdy

) 1
p

.

This further yields by Hölder’s inequality that

I2(s, t) ≤ Λ3

((2π)
1
p λ̆0)d/2

(κ0(p− 1)

2p

) d
2

(1−1/p)
∫ t

sδ+δ
(r − sδ − δ)−

d
2p

(∫
Rd
|fr(y)|pdy

) 1
p

dr

=
Λ3

(
γ0(1− 1/q)

) q−1
q

((2π)
1
p λ̆0)d/2

(κ0

2
(1− 1/p)

) d
2

(1−1/p)
(t− s)

1
γ0 ‖f‖Lpq(T ).

(2.15)
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Hence, (2.14) and (2.15) imply

(2.16) E
(∫ t

s

∣∣fr(X(δ)
r )
∣∣dr∣∣∣Fs

)
≤ α0 ‖f‖Lpq(T )(t− s)

1
γ0 , 0 ≤ s ≤ t ≤ T,

in which α0 > 0 was introduced in (2.13). For each k ≥ 1, applying inductively (2.16) gives

E
((∫ t

s

∣∣fr(X(δ)
r )
∣∣dr)k∣∣∣∣Fs

)
= k!E

(∫
4k−1(s,t)

∣∣fr1(X(δ)
r1 )
∣∣ · · · ∣∣frk−1

(X(δ)
rk−1

)
∣∣dr1 · · · drk−1

× E
(∫ t

rk−1

|fk(X(δ)
rk

)|drk
∣∣∣Frk−1

)∣∣∣∣Fs

)
≤ α0k!(t− s)

1
γ0 ‖f‖Lpq(T )

× E
((∫

4k−1(s,t)

∣∣fr1(X(δ)
r1 )
∣∣ · · · ∣∣frk−1

(X(δ)
rk−1

)
∣∣dr1 · · · drk−1

)∣∣∣∣Fs

)
≤ · · · ≤ k!

(
α0(t− s)

1
γ0 ‖f‖Lpq(T )

)k
, 0 ≤ s ≤ t ≤ T,

(2.17)

where
4k(s, t) :=

{
(r1, · · · , rk) ∈ Rk : s ≤ r1 ≤ · · · ≤ rk ≤ t

}
.

Taking δ0 = (2α0λ‖f‖Lpq(T ))
−γ0 , one obviously has λα0δ

1
γ0
0 ‖f‖Lpq(T ) = 1

2 . With this and (2.17) in
hand, we derive that

(2.18) E
(

exp

(
λ

∫ iδ0∧T

(i−1)δ0

∣∣ft(X(δ)
t )
∣∣dt)∣∣∣F(i−1)δ0

)
≤
∞∑
k=0

1

2k
= 2, i ≥ 1,

which further implies inductively that

E exp

(
λ

∫ T

0

∣∣ft(X(δ)
t )
∣∣dt) = E

(
exp

(
λ

bT/δ0c∑
i=1

∫ iδ0

(i−1)δ0

∣∣ft(X(δ)
t )
∣∣dt)

× E
(

exp

(
λ

∫ T

bT/δ0cδ0

∣∣ft(X(δ)
t )
∣∣dt)∣∣∣FbT/δ0cδ0))

≤ 2E exp

(
λ

bT/δ0c∑
i=1

∫ iδ0

(i−1)δ0

∣∣ft(X(δ)
t )
∣∣dt)

≤ · · · ≤ 21+T/δ0 .

(2.19)

Therefore, (2.12) is now available by recalling δ0 = (2α0λ‖f‖Lpq(T ))
−γ0 .

The following lemma is concerned with Khasminskii’s estimate for the solution process (Xt)t≥0,
which is more or less standard; see, for instance, [4, 9, 14, 30, 32]. Whereas, we herein state the
Khasminskii estimate and provide a sketch of its proof merely for the sake of explicit upper bound.
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Lemma 2.4. Assume (A1) and (A3). Then, for f ∈ Lpq(T ) with (p, q) ∈ K1, λ > 0 and T > 0,

(2.20) E exp

(
λ

∫ T

0
|ft(Xt)|dt

)
≤ 2

1+T
(

2λα̂0‖f‖Lpq (T )

)γ0
,

where

(2.21) α̂0 := (2π)
− d

2p β̂T (8(p− 1)/p)
d
2

(1− 1
p

)
(λ̂

1− 1
p

0 /λ̆0)
d
2 , β̂T := e

‖b‖2∞T
2λ̂0

∞∑
i=0

βiT
Γ(1 + i

2)

with βT being given in (A.2) below.

Proof. By (A.1) below, it follows from Hölder’s inequality and Markov property that

E
(∫ t

s
|fr(Xr)|dr

∣∣∣∣Fs

)
=

∫ t

s
E|fr(Xs,x

r )|dr
∣∣∣∣
x=Xs

≤ β̂T
∫ t

s

∫
Rd
|fr(y)| e

− |y−x|2

16λ̂0(r−s)

(2πλ̆0(r − s))d/2
dydr

∣∣∣
x=Xs

≤ α̂0(t− s)1− d
2p
− 1
q ‖f‖Lpq(T ),

(2.22)

where (Xs,x
t )t≥s stands for the solution to (1.1) with the initial value Xs,x

s = x, and β̂T , α̂0 > 0
were introduced in (2.21). Then, (2.20) follows immediately by utilizing (2.22) and by following
the exact line to derive (2.19).

