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Abstract

In this paper we study a class of distribution dependent stochastic differential e-
quations driven by fractional Brownian motions with Hurst parameter H € (0,1/2) U
(1/2,1). We prove the well-posedness of this type equations, and then establish a gen-
eral result on the Bismut formula for the Lions derivative by using Malliavin calculus.
As applications, we provide the Bismut formulas of this kind for both non-degenerate
and degenerate cases, and obtain the estimates of the Lions derivative and the total
variation distance between the laws of two solutions.
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1 Introduction

Distribution dependent stochastic differential equations (SDEs), also called McKean-Vlasov
or mean-field SDEs, were initiated by Kac [25] in the study of the Boltzman equation and the
stochastic toy model. This type SDEs are equations whose coefficients depend on the distri-
bution of the solution, and their solutions are often called nonlinear diffusion processes whose
transition functions depend on both the current state and distribution of processes. These
distributions dependent SDEs can provide a probabilistic representation to the solutions of
a class of nonlinear partial differential equations (PDEs), in which a typical example is prop-
agation of chaos phenomenon (see, e.g., [28, 39] and references therein). Hence, the study
of distribution dependent SDEs have received increasing attentions, among which we only



mention, for examples, the works in [10, 11, 21] for large scale social interactions within the
memory of mean-field games, [8, 14, 26] for value functions and related PDEs, [22, 23, 36, 41]
for (shift) Harnack type inequalities and gradient estimates, and the references therein.

On the other hand, the Bismut formula, also known as Bismut-Elworthy-Li formula, was
initiated in [6] by Malliavin calculus and then developed in [16] by using martingale method,
which is a very effective tool in the analysis of distributional regularity for various stochastic
models. Afterwards, formula of this kind and (shift) Harnack type inequalities for SDEs
and SPDEs were obtained via (backward) coupling argument (see, e.g., the monograph [40]
and references therein). Recently, in [33] the Bismut formula for the Lions derivative (L-
derivative) was established for distribution dependent SDEs with distribution-free noise by
using Malliavin calculus, and then applied to the study of estimates on the L-derivative
and the total variation distance between distributions of solutions with different initial data.
Here, we mention that in [4] the Bismut formula for initial points was also derived for
distribution dependent SDEs, which can be regarded as a special case of the Bismut formula
for the L-derivative stated in [33]. By introducing the intrinsic and Lions derivatives for
probability measures on Banach spaces, the Bismut formula for the L-derivative was given
for distribution-path dependent SDEs with distribution-free noise in [5]. Adopting method
of heat kernel expansion and the technique of freezing distribution, the Bismut formula as
well as estimate of the L-derivative for McKean-Vlasov SDEs with distribution dependent
noise was obtained in [24].

Contrary to the above works, we will study in the current paper distribution dependent
SDEs driven by fractional Brownian motions, i.e.

(1.1) dX, = b(t, X, Lx,)dt + o(t, Lx,)dBE, Xy =¢ € LP(Q — R, %, P),

where p > 1, Zx, denotes the law of X;, (B}f)icp,r) is a d-dimensional fractional Brownian
motion with Hurst parameter H € (0,1/2) U (1/2,1), and the stochastic integral can be
regarded as the Wiener integral (see Remarks 3.1 and 3.2 (ii) below). Precise assumptions
on the coefficients b : [0, 7] x R x Pp(R?) — R? and o : [0, 7] x Z5(R?) — R?@ R will be
specified in later sections, where &2,(IR?) is the set of probability measures on R? with finite
f-th moment. Let us recall that B¥ = (BH1 ...  BH4) with Hurst parameter H € (0,1) is
a centered Gaussian process with the covariance function E(Bf" B#7) = Ry (t,s)d; ;, where

Ry(t,s) == (" + " — |t —s|*"), t,s€0,T).

DO | —

This implies that the relation E(|B/"" — BHi|7) = C,|t — 5|97 holds for every ¢ > 1 and
i=1,---,d. Consequently, B is (H — ¢)-order Holder continuous a.s. for any ¢ € (0, H)
and is an H-self similar process. This, together with the fact that B'/? is a standard Brow-
nian motion, converts fractional Brownian motion into a natural generalization of Brownian
motion and leads to many applications in modelling physical phenomena and finance be-
haviours.

In light of the previously mentioned results obtained in the Brownian motion case, it
is natural to expect similar results to hold for distribution dependent SDEs perturbed by



non-Markov processes. As pointed out in [12] which handled distribution dependent SDE
with additive noise, the mean-field limit of the following systems of particles subject to a
mean-field interaction

N
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XY = 0(e, XPY, L)t +dBE, XN =€ L = 1) 0y
i=1

to equation (1.1) with o = Id and H = 1/2 may hold for other processes regardless of being
Markov or semimartingale under Lipschitz condition on b. Additionally, the applications of
Bismut formula have been discussed in [4], where the author studied the sensitivity of prices of
options with respect to the initial value of the underlying asset price, and concluded that the
Bismut formula gives a better approximation of the sensitivity. The main objectives of this
paper are to show the well-posedness and then establish a Bismut type L-derivative formula
for equation (1.1) with possibly degenerate noise. We first prove the well-posedness of (1.1)
under Wy-Lipschitz conditions with respect to the measure variable, in which the solution X
belongs to the space X € SP(]0,7]) that generalizes and improves the corresponding one in
the existing literature (see Theorem 3.1 and Remark 3.2 (i) below). Then, with the help of
partial derivatives with respect to the initial value and the Malliavin derivative of solutions
to (1.1) obtained under stronger assumptions than that for well-posedness, we are able to
establish a general result concerning the Bismut type L-derivative formula for (1.1) (see
Theorem 4.4 below). As applications, we provide the Bismut type L-derivative formulas for
both non-degenerate and degenerate situations. In addition, to illustrate the power of the
Bismut type L-derivative formulas, in the case of non-degenerate we obtain the estimates
of the L-derivative and the total variation distance for the difference between the laws of
the solutions Zxx and ZLyy with different initial distributions p and v (see Remark 4.4 (ii)
below).

It is worth stressing that compared with the works in the Brownian motion case, there
are substantial new difficulties presented by our setting since fractional Brownian motion B
with parameter H # 1/2 is neither a Markov process nor a semimartingale, so techniques
based on Ito calculus are not applicable. Our strategy in this paper is based on fractional
calculus and Malliavin calculus.

The plan of the paper is as follows: Section 2 is devoted to recalling some useful facts
on fractional calculus, fractional Brownian motion and the L-derivative. In Section 3, we
prove the existence and uniqueness of a solution to distribution dependent SDE driven by
fractional Brownian motion. In Section 4, we state and prove our main results concerning
Bismut type formula for the L-derivative of distribution dependent SDE driven by fractional
Brownian motion, which are then applied to both non-degenerate and degenerate cases.

2 Preliminaries
This section is devoted to giving some basic elements of fractional calculus involving frac-

tional integral and derivative, Wiener space associated to fractional Brownian motion and
the Lions derivative.



2.1 Fractional integral and derivative

Let a,b € R with a < b. For f € L'([a,b],R) and « > 0, the left-sided (respectively
right-sided) fractional Riemann-Liouville integral of f of order a on [a, b] is defined as

(2.1) o, f(z) = F(la) /m - f%))l_ady
<respectively I f(z) = (1:(1(5&/ w f(g))l_a dy) :

where z € (a,b) a.e., (—1)™®* = e7™ and I' denotes the Gamma function. In particular,
when o = n € N, they are consistent with the usual n-order iterated integrals.

Fractional differentiation may be given as an inverse operation. Let a € (0,1) and
p>1.1If f eI (LP([a,b],R)) (respectively I;* (LP([a,b],R))), then the function g satisfying
f =12 g (vespectively f = I{* g) is unique in L?([a,b], R) and it coincides with the left-sided
(respectively right-sided) Riemann-Liouville derivative of f of order o shown by

o 1 d [t fly)
Da “"m—a@/a TR

_1\l+a b
(respectively Dy f(z) = &11—1;%/ %dy) )

The corresponding Weyl representation is of the form

22) D) = s (R +a [ 1T
<respect1vely Dy f(x ):Pgl_a) ( b_x / Ja) — 11y) — a+1 y))

where the convergence of the integrals at the singularity y = x holds pointwise for almost
all z if p =1 and in the L? sense if p > 1. For further details, we refer the reader to [35].

2.2 Wiener space associated to fractional Brownian motion

Let (€2,.7,P) be the canonical probability space associated with fractional Brownian motion
with Hurst parameter H € (0,1). More precisely, ) is the Banach space Cy([0,T], R?) of
continuous functions vanishing at 0 equipped with the supremum norm, .# is the Borel
o-algebra and P is the unique probability measure on {2 such that the canonical process
{BE:t € [0,T]} is a d-dimensional fractional Brownian motion with Hurst parameter H.
We assume that there is a sufficiently rich sub-o-algebra .%;, C .% independent of B¥ such
that for any u € Z%(R?) there exists a random variable X € L?(Q2 — R% .%,,P) with
distribution p. Let {.%; }iepo.r) be the filtration generated by BY, completed and augmented
by ﬁo.



Let & be the set of step functions on [0, 7] and H the Hilbert space defined as the closure
of & with respect to the scalar product

d
(orys -~ Toa))> Moysa]s - - > To,sa]) )py = Z Ry (ti, 54).

i=1

The mapping (o4, -+ Ljo,e,]) — ZZ 1 B " can be extended to an isometry between H (also
called the reproducing kernel Hilbert space) and the Gaussian space H; associated with BH.
Denote this isometry by @ + B (). On the other hand, it follows from [15] that Rg(t, s)
has the following integral representation

Ry(t,s) = /0 Ky(t,r)Ky(s,r)dr,

where Ky is a square integrable kernel given by

1\ ! 11 1 t
KH(t,s):F<H+§) (t—s)H—F(H——,——H,H+—,1——>,

2 2 2 s
in which F(-,-,-,-) is the Gauss hypergeometric function (for details see [15] or [30]).
Now, define the linear operator K3 : & — L*([0,T],R?) as follows
. T 0Ky
(i) (s) = Ku(T5)0() + [ (00) — () o2 1, s)ar.

According to [2], the relation (K71, K3rd) r2o.rre) = (¥, ¢)x holds for all 1, ¢ € &, and
then by the bounded linear transform theorem, K7}, can be extended to an isometry between
H and L?([0,T], R?). Consequently, by [2] again, there exists a d-dimensional Wiener process
W defined on (Q2,.%,P) such that B has the following Volterra-type representation

t
(2.3) BF :/ Ky(t,s)dWs, t€0,T).
0
Besides, we define the operator Ky : L([0, T], RY) — I2(L2(]0, T), R%)) by

(Kgf)(t / Ky(t,s)

Due to [15], we know that it is an isomorphism and for each f € L?([0,T], R?),

I T2l e (1/2,1),

Haf)e) = RHSH P2 e (0,1)2),

Then for every h € I2/%(L2([0,T), R%)), the inverse operator K" is of the form

H-1/2nH-1/2 1/2-H/
(2.4) (K =1 /2_HD272HSH_1/2]1 . et

sU/2-H DY2H GHAA2 pRH T € (0,1/2),
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In particular, if A is absolutely continuous, we have

(2.5) (K 'h)(s) = s34 12" s3Hp . H € (0,1/2).

