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Abstract

In this paper, by employing Gaussian type estimate of heat kernel, we establish Krylov’s
estimate and Khasminskii’s estimate for EM algorithm. As applications, by taking Zvonkin’s
transformation into account, we investigate convergence rate of EM algorithm for a class of
multidimensional SDEs with low regular drifts, which need not to be piecewise Lipschitz.
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1 Introduction and main results

Strong/weak convergence of numerical schemes for stochastic differential equations (SDEs for short)
with regular coefficients have been investigated considerably; see monographs e.g. [12]. As we
know, (forward) Euler-Maruyama (EM for abbreviation) is the simplest algorithm to discretize
SDEs whose coefficients are of linear growth. Whereas, EM scheme is invalid once the coefficients
of SDEs involved are of nonlinear growth; see e.g. [10] for some illustrative counterexamples.
Whence the other variants of EM scheme were designed to treat SDEs with non-globally Lipschitz
condition; see [7, 8] for backward EM scheme, [2, 11] as for tamed EM algorithm, and [18] concerning
truncated EM method, to name a few. Nowadays, convergence analysis of numerical algorithms
for SDEs with irregular coefficients also receives much attention; see e.g. [5] for SDEs with Holder
continuous diffusions via the Yamada-Watanabe approximation approach, [31] for SDEs whose drift
terms are Holder continuous with the aid of Meyer-Tanaka’s formula and estimates on local times,
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and [1, 24] for SDEs whose drifts are Holder(-Dini) continuous by regularities of the corresponding
backward Kolmogrov equations. In the past few years, numerical approximations of SDEs with
discontinuous drifts have also gained a lot of interest; see, for instance, [6, 16, 17, 20, 21]. Up to
now, most of the existing literatures above on strong approximations of SDEs with discontinuous
drift coefficients are implemented under the additional assumption that the drift term is piecewise
Lipschitz continuous.

Since the pioneer work of Zvonkin [34], the wellposedness for SDEs with irregular coefficients has
been developed greatly in different manners; see e.g. [3, 4, 14, 30, 32] for SDEs driven by Brownian
motions or jump processes, and e.g. [9, 25] for McKean-Vlasov (or distribution-dependent or mean-
field) SDEs. So far, there also exist a number of literatures upon numerical simulations of SDEs
with low regularity. In particular, [22] is concerned with strong convergence rate of EM scheme for
SDEs with irregular coefficients, where the one-sided Lipschitz condition is imposed on the drift
term. Subsequently, the one-sided Lipschitz condition put in [22] was dropped in [23] whereas
the 1-dimensional SDEs are barely concerned. At this point, our goal in this paper has been
evident. More precisely, motivated by the previous literatures, in this paper we aim to investigate
convergence rate of EM for multidimensional SDEs with low regularity, where the drift terms need
not to be piecewise Lipschitz continuity imposed in e.g. [6, 16, 17, 20, 21].

Now we consider the following SDE

(1.1) dX, = b(Xy)dt + o(X)dW,, t>0, Xo=xeR?

where b : R? — RY, o : RY — RI@R™, and (W});>0 is an m-dimensional Brownian motion on some
filtered probability space (€2, .%#, (%t)t>0,P). For the drift b and the diffusion o, we assume

(A1) [|b]|oo := sup,epa |b(z)] < co and there exists a constant p > 4 such that |[b> € LP(R?), the
usual LP-space on R%;

(A2) there exist constants v > 2, a, > 0 and a continuous decreasing function ¢- : (0,00) — (0, 00)
with fé $~(s)ds < oo for arbitrary [ > 0 such that

1
— [ @ +y) = bz + ) T e < g (s)ly — 2™, g€ R s> 0;

d
s2 JR4

(A3) There exist constants 5\0, 5\0, Ly > 0 such that

(12) Mol¢f? < ((00")(2)€,€) < Jolel*, @£ ERY,
(1.3) lo(z) = o(y)llus < Lolz —yl, 2,y €RY,
where ¢* means the transpose of o and || - ||as stands for the Hilbert-Schmidt norm.

Below, we make some comments on the assumptions (A2) and (A3).

Remark 1.1. If ¢y is bounded, then we can replace ¢~(s) in (A2) by supscior) d(s) which is
automatically decreasing. Let

Wnﬁ(ﬁb'y) = sup |¢'y(33) - ¢7(y)’

z,y€[nd,(n+1)d]



Instead of that ¢~ is decreasing, we can assume that ¢~ satisfies

LT/3]
(1.4) s |9 z:: wi,5(07) | < +o0.
Then for any ko > 0
L7/3] LT/8] (ka1)e LT/3]
IECUE Z/ Dy (o)At + 6 S s (7))
k=1 -
co ([ s s, (1 s
< Q.

It is not easy to check (1.4) for ¢ with 6lim+ ¢4(0) = +00. However, if ¢~ is decreasing, then
—0

L7/4] L7/4]

sup 5§:ama%/ = sup [0 ) (¢y(kd) — by ((k+1)0)) | = 5¢(9).
k=1

0<6<1 0<6<1

Hence, in this case, (1.4) holds if and only if there is C > 0 such that ¢~(x) < %

Remark 1.2. For x € RY, let ||o()]op = supjy<1 |o(x)yl, the operator norm of o(x). By the
Cauchy-Schwarz inequality, it follows from (1.2) that

d
llo(x Z|Sup y,o(@)e)” <llo*(@)|fs = D_((00) (@) ese) <ddo, xR,
i=1 1Yl i=1
where ej,i=1,--- ,d, is the orthogonal basis of RE. Then, we arrive at
(1.5) lo(@)llop < lo(@)llus = o (@)llus < \/dro, = €R™

Under (A1) and (A3), (1.1) has a unique strong solution (X¢)¢>o; see, for instance, [9, Lemma
3.1]. (A2) is imposed to reveal the convergence rate of EM scheme corresponding to (1.1), which
is defined as below: for any 6 € (0,1),

(1.6) dx? = p(XM)dt + o(XDyaw;, t>0, X =X,

with t5 := [t/d]0, where [t/d] denotes the integer part of ¢/5. We emphasize that (X;(C(f;))kzo is
a homogeneous Markov process; see e.g. [19, Theorem 6.14]. For t > s and = € R? denote
p@(s,t,x,-) by the transition density of Xt(é) with the starting point Xs@ =z. Set
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d
A= {0) € (Loo) x (Loo) s - <2} o= gy s, () €4,

sty = {(pa) € (1,00) x (1,00);Z+; <1},

Our first main result in this paper is stated as follows.