Remark 2.5. In (2.16), Krylov’s estimate for (X
(δ)
t )t≥0 instead of (X

(δ)
tδ

)t≥0 is available. Whereas,

the Krylov estimate associated with (X
(δ)
tδ

)t≥0 no longer holds true. Indeed, if we take s, t ∈
[kδ, (k + 1)δ) for some integer k ≥ 1, we obviously have

(2.23) E
(∫ t

s

∣∣frδ(X(δ)
rδ

)
∣∣dr∣∣∣Fs

)
= |fkδ(X

(δ)
kδ )|(t− s), f ∈ Lpq(T ), (p, q) ∈ K1

which is a random variable. Hence, it is impossible to control the quantity on the left hand side of
(2.23) by ‖f‖Lpq(T ) up to a constant; see also e.g. [26] for more details.

Before we go further, we introduce some additional notation. For p ≥ 1 and m ≥ 0, let Hm
p be

the usual Sobolev space on Rd with the norm

‖f‖Hm
p

:=
m∑
k=0

‖∇mf‖Lp ,

where ∇m denotes the m-th order gradient operator. For q ≥ 1 and 0 ≤ S ≤ T , let

Hm,q
p (S, T ) = Lq([S, T ];Hm

p )

and H m,q
p (S, T ) be the collection of all functions f : [S, T ] × Rd → R such that f ∈ Hm,q

p (S, T )
and ∂tf ∈ Lpq(S, T ). For a locally integrable function h : Rd → R, the Hardy-Littlewood maximal
operator Mh is defined as below

(Mh)(x) = sup
r>0

1

|Br(x)|

∫
Br(x)

h(y)dy, x ∈ Rd,
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where Br(x) is the ball with the radius r centered at the point x and |Br(x)| denotes the d-
dimensional Lebesgue measure of Br(x).

To make the content self-contained, we recall the Hardy-Littlewood maximum theorem, which
is stated as the lemma below.

Lemma 2.6. For any f ∈W 1,1
loc (Rd), there exists a constant C > 0 such that

(2.24) |f(x)− f(y)| ≤ C|x− y|{(M |∇f |)(x) + (M |∇f |)(y)}, a.e. x, y ∈ Rd.

Moreover, for any f ∈ Lp(Rd), p > 1, there exists a constant Cp, independent of d, such that

(2.25) ‖M f‖Lp ≤ Cp‖f‖Lp .

Remark 2.7. For the detailed proof of (2.24), please refer to the counterpart of [33, Lemma 3.5].
On the other hand, the inequality in (2.25) is called the Hardy-Littlewood maximum inequality,
which can be consulted in [28, Theorem 1, p5].

Now we are in position to complete the

Proof of Theorem 1.3. For any λ > 0, consider the following PDE for uλ : [0, T ]× Rd → Rd :

∂tu
λ +

1

2

d∑
i,j=1

〈σσ∗ei, ej〉∇ei∇ejuλ + b+∇buλ = λuλ,(2.26)

where (ej)1≤j≤d stipulates the orthogonal basis of Rd and (∇buλ)(x) (resp. (∇ejuλ)(x)) means the
directional derivative of uλ at the point x along the direction b(x) (resp. ej). According to [30,

Lemma 4.3], (2.26) has a unique solution uλ ∈ H 2,2q
2p (0, T ) for the pair (p, q) ∈ K1 due to p > d

2
satisfying

(2.27) (1 ∨ λ)
1
2

(1− d
2p
− 1
q

)∥∥∇uλ∥∥
T,∞ +

∥∥∇2uλ
∥∥
L2p
2q(T )

≤ c1

∥∥|b|2∥∥
Lp

for some constant c1 > 0, where ‖∇uλ‖T,∞ := sup0≤t≤T,x∈Rd ‖∇uλt (x)‖HS. With the help of (2.27),
there is a constant λ0 ≥ 1 such that

(2.28)
∥∥∇uλ∥∥

T,∞ ≤
1

2
, λ ≥ λ0.

For uλ ∈H 2,2q
2p (0, T ), there exists a sequence uλ,k ∈ C1,2([0, T ]× Rd;Rd) such that

lim
k→∞

∥∥uλ,k − uλ∥∥
H 2,2q

2p (0,T )
= 0,

where ∥∥u∥∥
H 2,2q

2p (0,T )
:=
∥∥∂·u∥∥L2p

2q(0,T )
+
∥∥u∥∥H2,2q

2p (0,T )
.

Henceforth, we can apply directly Itô’s formula to uλ ∈ H 2,2q
2p (0, T ) by adopting a standard ap-

proximation approach; see e.g. the arguments of [30, Theorem 2.1] and [32, Lemma 4.3] for more
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details. Set θλt (x) := x + uλt (x), x ∈ Rd, and Z
(δ)
t := Xt −X(δ)

t . By Itô’s formula, we obtain from
(2.26) that

dθλt (Xt) = λuλ(Xt)dt+∇θλt (Xt)σ(Xt)dWt

dθλt (X
(δ)
t ) =

{
λuλ(X

(δ)
t ) +∇θλt (X

(δ)
t )
(
b(X

(δ)
tδ

)− b(X(δ)
t )
)

+
1

2

d∑
i,j=1

〈(
(σσ∗)(X

(δ)
tδ

)

− (σσ∗)(X
(δ)
t )
)
ei, ej

〉
∇ei∇ejuλt (Xδ

t )
}

dt+∇θλt (X
(δ)
t )σ(X

(δ)
tδ

)dWt.