We remark that the injection Ry = Ky o K} : H — ) embeds H densely into {2 and for
every ¢ € 0 C H there holds EeiB"¥) = exp(—3[¢]|3,). Consequently, (Q,H,P) is an
abstract Wiener space in the sense of Gross.

Finally, we give a brief account on the Malliavin calculus for fractional Brownian motion.
Denote S by the set of smooth and cylindrical random variables of the form

F = f(B"(¢1), -, B"(¢n)),

where n > 1, f € Cy°(R"), which is the collection of f and all its partial derivatives are
bounded, ¢; € H,1 < i < n. The Malliavin derivative of F', denoted by DF, is defined as
the H-valued random variable

i=1 z;

DF = (B"(¢1), -+ B"(¢n)):.

For any p > 1, we define the Sobolev space D' as the completion of S with respect to the
norm

IFI, = EIF[” + E[[DFS,.

Meanwhile, we will denote by 0 and Domé the dual operator of D and its domain, respec-
tively. Let us finish this part by giving a transfer principle that connects the derivative and
divergence operators of both processes BY and W that are needed later on.

Proposition 2.1. [31, Proposition 5.2.1] For any F € Dy;7 = D2,
K;DF =DVF,

where DV denotes the derivative operator with respect to the underlying Wiener process W
~ 1,2 -
appearing in (2.3), and Dyj7 the corresponding Sobolev space.

Proposition 2.2. [31, Proposition 5.2.2] Domé = (K}) ' (Doméy ), and for any H-valued
random variable u in Domd we have 6(u) = Sy (Kju), where oy denotes the divergence
operator with respect to the underlying Wiener process W appearing in (2.3).

Remark 2.1. The above proposition, together with [31, Proposition 1.3.11], yields that if
Kiu e L2([0,T] x Q,R?) (the closed subspace of L*([0,T] x ©,R?) formed by the adapted
processes), then u € DomJ.



2.3 The Lions derivative

For 6 € [1,00), let Z(R?) be the space of probability measures on R? with finite #-th
moment. We define the L’-Wasserstein distance on Z2y(R?) by

0
We(p,v) = inf (/ Ix—yl(’ﬂ(dx,dy)> . 1, € Py(RY),
RdxRd

e (p,v)

where € (i, v) is the set of probability measures on R? x R? with marginals p and v. It is
well-known that (%(R?), Wy) is a Polish space. Throughout this paper, we use | - | and
(-, ) for the Euclidean norm and inner product, respectively, and for a matrix, we denote by
|- || the operator norm. || - |12 denotes for the norm of the space L*(R? — R?, ;1) and for a
random variable X, Zx denotes its distribution.

Definition 2.1. Let f: Z,(R?) — R and g : R? x 2,(R?) — R.
(1) f is called L-differentiable at p € P5(RY), if the functional
LR =R ) 2 ¢+ fpo (Id+¢)7h))

is Fréchet differentiable at 0 € L2(RY — R?, 1), i.e., there exists a unique v € L*(R¢ —
R, 1) such that

flpo(@d+¢)™") — f(p) — u((y,9))

1 =0.
16112 =0 H¢HL§

In this case, v is called the L-derivative of f at u and denoted by D f(u).

(2) f is called L-differentiable on 9 (R?), if the L-derivative DL f(u) exists for all p €
P5(RY). If, moreover, for every u € P5(RY) there exists a p-version DEf(u)(+)
such that DL f(u)(x) is jointly continuous in (u,z) € P5(R?) x R? we denote f €
CLO(2,(RY)).

(3) gis called differentiable on R%x 225 (RY), if for any (x, ) € RYx Py(RY), g(-, p) is differ-
entiable and g(z, -) is L-differentiable. If, moreover, Vg(-, u)(x) and D¥g(z,-)(u)(y) are
jointly continuous in (z,y, 1) € R? x R? x 225(R%), we denote g € CH10(R? x 22,(R?).

As mentioned in [34, Section 2], the above definition of L-derivative coincides with the
Wasserstein derivative, which was introduced by P.-L. Lions using probability spaces ([9]).
Besides, it is easy to see that if f is L-differentiable at p, then for any ¢ € L*(R? — R4, p)
there holds

Loy oy Juo(Id+eg) ) — fp)
Dy f (n) = lim 6

= u((D" f(n), 9)),

in which D} f(u) is called the directional L-derivative of f along ¢ initiated in [1]. When
DEf(p) : L*(R* — R? ) — R is a bounded linear functional, ¢ + f(p o (Id + ¢)71))
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is Gateaux differentiable at 0. In this case, we say that f is weakly L-differentiable at u
(also called intrinsically differentiable at p, see [5, Definition 2.1] or [24, Definition 1.1}).
Moreover, we have

ID" ()l = ID"F (1) (g = Sup D5 f ()]

2<1
Li

For a vector-valued function f = (f;) or a matrix-valued function f = (f;;) with L-
differentiable components, we simply write

D"f(u) = (D" fi(w)) or D*f(u) = (D" fij(w)).

Besides, we have the following useful formula for the L-derivative, which is due to [9, Theorem
6.5] and [33, Proposition 3.1].

Lemma 2.3. Let (Q,.7,P) be an atomless probability space and X,Y € L*(Q2 — R% P). If
f € CYO(Py(RY)), then

f(gx+gY) - f(gX) _ E<DLf($X)(X),Y>

3 Well-posedness of distribution dependent SDE by
fractional noise

In this section, we consider the following distribution dependent SDE driven by fractional
Brownian motion:

(3.1) dX; = b(t, Xy, Lx,)dt + o(t, Lx,)dB, Xy =€,

where the coefficients b : [0, 7] x R? x Py(RY) — R4 0 : [0,T] x Z5(R?Y) — R? @ RY and
£ € LP(Q — RY .Fy, P) with p > (> 1). Now, we introduce the hypotheses under which we
will be able to prove the existence and uniqueness of solutions to (3.1).

(H) There exists a non-decreasing function K (¢) such that for any ¢ € [0, 7], z,y € R, u,v €
Py(RY),
b(t, @, 1) — bt y,v)| < K#)(lx —y[ + Wo(p,v)), [lot p) —otv)|| < KE)Wq(u,v),
and

[b(#, 0, 00)[ + [lo (£, 60) || < K(2).

For any p > 1, let SP([0,77) be the space of R%valued, continuous (.%)ejor-adapted pro-
cesses 1 on [0, T] satisfying

1/p
lllse = (E sup w) < 0,
te[0,7)

and let the letter C' with or without indices denote generic constants, whose values may
change from line to line.



Definition 3.1. A stochastic process X = (X;)o<i<r on R? is called a solution of (3.1), if
X € 87([0,7]) and P-a.s.,

¢ ¢
X :§+/ b(s, Xs, Lx,)ds +/ o(s, Zx.)dB2, t € 0,T).
0 0
Remark 3.1. Observe that o(-,. %y ) is a deterministic function, then fota(s,fxs)dBf is

regarded as a Wiener integral with respect to fractional Brownian motion.

Theorem 3.1. Suppose that £ € LP(Q2 — R, .Z,, P) with p > 0 and one of the following
conditions:

(I) H € (1/2,1), b,o satisfy (H) andp > 1/H;
(II) H € (0,1/2),b satisfies (H) and o(t, p) does not depend on (t, ).
Then equation (3.1) has a unique solution X € SP([0,T1]).

Before proving the theorem, we first present the following Hardy-Littlewood inequality
(see, e.g., [37, Theroem 1, Page 119)]).

Lemma 3.2. Let 1 < p < ¢ < oo and % = %— a. If f: R, — R belongs to LP(0,0), then
I, f(z) converges absolutely for almost every x, and moreover

15 f Nl 23 (0,00) < Crall fl L(0,00)
holds for some positive constant Cy ;.

Proof of Theorem 3.1. We begin with the case H € (1/2,1). Define recursively (X"),>1
as follows: X? = ¢, t € [0,7] and for each n > 1,

t t
X' =¢ +/ b(S’X:_17$X;nfl)dS +/ U(S,XX;la)dBf, te[0,7].
0 0

The rest of the proof in this setting will be divided into three steps.
Step 1. Claim: For any p > 0 and p > 1/H, if E(supte[o,ﬂ ]Xf]p> < o0, then there

holds ]E(supte[O’T] |X,Z"°+1\7’> < 00. Owing to the Holder inequality and (H), we have for any
p=>"0,
t p
/ b(s, X7, Lxn)ds
0
p)

T
< 3EIEP + (3T)”_1E/ KP(s)(1+ |X7] + Wo(Lxz, o)) ds
0

E( sup |Xt"+1|”> < PEEP + 3R ( sup

te[0,T) t€[0,T

¢
+ 3R < sup / o (s, Lxn)dBH
0

te[0,7
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¢
/ J(S,ZXg)dBf

p)
< 3Ef¢)P + 3*P(TR(T)) <1+21E sup |Xt”|p>

te[0,7)
p)
Next, we shall provide an estimate for the last term of the right-hand side of (3.2), whose

argument is partially borrowed from [3, Theorem 4].
We take \ satisfying 1 — H < A < 1 — 1/p because pH > 1. Using the fact that
[H(t =) (r — $)>1dr = C()\), the stochastic Fubini theorem and the Holder inequality,

we get

te[0,7

+ 3 'E < sup

t
/ o(s, Lxn)dBY
0

(3.2) + 3P 'E ( sup

te[0,7)

¢ P
E < sup / o(s, Lxn)dBY )
t€[0,T7]
t t p
=C(\)PE ( sup / </ (t—r)Mr— s)A_ldT) o(s, Lxn)dB >
te[0,T] |J0o s

)

r p
/ (r — 3))‘_10(3, .,?X;z)dBf dr)
0

t T
/ (t— 7")_)‘ (/ (r — s)’\_la(s,fxg)dBf) dr
te[0,T] |Jo 0

—p t
§ C()\> - E sup 7fp—l—/\p /
(p—1—Ap)P~ t€[0,7] 0

(3.3) < GV e /T]E /r(r — s to(s, Lxn)dBY
“(p—1=Appr! 0 0 ’

=C(\)PE ( sup

p
dr,

where we use the condition A < 1 — 1/p in the first inequality.
Notice that for each r € [0, 7], [ (r — s)* 'o(s, Lxr)dBE is a centered Gaussian random
variable. Then by the Kahane-Khintchine formula, we obtain that there exists a constant

C, > 0 such that

E T ) (S an)dBH
2\ 2
( ’I" — S 1g($,$X?)dBf )
<C, (/ /\ 1||U(u gXﬂ)H(T _U)A 1||0(U an)mu U|2H_2dudv) 2

pH
(3.4) <C < (r—-s) s ||a(s ,fxn)HHds) :

10



where the last inequality is due to the argument in [29, Theroem 1.1, Page 201].
Substituting (3.4) into (3.3) and using the condition 1 — H < A and Lemma 3.2 with ¢ = pH

and a =1 — 22 (imply p = p(/\+fl—f£1)+1), we have
t p
E [ sup / o (s, Lxn)dBY
te[0,7] 1J0

T r A—1 1 pH
< C,\,p,HTplAp/ </ (r — S)HHO'<S,$X§L)”HdS) dr
0 0
(A+H-1)+1

T p
< C)\,p’HTpflfkp (/ Ho’(r, gXﬁ)HW“}’Wdr)
0

T
(3.5) < Cypu TP / lo(s, Lo Pds,
0

where we use the Holder inequality in the last inequality, and remark that C) , g above may
depend only on p and H by choosing proper .
Observe that, by (H) and p > 6 we have

T T
/ lo(s, Lxn)|[Pds < / KP”(s) (1 —i—Wg(.i”Xg,%))pds
0 0
< 2TLKP(T)T (1 + E( sup |Xf|p)) .
te[0,7

Then, plugging this into (3.5) yields

p
E ( sup ) < C,uK*(T)T?" (1 —HE( sup |Xt”|p>) .
te[0,77] t€[0,T7]

Combining this with (3.2) and the assumption that E(sup,¢o 1) | X{'|[’) < oo yields the desired
claim.
Step 2. Ewistence. To this end, we shall prove the convergence of X™ in SP([0,7]) with
any p > 6. For any t € [0,T], we get
)

t
/ U(S,XX?)dBf
0

E( sup | X7 — XS"1|p> < 27E (sup

s€[0,t] s€[0,t]

/ (b(?”, X;hl’ gxﬁ_l) - b(ﬁ X;hQ? XX?_Z)) dr
0

s p
+ 2R (sup / (o(r, Lyn—1) — o(r, Lyn-2)) dB] )
s€l0,t] |Jo
(3.6) = 277 L (1) + 2P Lo (2).