Theorem 1.3. Assume (A1)-(A3). Then, for g € (0,7), (p,q) € & and T > 0, there exist
constants C1,Cy > 0 independent of 6 such that

(1.7) E( sup | X; — X§5)\/3) < Oy exp (CQ(l + H\bﬂ@)) (5% + 5%).
0<t<T

Compared with [22], in Theorem 1.3 we get rid of the one-sided Lipschitz condition put on the
drift coefficients. On the other hand, [23] is extended to the multidimensional setup. We point out
that an A approximation is given in advance in [22, 23] to approximate the drift term. So, with
contrast to the assumption set in [22, 23|, the assumption (A2) is much more explicit. On the
other hand, by a close inspection of the argument of Lemma 2.2 below, the assumption (A2) can
indeed be replaced by the other alternatives. For instance, (A2) may be taken the place of (A2’)
below.

(A2’) there exist constants v > 2, 8, 6 > 0 such that for some constant C' > 0,

I e

]. I‘Q
(rs)d/? Sun@ /]Rd R o) = b(y)[le = e dyde < Crhsh T s> 0.
FAS X

The drift b satisfying (A2’) is said to be the Gaussian-Besov class with the index (f,6,),
written as GBgm@w (R?). The index 6, is used to characterize the order of continuity and j3, is used
to characterize the type of continuity. Remark that functions with the same order of continuity
may enjoy different type continuity; see, for instance, f(z) = \x|% with (1,1/2), and f(z) =
leq(z),c,d € R, with (1/2,1/2). We refer to Example 4.2 below for the drift b € GB%%OQ(]R“Z).
For § € (0,1) and p > 1, let WOP(R?) be the fractional order Sobolev space on R?. Nevertheless,

wor(RY) C GBié G(Rd), 0 > 0,p € [2,00)N(d, 0); see Example 4.3 for more details. Furthermore,

[29, Example 2.3] shows that the drift b constructed therein satisfies (A2’) but need not to be
piecewise Lipschitz continuous (see e.g. [16, 17]).

In Theorem 1.3, the integrable condition (i.e., |b]> € LP(R?)) seems to be a little bit restrictive,
which rules out some typical examples, e.g., b(z) = 1 )(z). In the sequel, by implementing
a truncation argument, the integrable condition can indeed be dropped. In such a setup (i.e.,
without integrable condition), we can still derive the convergence rate of the EM algorithm, which
is presented as below.

Theorem 1.4. Assume (A1) — (A3) without |b|?> € LP(R?). Then, for B € (0,2), (p,q) € #2 and
T > 0, there exist constants C1,Co > 0 independent of & such that
Q) Ca(—2(n%2) 10 5)%9 R 1
(1.8) E( sup | X — X yb’) SCl{e 2(-5 (1A log +1}(5a+52w).
0<t<T

We remark that the right hand side of (1.8) approaches zero since

Co(—8(1N22) ] Jdilg] Ban
%irr(l)e 2(*5( 7) og9) 55( 7) =0
—
iﬁ
x 4P
due to the fact that lim,_ o 60267,6 = 0 whenever (p, q) € 5.

The remainder of this paper is organized as follows. In Section 2, by employing Zvonkin’s
transform and establishing Krylov’s estimate and Khaminskii’s estimate for EM algorithm, which



is based on Gaussian type estimate of heat kernel, we complete the proof of Theorem 1.3; In Section
3, we aim to finish the proof of Theorem 1.4 by adopting a truncation argument; In Section 4 we
provide some illustrative examples to demonstrate our theory established; In the Appendix part, we
show explicit upper bounds of the parameters associated with Gaussian type heat kernel estimates
concerned with the exact solution and the EM scheme.

2 Proof of Theorem 1.3

Before finishing the proof of Theorem 1.3, we prepare several auxiliary lemmas. Set

oo 1 et
A1 { ()\0/)\0) -|-d2+ d'()\()/)\()) LQ} A0

o
(2.1) { \fubum (B2 + 280 LoV/d) (Va + 2) + 2711357 (Lo + 21[b]|oo)

5 R G (bl tbIZ)T
< (101 + (@)t + X5 (1012 + aho)) P20 50
Ao
and
lelcoT (Alﬁ((l +24d)5\0/5\0)d)
(2.2) Ay i=e 2Mo ,

par F1+3)

where I'(-) denotes the Gamma function. Due to Stirling’s formula: I'(z 4+ 1) ~ v27mz(z/e)?, we
have Ay < 0.
The lemma below provides an explicit upper bound of the transition kernel for (Xt(é) )

Lemma 2.1. Under (A1) and (A3),

t>0-

ly—z|?
) Aze r0(t=39) )
(2.3) PO (js b, y) < (%;’ o D€ RY, t>j5, 6€(0,1),
ot —
where
. (LTS a/2
(2.4) po = A1+ 24d) ko, Agi=Age 2o (S0)7

2%0

Proof. For fixed t > 0, there is an integer k£ > 0 such that [kd, (k 4+ 1)d). By a direct calculation, it
follows from (1.2) and (1.3) that

_|y—ac—Ab(<w)(t—)k6)\2 o2 _ Aly(—:c\2>

20 (t—kd o) 4rqg(t—kd

25) PO (kb b a,y) < e — ,
(21 Ao) (t — k&)4/2 (2w Ao (t — Kk6))4/2

where in the second inequality we used the basic inequality: |a — b|*> > L|a|? — [b]%, a,b € R%. Next,
by invoking Lemma A.2 below, one has

B \z’—z|2
A ko (376—350)