(2.29)

Let Γt = θλt (Xt)− θλt (X
(δ)
t ), t ≥ 0. From (2.28), it is easy to see that

(2.30)
1

2

∣∣Z(δ)
t

∣∣ ≤ |Γt| ≤ 3

2

∣∣Z(δ)
t

∣∣.
Whence, by Itô’s formula, we derive from (2.29) that for γ ≥ 2 in (A2),

|Z(δ)
t |γ ≤ 2γγλ

∫ t

0
|Γ(s)|γ−2

〈
Γ(s), uλ(Xs)− uλ(X(δ)

s )
〉
ds

+ 2γγ

∫ t

0
|Γ(s)|γ−2

〈
Γ(s),∇θλs (X

(δ)
t )
(
b(X(δ)

s )− b(X(δ)
sδ

)
)〉

ds

+ 2γ−1γ
d∑

i,j=1

∫ t

0
|Γ(s)|γ−2

〈(
(σσ∗)(X(δ)

sδ
)− (σσ∗)(X(δ)

s )
)
ei, ej

〉〈
Γ(s),∇ei∇ejuλs (Xδ

s )
〉
ds

+ 2γ−1γ(γ − 1)

∫ t

0
|Γ(s)|γ−2

∥∥∇θλs (Xs)σ(Xs)−∇θλs (X(δ)
s )σ(X(δ)

sδ
)
∥∥2

HS
ds+ dMt

=: I1,δ(t) + I2,δ(t) + I3,δ(t) + I4,δ(t) +Mt,

(2.31)

where

Mt := 2γγ

∫ t

0
|Γ(s)|γ−2

〈
Γ(s),

(
(∇θλsσ)(Xs)−∇θλs (X(δ)

s )σ(X(δ)
sδ

)
)
dWs

〉
.

By means of (2.28), we have

(2.32) I1,δ(t) ≤ 3γ−1γλ

∫ t

0

∣∣Z(δ)
s

∣∣2ds.

Also, by virtue of (2.28), besides (2.30), we find that there exists a constant c2 > 0 such that

(2.33) I2,δ(t) ≤ c2

{∫ t

0

∣∣Z(δ)
s

∣∣γds+

∫ t

0

∣∣b(X(δ)
s )− b(X(δ)

sδ
)
∣∣γds

}
.

By means of (1.3) and (1.5), one has∥∥(σσ∗)(x)− (σσ∗)(y)
∥∥

HS
≤
(
‖σ(x)‖op + ‖σ(y)‖op

)∥∥σ(x)− σ(y)
∥∥

HS

≤ 2L0

√
λ̂0d |x− y|, x, y ∈ Rd.
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This, combining (2.30)and using Young’s inequality, leads to

I3,δ(t) ≤ c3

∫ t

0

∣∣X(δ)
s −X(δ)

sδ

∣∣ · ∣∣Z(δ)
s

∣∣γ−1 ·
∥∥∇2uλs (Xδ

s )
∥∥

HS
ds

≤ c3

γ

∫ t

0

{
(γ − 1)

∣∣Z(δ)
s

∣∣γ∥∥∇2uλs (Xδ
s )
∥∥ γ
γ−1

HS +
∣∣X(δ)

s −X(δ)
sδ

∣∣γ}ds

≤ c3

2

∫ t

0

{∣∣Z(δ)
s

∣∣γ(γ∥∥∇2uλs (Xδ
s )
∥∥2

HS
+ γ − 2

)
+
∣∣X(δ)

s −X(δ)
sδ

∣∣γ}ds

(2.34)

for some constant c3 > 0. Furthermore, thanks to (1.2), (1.5), (2.24), (2.28) as well as (2.30), we
derive from Hölder’s inequality that

I4,δ(t) ≤ 2γ+1γ(γ − 1)

∫ t

0
|Γ(s)|γ−2

{∥∥σ(Xs)− σ(X(δ)
sδ

)
∥∥2

HS

+
∥∥(∇uλs (Xs)−∇uλs (X(δ)

s )
)
σ(Xs)

∥∥2

HS

+
∥∥∇uλs (X(δ)

s )
(
σ(Xs)− σ(X(δ)

sδ

)∥∥2

HS

}
ds

≤ c4

∫ t

0
|Γ(s)|γ−2

{∥∥σ(Xs)− σ(X(δ)
sδ

)
∥∥2

HS
+
∥∥∇uλs (Xs)−∇uλs (X(δ)

s )
∥∥2

HS

}
ds

≤ c5

∫ t

0
|Γ(s)|γ−2

∣∣Z(δ)
s

∣∣2{(M ‖∇2uλs‖2HS

)
(Xs) +

(
M ‖∇2uλs‖2HS

)(
X(δ)
s

)}
ds

+ c5

∫ t

0
|Γ(s)|γ−2

{∣∣Z(δ)
s

∣∣2 +
∣∣X(δ)

s −X(δ)
sδ

∣∣2}ds

≤ c6

∫ t

0

∣∣Z(δ)
s

∣∣γ{(M ‖∇2uλs‖2HS

)
(Xs) +

(
M ‖∇2uλs‖2HS

)(
X(δ)
s

)}
ds

+ c6

∫ t

0

{∣∣Z(δ)
s

∣∣γ +
∣∣X(δ)

s −X(δ)
sδ

∣∣γ}ds

(2.35)

for some constants c4, c5, c6 > 0. As a result, plugging (2.32)-(2.35) into (2.31) gives that∣∣Z(δ)
t

∣∣γ ≤ ∫ t

0

∣∣Z(δ)
s

∣∣γdAs +

∫ t

0

{
c2

∣∣b(X(δ)
s )− b(X(δ)

sδ
)
∣∣γ + (c3/2 + c6)

∣∣X(δ)
s −X(δ)

sδ

∣∣γ}ds+Mt,

in which, for some constant ĉ1 > 0,

At := ĉ1

∫ t

0

{
1 +

(
M ‖∇2uλs‖2HS

)
(Xs) +

(
M ‖∇2uλs‖2HS

)
(X(δ)

s ) +
∥∥∇2uλs

∥∥2

HS

(
Xδ
s

)}
ds, t ≥ 0.