For the term [;(t), from (H) and p > 6 we obtain

L(t) < #-IR ( sup / |b(7“, X:L_17 glefl) — b(r, X?_Q, gxﬁﬂ)}p dT’)
1J0

s€[0,t

11



<t 'E (sup / [K(r) (1X0 7 = X072 + WG(XX?HXX?Z))}pdr)
s€[0,¢] JO

s€[0,t

< 2'KP()T'E (Sup / (IX0 = = XP2 P + E[X T = X0 72P) dr)
1J0

t
(3.7) < PRP(¢) ! / E( sup | X1 —X{;—2|P> dr.
0

u€e(0,r]

As for the term I5(t), owing to p > 1/H and p > 6, (3.5) and (H) we have

)

L(t)=E (sup

s€0,t]

/ (0(7’, gX;L—I) — U(T,XX:}—Z)) dBfI
0
t
< CpﬁtpH_l/ llo(r, .,%Xlzfl) —o(r, .,?X;sz)der
0
t
S CpVHtpH_l/ Kp(T)W9<$prl,$X:}72)pdT
0

t
< CpuKP(t)tri 1 / E|X"t — X2 Pdr
0

t
(3.8) < CpuKP(t)tr! / E( sup | X! —X3—2|p>dr.
0

u€(0,r]

Plugging (3.7) and (3.8) into (3.6) yields

t
IE< sup | X7 — X:1|p> < 21”1K1’(t)(2ptp’1 + CI,,Htle)/ ]E( sup |X3’1 — ijz]p) dr
0

s€[0,4] u€0,r]

t
(3.9) < C’p,TyH/ E( sup | X"t — X;‘Q\p) dr
0 u€(0,r]
with Cp g := 207 KP(T)(2PTP~' + C, yTPH ).
Hence, by the iteration we arrive at
tnfl

E( Sup |X;L _X;Ll|p> S ClCZ)L,T,H(

SE[O,t} n — 1)'7
where C) := E(sup,cpo 77 | X! — £[P) < oo due to Step 1.
Consequently, (X™),>1 is a Cauchy sequence in SP([0,7]) with any p > 6 and p > %, and
then the limit, denoted by X, is a solution of (3.1).

Step 3. Uniqueness. Let X and Y be two solutions of (3.1). Along the same lines with
Step 2, we derive that as in (3.9),

¢
E< sup |X5—Ys|p> < C’p7T7H/ ]E( sup |Xu—Yu|p>dT, te0,7].
0

s€[0,t] u€(0,r]
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Then, the Gronwall lemma implies that X, =Y;, t € [0,7T], P-a.s.
We now move on to the case H € (0,1/2). Using the fact that fractional Brownian
motion B is an H-self similar process, one can show that for all p > 0,

E ( sup ’Bﬂp> = Cp,HTpH,
]

te[0,T

which, together with the condition that o does not depend on (¢, i), immediately yields the
claim of step 1. Furthermore, it is easy to see that the term I5(¢) in step 2 above vanishes.
Therefore also in this case we can apply the same argument as in the case H € (1/2,1) to
obtain a unique solution X € S?([0, 7). O

Remark 3.2. (i) In [7, Theorem 3.7], the authors considered equation (3.1) with d = 1, i.e.
one-dimensional case and H € (1/2,1). Under the W;-Lipschitz conditions and £ € L?(2 —
R, %y, P) (namely 8 = 1 and p = 2 in our result Theorem 3.1 above), they proved the
existence and uniqueness of solution X € S§*([0,T]) with E(sup;cj 1 |X:|*) < oo replaced
by sup,c(o 71 E[X¢|* < 0o. So in this sense our result extends and improves [7, Theorem 3.7].
Besides, in the case of H € (0,1/2) we also prove the well-posedness of equation (3.1) with
o(t, ) independence of (¢, 1), in view of the fact that B is of rough pathes in this setting.

(ii)) A more challenging question coming from this work is whether our result can be
further improved in the sense of allowing o to be dependent on X;? Our techniques are
currently not enough to give an affirmative answer. More precisely, we consider the following
equation with H € (1/2,1):

t t
(3.10) Xt:§+/ b(s,Xs,zxs)der/ o(X)dBH, te]o,T],
0 0

where the stochastic integral can be regarded as a Young integral (see, for example, [20, 32,
43]). As argued in step 2 above, we need to estimate E(supyc(o 4 | X7 — X77'[?). To this end,
using the fractional by parts formula [32, relation (4.8)] with a € (0, H) we write

/OS(U(X?_I) —o(X7))dB) = (-1)° /0 Dg (o(XI™) = o(X"7*)(r) D" BL(r)dr.

Under regular conditions on b and ¢ (for instance, b satisfies (H) and o is twice continuously
differentiable with bounded derivatives with respect to space variable), applying fractional
calculus techniques in a non-trivial way (see the proof of Theorem 3.1 in [19]) we obtain

~ 1 1
sup | X7 — X2 <Churt exp {op,T,HHBHug (1 n ux“ug)}

s€0,t]
t
(3.11) x/ IE( sup | X! —Xg—2|p>dr,
0 u€(0,r]
where ép,Tﬂ —0asT — 0, a,f satisfying 1 — H < a < < H and
BH _ BH| |Xn—1 _ Xn71|
BH|l; = su |t—5, X" = su ! >
1B s 0 i v 1 X" |5 0 s PR
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1
Noting that the appearance of the term || X"~!||5 on the right-hand side of (3.11) induced by
the multiplicative noise, and recalling that the recent work of the first author and Zhang [19,
Theorem 3.1 and relation (3.25)] which investigated the exponential integrability of solution

to (3.10) with no dependence on the measure and time arguments, we will not be able to
establish a Cauchy sequence of (X™),>1 in SP([0, 7).

In the special case with H € (1/2,1),d = 1 and o(t,z,u) = o(z), we will be able to
derive a unique solution to the following distribution dependent SDE with multiplicative
noise:

t t
(3.12) Xt:§+/ b(s,xs,zxs)dH/ o(X)dBY, te (0,7,
0 0

via a Lamperti transform, where the coefficients b and o satisfy:

(H) (i) There exists a non-decreasing function K(t) such that for any ¢ € [0,T],z,y €
R, pu,v € Z5(R),

[6(t, 2, ) = b(t, y, v)| < K(#)(|x =yl + Wo(p, v)).

Moreover, b is bounded by a positive constant My, i.e., SUp(, ;. ej0.11xRx 7, (®) 10(, T, )| <
M.

(ii) There exist constants M, > L, > 0 and K, > 0 such that
L, <|o(x)| < M,, xR

and
lo(z) —o()| < Kolz —y|, z,yeR.

Theorem 3.3. Let d = 1,H € (1/2,1) and suppose that (H) holds and ¢ € LP(Q —
R, %y, P) with p > 6. Then equation (3.12) has a unique solution X € SP([0,T7]).

Proof. Define for any x € R,

Tl
G(x) ::/O @dy.

A direct and easy computation shows that

1

(3.13) G(r) = — (G (z) = m = o(G(z)).

Now, we consider the following distribution dependent SDE with additive noise:

t~
(3.14) Y, =Y, +/ b(s,Ys, Zy,)ds + B,
0

14



where Yy = G(§) and

Owing to (I:I) and (3.13), one can readily check that for any t € [0,T],z,y € R, u, v € Z»(R),

~ ~ ~ ~ M,
bt 2, 1) = b(t,y, )| < K(@)(|2 — ]+ Wo(u,v)) and [b(t,z,p)] < 7

g

with K (t) = Yo (MyK, + L, K (t)). Here we have used the inequality (see, for instance, [38,
Lemma 2.1])

W, (o (G Hvo (G < MgWy(u,v), p> 1.

Then, according to Theorem 3.1, there exists a unique solution Y to equation (3.14).
Next, we shall show that X. := G~'(Y() is a solution of equation (3.12). It is clear that
G71(Y) € 8§°([0,T]). By (H) and (3.13) again, we get

(G (V) = (G (Y)| = o(GTH(Yh) = o(GTH(Y5))| < Ko My|Y; — Y|

t
< K, M, ( / b(r,Y,, & )dr| + |BF — Bf|>
M,
< KMy (72 1) = o]+ 1B~ B2

which implies that (G~!)/(Y.) is Holder continuous of order H — ¢ for all ¢ € (0, H). So,
using the change of variables formula ([43, Theorem 4.3.1]) and the fact that Y solves (3.14)
we obtain

6 =600+ [ Gy,
=+ [y (i v s + an?)
=t [ UG Lods + [ oGV,

where the last equality is due to (3.13) and (3.15). This means that the process X. = G~}(Y))
is a solution to equation (3.12).

As for the uniqueness, we assume that X. is another solution to equation (3.12). By the
change of variables formula (|43, Theorem 4.3.1]) again and (3.13), we derive that G(X;)
and G(X,) both satisfy (3.14). Noting that the solution of (3.14) is unique, we deduce
that there holds P-as. G(X,) = G(X,),t € [0,T]. Consequently, it follows that P-a.s.
X, = X,,t € [0,T]. The proof is now finished. O
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4 Bismut formulas for the L-derivative

In this section, we will concern on Bismut formulas for the L-derivative of (3.1). To this
end, we need to assume that the noise part is distribution-free. That is, we consider the
following special version of (3.1):

(4.1) dX; = b(t, Xy, Lx,)dt + o(t)dB},

where Xy € L?(Q — R %), P) with #x, = p. Our main reason for doing this is the
following: When o depends on the measure component, instead of (4.8) below the partial
derivative in initial value of (3.1) solves

ATy = [Veb(t, -, Zx,)(Xe) + (B(D"b(t,y, ) (Lx,)(Xe), T])) ly=x,] dt
(4.2) +E(D"o(t, Zx,)(Xy), THAB], T{=n,
where Vb(t, -, Zx,)(X;) == Vb(t, -, Zx,)(X,)[']. However, since £y, is deterministic, the
Malliavin directional derivative of (3.1) satisfies (4.13) with o(s, Zx,) in place of o(s), i.e.

t t
(43) ]D)RHhXt = / VDRHhX.sb(S7 ',D%XS)(XS)dS +/ O'(S,G%X‘g)d(RHhXS), t e [O,T]
0 0

Compared (4.2) with (4.3), it is very hard to find some hS? such that DRHhigf’X;E’(b =

Vs(xo)Xp"? which is a crucial condition in Theorem 4.4.