(2.6) p®(j8,§'6,z,a") < —22

(21 Ao (4’6 — j0))%/?

j' >4, x,2 € ]Rd,
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where Ag, kg were given in (2.2) and (2.4), respectively. Subsequently, (2.3) follows immediately by
taking advantage of the Chapman-Kolmogrov equation

PO (G812, y) = /R OG0, (8610, wp O ([£/6)6, . y)du,

and the fact that

_ ‘u71‘2 _ inu‘Q _ yfz\?
/ Ve g (k6—350) % 480 (t—k9) du < (Lf))d/Q 53 ko (t—30) k>
Rd (27 No(kd — §6))¥/2 (2w Ao (t — KO))%/2 2o (2o (t — 56))4/2

Lemma 2.2. Under (A1)-(A3), for any T > 0, there exists a constant C > 0 such that
T «
(2.7) / E[b(x) — (X)) dt < 57,
0

where o > 0 was introduced in (A2).

Proof. Observe that

T )
) ) ) )
/0 E|b(Xt())—b(X§6))Pdt:/o E[b(x") - b(x{)["at

LT/8) T A(k+1)s
19 9
S5 [ R - )
k=1 ko
By [|b]lcc < o0 due to (A1), it follows that
1
(2.8) / E[p(x) — b(x{)|dt < 27|[blIL6.
0

For t € [ko, (k+1)d), by taking the mutual independence between X ,E,? and W; — Wys into account
and employing Lemma 2.1, we derive that

E[b(x{") —b(X )|
—EB(XD +b6(XD)(t - ko) + o (XY W; — Wig)) — b(XD)|
= / / ]b(y + Z) — b(y)lvp(é) (Oa kév z, y)
Re JRd
(g ((0°0) () = b~ kD), 2 — bu)(t — kD))
V (2m)ddet((t — kb)(a0*)(y))

C L jey?
< (ké(t—}fé))d/Q /Rd n 1b(y +2) — b(y)|Te Rolt=kde wokd dydz,

dydz

for some constant C7 > 0, where kg was given in (2.4). With the aid of the fact that

J
2.10 Te—B2%) = (i )2 0
(2.10) iglg(w e 7") 505) 7,8 >0,

6



we infer from (A2) and (2.9) that

= /{5 d/2
__l=? @
- R

for some constants Co, C3,C4 > 0. Whence, we arrive at

LT/8) rrA(k+1)6

(2.11) Z /k E[b(X)) —b(XD)[dt < Cu6F /5 ! b (10| £/5)8)dt

Observe that

|T/4] ((142)6)AT—6
/ b~ (Kolt/5]0 Z / b~ (Koid)dt

LT/5J

Z / +(koid)d
(i—1)o

T/éJ 1 koT

Z / L (kot)dt < — - (t)dt,
(i—1)6 Ko Jo

where in the second inequality we utilized that ¢~ : (0,00) — (0, oo) is decreasing. Whence, (2.7)
holds true by combining (2.8) with (2.11) and by utilizing fHOT (t)dt < oo. O

For any p,q > 1 and 0 < S < T, let L5(S,T) = L4([S,T); LP(R%)) be the family of all Borel
measurable functions f : [S, 7] x RY — R¢ endowed with the norm

" N
fligesry = ([ ([, 1nrar) ar)” < o

For simplicity, in the sequel, we shall write L}(T) in place of L}(0,T"). Compared with (1.1),

n (1.6) we have written the drift term as b(Xt(j)) in lieu of b(Xt((s)) so that the classical Krylov
estimate (see e.g. [4, 9, 14, 30, 32]) is unapplicable directly. However, the following lemma manifests

that (Xt(5))t20 still satisfies the Khasminskii estimate by employing Gaussian type estimate of heat
kernel although the Krylov estimate for (Xt(j))tzo is invalid as Remark 2.5 below describes.

Lemma 2.3. Assume (A1) and (A3). Then, for f € LY(T) with (p,q) € # and T > 0, the
following Khasminskii type estimate

T
(2.12) E exp (A/ Ift(Xt(5))|dt) < T @eollfllpery)™® ) S g

0
holds, where vy = m and

d
1—1/p)2(=1/P) (caq - _
@9 ans= G ol 1/a) 7 /200
0 )P )2



Proof. For 0 < s <t <T, note that

2( [ nexoar|z) =x( | o pocar]z) e [ inear] )

/\(55—1-5)
=: I1(s,t) + I2(s,t).
Since

X0 = XD+ (X D)~ 55) + (X)W, = Wey) + o (XD)W, — W),

re [87 S+ 5),
we derive from (1.2) and Holder’s inequality that
tA(s5+9)
Ii(s,t) = / / Fr(Youw + 2)
s Rd
exp ( - ﬁ«O’a*)_l(l')(Z — ym,w)a z — ym,w>) w= Wg_Wséd
% r
V @r(r — s))det((oo*)(z)) eex

(2.14)

6
tA(ss+0) 1
< ||f||L§;(T)( / ( N
p

(2m(r — 5))4det((o0*)(x)) 1
X </Rd exp ( - —2(]9 T r— ((oo*)L(z)z, z))dz) ’ ) q_ldr> !
< @m) % (p - 1)/p) DA

x:Xég)
d 1

p/)\O)2 (t =s)ollfllzeer

where 4, o := 2 +b(z)(r—ss)+o(z)w,r € RY, w € R™, and 7o

— 1 (9),x
= W For r Z k5, let Xk5

\T
be the EM scheme determined by (1.6) with X ,g?,fg = z. From the tower property of conditional
expectation, one has

12(s,t)g/StME(\fT(X;&))”yS)dT:/stME(E(]fT(X;é))\‘ysm)\ﬁs)dr

t
)
:/ (E‘fr Xi,;—&—&r”‘ _x® ‘fs)dr.
Ss+0 - 55+5

In terms of Lemma 2.1, besides Holder’s inequality, one obtains that

As / |z—y|?
]E 'f' < 7‘ e T ko(r— s§— 5)d
‘f ( s5+67‘)‘ (271')\0(7‘*85* d/2 |f ‘ Yy