Consequently, we deduce by stochastic Gronwall’s inequality (see e.g. [30, Lemma 3.8]) that, for
0 < κ′ < κ < 1,(

E
∥∥Z(δ)

∥∥κ′γ
t,∞

)1/κ′

≤
( κ

κ− κ′
)1/κ′(

E eκAt/(1−κ)
)(1−κ)/κ

×
∫ t

0

{
c2E
∣∣b(X(δ)

s )− b(X(δ)
sδ

)
∣∣γ + (c3/2 + c6)E

∣∣X(δ)
s −X(δ)

sδ

∣∣γ}ds,

where ‖f‖t,∞ := sup0≤s≤t |f(s)| for a continuous function f : R+ → Rd. The estimate above,
together with Lemma 2.2 and the fact that

sup
0≤t≤T

E
∣∣X(δ)

t −X
(δ)
tδ

∣∣γ ≤ ĉ2δ
γ
2
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for some constant ĉ2 > 0, leads to

(2.36)
(
E
∥∥Z(δ)

∥∥κ′γ
t,∞

)1/κ′

≤ ĉ3

(
E eκAt/(1−κ)

) 1
κ
−1(

δ
γ
2 + δ

αγ
2
)

for some constant ĉ3 > 0. By Hölder’s inequality, we deuce for some constant ĉ4 > 0,

Ee
κAt
1−κ ≤ e

κ ĉ1t
1−κ

(
E exp

(
ĉ4

∫ t

0

(
M
∥∥∇2uλs

∥∥2

HS

)
(Xs)ds

))1/2

×
(
E exp

(
ĉ4

∫ t

0

(
M
∥∥∇2uλs

∥∥2

HS

)(
X(δ)
s

)
ds

))1/4

×
(
E exp

(
ĉ4

∫ t

0

∥∥∇2uλs
∥∥2

HS

(
Xδ
s

)
ds

))1/4

.

This, in addition to (2.12), (2.20), (2.25) as well as (2.27), implies that

Ee
κAt
1−κ ≤ exp

(
ĉ5

(
1 +

∥∥‖∇2uλ‖2HS

∥∥γ0
Lpq(T )

+
∥∥M ‖∇2uλ‖2HS

∥∥γ0
Lpq(T )

))
≤ exp

(
ĉ5

(
1 +

∥∥∇2uλ
∥∥2γ0
L2p
2q(T )

))
≤ exp

(
ĉ5

(
1 +

∥∥|b|2∥∥γ0
Lp

))(2.37)

for some constants ĉ5, ĉ6, ĉ7 > 0. Substituting (2.37) back into (2.36), we find constants ĉ8, ĉ9 > 0
such that

E
∥∥Z(δ)

∥∥κ′γ
t,∞ ≤ ĉ8 exp

(
ĉ9

(
1 +

∥∥|b|2∥∥γ0
Lp

))(
δ
γ
2 + δ

αγ
2
)κ′

so that we have

E
∥∥Z(δ)

∥∥β
t,∞ ≤ ĉ8 exp

(
ĉ9

(
1 +

∥∥|b|2∥∥γ0
Lp

))(
δ
β
2 + δ

αγβ

2γ

)
, β ∈ (0, γ).

We therefore complete the proof.

3 Proof of Theorem 1.4

In this section, we aim to complete the proof of Theorem 1.4 by carrying out a truncation approach;
see, for example, [1, 23] for further details.

Let ψ : R+ → [0, 1] be a smooth function such that

ψ(r) = 1, r ∈ [0, 1], ψ(r) ≡ 0, r ≥ 2.

For each integer k ≥ 1, let bk(x) = b(x)ψ(|x|/k), x ∈ Rd, be the truncation function associated
with the drift b. A direct calculation shows that

(3.1) ‖bk‖∞ ≤ ‖b‖∞ and
∥∥|bk|2∥∥Lp ≤ ( 2dπ

d
2

Γ(d2 + 1)

)1/p
k
d
p ‖b‖2∞.

Consider the following truncated SDE corresponding to (1.1)

(3.2) dXk
t = bk(X

k
t )dt+ σ(Xk

t )dWt, t ≥ 0, Xk
0 = X0.
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The EM scheme associated with (3.2) is given by

dX
k,(δ)
t = bk(X

k,(δ)
tδ

)dt+ σ(X
k,(δ)
tδ

)dWt, t ≥ 0, X
k,(δ)
0 = X

(k)
0 .

Observe that for β ∈ (0, γ)

E
∥∥X −X(δ)

∥∥β
T,∞ ≤ 30∨(β−1)

{
E
∥∥X −Xk

∥∥2

T,∞ + E
∥∥X(δ) −Xk,(δ)

∥∥2

T,∞

+ E
∥∥Xk

t −Xk,(δ)
∥∥2

T,∞
}

=: 30∨(β−1){I1 + I2 + I3},

(3.3)

where, for a map f : [0, T ] → Rd, we set ‖f‖T,∞ := sup0≤t≤T |f(t)|. Via Hölder’s inequality and
the fact

{Xt 6= Xk
t , 0 ≤ t ≤ T} ⊆ {‖X‖T,∞ ≥ k},

it follows that

I1 = E
(∥∥X −Xk

∥∥β
T,∞1{‖X‖T,∞≥k}

)
≤
(
E
∥∥X −Xk

∥∥2β

T,∞

)1/2(
P
(∥∥X∥∥

T,∞ ≥ k
))1/2

.