To establish Bismut formulas, we first make necessary preparations concerning the partial
derivative with respect to the initial value and the Malliavin derivative of (4.1). In the second
part, we will give a general result about Bismut formula for the L-derivative of (4.1), the
applications to non-degenerate and degenerate cases of (4.1) are addressed respectively in
the last two parts.

4.1 The partial derivative and the Malliavin derivative of (4.1)

We begin with the following assumption.

(A1) For every t € [0,T], b(t, -,-) € CHEO (R x Z25(R?)). Moreover, there exists a constant
K > 0 such that

IVO(t, -, ) (@) + [ D"b(t 2, ) () ()] < K, t€[0,T], 2,y €RY, p€ Py(R)
and sup;e(o 7)(|b(£,0,60)[ + [0 (t)]]) < K.

Note that by the fundamental theorem for Bochner integral (see, for instance, [27, Proposi-
tion A.2.3]) and the definitions of L-derivative and the Wasserstein distance, (A1) implies

b(t, 2, 1) — b(t,y,v)| < K(|lz —y| + Wa(p,v)), t€[0,T], v,y € RY v e Py(RY).

Then, it follows from Theorem 3.1 that (4.1) has a unique solution.
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To investigate the partial derivative with respect to initial value of (4.1), we first introduce
a family of auxiliary equations. For any ¢ > 0 and n € L*(Q — R% %, P), let (X;)epo.1)
solve
(4.4) dX; = b(t, X;, Lxe)dt + o(t)dB, X5 = X, + en,
and define
15 =

Lemma 4.1. Assume that (A1) holds. Then

(4.5) sup E( sup |Tf|2> < 288(KT)2E|7]|27
e€(0,1] t€[0,T]
and
(46) sup ‘Tﬂz < <2|77‘2 + 8<KT)2€8(KT)2E‘7]|2> 64(KT)2_
€€(0,1],t€[0,T

Proof. By (4.1)-(4.4) and (A1), we have for any ¢ € [0, 7] and ¢ € (0, 1],

sup | X — X5|2

s€[0,t]

2

< 2%n|* + 2 sup
s€0,t]

(4.7) < 28%nf* + 4K>T sup / (1X: — X, + Wy (Lx:, Lx,)?) dr.
0

s€[0,t]

/ (b(T, X;:agXﬁ) - b(?“, Xrang)) dr
0

Taking the expectation on both sides of the above inequality, we get

t
E( sup | X —Xs\z) < 2€2E|77]2+8K2T/ IE< sup |X; —Xu\2>dr,
0

s€[0,t] u€el0,r]

which implies (4.5) due to the Gronwall inequality.

Moreover, substituting (4.5) into (4.7), we obtain

t
sup | X° — X,|? < &2 (2|n|2 + 8(KT)2e8(KT)2E|n|2> - 4K2T/ sup | XS — X, |*dr.
0

s€[0,¢] u€(0,r]

Therefore, by the Gronwall inequality again, we complete the proof of our second claim
(4.6). m
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With Lemma 4.1 in hand, we can present the partial derivative in initial value of the
equation (4.1). Consider now the following linear random ODE on R%: for any n € L*(Q —
R? .Zo,P) and t € [0, 7],

(48) dF? = [sz’b@’ 'V’gXt)(Xt) + (E<DLb(t’y7 ')(gxt)(XOa F?>) |y:XJ dt? Fg =1,
where

E(D"b(t,y, )(Lx,)(Xe), T}) = (E(D"bi(t,y, ) (Lx,)(Xe), T))) €R".

1<i<d
Obviously, (A1) implies that the ODE has a unique solution {I'} };cjo.r] satisfying

(4.9) E ( sup |F?|2> < Or xElnl.

te[0,7)

Proposition 4.2. Assume that (A1) holds. Then for anyn € L*(Q — R, %y, P), the limit
V, Xi = lime o Y5, ¢ € [0,T] exists in L*(Q — C([0,T];RY),P) such that V,X; = I'] holds
for each t € (0,7, t.e., V, X, is the unique solution of (4.8).

Proof. To simplify the notation, we denote X§(t) = X, + 0(X; — X;),6 € [0,1]. By (4.1)
and (4.4), we obtain that for any t € [0, 7],

b(t,Xta,ths) — b(t,Xt,gxt)d
€

dre = t

_ 1/115@ X5(t), 2 )d9+1/1ib(tX Lxey)do| dt
T ey ag I g e

- [ / Vrsb(t, - L) (X5 ()0 + / (E(DEb(, g, ) (L ) (X5 (), T2y, 6 |

with T§ = 7. Here, we have used Lemma 2.3 in the last equality.
Then, combining this with (4.8) yields that for each t € [0, 77,

d(Ti - F?) = [(I)i(t) + va—F?b(ta K gXt)(Xtﬂ de
+ [q)g(t) + (E<DLb(t)yv ')(gXt)(XOa Ti - F?>) |y:Xt] dt7 Tg - Fg = O?

where
(1) = /0 [Vab(t, - L) (Xa()) — Treb(t, -, Zi)(X0)] 6,
5(t) = /01 (E(D®0(t, y, -)(Lxs ) (X5 (8) = DPb(t,y, ) (Lx,)(X1), T7)) ly=x,d6.
Consequently, by (A1) we get
ITe — T < 4T /t (|25 ()] + |D5(s)]?) ds + 4K>T /t (|Ts =T + E[Y — T7%) ds.
0 0

18



Taking into account of (4.5) and (4.9), the Gronwall inequality leads to
T
(4.10) E( sup [Y5—T7)?| < A4TedET / E (|®5(s)|* + [@5(s)[?) ds.
te[0,T] 0
By the Holder inequality and (4.5), one can see that
|5 (s)[* + [ 25(s) [

1
S/ [Vb(s, -, Zx:) (X5 (s)) — Vb(s, -, Lx,)(X,)[*d0 - | T5)?
0

1
(4.11) +/O (EID"b(s,y. ) (Lx;(9))(X5(s)) = Db(s,y, ) (Lx.)(X)[?) [y=x.d0 - E[ T
and
limE( sup |X5(s) — XSP) <lmE|X: - X,[* =0.
el0 0€[0,1] el0

Then using the condition b(s, -, ) € CHLO(RY x P,(RY)) of (A1) and (4.5) again, we obtain
that |®5(s)|> + |®5(s)|* converges to 0 in probability as € goes to 0. Additionally, due to
(4.11) one has

|5 (s)[* + [@5(s)[* < AKZ(| TSP + E[TEP).
By the dominated convergence theorem and Lemma 4.1, we conclude that
limE{ sup (|®7(s)]” + |®5(s)]?) } =0.
el0 s€[0,T)
This, along with (4.10), implies
lim]E( sup |5 — 1“;7\2) =0,
el0 te[0,T)
which completes the proof. O]

For the Malliavin derivative of the equation (4.1), consider for a H-valued random variable
h and each € > 0 the SDE: for ¢t € [0, T,

(4.12) AX;" = b(t, X", Zx,)dt + o()d(BE + e(Ryh)(t), X" = X,.

It is easy to see that under (A1) there exists a unique solution X" to (4.12). Using the
pathwise uniqueness of (4.1) and the fact that X; can be regarded as a functional of B and
Xp, the Malliavin directional derivative of X; along Rgh is shown by

h
oy X
el0 g

if the limit exists in L*(Q — C([0,T];R?),P). The above step is partially borrowed from
[33, Proposition 3.5, Page 4762]. Noting that Zx, in (4.12) is independent of ¢, by the same
arguments as in [18, Lemma 3.1 and Proposition 3.1] we have the following result.
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Proposition 4.3. Assume that (A1) holds. Then for any n € L*(Q — R% %y, P) and
H-valued random variable h with K;;'(Rgh) € L*([0,T] x Q,R?), the limit

Xé,h o Xt
Dg,pX; = lim —+——+
Rpgh<\t =10 c )

exists in L*(Q — C([0,T];R?),P) such that Dr,nX; = (DX} h)y)i<ica € R holds for
every t € [0,T] and satisfies

te0,7]

t

(413)  DpoaX: = / tVDRHhXSb(s,-,,,%XS)(XS)der / o(s)d(Ryrh)(s), te€[0,T].

4.2 Bismut formula: a general result

In this part, we aim to establish a general result of Bismut formula for the L-derivative of
(4.1), which is then applied to non-degenerate and degenerate cases in the next two parts,
respectively. More precisely, for any p € P, (R?), let (X/}');ep0,r) be the solution to (4.1) with
Zx, = p and denote Py = ZLxp for every t € [0,T]. Now, define

(PG = [ PP =BS(XE). ¢ €0.T).f € AR € Za(R),

where %,(R?) denotes the set of all bounded measurable functions on R?. For any t €
(0,T], 0 € P2(RY) and ¢ € L*(R? — R? p), we are to find an integrable random variable
M, (s, ¢) such that

Dg(Pf) (1) = E(f(X{) M. 9)), [ € By(RY).

Toward this goal, for any ¢ € [0,1] and ¢ € L?(R? — R%, 1), let X;* denote the solution

of (4.1) with X{** = (Id + €¢)(Xo). According to Proposition 4.2 and 4.3, V(x,) X'

and DRHhs,¢X.“ =? below are both well-defined with any sy € [0,7), and moreover satisfy
50

(4.8) with n = ¢(X,) and (4.13), respectively. In order to ease notations, we simply write
Pep = Llldtes)(xo), and if sg = 0 or ¢ = 0, we often suppress sy or € (e.g., RHhS’d) =
Ryh®® hy? = h¢, X!'"? = X! ... | etc.).