< A3 (Ko(p— 1))5(1—1/17)
T ((@m)rRo)He N 2P

1
_4d P
=0y ([ nra)”
R4

This further yields by Hoélder’s inequality that

A
IQ(S,t) < 3

ko(p —1)\50-1/p) [
B ((zﬂ);j\o)m( : 2p ) /56+5(T_86_5 (/ £ (y \pdy) dr
(2.15)

q—1

A3(’Yo(1— 1/(1)> Y ko d(1-1/p) L
B ((2m)7 Ro)4/2 ( 5 (L= 1/p )) (t =)0 fllpery-




Hence, (2.14) and (2.15) imply

t
(2.16) E(/ \fAXﬁ‘”)}dr(%) < ao | fllgery(t =)0, 0<s<t<T,

in which ap > 0 was introduced in (2.13). For each k£ > 1, applying inductively (2.16) gives

E((/:\fxx,@’)!dr)k %)

:k!E< / s (XN [ e (XS )|y - drg g
Ap_1(

Sy

o xE(/T:1|fk< D) dry| 7 )‘ﬂ)

IN

1
aok!(t — s)0 || fllze (1)

XE((/ ‘frl(Xﬁf))"”‘kaﬂ( rk 1 ‘d?”l di—1>
Ag_1(s,t)

1
< Koot — )0 || flp)", 0<s<t<T

IN

where
Ag(s,t) == {(r1, - ,7%) eERF:s<r <<y <t}
1
Taking do = (2a0A[|f|[zz(7))77°, one obviously has Aaody® || fl|Lz(r) = 3. With this and (2.17) in
hand, we derive that

GYAVA oo 1
(2.18) E(exp <)\ / ]ft(Xt(‘;))]dt> ‘9’(1-_1)5()) <y =2 i>1,
k=0

(i—1)do
which further implies inductively that

T ) /%] 5, 5
E exp (A/ | fo(X] >)ydt> :E(exp ()\ > /( y | f(X} ))\dt>
0 . 1—1)do

=1

T
x E( ex A/ x© dt> F, >>
(2.19) < p( 2y )] #2015

LT/ 6o

> [ )

<. < 21+T/50.

< 2Eexp<

Therefore, (2.12) is now available by recalling do = (2aoA|| f{[ 2 (7)) ™. O

The following lemma is concerned with Khasminskii’s estimate for the solution process (X¢)¢>0,
which is more or less standard; see, for instance, [4, 9, 14, 30, 32]. Whereas, we herein state the
Khasminskii estimate and provide a sketch of its proof merely for the sake of explicit upper bound.



Lemma 2.4. Assume (A1) and (A3). Then, for f € LL(T) with (p,q) € #1, A >0 and T > 0,

T R Y0
(2.20) E exp <>\/ ]ft(Xt)\dt> < 21+T(2Aao||f||Lg(T>)
0
where
2 o0 ;
N _d é(llA p d “._M 5%‘
2.21 = (2 2 8(p—1 2 Ao)2 =e 2 —_—
(221)  ao = 20) - 1)/ IR T/A)E bri=e 2 e

with Br being given in (A.2) below.
Proof. By (A.1) below, it follows from Holder’s inequality and Markov property that
r=Xg

e [ ) 7)-[ IS (X5 dr
Cly—=|2

(2.22) e 163(r—s)
/ / £y dydr
27T>\g(7“ — 5))d/2 =X

<ap(t—s)'” e quHLg(T)

where (X;*);>s stands for the solution to (1.1) with the initial value X5* = z, and fr,d9 > 0
were introduced in (2.21). Then, (2.20) follows immediately by utilizing (2.22) and by following
the exact line to derive (2.19). O

Remark 2.5. In (2.16), Krylov’s estimate for (Xt(‘s))tzo instead of (Xt(j))tzo is available. Whereas,

the Krylov estimate associated with (Xt(f))tzg no longer holds true. Indeed, if we take s,t €
[kd, (k + 1)0) for some integer k > 1, we obviously have

t
é
(2:23) E( / | frs <X£:§>>\dr\%) = [fs(X)I(E = 5), f € IHTD), (p.a) € A
which is a random variable. Hence, it is impossible to control the quantity on the left hand side of
(2.23) by [|f|[z(r) up to a constant; see also e.g. [26] for more details.

Before we go further, we introduce some additional notation. For p > 1 and m > 0, let H}" be
the usual Sobolev space on R? with the norm

1l = S I9™ 2o,

where V" denotes the m-th order gradient operator. For ¢ > 1 and 0 < 5 < T, let
Hp»(S,T) = LI([S, T); Hy'")

and (S, T) be the collection of all functions f : [S,7] x R? — R such that f € Hy"(S,T)
and 9, f € LH(S,T). For a locally integrable function h : RY — R, the Hardy-Littlewood maximal
operator .# h is defined as below

(D)) = sup ——

h(y)dy, z e RY,
B @)

10



where B,.(z) is the ball with the radius r centered at the point x and |B,(x)| denotes the d-
dimensional Lebesgue measure of B, (x).

To make the content self-contained, we recall the Hardy-Littlewood maximum theorem, which
is stated as the lemma below.

1,1
ocC

Lemma 2.6. For any f € W, (R?), there exists a constant C > 0 such that

(2.24) [f(x) = fW)| < Cle —y{(A|\Vf)(2) + (A|Vf) ()}, ae z,yeR
Moreover, for any f € LP(R?),p > 1, there exists a constant Cp, independent of d, such that
(2.25) A f e < CpllflLe-

Remark 2.7. For the detailed proof of (2.24), please refer to the counterpart of [33, Lemma 3.5].
On the other hand, the inequality in (2.25) is called the Hardy-Littlewood maximum inequality,
which can be consulted in [28, Theorem 1, p5].