Since ∥∥X∥∥
T,∞ ≤ |x|+ ‖b‖∞T + |M |T,∞,

in which

Mt :=

∫ t

0
σ(Xs)dWs, t ≥ 0,

with the quadratic variation 〈M〉T ≤ dλ̂0T, we derive from [27, Proposition 6.8, p147] that

P(‖X‖T,∞ ≥ k) ≤ P
(
‖M‖T,∞ ≥ k − |x| − ‖b‖∞T, 〈M〉T ≤ dλ̂0T

)
≤ 2 d exp

(
− (k − |x| − ‖b‖∞T )2

4d2λ̂0T

)
≤ 2 d exp

((|x|+ ‖b‖∞T )2

4d2λ̂0T

)
e
− k2

8d2λ̂0T ,

(3.4)

where in the last display we used the inequality: (a− b)2 ≥ a2/2− b2, a, b ∈ R. Thus, (3.4), besides

E‖X‖2βT,∞ + E‖Xk‖2βT,∞ ≤ C1

for some constant C1, yields

(3.5) I1 ≤ C2 exp
((|x|+ ‖b‖∞T )2

8d2λ̂0T

)
e
− k2

16d2λ̂0T

for some constant C2 > 0. Following a similar procedure to derive (3.5), we also derive that

(3.6) I2 ≤ C3 exp
((|x|+ ‖b‖∞T )2

8d2λ̂0T

)
e
− k2

16d2λ̂0T

15



for some constant C3 > 0. Moreover, for (p, q) ∈ K2, according to Theorem 1.3, there exist constants
C4, C5 > 0 such that

E‖Xk −Xk,(δ)‖2T,∞ ≤ C4e
C5

∥∥|bk|2∥∥γ0Lp(δ β2 + δ
αγβ

2γ

)
.

This, together with (3.1), implies

(3.7) E‖Xk −Xk,(δ)‖2T,∞ ≤ C4eC6‖b‖
2γ0∞ k

dγ0
p
(
δ
β
2 + δ

αγβ

2γ

)
for some constant C6 > 0. As a consequence, from (3.5), (3.6), and (3.7), we arrive at

E‖X −X(δ)‖2T,∞ ≤ C8

{
e
− k2

16d2λ̂0T + eC7k
dγ0
p
δ
β
2

(1∧αγ
γ

)
}

for some constants C7, C8 > 0. Thereby, the desired assertion (1.8) follows by taking

k =
(
− 8βd2λ̂0T

(
1 ∧ αγ

γ

)
log δ

) 1
2
.

4 Illustrative examples

In this section, we intend to give examples to demonstrate that the assumption imposed on drift
term holds true.

Example 4.1. Let b(x) = 1[a1,a2](x), x ∈ R, for some constants a1 < a2. Apparently, b is not
continuous at all but b2 ∈ Lp for any p ≥ 1. Observe that

lim
ε↓0

−ε(b(a1 − ε)− b(a1))

ε2
= lim

ε↓0

1

ε
=∞

so that b does not obey the one-sided Lipschitz condition. Next we aim to show that b given above
satisfies (A2). By a direct calculation, for any s > 0, γ ≥ 2 and y ∈ R,∫ ∞

−∞
|b(x+ y + z)− b(x+ y)|κe−

x2

s dx ≤
∫ ∞
−∞
|b(x+ z)− b(x)|κdx

=

∫ a2−z

a1−z
1[a1,a2]c(x)dx+

∫ a2

a1

1[a1−z,a2−z]c(x)dx

=: I1(z) + I2(z).

If z ≥ 0, then

I1(z) =

∫ (a2−z)∧a1

a1−z
dx ≤ |z| and I2(z) =

∫ a2

(a2−z)∨a1
dx ≤ |z|.

On the other hand, for z < 0, we have

I1(z) =

∫ a2−z

(a1−z)∨a2
dx ≤ |z| and I2(z) =

∫ a2∧(a1−z)

a1

dx ≤ |z|.

So, (A2) holds true with α = 1 and φ(s) = s−
1
2 , s > 0.
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Example 4.2. For θ > 0 and p ∈ [2,∞) ∩ (d,∞), if the Gagliardo seminorm

[b]W p,θ :=
(∫

Rd×Rd

|b(x)− b(y)|p

|x− y|d+pθ
dxdy

) 1
p
<∞,

then b ∈ GB2
1− d

p
,θ

(Rd). Indeed, by Hölder’s inequality and (2.10), it follows that

1

(rs)d/2

∫
Rd×Rd

|b(x)− b(y)|2e−
|x−z|2
s e−

|y−x|2
r dydx

=
1

(rs)d/2

∫
Rd×Rd

|b(x)− b(y)|2

|x− y|
2d
p

+2θ
e−
|x−z|2
s e−

|y−x|2
r |x− y|

2d
p

+2θ
dydx

≤ C1

[b]
2
p

W p,θ

(rs)d/2

(∫
Rd×Rd

e
− p|x−z|

2

(p−2)s e
− p|x−y|

2

(p−2)r |x− y|
2(d+pθ)
p−2 dydx

) p−2
p

≤ C2[b]
2
p

W p,θ

r
d
p

+θ

(rs)d/2

(∫
Rd×Rd

e
− p|x−z|

2

(p−2)s e
− p|x−y|

2

2(p−2)r dydx
) p−2

p

≤ C3[b]
2
p

W p,θ

(p− 2

p

) d(p−2)
p

s
− d
p rθ, r, s > 0, z ∈ Rd, p > 2

(4.1)

for some constants C1, C2, C3 > 0. On the other hand, if d = 1 and p = 2, we deduce from (4.1)
that b ∈ GB2

1/2,θ(R
d) due to limx→0 x

x = 1.

Example 4.3. For 0 < a < b <∞, f(·) := 1[a,b](·) ∈ GB2
1
2
, 1
2

(R) whereas f /∈ W
1
2
,2(R). In fact, it

is easy to see that
f ∈ ∩0≤θ< 1

2
W θ,2, lim

θ↑ 1
2

[f ]W θ,2 =∞,

which yields f /∈W
1
2
,2(R). On the other hand, since

1

(rs)d/2

∫
R2

|f(x)− f(y)|2e−
|x−z|2
s e−

|y−x|2
r dydx ≤ Cs−

1
2 r

1
2 , r, s > 0, z ∈ R

for some constant C > 0, we arrive at f ∈ GB2
1
2
, 1
2

(R).