Our main result is the following.
Theorem 4.4. Assume that (A1) holds, and that for any ¢ € [0,1],s0 € [0,T) and

¢ € L*(RY — R% p), there exists an H-valued random variable hS® in Domd such that
DRHhibqbX;E,qh = Vxo) X? and (RphS?)(t) = 0 for all t € [0, so]. Assume in addition that

fol (EdQ(hgf))% dr < oo and
(4.14) lim E|6(h5?) — §(h?)| =0, ¢ € L*(R? — R%, ).

e—0t

Then we have
(i) For any f € B,(R?), Prf is weakly L-differentiable at i, and moreover

Dy (Prf)(u) = E(f(XF)3(h%)), ¢ € L*(R? — R, pu).
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(ii) For any f € By(R?), Prf is L-differentiable at u, if E6?(h?) < qubH%ﬁ with a constant
L >0 and

(4.15) lim E|9(h>%) — (7))

=0.
1911, =0 ce(0,1) lollz

Remark 4.1. Let us just mention that there is a technical issue in the statement of Theorem
4.4, namely finding an H-valued random variable hif in Dom¢é such that D Ruhsy S Xt =

V o(x0)X7?, since the initial values and the second terms of two equations (4.8) Wlth n =
¢(Xo) and (4.13) satisfied by Vy(x,)X"** and Dy o X"*, respectively, are different from
S0

each other. In Sections 4.3 and 4.4, we shall construct some explicit H-valued random
variables h‘g’f required in this theorem, from which one obtains explicit Bismut formulas for
both non-degenerate and degenerate cases of (4.1) (see Theorems 4.7 and 4.10 as well as
their proofs below), and moreover derives the estimates of the Lions derivative and the total
variation distance between the laws of two solutions (see Remarks 4.4(ii) and 4.5 below).

In order to prove the theorem, we first give the following lemma which will play a crucial
role in the proof.

Lemma 4.5. Assume that (A1) holds, and that for any € € [0,1] and sy € [0,T), there
exists an H-valued random variable h%? in Domé such that DRHM@X;S“” = Vyxo) X" and
50
(RuhS?)(t) =0 for all t € [0, so]. Then for any e € [0,1],509 € [0,T) and f € %B(R?),
BUX) — FX0IZ.) = [ B (504)8050)]2,) dr.
0
In particular, it holds

BUXG) = F(00) = [ B(FX)60) dr.
Proof. Since DRHhigf’Xéfs’d’ = Vy(xo)X7?, we deduce that for any f € C}(R?),
c d
B - Jx1Z) =B ([ 4 r0xar] .,

E (/ <Vf(X;“TV¢)> v¢(Xo)X;T‘¢>dT‘3ZSO)
/=

[ (100D ) 2 )
/ E (D, g0 F (X5 22, )

/E (DF(XE), b0y, ) SO)dT.

0

VX)), Voo X1™°)

3350> dr

[e=]

[e=]

o
o0

(4.16)
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Now, let ¢ € DomD be any bounded and .Z, ,-measurable smooth random variable, by [31,
Proposition 1.2.3] we have for any 7 € [0, £],

E (C(DF(X77), B )n)
= E [(D(CF(XE2)), hT0),, — (XA (D¢, hT )]

» "Yso 77780

= E [CA(XF)0(h?) — F(X77 ") {DE, AL ]

» Mg

(4.17) =E [¢f(X77)3(hT0) — (X (KEDC, KihTf) rao,ryme]

where the last equality is due to the fact that K7, is an isometry between H and a closed
subspace of L?([0,T]; R?).
Using Proposition 2.1 and the fact that (D" ¢)(t) = 0 for all t > sg, we get

<K;IDC KHhT¢>L2([O T);RY) — <DWC KBhT’¢>L2([0 T];R4)
(4.18) /<]DW( K3hZ?)(t)) dt = /<]D)W§ ), (KhD?)(t)) dt = 0.

Here we have used Kj;h7? = Ky (Ryh7:?) and the fact that (RyhL?)(t) = 0 for t € [0, 5o
in the last equality.
Substituting (4.18) into (4.17) implies

E [((Df(X7), hef)u] = E [Cf(X77)o(h5)] -

Hence, combining this with (4.16) we obtain

(419)  BUCG) - J0XIZ0) = [ B(F008050)| ) dr. 1 e Cr)
Set

50

) = [ BB dr, A€ 2R

which is a finite measure on R?. Then C}(R?) is dense in L'(R?, .2, nc.s + Lxn + v?), the
T

Banach space of all equivalence classes of functions f : R — R which agree a.e. with respect

to XX;W + Zxp 4 v5? and for which [o, |f(x)|($X;g,¢ + Lxp +v5?)(dr) < oo. Therefore,

(4.19) holds for any f € %,(RY). This completes the proof. O

Proof of Theorem 4.4. We divide the proof into two steps.

Step 1. Claim: For any f € %,(R?), Prf is weakly L-differentiable at u = %x, (namely
(Prf)(po (Id+-)71) : L2(RY — RY, 1) — R is Gateaux differentiable at 0), and moreover
DL(Prf)(n) = E(f(X})6(h?)) holds for each ¢ € L*(R* — R?, 11). Due to Lemma 4.5, we
deduce that for any f € %,(R?) and ¢ € L*(R? — R?, ),

(Prf)(po(d+ed)™") — (Prf)(p)

3

— E(f(X])d(h?))
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_ (Prf)(Zaieo)x) = (Prf)(Zx,)

: — B(/(X§)5(h)

_ Ef(X;E7¢)€_ Ef(Xéi) . E(f(X%)(S(hqb))
-2 / B (F(X4)0(7)) dr — B(F(XR)S(R))

=2 [ lrer - smear+ L [CBIGE) - 10050 dr

(4.20) = L(®) + L2(9).
Since lim,_,o+ E|6(h™?) — 6(h?)| = 0 for any ¢ € L?(R? — R<, 1), we obtain

1 £
imsup [1(6)] < [/ Jm, - / E|6(h™) — 6(h)|dr
(4.21) = 1/l Jim, EI5(h) — 5(1)| = 0.
For I5(¢), we get for any sq € (0,7),
1 £
RO < 2 [ BIGOE) = JX)60) ~ B30 2.,)] | dr

w2 [ I [ = FOepBne)2,)] | dr
< 2| flE [3(h°) = E(3(h*). 7]

1 3
(1.22) e / [E [(F(X47) = FOXENEG()]F,)] | dr.
On the one hand, it is easy to see that
(4.23) lim lim E |5 h?) — E(5(h?)|.Z, } = lim E {5 h?) E(é(h¢)|§so)| =0.
so—=T— =0+ so—=T'~

On the other hand, note that by Lemma 4.5 again, we have

[E[(f(X77) = F(XP)EG(h)].F)l|

(
= [E[E(Q(h*)| ) )E(f(X7™) = F(XF)[Fs )]

- ‘E {E(a(m)@%) / E (f(X§9’¢)5(h9¢)

0

)]

/OT E [E(5(h¢)|ﬁ50)f(X;9’¢)5(hgé¢)] de‘
< Il (EP 0o} [ (520 o

0

which goes to zero as 7 — 0 because of f (E52 (R ‘z’))% df < oo. This means that the
function 7 — E[(f(X};7?) — f(XE)E(6(h?)|.Z,,)] is continuous at 0. Then, we derive that
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for each sq € (0,7),

(4.24) lim / [ [(F(XL) — F(XEDE(S(?)|F)]| dr = 0.
e—0t €
Hence, plugging (4.23) and (4.24) into (4.22) implies that lim, .o+ |I2(¢)| = 0. Combining
this and (4.21) with (4.20) yields the desired assertion.
Step 2. Claim: For any f € %,(R%), Prf is L-differentiable at u = £x, (namely (Prf)(uo
(Id+-)71) : L3(R? — R, u) — R is Fréchet differentiable at 0). According to the definition
of the L-derivative, it is sufficient to show that for any f € %,(RY),

b (P00 (144 0)7) — (Prf) () ~ E(F(XF)(A)

=0.
6l -0 Tolz

Applying Lemma 4.5 with ¢ = 1, we deduce that for any f € %,(R%),

(Prf)(pro (14 +6)™) = (Prf)() = E(F(XH)0(h*))
ol
_ ES(X5) — EF(XE) — E((X)0(0))
Tollzz
TGO )a(h7) ~ B (X0 ]
911z
)00 = S(hldr| |y BIFOXG) = £X0)8(h)dr
< +
oz [ollz;

1711 Jo BIS(74) = 5(h)|dr | 2hdr
< o + VI [ @0 - it
=: Ji(¢) + J2(9),

where the last inequality is due to the condition E§?(h?) < ZHqﬁH%z
Obviously, it follows from (4.15) that limyg) , -0 J1(¢) = 0.

For J5(¢), note first that by the Lusin theorem (see, e.g., [13, Theorem 7.4.4]), there exist
{fatn>1 C Cyp(R?) and compact sets { K, },>1 such that

1
Sl = ficwr Wfulloe < Ufllsor (Lo + Lp) (55) < —.
Then, we obtain

(E|f(XP*) — F(X5)P)2
< (ELF(XP7) — fu(X59)2)2 + (B fu(X57) — ful X872
+ (Bl fu(X5) — FXE)?)z
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Al f Nl

n

(4.25) < + (Bl fu(X57) — fu(XP)P)2.

Note that for any 7 € [0, 1], we have

limsup E|X/7% — X2 < Crx  lim ; 61172 = 0.

—
¢l 5 —0 Il

Consequently, the dominated convergence theorem yields that for every n > 1,

lim E|f,(X7™) — fu(XP)[* = 0.

—0
19112

Combining this with (4.25) yields

=

lim (E|f(X577) — F(XP)[)

—0
[EIP

=0.

By the dominated convergence theorem again, we obtain that limyg , o Jo(¢) = 0, which
n

completes the proof. O

4.3 Bismut formula: the non-degenerate case

This part is devoted to applying our general Theorem 4.4 to the non-degenerate case of (4.1).
In additional to (A1), we also need the following assumptions.

(A2) There exists a constant K > 0 such that
(1) for any t,s € [O7T]a r,Y,z1,%2 € Rda My V€ <@2(Rd)>

IVb(t, -, ) () — Vb(s, -, v) ()]l + [D"b(t, z, ) (1) (21) — D"b(s, y, ) (v)(22)]
< K ([t =8| + |z — y|® + |21 — 220 + Wy(u, v)),

where ag € (H —1/2,1] and Sy,7 € (1 —1/(2H), 1].
(ii) o is invertible and o~! is Holder continuous of order &y € (H — 1/2,1]:

lo=(t) — o~ (s)|| < K|t — s|, t,s€]0,T].

(A3) The derivatives
at<DLb('v Z, )(M)(y))(t)7 V(DLb(t7 ) )(,u)(y))(x),

DD b(t,x, ) () () (1) (2), V(DFb(t,x,)(1)()(y)

exist and are bounded continuous in the corresponding arguments (¢, z, u, y) or (¢, x, p, y, 2).
We denote the bounded constants by a common one K > 0.
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Let us stress that the conditions imposed on b are much more restrictive than ¢ which is

easy to be satisfied. Next, we give some examples of functions b such that (A1), (A2) and
(A3) are satisfied.

Example 4.6. Assumen > 1 and f:[0,T] x R — R4 ¢ : R — R4 ¢ : [0, 7] x R x RY —
RY 2 [0,7T] x RY — RY and 4y : [0,T] x R4 x RY x RT — R i = 1,--- ,n are all twice
continuously differentiable mappings with bounded derivatives.

1. Suppose that

bt = 5 (bt [ ploutan).