Now we are in position to complete the

Proof of Theorem 1.3. For any \ > 0, consider the following PDE for v* : [0,T] x R? — R9 :

d
1
(2.26) deu + 3 Z (oo™e;, ej>VeiVe].u)‘ + b+ Vyut = A,
ij=1

where (e;)1<j<q stipulates the orthogonal basis of R? and (Vyu)(z) (resp. (Ve,u*)(z)) means the
directional derivative of u* at the point o along the direction b(z) (resp. e;). According to [30,
Lemma 4.3], (2.26) has a unique solution u* € %’é?f%O,T) for the pair (p,q) € 4 due to p > 4
satisfying

lq_d_1
(227) v )2V + IV gy < [P

for some constant ¢; > 0, where ||Vu||7,00 1= SUpy<;<r pera | VU7 (@) |ns. With the help of (2.27),
there is a constant Ao > 1 such that

(2.28) 1Vu

For v € %”2%2'1(0, T), there exists a sequence u™* € C12([0, T] x R% RY) such that

klggo H“M - “AH%;%M(O,T) =0,
where
H“H%@“(om) = HauHLgfl’(O,T) + H“HHgf‘l(o,T)'

Henceforth, we can apply directly It6’s formula to u* € %’ﬁ,’Qq(O,T) by adopting a standard ap-
proximation approach; see e.g. the arguments of [30, Theorem 2.1] and [32, Lemma 4.3] for more
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details. Set 0} (x) := x + u}(x),r € RY, and Zt(é) =X — Xt(é). By It6’s formula, we obtain from
(2.26) that

Ao} (Xy) = MM (Xy)dt 4+ VN X))o (X,)dW,

d
29y d0AX) = DA () + Ve (bx) — (X)) + 5 3 (007 (X (D)

ij=1
* § § §
— (00*) (X! )))ei,ej>veivejui‘(Xf)}dt+ VoM X D)o (X)W
Let Ty = 6} (Xy) — Ht)‘(Xt(d)),t > 0. From (2.28), it is easy to see that
1, s 31 (5
(2.30) §‘Zt( )‘ < |y < i‘Zt( )‘-

Whence, by Itd’s formula, we derive from (2.29) that for v > 2 in (A2),

t
20 <2 [ TP () — () s
0

S5

2 [ 000, V0K (0X) - o(x D)) s
0

d ¢
@30 iy 3 /0 ()72 ((00")(XD) — (60" )(XD)) s, €, )(T(5), Ve, Ve, ud (X0) )ds
ij=1
+ 27y - 1) /0 ()2 VO (Xa)o(Xe) — VXD (X D) [2ds + A,
=t L1 5(t) + Io6(t) + I3,5(t) + Las(t) + M,
where

t
My = 277/0 IL(s)~*(T(s), (VO30)(X,) = VOUX o (X D)) dWs).
By means of (2.28), we have
t
(2.32) L5(t) <377 1yx / 129 |%ds.
0
Also, by virtue of (2.28), besides (2.30), we find that there exists a constant co > 0 such that
t t
(2.33) Ls(t) < C2{ / 129 ds + / b(xX®)) — b(Xg))Pds}.
0 0
By means of (1.3) and (1.5), one has

[(00™) (@) = (00") V)|l < (lo@)llop + o @)lop) o (@) — o (1) | yg

<2Lo\/ Aod |z —y|, z,yecRL

12



This, combining (2.30)and using Young’s inequality, leads to
t
Fast) < X0 XD 1289 [T gt

t 0
(2.34) < 7/ {(7 — 1)\Z§6)‘v‘}v2ug(){§)uﬁél + X _X(J)‘W}ds

55

= %3 {}Z§5>P(7||v2ug(xg)”fﬁ +v-2)+ ‘Xs(a) _ Xs(g)‘v}ds

for some constant ¢z > 0. Furthermore, thanks to (1.2), (1.5), (2.24), (2.28) as well as (2.30), we
derive from Hélder’s inequality that

Iy s(t) < 27 1( / T'(s |7_2{HU —o( X((S) HHS
+ H(Vus 2 = V(X))o (X)) s
+ HVU;‘( sg ))(U(XS) —o(Xg; )HHS}dS
<o / L) 2{[lo(X0) = o (XD [f + [Vl () = Vud (XD) [ fds

(2.35) é05/0 T()P 220 P{ (1920 s) (X) + (9% s) (X)) Jas

t
s [ IPPHIZOP + |50 - X0 P as
0
t
<o [ |ZOP{(019%2s) (%) + (192 ) (X1 s
t
+ c6/0 {129 + x99 — x| ds
for some constants ¢4, ¢5,c6 > 0. As a result, plugging (2.32)-(2.35) into (2.31) gives that
t t
12O S/o ‘ZS(‘S)"YdAS—i—/O {eab(X ) = b(XN + (c3/2 + c6)| XD — X |7 }ds + My,
in which, for some constant ¢; > 0,
t
A = él/o {1+ (ANV*0fis) () + (V0 [3) (X1) + ||V 5 (X0) Js, £ 0.

Consequently, we deduce by stochastic Gronwall’s inequality (see e.g. [30, Lemma 3.8]) that, for
0<rk <k<I1,

()2

Z/;)Un’ < (H fﬁ/)l/n' (EeﬁAt/(l_H))(l—n)/n

t
x / {caB[b(X) = b(XO)|" + (c3/2 + c6)E| X — X[} ds,
0

where || f|lt00 = Supg<y<; |f(s)| for a continuous function f : Ry — R The estimate above,
together with Lemma 2.2 and the fact that

sup E|X — X" < e,0%
0<t<T

13



for some constant ¢y > 0, leads to

(2.36) (EHZ@ f’;)l/“ < &3(EesM/-R)F1 (53 4 65)

for some constant ¢3 > 0. By Holder’s inequality, we deuce for some constant ¢4 > 0,

Mﬁ“g@m¢dkwwm@%m»m
[z (e [ Catmi o)
@WGJWWWMﬂm»%

This, in addition to (2.12), (2.20), (2.25) as well as (2.27), implies that

KA
Eeﬁ < exp <é5( + H”VQ A”HSHLP(T) + H%HVQU)‘HIQ{SHZ%(TJ)

(2.37) <exp (514 [V 75,)))

< exp <@5 (1 + [ [bf? HLP))

for some constants és, ¢g, é7 > 0. Substituting (2.37) back into (2.36), we find constants ¢g, ¢y > 0
such that

/

BNZONEL < dsesp (i (14 P )) 07+ 27"
so that we have
|20} < ésexp (& 1+ [PI3) ) (35 +6%). 5 0.9)

We therefore complete the proof. O

3 Proof of Theorem 1.4

In this section, we aim to complete the proof of Theorem 1.4 by carrying out a truncation approach;
see, for example, [1, 23] for further details.
Let ¢ : Ry — [0, 1] be a smooth function such that

P(r)=1, re]|0,1], Y(r)=0, r>2.