A Appendix

The lemma below provides explicit estimates of the parameters concerning Gaussian type estimate
of transition density for the diffusion process (Xt)t≥0 solving (1.1).

Lemma A.1. Under ‖b‖∞ <∞ and (A3), the transition density p of (Xt)t≥s satisfies

(A.1) p(s, t, x, x′) ≤ e
‖b‖2∞T
2λ̂0

∞∑
i=0

βiT
Γ(1 + i

2)
p0(t− s, x, x′), 0 ≤ s < t ≤ T, x, x′ ∈ Rd,

where Γ(·) is the Gamma function, and

βT := 23d+1
( λ̂0

λ̆0

)d+1
(πT )

1
2

{‖b‖∞√
λ̂0

+ L0(d+ 2
√
d)
}

e
‖b‖2∞T
4λ̂0 , p0(t, x, x′) :=

e
− |x−x

′|2

16λ̂0t

(2πλ̆0t)d/2
.(A.2)
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Proof. The proof of Lemma A.1 is based on the parametrix method [13, 15]. To complete the proof
of Lemma A.1, it suffices to refine the argument of [13, Lemma 3.2]; see also e.g. [15, p1660-1662]
for further details. Under ‖b‖∞ <∞ and (A3), Xt admits a smooth transition density p(s, t, x, y)
at the point y, given Xs = x, such that

∂tp(s, t, x, y) = L∗p(s, t, x, y), p(s, t, x, ·) = δx(·), t ↓ s,
∂sp(s, t, x, y) = −Lp(s, t, x, y), p(s, t, ·, y) = δy(·), s ↑ t,

(A.3)

where L is the infinitesimal generator of (1.1) and L∗ is its adjoint operator. For t > s and

x, x′ ∈ Rd, let X̃s,x,x′

t solve the frozen SDE

(A.4) dX̃s,x,x′

t = b(x′)dt+ σ(x′)dWt, t > s, X̃s,x,x′
s = x ∈ Rd

and p̃x
′
(s, t, x, x′) stand for its transition density at x′, given X̃s,x,x′

s = x. Apparently, p̃x
′

admits
the explicit form

p̃x
′
(s, t, x, x′) =

e
− 1

2(t−s) 〈(σσ
∗)−1(x′)(x′−x−b(x′)(t−s)),x′−x−b(x′)(t−s)〉√
(2π(t− s))ddet((σσ∗)(x′))

.

A direct calculation yields

(A.5) ∂sp̃
x′(s, t, x, x′) = −L̃x′ p̃x′(s, t, x, x′), t > s, p̃x

′
(s, t, ·, x′)→ δx′(·), s ↑ t,

where L̃x
′

is the infinitesimal generator of (A.4). By (A.3) and (A.4), we derive from [13, (3.8)]
that

p(s, t, x, x′) = p̃x
′
(s, t, x, x′) +

∫ t

s

∫
Rd
p(s, u, x, z)H(u, t, z, x′)dzdu,(A.6)

where

H(s, t, x,x′) := (L− L̃x′)p̃x′(s, t, x, x′)

= 〈b(x)− b(x′),∇p̃x′(s, t, x, x′)〉+
1

2
〈(σσ∗)(x)− (σσ∗)(x′),∇2p̃x

′
(s, t, x, x′)〉HS.

(A.7)

In (A.6), iterating for p(s, u, x, z) gives

(A.8) p(s, t, x, x′) =
∞∑
i=0

(p̃x
′ ⊗H(i))(s, t, x, x′),

where p̃⊗H(0) := p̃ and p̃x
′ ⊗H(i) := (p̃x

′ ⊗H(i−1))⊗H, i ≥ 1, with

(f ⊗ g)(s, t, x, x′) :=

∫ t

s

∫
Rd
f(s, u, x, z)g(u, t, z, y)dudz.

If we can claim that

(A.9) |p̃⊗H(i)|(s, t, x, x′) ≤
e
‖b‖2∞T
2λ̂0 βiT

Γ(1 + i
2)

p0(t− s, x, x′),
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in which βT , p0 were introduced in (A.2), then (A.1) follows from (A.8) and (A.9). Below it suffices
to show that (A.9) holds true. By means of (2.10) and |a − b|2 ≥ 1

2 |a|
2 − |b|2, a, b ∈ Rd, it follows

from (1.2) and ‖b‖∞ <∞ that

|∇p̃|(s, t, x, x′) ≤
√
λ̂0e

‖b‖2∞T
4λ̂0

λ̆0

√
t− s

p0(t− s, x, x′)

‖∇2p̃‖HS(s, t, x, x′) ≤
(
√
d+ 4

e )e
‖b‖2∞T
4λ̂0

λ̆0(t− s)
e
− |x

′−x|2

8λ̂0(t−s)

(2πλ̆0(t− s))d/2
.

(A.10)

Thus, combining (2.10) with (A.10), besides ‖b‖∞ <∞ and (1.3), enables us to obtain

(A.11) |H|(s, t, x, x′) ≤
2λ̂0

{
‖b‖∞/

√
λ̂0 + L0(d+ 2

√
d)
}

e
‖b‖2∞T
4λ̂0

λ̆0

√
t− s

p0(t− s, x, x′).