Then, it 1s easy to see that
Vit (o) = V1 (1 [ ptwntan))
DA0(,2.)00) = VS 1o+ [ stuntan)) Vit

In particular, when @ = 0,0 reduces to a function with no dependence on the measure.
2. Suppose that

b(tvxaﬂ) = ¢(t,$au)ﬂ(du)-

Rd

Then we have

Vb(tv ) ”)(I) = /Rd V@/J(t, ) u)(x)u(du), DLb(ta xz, )(M)(y) = V¢(tv Z, )(y)

Note that if ¥(t,x,u) = ¥(t,x — ), this ezample includes the case of convolutions. More
generally, one may consider

n

b(tv Z, M) = H /]Rd R QZI (ta Z, U, U)/J(du>p“<dv)'

Then
Vb(t’ Y M)(l‘)

S [, dtevontonta [ 9w @udou)
G=1 i=1,i#j R xRd Rd xRd
DLb(t> Z, )(:u) (y)

Filt, 2, ) p(du)a(do) /

Rd

(Vi (t.2, ) () + Vit u, ) () ()

d d
j=1 i=1,i; YRR

So, by a direct calculation, it is readily checked that the functions b above satisfy (A1), (A2)
and (A3).
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Our main goal in the current part is to prove the following result.
Theorem 4.7. Consider equation (4.1). If one of the two following assumptions holds:
(I) H e (1/2,1), (A1), (A2) and (A3) are satisfied for b, o,
(II) H € (0,1/2),b satisfies (A1), (A2)(i) and for every t € [0,T],0(t) = o is invertible,
then for any p € Po(R?) and f € B, (RY), Prf is L-differentiable at y and

Dﬂﬁfmsz(ﬂX$[:m;%mm%wxmw),¢eL%Rﬁ+R%m,

where the H-valued random variable h? belongs to Domd and satisfies for every t € [0,T],
é ! —1 1 w8 L
(RHh )(t> = . o (S) fvfb(Xo)Xs + f (E<D b(s,y, )(ZXE)( ) v¢> Xo >) ’y > ¢ ds.

Remark 4.2. By (2.4) and (2.5), one can recast the term K5 (Ry;h?)(t) in the theorem as

( 1
(H—1yH -3 $1-2H =1 (1) o(1) 1 t tl o3—H
F(ész) [ -1 2+ o (te) Jy #ds

0 (t s)2+H S 2+H

o) [ e =e (&) gyt s 4 ! %a 1(s)séHds], He (1/2,1),

_1
o lE B () g H e (0,1/2),

\ T[(3-H) O(tis)%JrH )

where for any s € [0, 7], o(s) = %V¢(XO)X§‘+% (E(DLb(s,y, N Lxr)(XE), Vigixg XE )) |y=xt-

To make the study easy to follow, we first introduce the main steps in establishing Bismut
formula in the statement of Theorem 4.7 using the general result given in Theorem 4.4.

1) For any € € [0,1] and sy € [0,T), construct an H-valued random variable h%?¢ such
that

(Ruhi?)(t) =0, t€[0,s] and Dy hwx“w Vxo) X0

2) Verify that Ky (Rgh?) = Kyhs? € L2([0,T] x Q,R?). By the transfer principle
Proposition 2.2 we have h5? € Domé and

T
S0 = b (K3s) = [ (Rt ) (0,009
which yields that for a positive constant C,

1 1
ES2(h%) < C|l¢|%.  and / (E(h7))* dr < oo.
# 0
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3) Using fractional calculus and Lemma 2.3 shows that for any ¢ € L?(R? — R, p),

g0\ __ o}
lim E[§(h°?) — 6(h%)| =0  and E[6(h=?) — 6(h?)]

oot 61,20 c(0,1 1]z

=0.

To fulfill these steps, we present the following lemma, in which the L2-norm conditionally
to Z and the L'-norm error estimates between Vyx,) X, ? and Vyx,) X/ are provided,
respectively.

Lemma 4.8. Assume that (A1) and (A2) are satisfied. Then for any t € [0,T],
(4.26) E|Vsx) Xt ™ = Vox X{'| < Cp i gle )| 2
and

E(|Vxo)Xi ¢ = Voxo XI[*|%0)

(4.27) < Cric (Ble Dol + Bl 0)9113; + Ble, 0)o(X0)?)
where

(428) U=, 0) = ol% + ol + elléllnz,

(429)  Dle.d) = <ol + NI +elloleg + < Foll S + ol
(4.30) ble,6) = ¥ [6(X0)|F + &% |o(Xo) |,

(1) Ta(e.d) = 2ol 4 + 2 ollEy + el

Remark 4.3. By a straightforward calculation, one can see that

m [6(e,¢) + i(e.0) + E (Be.0) + B, 0)) | = 0.

li
lim sup |((e,0) + (=, 0)) +E (B, 0) + B(.0)) | = 0.

19112 =0 ce(0,1]
Proof. By Proposition 4.2 with n = ¢(Xj), we get for every ¢ € [0, 71,
t
Voo Xi ™ = Voo X' = / [V%(wagw b(s, -, Lynes )(X3)
0

- vvd,(xo)xg‘b(sa S Lxp)(XY)
+ (E(D b(5, 9, )(Lygre ) (XE), Vg X))

y=X:i"?

— (B(D (s, v, )L N (XE), Vo X2) |y:x4 ds.
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Let ¢; = |V(xo)X: " — Vxo X{'|- Then, by (A1) and (A2) we have for any ¢ € [0, 77,
BG17) < K [ (8GR +BG)ds
+ f(/ot]E ((yxﬁwf’ — XH|Po + W2($X55,¢,gxg))|v¢(xo)xg\L%) ds
+K /O t (E(lXﬁ‘w — X¥|P0|.F) + W2($X55,¢,$Xg)> E|V s(xo) X%|ds
+ f?/ot]E (IX2= — XH0|V g x00) X 1) ds.

Notice that by (A1), we derive for any p > 0,

(4.32) oup B! = XEP170) < Coee” (1 + lo(X0)P)
se|0,
and
(4.33) SUp_ E(| Vg X2 50) < Corrc (N0l + 16(Xo)l")
s€[0,T],£€[0,1] "

Consequently, by (4.32) and (4.33) we obtain that for any t € [0, 7],

B(G150) < K [ (BGI) +BC)s +Cr e n(c.6),
where
x(e.9) = ™ol + ol +ellglzs + 1ol g o (Xo)*
+ [ (Nl + 16Xl ) + ll6llas | [6(Xo)
Taking the expectation on both sides and applying the Gronwall lemma, we obtain

(4.34) B¢ < Cp i #Ex(8,0) < Cp i 5e, 914 12,

where {(g, ¢) is given in (4.28). Hence, this leads to our first claim (4.26).
Next, we focus on proving (4.27). Applying the chain rule to ¢(? and using (A2) yield
that for any t € [0, T7,

d¢} < 2K ¢} + 2KGEG
3R (Ve X1 4+ [V XE2) (16079 = XEIP + WLy, L))

2R GBIV i XEP)E (1057 = X + W Lyres, Lrp) + (BIX = X))
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Then, by the Holder inequality we deduce that for any ¢ € [0, 71,
E(¢F|F)
< QK/ [E(¢ZF0) + E(C]F0)EC] ds
#38 [ [(©1T o0 X2 120) + (B (Vo X21150) ]
x [(BOXE = X0 F20))* + Wo( Lo, Lrp)| ds
+2K/ (2 F0) 7 (B|V g(x0) X 1)

x| (B(XE® = XU 20)5 + Wa( Lo, Lics) + (BIXE = X202 | ds
< /t [(2}( + K2+ K)E(C)%) + (Ecs)ﬂ ds
+ 35 [ (BTt X2 1150)) + (B (Vo X21°170)
x [ = XPR]20))* + (XL - X0P)E] ds
w EIV g0 XU (B — XEPLZ) + EIXE — X2 + BIXI — X0P] ds
0

Combining this with (4.32), (4.33) and (4.34) and applying the Gronwall lemma, we conclude
that that for any ¢t € [0, T,

E(C}1%0) < Cre (e 0)1913; + X(e.0))
where
%e,0) = (191135 + 16X [ (I8l + [6(Xo)l ) +elgllzz)
+ 16lZ; [ (o175 + [9(Xo)P ) + 2P [l6l170 + <olZ;]
Letting 4;(e, ¢),i = 1,2, 3 are given respectively in (4.29)-(4.31), we obtain the other assertion
(4.27). O

Now, we are in the position to prove Theorem 4.7.

Proof of Theorem 4.7.

The arguments slightly differ in the cases H € (1/2,1) and H € (0,1/2), so we shall deal
with them separately.

The case H € (1/2,1). For any ¢ € [0,1] and s € [0,7), let

t
~ 1
g, _ —1 V l"’E,
hso(z)(t) _/t o (5) |:T — 5 d)(XO)XS ’

ASo
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S — 8o
T—SO

t
::/ 07 1(8) 0,50 (8)Ls>501ds, t € [0,7T7).
0

+

<E<DLb(Sa Y, ')(D%ng’d))(Xlsusyé)’ v¢(X0)X5EV¢>> |yX55’¢:| ds

Owing to (A1) and (A2), one can verify that Eigfs € Iéfﬁ (L?([0,T],R%)), which means that

there exists an H-valued random variable hif such that RHhif’ = Eif’. It is easy to see
that (Rhg?)(t) = 0 for all t € [0, so]. Moreover, applying the chain rule to £=22V 5 (x,) X; =
yields Dy o0 X770 = Vi (x0) X777
0

Next, we intend to show that Ky (Ryh?) = KpjhS? € L2([0,T] x Q,R?). Then it
follows from Remark 2.1 and Proposition 2.2 that % € Domé and §(h5?) = dw (Kj;hS?) =
Jo it (R} (6), W),

It is clear that the operator K;Il preserves the adaptability property. With the help of
(2.4) and (2.2), we have

K ([ 7 6)0mOMians) 0

0
= tH—%DO_A,_ 2 [-%_HO'_1<')QS,80(')I{'>SO}] (t)

H-1 [t27 75 (1) 0o, () Liins P limsgr — Lisss
=i | T el g, [T el
L5 —H) H—3 o (t—s)tH
tt%—H_S%—H
Lt 3071 (1) 0. t/—llss d
t 1 ~1
H-1 o (t)—O' (S) 1
+t QQE,SO(t)A (t—s)%+H 52 I{S>so}d5
t
_1 Oe,s (t) — Ocys (5) -1 i_H
—i—tH%/ 220 200 o ()82 M eagnds
0 (t—s)%*‘H (5) le>s0}
oo
(4.35) = ————[I1(t) + L(t) + I5(t) + I4(t) + I5(t)].
I'(; - H)

From (4.33), it follows that

sup E|Qe,so (5>|2 < CSO,T,KHQbH%%"
5€[0,T),e€[0,1]

Additionally, we have

'l —1 1
{t>s0} {s>s0} _ o g i g

and

t i-H _ tLH 1 g 1
(4.36) / 2T A= / T dr < oo
0 z o (



These, together with (A2)(ii), imply that

(4.37) E[L ()] +E|LH < Copmmnt ™67,
(4.38) E|L(t)]* < Coo o, (t = 50)' 72 [[0]122,
(4.39) ElL() < Cy g ient™ 2101122,

which means that [; € L*([0,T] x Q,RY),i=1,--- 4.
Before handing I5, we set for any ¢ € [0,1],¢ € [0,T] and y € R?,

T (ty) = D b(t, 3, ) (Lo ) (X}

By a direct calculation, we can reduce the integrability of I5 to that of the following three
terms in L2([0,T] x Q,R%):

JH-L /t Vo) X" = Voo Xs ™| 1oy
0 (t — )zt ’
7€ 7€ He,
tH*% /t (E<b (tvy) —b (87 Z)7 V(j)(Xo))(t ¢>) |y:XéLE‘¢,z:X55‘¢ S%*Hds
0 (t—s)s+H ’
7€ e, €,
L[t <E<b (872)>V¢(X0)X5 - v¢(X0)Xg ¢>> |z:X“6’¢ 1
tH_2/ - *Ls2 (s,
0 (t—s)z*

Along the same lines as in Step 1 of Theorem 3.1, we have for any p € (1/H, 2],

(4.40) sup E|X;** — X¥°|P < Cprimlt —s|P?, t,s€[0,T].
€€l0,1]

Furthermore, by (4.33), it is easy to see that for any p > 0 and s,t € [0, 77,
(4.41) E(|Voxo)Xi ™ = Voo Xs [Pl F0) < Cpri (||¢||§3 + !¢(Xo)|p> |t — s]".
Then, combining these with (A2) implies

E|I;(t)]> < Coorxio B=2H | 4200-2H+1 | 20 H-2H+1 | 4

t X;U's,¢ _XgLe,qb Bo L 2
(4.42) +t2H‘1E(/O| t(t—s)%ﬂfl sz—Hds> lllZ-

Note that there hold

sup |X,°?
rel0,T7]

/ o(r)dB!