For each integer k > 1, let by(z) = b(x)y(|z|/k), * € R, be the truncation function associated
with the drift b. A direct calculation shows that

vl

2dsr

1/p 4
(3.1) Ioellow < 0lloe— and [Pl < (o) A0 bl
2

(5 +
Consider the following truncated SDE corresponding to (1.1)

(3.2) AXF = b (XF)dt + o(XF)aw,, t>0, XF=X,.

14



The EM scheme associated with (3.2) is given by

dxPO = b (xENat + o (xPaw,, t>0, xp® = x M.

Observe that for 8 € (0,7)

Bl - X <D B - X 4B - x-OE
e FE XL )
=: 3V + I + I},
where, for a map f : [0,7] — R?, we set || fl|l7,0c := supg<;<r |f(t)]. Via Holder’s inequality and

the fact
{Xt 7& Xfao <t< T} - {HXHT,oo > k}a

it follows that

B =B = XMt gixzn) < (BIX - X)) (X 2 9)

Since
X0 < J2] + [1BllocT + [M 7,00,

in which

t
M, = / o(Xs)dW,, t>0,
0
with the quadratic variation (M) < d\oT, we derive from [27, Proposition 6.8, p147] that

P(llX|

1o 2 K) < P(IM 100 > k= |a] = [bllocT, (M7 < dAoT)

(k — |z| = |[b]loT)?
<2de — <
(3-4) - Xp( 4d2)\0T >

(=] + ||b||ooT>2>e—8d§§0T
Ad?\gT ’

< 2dexp<

where in the last display we used the inequality: (a —b)? > a?/2 —b%,a,b € R. Thus, (3.4), besides
2 2
E|X||7,, +EIX* 7, < i
for some constant C, yields

(Iz] + [[bllooT)? 5

3.5 I < Cyex ( _ )eilad%\OT
(35) S Y W

for some constant Cy > 0. Following a similar procedure to derive (3.5), we also derive that

(lz] + [[blloeT)* 2

3.6 I, < Csex ( ’ )e’wd%T
(39) SR V) W

15



for some constant C'3 > 0. Moreover, for (p, q) € #2, according to Theorem 1.3, there exist constants
Cy, C5 > 0 such that

E|X* - XkO 2 < el lbP (5% + 5%),
This, together with (3.1), implies
(3.7) ELX* - XRO,, < CretlE " (58 4 5%7)
for some constant Cs > 0. As a consequence, from (3.5), (3.6), and (3.7), we arrive at
E|IX — X3 < cg{e‘wd'fw - eCﬂfdz’o(s?(““J)}

for some constants C7, Cg > 0. Thereby, the desired assertion (1.8) follows by taking

N

- ( . 8ﬁd2XOT(1 A %) log 5) .

4 Illustrative examples

In this section, we intend to give examples to demonstrate that the assumption imposed on drift
term holds true.

Example 4.1. Let b(z) = 1{g, q,)(),* € R, for some constants a; < az. Apparently, b is not
continuous at all but b? € LP for any p > 1. Observe that
—e(bla; —e) —blar)) . 1

lim 3 =lim- =00
el0 g el0 €

so that b does not obey the one-sided Lipschitz condition. Next we aim to show that b given above
satisfies (A2). By a direct calculation, for any s > 0,7 > 2 and y € R,

/00 |b(x +y+2) — b(x + y)|“e_%d;p < /OO |b(x + 2) — b(z)|"dx
o _;20_2 az
- / Mg + / Im—rr
=: 11 (2) + I2(2).
If z > 0, then

(a2—z)Aa1 as
Li(z) = / de <|z| and Iy(z)= / dz < |z|.
a (

1—2 az—z)Vai

On the other hand, for z < 0, we have

az—z aN\(a1—z)
I (2) :/( dz <|z|] and I2(z) :/ dz < |z|.

a1—z)Vasz al



Example 4.2. For § > 0 and p € [2,00) N (d, 00), if the Gagliardo seminorm
_ [b(x) — b(y)|” 7
[b]Wp,G = (AdXRd dedy) < 00,
then b € GB%_Q Q(Rd). Indeed, by Hoélder’s inequality and (2.10), it follows that

1 ez Jy—a?

e Lo @) = b e e g
X

1 b(z) — b(y)]? _la—z —|? 2d
B e
R

(Ts)d/Q dxRd |x — y|217d+26
2
b|? lz—2® _plz—y[? 2(d+p0) p=2
(41) S Cl [ ]Wg’g </ e_p(P—Q)S e_p(P—Qy)T ‘x — y‘%dydx) P
(rs)d/ RdxRd
A e
—_— e =25 ¢ 20-2rdydx
= WO YA\ Jpaypa Y
2 -2 d(p=2) d
< C3[b 0 <L> s er? rs>0,zeRp>2
p

for some constants C1,Cy,C5 > 0. On the other hand, if d = 1 and p = 2, we deduce from (4.1)
that b € GBf/2 G(Rd) due to limg,_,0z% = 1.

Example 4.3. For 0 < a < b < oo, f(-) := ]1[a7b](.) c GB;%(R) whereas f ¢ W%,Q(R). In fact, it
is easy to see that
0,2 . _
fe ﬁo§9<%W ) é#ffél[f]we,z = o0,

which yields f ¢ W%’Q(R). On the other hand, since

I i

1 o|?
(m)d/z/RQ|f(:v)—f(y)|2€ s e v dydeCs_%r%, r,s>0z€eR

for some constant C' > 0, we arrive at f € GB? | (R).