By
∫ t
s (t− u)−

1
2 (u− s)αdu = (t− s)α+ 1

2B(1 + α, 1/2), t > s, α > −1, we have

Λi(s, t) :=

∫ t

s
· · ·
∫ ui−1

s
(t− u1)−

1
2 · · · (ui−1 − ui)−

1
2 dui · · · du1 =

(π(t− s))
i
2

Γ(1 + i
2)

, i ≥ 1.

Whence, taking advantage of ‖b‖∞ <∞, (1.2), (A.11) as well as∫
Rd
p0(u− s, x, z)p0(t− u, y, z)dz =

(8λ̂0

λ̆0

)d
p0(t− s, x, x′), s < u < t

yields (A.9).

For x, x′ ∈ Rd and j ≥ 0, let (X̃
(δ),j,x,x′

iδ )i≥j solve the following frozen EM scheme associated
with (1.1)

X̃
(δ),j,x,x′

(i+1)δ = X̃
(δ),j,x,x′

iδ + b(x′)δ + σ(x′)(W(i+1)δ −Wiδ), i ≥ j, X̃
(δ),j,x,x′

jδ = x.

Write p̃(δ),x′(jδ, j′δ, x, y) by the transition density of X̃
(δ),j,x,x′

j′δ at the point y, given X̃
(δ),j,x,x′

jδ = x.
The following lemma reveals explicit upper bounds of coefficients with regard to Gaussian bound

of the discrete-time EM scheme.

Lemma A.2. Under ‖b‖∞ <∞ and (A3), for any 0 ≤ j < j′ ≤ bT/δc

(A.12) p(δ)(jδ, j′δ, x, x′) ≤ e
‖b‖∞T
2λ̂0

∞∑
k=0

(√
πTĈT ((1 + 24d)λ̂0/λ̆0)d

)k
Γ(1 + k

2 )

e
− |x′−x|2

4(1+24d)λ̂0(j
′−j)δ

(2πλ̆0(j′ − j)δ)d/2
.

Proof. To obtain (A.12), we refine the proof of [15, Lemma 4.1]. For ψ ∈ C2(Rd;R) and j ≥ 0, set

(L
(δ)
jδ ψ)(x) := δ−1{E(ψ(X

(δ)
(j+1)δ)|X

(δ)
jδ = x)− ψ(x)}, (L̂ (δ)

jδ ψ)(x) := δ−1{Eψ(X̃
(δ),j,x,x′

(j+1)δ )− ψ(x)}
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and

H(δ)(jδ, j′δ, x, x′) : = (L
(δ)
jδ − L̂

(δ)
jδ )p̃(δ),x′((j + 1)δ, j′δ, x, x′), j′ ≥ j + 1.

In what follows, let 0 ≤ j < j′ ≤ bT/δc. According to [13, Lemma 3.6], we have

(A.13) p(δ)(jδ, j′δ, x, x′) =

j′−j∑
k=0

(p̃(δ),x′ ⊗δ H(δ),(k))(jδ, j′δ, x, x′),

where p̃(δ),x′ ⊗δ H(δ),(0)) = p̃(δ),x′ , H(δ),(k) = H(δ) ⊗δ H(δ),(k−1) with ⊗δ being the convolution type
binary operation defined by

(f ⊗δ g)(jδ, j′δ, x, x′) = δ

j′−1∑
k=j

∫
Rd
f(jδ, kδ, x, u)g(kδ, j′δ, u, x′)du.

If the assertion

(A.14) H(δ)(jδ, j′δ, x, x′) ≤ ĈT√
(j′ − j)δ

e
− |x′−x|2

4(1+24d)λ̂0(j
′−j)δ

(2πλ̆0(j′ − j)δ)d/2

holds true, where ĈT was given in (2.1), then (A.12) follows due to (A.13) by an induction argument.
So, in order to complete the proof of Lemma A.2, it remains to verify (A.14). First of all, we show
(A.14) for j′ = j + 1. By the definition of H(δ), observe from (1.2) that

|H(δ)|(jδ, (j + 1)δ, x, x′) =
1

δ
|p(δ) − p̃(δ),x′ |(jδ, (j + 1)δ, x, x′)

≤ 1

δ(2πλ̆0δ)d/2

{∣∣∣e− 1
2δ
|(σσ∗)−

1
2 (x)(x′−x−b(x)δ)|2 − e−

1
2δ
|(σσ∗)−

1
2 (x)(x′−x−b(x′)δ)|2

∣∣∣
+
∣∣∣e− 1

2δ
〈(σσ∗)−1(x)(x′−x−b(x′)δ),x′−x−b(x′)δ〉 − e−

1
2δ
〈(σσ∗)−1(x′)(x′−x−b(x′)δ),x′−x−b(x′)δ〉

∣∣∣
+

1

2λ̆d0
e−

1
2δ
|(σσ∗)−

1
2 (x′)(x′−x−b(x′)δ)|2 |det((σσ∗)(x′))− det((σσ∗)(x))|

}
=:

1

δ(2πλ̆0δ)d/2
{Λ1 + Λ2 + Λ3}.

Next, we aim to estimate Λ1,Λ2,Λ3, one-by-one. By ‖b‖∞ < ∞, (1.2) and (2.10), it follows from
the first fundamental theorem of calculus that

|Λ1| ≤ 2

√
δ/λ̆0‖b‖∞e

‖b‖2∞δ
λ̂0 e

− |x−x
′|2

8λ̂0δ .(A.15)

(1.2) and (1.3) imply

‖(σσ∗)−1(x)− (σσ∗)−1(x′)‖HS ≤ 2λ̆−2
0

√
dλ̂0L0|x− x′|.