0

g@mH0+mmmw%+wwmw%n+
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and

]E( sup |Xffg’¢\2> < Crkn (1 + |’Id+5¢”ig> ;

rel0,T7]

where || fo BHHOO = SUP¢e(o,1] |f0 BH|
Then, it follows from (A1) that

t
/ b(r, Xﬁs"b,gxﬁw)dr

1
<K (1+ sup | XHe?| + (E sup |Xff5"”\2)2> (t—s)

rel0,T7] rel0,77]
(4.43) < Crrmn (1 + [11d + €9l 12 + | Xo + € (Xo)| + / o(r)ydB?
0

Consequently, this implies

He,p He, g |8 2
2= 1E</ X X |Os2 Hds)

t—s

brX”wguE dr|P | 2
< - 1E</ ‘f o)dr sszs>

t _ S) 2-i-H
dBH P ?
+ 221 - 1E(/ ’f ‘ s_Hds>
t — s
280
>t1+2(30—H)
) t1+2(H—§0)ﬁ0—2H

< Crxn (1 +[|1d + esblli‘;f’ +E H / o(r)dBH
0

/ o(r)dBHdr
0

where we use the Holder continuity of [ o(r)dB} of order H — ¢y with ¢ € (0,1/2) and

H/ r)dBH

Plugging (4.44) into (4.42) yields that I5 € L*([0,T] x 2, R?). Then we get the desired claim.
Since

2fo

(4.44) + CyE (‘

H—qo

JLo (B — [} a(r)aBs

[t — s[f—0

= sup
H—co 0<s<t<T

T
ESX(157) = &% (Kihe?) = / E|K; (Ruhe?)(t) P,

by (4.37), (4.38), (4.39), (4.42) and (4.44), one has that [ (Eé%h;f))%dr < oo and
Eo*(h?) < Cr i Ol
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Finally, we shall estimate E|§(h5?) — §(h?)|. As before, we write g. = 0.0 and 0 = g9
for simplicity. Using the linearity of the operator K and applying the B.D.G. inequality

and the Holder inequality, we have

/ UG (R (1), W) — / (G (R (1), AW

E|5(h5?) — §(h®)| = E
<E </T | K (Rgh™? — RHh¢)(t)|2dt> ’

<

E( </]K (Rgh®® — R h¢)()y2dt);|,%)>
IE( (/ |K; (Rygh®® — Ryh®)(t |dt\f0>);

( ( / 'o——1<s><g€—g><s>ds) o

IN

=E

0

H—% ! (Qe - Q)(t) - (QE - Q)(‘S) 0_—1 s S%—H s
+1 /0 TR (s)s27"d ]

(440) = o2 A(0) + J(0) + fe) + i)

Owing to (A2)(ii) and (4.36), we get

3
D _E(ADI170) < Oy (872 + #2072 E (Jo: — o*(8)].F0)
i=1

which leads to

E (/ ZE PAGIRED dt> < CpiyE ( SElp]E(]QE — g|2(t)|,%)>
tel0,T

[N

(4.47)
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Note that by (A1) and (A2), we obtain for any ¢t € [0, 7],
3 .
E (I(0- = ) (OF170) < FE(Vorxo Xe ™ = Voo X{ ' F0)

6K ((BXE — XPP\Z0) + W Lype, Zip)) (EIV ) X1
+ 6K (B(IX{“* — XIP°| Vg0 XLD)°
+ 3K*(E|Vy(x0) X1 ¢ — Vixo) X1'])*
< Crpi| (B 0) + Ble,0) + 2 NI70 + 22Nl + 2 lI0l7 ) ol
(4.48) + (B3, 0) + e |6(Xo) ) 9113 + B(e, 6) o(Xo)I?].

where the last inequality is due to (4.32), (4.33) and Lemma 4.8. Then, combining this with
Remark 4.3 and (4.47) yields

1
(4.49) llir(l)E(/O ZE|J )1?-%) dt) =0

and
>R (ORESTON
(4.50) lim sup = 0.
I61l2 0 ce(0,1] 10l

For the term associated with J4(t), observe first that for any 0 < s <t < T,

6
(4.51) (0 — 0)(t) — (0= — 0)(s) = Y _ Oi(t, s),
=1
where
O1(t,s) = % (Vo Xi™" = Voo Xs) = (Voo Xt = Vo XE)]
Ou(t, ) = = [(EF (1), Vo X1 |, _gres — (BB ), Voo X1) sz
Os(t, ) = = (B (¥ (19), (Voo X1 = Ve X°) = (Voo Xt = Voo XE) ) ) |, _yres
Ou(t,s) = % (E(gs(t,y) b (s, 2), Vs(x0) Xe ™0 — V¢(X0)X5>) |y:X“8»¢,z=Xi‘S'¢’
Os(t,5) = = (B (5. 2) = Bl5. 2), Voo Xt = Voo X)) [t oy
Oolt, ) = = (B{(B™(1.y) = b (5. 2)) = (B 5) = (5,2, Vi) XED ) |yres ooxtos g oo

Owing to (A1), (A2), (4.32), (4.33), (4.41) and Lemma 4.8, one gets that

2
@ 1_
t2H1</|t 552 8) |ﬁo
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(4.52) OTKKHt3 B, ¢>||¢||L2+e%,¢||¢||y (e, 8) + Bi(e, 9))[6(Xo) |
F2H-1 "10a(t, )|32
o (t—s)2t
(4.53) SOT,KKH#’ (e, 0) H¢||Lz+e%|¢ DPl8l2;)
(454) E t?H 1 ’@3< )|82
o (t—s)2t

< Crprat’ (0 )H¢HL2,

5 tH< 105(t, )5
0 (t—s)

< Crpeient™ |16l +€2”°H¢H2”°+62ﬁ° (1 + Io(Xo0) )] Nl
(4.55)

For ©4(t,s), by (A2)(i), (4.26) and (4.40) we first have

©a(t, 5)] < Crpe e [(E =)™ + (t— )" + \X%"’” = X3 ] e, )l

+ KE (| X} — X210 - |V gy X55¢ — Vg0 X2 |)
< Crpin [(E=9)+ =57+ \Xt”” - X56¢!ﬁ°] D)ol 2z
t Yo
+ KE ( / b(r, X7, Lyreo)dr| - [Vpxg) Xs™ = Vix, X“|>
_ t Yo
(456) + K8 (| [ otany| - Woayxtee - v, Xomr)

Next, we focus on dealing with the last two terms of the right-hand side of (4.56). Using
(4.43), (4.26), (4.27) and the fact that B is independent of .%;, we obtain

=

< OT,K,KH{ (14 I1a+ 20l ) el )6l 3

+ (E’ /0 o(r)dB?

(4.57) +E (|Xo + ed(Xo) "+ [Vp(xo)Xa ™ = Vg(xo) XL) }(t — )7

Y0

t
/b(ﬁX#s"#,fxf%)dT '|V¢<XO)X5£’¢—V¢<X0>X5|)

270

o0

)2 ic.0) + e, ) + (BB 0)) | ol
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Observe that by (4.27), we derive
E (| X0 + eo(Xo)[™ - [V(xo) Xe ™ — Vo) X4])
< Cp B [|Xo +20(X0) ™ (Ga(e, )6l 2z + Ta(e, )91l + Bale, 6)|0(Xo) ) |
~ ~ RN Y- SN
< CT,K,R[HM + ool (el<e,<z>> + (BB )" += %0l +52\|¢HL3) 6z
Bo Bo
+ B (X0 + (X - o)+ ?)
v (7 72 2 ] 2 1 3
< Cricilla+eoll}y (D, 0) + (BB, 0)) + =¥ loll5 + 2 l0l13, ) o)z

158) = Cyeglia+eolly (7o) + (BB 9)° ) ol

where we use the Holder inequality with %—i—% = 1 and the relation (1—55 <)y < 1—%
in the last inequality. Note that if vo € (1 — %, 1], we may choose Y € [1 — 57,1 — ’%0] to
replace such 7, in the first inequality of (4.56) due to the boundedness of D¥b. In this case,
(4.60) below holds with ~y replaced by 7, which also implies the desired convergence of the

term involved ©,.
Substituting (4.58) into (4.57) and recalling that ¢ € [0, 1] imply

dl

1459 < Cppealt— 9 (1e0) + e o) + (Ee0)) + (BF.)) )l

70

t
/b(T,Xﬁm,fx;‘%)dT '|V¢(X0)X55’¢—V¢(XO)X5!>

For the other term, applying the fact that B is independent of .%, again and (4.27), one
sees that

“(

<E

Yo

t
/U(T‘)dBfI -|V¢(XO)X5€’¢—V¢<X0)X§”I)

270
(| [oonst] 1)

< Cprmt =7 (e 0) + B ) + (BB ) ) ol

1
2

t
/ o(r)dB/! B (IVgxo) X6 = V¢<X0>X§L|2|%)]%

Plugging this and (4.59) into (4.56), we arrive at

Pl(e, 0)

04(t.5)| < Cpp i [|X#€’¢ _ xpes

1
2

(= (8(e,0) + Tlev) + (BB 0)) "+ (EBe.) ) [

2.
Lz
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Hence, combining this with (4.44) and the fact that B is independent of %, again leads to

LOy(ts) s\
E( e | = ——ds | |
0o (t—s)2tH
< Crxiu (1 + [|Id + 5€Z5||2BO / o(r)dB/!
0

. 280
+0T,K,;~(,HE< [ otwastar )t“?(ﬂ—%%—?ﬂﬁ(e,¢>||¢||%2
0 123

+ Cpe a2 (2(e,0) + B(e, 0) + Bl (e, 0) + E(e,0)) 0113,
< Oy e e, (#1207 4 2022 22 )| g1 7