272
A Appendix
The lemma below provides explicit estimates of the parameters concerning Gaussian type estimate
of transition density for the diffusion process (X;);>0 solving (1.1).
Lemma A.1. Under ||b|locc < 00 and (A3), the transition density p of (Xt)i>s satisfies

b3, T i
(A.1) p(s,t,z,2’) <e 2o F(lﬁj_i)po(t—s,x,x’), 0<s<t<T,zaz eR?
i=0 2

where I'(+) is the Gamma function, and

A ) 7@7?/'2
A2 — g+t (M) 1Bl et .o &
( ) /BT =2 (5\0) (WT)Q{ \/g + LO(d + 2@)}6 40 ,po(t,$,l’ ) = (QWXOt)d/Q .
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Proof. The proof of Lemma A.1 is based on the parametrix method [13, 15]. To complete the proof
of Lemma A.1, it suffices to refine the argument of [13, Lemma 3.2]; see also e.g. [15, p1660-1662]
for further details. Under ||b]|s < oo and (A3), X; admits a smooth transition density p(s,t,z,y)
at the point y, given X = x, such that

atp(sat7$7y) = L*p(s,t,x,y), p(S,t,l’, ) = 51()7 t\l/ S,

A3
( ) asp(satamay) = —Lp(s,t,z:,y), p(S,t, 7y) = 5y(')7 S Tt7

where L is the infinitesimal generator of (1.1) and L* is its adjoint operator. For ¢t > s and
r, 2" € RY, let X solve the frozen SDE
(A.4) AX3P = b(a!)dt + o(2))AW;, t> s, X507 =z € R

and %' (s,t,x,2') stand for its transition density at 2/, given X — g, Apparently, * admits
the explicit form

e 3 ((00™) T (@) (@' —a—b(a’) (t—s)) &' —z—b(a") (t—5))

V(@2 (t — s))?det((00")(a"))

7 (s, t,x,2) =

A direct calculation yields

!

(A5> Qsﬁw/(s,t,x,x’) = _zx/ﬁm/(svt7$a$/)7 t> S, 131’ (S,t,',l'/) — 5:13’(')7 S T tv

where L is the infinitesimal generator of (A.4). By (A.3) and (A.4), we derive from [13, (3.8)]
that

t
(A.6) p(s,t,z,2) :ﬁml(s,t,x,m’) +/ / p(s,u,z,2)H(u,t, z,2")dzdu,
s JRd

where

H(s, t,x,2') == (L — L*)p% (s, t,z,2)
(A.7)

In (A.6), iterating for p(s,u,x, z) gives

o0

(A8) pls,tx,2') = (5" @ HD)(s,t,2,2/),
1=0

where p® HO) := pand p* @ H® .= (p*' @ H-V) @ H,i > 1, with

t
(f@9)(s, t,x,a") ::/ y f(s,u,z,2)g(u,t, z,y)dudz.

If we can claim that
16127
e 2o B

A9 peH s, t,x, 7)) < ——4
(1.9) 7 B0l o3, < G

pO(t — 5,7, .T/),

18



in which fr, pp were introduced in (A.2), then (A.1) follows from (A.8) and (A.9). Below it suffices
to show that (A.9) holds true. By means of (2.10) and |a — b|*> > %|a|? — [b]?,a,b € RY, it follows
from (1.2) and ||b||cc < oo that

_ blET
. v/ dpe o
|VD|(s,t,z,2') < o 0¢ po(t — s,x,')
(A 10) )\0\/75 — S
. b2, T |z —a)?

(\f+ )e 7Y e 8ig(t—s)
Nt —s)  (2mho(t — 5))4/2

IV2Bllus (s, t,2") <

Thus, combining (2.10) with (A.10), besides ||b]|oc < 00 and (1.3), enables us to obtain

\b\loo

2A0{||b\|oo/\ﬁ+Lo d+2f)}e 1%
)\ox/t—s

By fst(t - u)fé(u —5)%du = (t — 3)0‘+%B(1 +a,1/2),t > s,a > —1, we have

sty m o T )y — w) g duy = TESDE
Az<s,t>.—/s / (=) s b = Rz

(A.11) |H|(s,t,z,2") < po(t — s,x,2').

[NIES

Whence, taking advantage of ||b]|c < 00, (1.2), (A.11) as well as

8o\ @
/ po(U—S,ZL‘,Z)po(t—U,y,Z)dZ: ( X()) po(t—8,$,$l), s<u<t
R4

0
yields (A.9). O

For z,7' € R? and j > 0, let (Xi(g)’j ’x’xl)izj solve the following frozen EM scheme associated
with (1.1)

>(8),j,z,x' >(8),4,x,2’ . . >(8),4,x,2'
X = X L b(@)o + (@) (Wignys — Wis), 024, Xig?o" =

Write p®)-’ (70,70, x,y) by the transition density of )N(J(fsgjzx at the point y, given X(‘S)’J =l _
The following lemma reveals explicit upper bounds of coefficients with regard to Gaussmn bound
of the discrete-time EM scheme.

Lemma A.2. Under ||b|loc < 00 and (A3), for any 0 < j < j' < |T/d]

k o )2
a1z PO o 2 (VATOR((1+ 24d)o/R0)!) o~ srmsiaatr s
: Jo,Jj $5U
=0 I(1+%) (27 No(j — 5)8)4/2

Proof. To obtain (A.12), we refine the proof of [15, Lemma 4.1]. For ¢ € C*(R% R) and j > 0, set

(L) (@) = 5 HEW(X() )X = 2) — (@)}, (LR0) () = 67 {Ep(X(1355") — ()}
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and
HO (56, j'6,2,2') : = (L) — LV (5 + 16,76, 2.2"), §' =+ 1.
In what follows, let 0 < j < j" < |T'/d]. According to [13, Lemma 3.6], we have

i'—J
(A.13) p0(js, 56,2, a") = > (O @5 HOW)(j3, 55,2, 2"),
k=0

where pO*" @ H(‘S)’(O)) =p@®’ g@.(k) = gO) g5 HO).(;-1) with ®; being the convolution type
binary operation defined by

j'-1

(f @5 9)(jo,§'60,x,2") =6 Z /Rd f(Go, ké, z,u)g(ké, 56, u, ") du.
pay

If the assertion

R o — )2

Cr e 4(1+24d)30('=5)s
("= 90 (2mho (5" — 4)8)%/>
holds true, where C' was given in (2.1), then (A.12) follows due to (A.13) by an induction argument.