This, by invoking |ea − eb| ≤ ea∨b|a− b|, a, b ∈ R, and utilizing ‖b‖∞ <∞, (1.2) and (2.10), yields

|Λ2| ≤ 4
√
dδL0(λ̂0/λ̆0)2e

‖b‖2∞δ
4λ̂0 e

− |x−x
′|2

16λ̂0δ .(A.16)
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Also, making use of ‖b‖∞ <∞, (1.2) and (2.10), in addition to

|det((σσ∗)(x))− det((σσ∗)(x′))| ≤ 2d
d
2

+1d!λ̂
d− 1

2
0 L0|x− x′|,

due to (1.2) and (1.3), we arrive at

|Λ3| ≤
√

2d
d
2

+1d!(λ̂0/λ̆0)dL0

√
δe
‖b‖2∞δ
2λ̂0 e

− |x
′−x|2

8λ̂0δ .(A.17)

We therefore conclude that (A.14) holds with j′ = j + 1 by taking (A.15)-(A.17) into account. In
the sequel, we are going to show that (A.14) is still available for j′ > j+ 1. According to the notion
of H(δ),

H(δ)(jδ, j′δ, x, x′)

=
1

δ(2π)m/2

∫
Rm

e−
|z|2
2

{
p̃(δ),x′((j + 1)δ, j′δ, x+ Γz(x), x′)− p̃(δ),x′((j + 1)δ, j′δ, x, x′)

}
dz

− 1

δ(2π)m/2

∫
Rm

e−
|z|2
2

{
p̃(δ),x′((j + 1)δ, j′δ, x+ Γz(x

′), x′)− p̃(δ),x′((j + 1)δ, j′δ, x, x′)
}

dz,

where Γz(x) := b(x)δ +
√
δσ(x)z, x ∈ Rd, z ∈ Rm. By Taylor’s expansion, we further have

H(δ)(jδ, j′δ, x, x′)

=
1

δ(2π)m/2

{∫
Rm

e−
|z|2
2 〈∇p̃(δ),x′((j + 1)δ, j′δ, x, x′),Γz(x)− Γz(x

′)〉dz

+

∫
Rm

e−
|z|2
2 〈∇2p̃(δ),x′((j + 1)δ, j′δ, x, x′), (ΓzΓ

∗
z)(x)− (ΓzΓ

∗
z)(x

′)〉HSdz

}
+

1

2δ(2π)m/2

∫
Rm

∫ 1

0
(1− θ)2e−

|z|2
2

{
∇3

Γz(x)p̃
(δ),x′((j + 1)δ, j′δ, x+ θΓz(x), x′)

−∇3
Γz(x′)p̃

(δ),x′((j + 1)δ, j′δ, x+ θΓz(x
′), x′)

}
dθdz

=: Π1 + Π2 + Π3,

where ∇i means the i-th order gradient operator. Employing∫
Rm

e−
|z|2
2 trace(Aσ(x)zz∗σ(x)dz =

∫
Rm

e−
|z|2
2 z∗σ∗(x)Aσ(x)zdz = (2π)m/2trace(σ∗(x)Aσ(x))

for a symmetric d× d-matrix and
∫
Rm e−

|z|2
2 zdz = 0 gives

Π1 + Π2 = H((j + 1)δ, j′δ, x, x′) +
δ

2
〈∇2p̃(δ),x′((j + 1)δ, j′δ, x, x′), (bb∗)(x)− (bb∗)(x′)〉HS,

where H was defined as in (A.7) with px
′

replaced by p̃(δ),x′ . (A.10) and (A.11) enable us to obtain

|Π1|+ |Π2| ≤
2
d+1
2 e

‖b‖2∞T
4λ̂0

λ̆0

{
2

√
λ̂0‖b‖∞ + (‖b‖2∞ + 2λ̂0L0

√
d)(
√
d+ 2)

}
p0((j′ − j)δ, x, x′)√

(j′ − j)δ
.(A.18)
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Note that Π3 can be reformulated as below

Π3 =
1

2δ(2π)m/2

∫
Rm

∫ 1

0
(1− θ)2e−

|z|2
2

{
∇3

Γz(x)p̃
(δ),x′((j + 1)δ, j′δ, x+ θΓz(x

′), x′)

−∇3
Γz(x′)p̃

(δ),x′((j + 1)δ, j′δ, x+ θΓz(x
′), x′)

}
dθdz

+
1

2δ(2π)m/2

∫
Rm

∫ 1

0
(1− θ)2e−

|z|2
2

{
∇3

Γz(x)p̃
(δ),x′((j + 1)δ, j′δ, x+ θΓz(x), x′)

−∇3
Γz(x)p̃

(δ),x′((j + 1)δ, j′δ, x+ θΓz(x
′), x′)

}
dθdz =: Π31 + Π32.

By means of (1.2), (1.3) and (2.10), it follows that

|Π31| ≤
2m+ d+21

2 (L0 + 2‖b‖∞)(‖b‖2∞ + dλ̂0)
(

1 +

√
2(1 + 4d)λ̂0

)
e

3‖b‖2∞T
8dλ̂0

λ̆
3
2
0 ((j′ − j)δ)

1
2

× e
− |x′−x|2

8(1+4d)λ̂0(j
′−j)δ

(2πλ̆0(j′ − j)δ)d/2
,

(A.19)

Also, by exploiting (1.2), and (2.10), we infer from Taylor expansion

|Π32| ≤
2m+ d+23

2 (L0 + 2‖b‖∞)(‖b‖3∞ + (dλ̂0)
3
2 )
(

1 +

√
2(1 + 24d)λ̂0

)
e

(6‖b‖2∞+‖b‖∞)T

24dλ̂0

λ̆2
0((j′ − j)δ)

1
2

× e
− |x′−x|2

4(1+24d)λ̂0(j
′−j)δ

(2πλ̆0(j′ − j)δ)d/2
.

(A.20)

Consequently, (A.14) follows from (A.18), (A.19), and (A.20).
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