So, in order to complete the proof of Lemma A.2, it remains to verify (A.14). First of all, we show
(A.14) for j' = j 4 1. By the definition of H(®) observe from (1.2) that

(A.14) H®) (6,46, x,a") <

o 1 e
[HO(j6, (G + 1), z,2") = |p® = 5|36, (7 + 1)8, 2, 2)
1
< —0
5(2m\g6) /2
4 ‘e—%<<ao*>-1<w>(m'—m—b<m/>a>,x'—m—b(x/)& _ 6—2—15<<oa*>-1(m')(m/—m—b(z'w),m'—x—b<x'>6>‘

{‘e—;éuoa*)—%(x)(z'—ac—b(a:)aw _ o300 R @) ('~ b))

-1 / ! /
e B HE b et (0 ) det( (00" o)
0
1
= ————{A1 + A2 + A3}
5(27r)\06)d/2{ 1+ A2 + Az}

Next, we aim to estimate Aj, Aa, Az, one-by-one. By |[|b]|o < 00, (1.2) and (2.10), it follows from
the first fundamental theorem of calculus that

16126 _ |e—a!)?

(A.15) IAy] < 2 5//“\0“5”006 N e SRod |

(1.2) and (1.3) imply

I(0o™) ™ (@) = (00™) " (2') s < 275\ dAoLolz — 2.

This, by invoking |e® — e’| < e®?|a — b|, a,b € R, and utilizing ||b|lc < 00, (1.2) and (2.10), yields

2
61568 _ |o—a'|2

(A.16) |Ao| < 4VdSLo(Ro/Ro)%e o0 e 1630

20



Also, making use of ||b]|s < 00, (1.2) and (2.10), in addition to

cd_1
|det((o0™*)(z)) — det((oo™)(2"))| < 2d%+1d!)\g 2 Lolz — 2|,
due to (1.2) and (1.3), we arrive at

2
61568 |o'—=|?

(A.17) | < V2AEH Ao/ Ro) Lovae B ¢ Boi

We therefore conclude that (A.14) holds with j* = j + 1 by taking (A.15)-(A.17) into account. In
the sequel, we are going to show that (A.14) is still available for j* > j+ 1. According to the notion
of H®),

H® (58,56, x,2")
1

|21 / )
e - ’\(6)71, ) -/ AN “((5),30 . -/ /
3(2m)m/? /Rm e 2 {p ((j+1)0,5'6,x + Ty(x),2") — p'* ((j + 1)6,5'6, x, x )}dz

- 1 / e_| |2
(5(27T)m/2 Rm

where T, () := b(x)d + Voo (z)z,2 € RY, 2 € R™. By Taylor’s expansion, we further have

{50 (G +1)8,570,2 4+ Ta('), @) = 5O (G + 16, '8, 2, a") fdz,

H® (56,56, x,2")

1 .2 ,
- 5(27r)771/2{/ e_‘Z‘ (Vﬁ((s)’x ((j+1)6,5'6,2,2"), T, (x) — T(2'))dz

T / o~ (V2500 <<j+1>5j'6m><rzrz><x>—<rzrz><x'>>ﬂsdz}

- V%2<x/>ﬁ<5)’x ((G+ 1)5,3’6, 7+ 07-(2'), ') bod
=: 111 + IIp + I3,

VR O (4 )6, 516,2 4 0. (2) o)

where V! means the i-th order gradient operator. Employing

z 2 z 2
/ e_%trace(Aa(w)zz*a(x)dz :/ o3 0¥ (2) Ao (z)zdz = (2r)™ *trace(o* (z) Ao ()
. . _lz? .
for a symmetric d x d-matrix and [p,, e~ 2 zdz = 0 gives

4] /
I + 10y = H((j +1)d, 56, 2,2") + §<V213(6)”” (G +1)3,5'0, 2, "), (bb*) (x) — (Bb")(2))ms,

where H was defined as in (A.7) with p*’ replaced by p(®*". (A.10) and (A.11) enable us to obtain

ubn2

(A18) 11y 1y < 25— {f [Bloc + (lbl1% +2>\0Lo\/g)(\/g+2)}1’0((‘7'(;/]25;)1‘5’55/)‘
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Note that II3 can be reformulated as below

1 ! g L2 3 ~8),a" (( ./ N
H3:25(277)m/2/m/0 (1= 0= {VE (0 (G + 108,58+ 0T-('), )

= V3 @D (G + 1), 56, 2 + 0T ('), x’)}d@dz

+ gy [ ) a0

— V3 PO (G 1)6, 6, + 0T ("), :c’)}dedz =: TI3; + I3

2|2
2

{98, PP (G +1)6, 6,2+ 0T+ (2), 2

By means of (1.2), (1.3) and (2.10), it follows that

d+21 s ~ 3Hb”£2>°T
e (Lo + 2[blloo) (16]%, + dho) (14 /201 + 4d) Ao e 550
31 < — ’
(A.19) A5 (5" = 7))z

|2 —x|?

e 8(+ad)3g(G'—j)6

X Y )
(27 Ao (4" — )8)4/2

Also, by exploiting (1.2), and (2.10), we infer from Taylor expansion

2
d+23 (61161150 +1blloo) T

2mt e (L0+2||b|\oo)(||bllgo+(d5\0)%)<1—|— 2(1+24d)5\0>e

3| <

(A.20) MG = 7)5)

|:v,7z\2

e A(1+24d)30( )

X S .
(2mAo(j — 5)8)/

Consequently, (A.14) follows from (A.18), (A.19), and (A.20).
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