(460) et 2NN (e, 6) + Bie, 6) + BB (e, 6) + BB, 0) ) |0l

280

o0

) (202 e, ) )12,

H—¢o

As far as Og(t,s) is concerned, using (A3) and Lemma 2.3, we derive that for any ¢ €
0,1],s,t € [0,T] and y, z € RY,
Bg(ta y) - 56(57 Z) = DLb(tv Y, )(g ”E ¢)(X“E 4)) DLb(Sa 2 ')(gXME’qﬁ)(XgE@)

1
d
= /0 @DLb(QSt,y,~)($ He ¢)<XM6¢)d9
1
+/ %DLb(s 2Oy — 2), ) (Lygrew ) (Xy)d0
g d o e,
+/O @D b(s, z, )(ng;gf’(e))(Xt *)d6
1
d
+ / —D"b(s, 2, ) (Lo ) (X7 (0))d0
0 d(9 s ’
1
:/ 0o, (D b(-,y, ) (Lres )(X7)) (0s2) (8 = 5)d0
0
1
+ / V(D b(s, -, ) (Lygrew ) (X7)) (2 + 0y — 2))(y — 2)d0
0 t
1
+ / (E(D (D (s, 2,)() () ( Lz (X (0)), X170 = X)) |, cresdd
1
[ VD s, 2 ) (g VOO 6L = X2,
0
where for any 6 € [0,1], 6,, := s + 0(t — s) and X.7(0) := X5=% + 0(X["* — Xi°).
Then by (A1), (A3) and (4.40), we have

4

DA (X = X)) = (XY = XY et - S)Hd)HLa] 11z

i=1

|©6(t, s)| < CT,KR,H
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where

Alz_(t—s)<E/01

- aGS,t (DLb<> gv )(ng)(X#))(es,t)

0o, (D b(-y, ) (Lo (X7 7)) (0s2)

1

2 2
d(9 ’yZX:LS’(b,’ZJ:Xf’

Ay (]E /O V(D b5, ) Lgrers (X)) (2 4 By — 2)

=

2

— V(DHb(s, -, ) (L) (XE) B+ 07 - a>|2d9) [yt oot gcp o

% |XtN€,¢ _ X;‘E,aﬁ

Y

Ao i=(t - s>H(E / (E|DL<DLb<s, 2 ) () (1) (L) (X 0))

N|=

- DL(DLb(Sa za ')(')(U))(ng,z(e))(X&t(e))’2) ‘uthus’qs,U:dee) ’z:X?“ﬂZzXé”

v (2( [ VDPb(s, 2, (e (DXELB))

=

— V(DEb(s, %, ) (L) () (Xoa0) 20 - [ X7 — XLo

9 2
)) |z:X55’¢,Z:X§"
and recall that for any 0 € [0,1], X,:(0) = X! + 0(X}' — XH).
Note that due to (4.32), it follows that as ¢ or ||¢||z> goes to zero, X+ and Xff(@) converge
respectively to X* and X, .(6) in probability for aﬁy s,t € [0,7] and @ € [0, 1]. Then, using
(A3) again and applying the dominated convergence theorem, we deduce that

1
2

T Ot s)|s%_H ?

(4.61) limE / E |51 e ——ds | [F | dt] =0

e—0 0 0 (t _ S)§+H
and

2 3
T “1 [ gt 1osts)lsT M
E (f() E (tQH 1 (IO st) ’9})) dt)

4.62 lim =0.
(4.62) 61,20 c(0,1 9Lz

Hence, combining these and (4.52)-(4.55), (4.60) with (4.51), and applying Remark 4.3, we
conclude that

1
T 2
hmE</ E(|J4(t)|2|ﬁ0)dt) =0
e—0 0
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and

E ( J; B0 Fo)at)
lim  sup = 0.
6]l =0 ce(0,1) ol

In conjunction with (4.45), (4.46), (4.49) and (4.50), the above two inequalities imply

lim E[§(h5?) — 6(h®)| =0,  lim E[5(ho?) = 6] _ 0.
0t 612 =0 ee(0,1] 10llz

Therefore, the assertions follow from Theorem 4.4.

The case H € (0,1/2). We argue essentially in the same way, only this time we need to
check that K7' (f; 07" 0c,50(5)s5s03ds) € L2([0,T] x ©,R?) and (4.14)-(4.15) hold since the
inverse operator K ;' is of the different form between the cases H € (0,1/2) and H € (1/2,1).

Firstly, by (2.5) and (2.1), we have

_ - v lmgra_g
KHl (/ o 196750(3)I{S>50}d3> (t) = tH 2]02+ [-2 H 195,50(')I{~>80}] (t)
0

_1tH_% L H e,8 Lisss
(4.63) -7 / skt THOUCYS PN
TE—H) Jo  (t—s)t

2

Then, using (A1), (4.9) and Proposition 4.2 with V,, X. replaced by V 4(x,)X!“*, we deduce

. 2
E ‘Kﬁl (/ 0_1Q5750(3)1{5>80}d3) )| < Cyt'?HE sup |95750(s)|2
0 s€[0,7
S CSO’T,Htl_QHE sup |V¢(XO)X§LE’¢|2
s€[0,T
(4.64) < Corwnt ¢l

which implies
Kﬁl (/ 01Q5’30(8)1{5>50}d5) c L*([0,T] x Q,]Rd).
0

Next, we are to verify that (4.14) and (4.15) hold. Noting that again due to (2.5) and
2.1), we get
( g

it ([ o7 e - 0eas) (0 =i [0 o - 0] @)
(4.65) - If(%l’f;) /0 t Sé_(f(_gz)_é f;(s)ds.
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We choose ¢y such that H < g9 < 1/2. It follows from the Holder inequality that

t %—H _ 2
R $2H-1 / S (0 i ‘Q)(S)ds )ﬁo
0 (t—s)2tH
t 1—2H t 2
2H -1 S |0 — 0]*(s) o
<t /0 s IE( e ds| Fy

t 2 G
= Cept™™ / E (lo: — P %)
’ 0 (t — s)%o

< Coput' ™" sup E (Jo- — of*(s)| ) -
s€[0,T

Then, combining this with (4.45) and (4.65) yields

E|5(h*%) — 5(h?)| < E ( / g (\KH ( / oo, — @><s>ds) (1)

3
< Cgpr.iE ( sup [E (|Q£ — Q|2(3)|ﬁ0)> .

$€[0,T

2 B
‘%) dt)

Consequently, using (4.48) and Remark 4.3, we obtain the desired relations. Our proof is
now finished. O]
We conclude this part with a remark.

Remark 4.4. (i) Compared with the relevant result on distribution dependent SDE driven

by the standard Brownian motion (H = 3) shown in [33, Theorem 2.1], it is easy to see

that our above result Theorem 4.7 applies to more general SDEs since we replace B 2 with
fractional Brownian motion Bf with arbitrary H € (0,1/2) U (1/2,1) as driving process.
Furthermore, due to the appearance of Jy(t) in (4.46), essential difficulties are overcome in
the analysis of Bismut formula for the L-derivative.

(ii) Combining the above proof and Remark 4.2, we can derive the estimate of the L-
derivative as the following:

ID (Prf)(wll = sup |Dg(Prf)(w)l

<1

as(T, K, K, H)
TH

D=

. f € B(RY,

(4.66) < (al(T, K, K, H)+ ) [(Prf*)(w) = (Prf(n)?]

where a;(T, K, K ,H),i=1,2 are two positive constants satisfying

as(T, K, K, H)

al(T,K,I?,H)—i- TH

1
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Indeed, according to Theorem 4.7 and the Holder inequality, we have
2

e = [& (008 [ 03 Rk 0.1 )|
— [z (o - Py [ K (R (1), th>)r

< [P = (Prf o)) [ BIRG (Rat) o)t

Then, along the same lines as in (4.37), (4.39), (4.42), (4.44) and (4.64), applying Remark
4.2 and taking into account of the relation sup,c, 11 E[o(s)]* < C(3 4 1)*[|¢]|7., we obtain

T L2
the estimate (4.66).
In addition, following the same arguments as in the proof of [33, Corollary 2.2 (2)] and using
(4.66), we give the total variation distance estimate for the difference between Lyx and Zxy,
with different initial distributions p and v:

ng; — .,%X%Hm = supd |$X;(A) — .XX%(A)] < C(T, K, l?,H)Wg(u, V), W,V E QQ(Rd).
AeB(RY)

4.4 Bismut formula: the degenerate case

We now restrict ourselves to the case H € (1/2,1), and let d = m +1,b = (b b?) and B
be a [-dimensional fractional Brownian motion. We now consider the following distribution
dependent degenerate SDE:

{dXt(l) = bW (¢, X,)dt,

4.67
(4.67) dx? =@ (t, X,, Lx,)dt + o(t)dBH,

where X, = (XY, X?), 60 1 [0, T] x R™ — R™ @ : [0, T] x R™* x 25 (R™*) — R o (¢)
is an invertible [ x [-matrix for every ¢ € [0, 7. It is obvious that (4.67) can be rewritten as
follows

(4.68) dx; = (0W(t, X,), 02 (t, X, Lx,))dt + (0,0(t)dBH).

Let us mention that, as in the Brownian motion case (see, e.g., [5, 33]), when taking the
special choices of b, b2 and ¢, the above model will reduce to distribution dependent
stochastic Hamiltonian system with fractional noise.

In the current part, we aim to establish the Bismut formula for the L-derivative of (4.68)
with the help of Theorem 4.4. To this end, we will impose the following condition.

(C1) Foreveryt € [0,T],61(t,-) € CHR™ — R™), 6P (¢, -,-) € OLEO(RMH x 22, (R™H) —
RY). Moreover, there exists a constant K > 0 such that for any t € [0,7T], z,y €
Rm—l—l’ U c gzz(Rm—H)’

IVO () (@)l + VO (-, ) ()| + [DF6P (2,2, ) (1) ()] < K,
and sup; (o 7|64 (£, 0)] + [b2 (£, 0, d0)| + [lo (1)) < K.

42



It is easily checked that (C1) implies (H), so that there exists a unique solution to (4.68)
with any initial value Xy € L?(Q — R™* %, P) thanks to Theorem 3.1, where we recall
that (H) has been introduced at the beginning of Section 3. For any ¢ € [0,1] and ¢ €
L2(R™ — R™ ) denote X;“* by the solution of (4.68) with X;=¢ = (Id 4 £¢)(Xo) (as
before, in order to ease notation, we simply write fi. 4 = L1ate0)(xy))- For any so € [0,7),
let {g(t)}icior) = {(g (1), 9P (t)) }ejory be a stochastic process on R™H with differentiable
paths satisfying
¢

€, 71 €,
(469) gD = Voo Xt ™+ [ VbV (s, ) (XE)ds, € [0,7],

tAso

(4.70) 9P(t) = Vo X1="?, t €0, 5],

and then put for each ¢ € [0, T7,

t

(Ruh=?)(t) = / 07 (3) [ Voo ® (s, Lgres ) (XL)

tAso

(4.71) + (B(D O (5,1, ) (Lo ) (XE2), T X)) | e = (92) (5)] ds.

Proposition 4.9. Assume that (C1) holds, and that for any € € [0,1] and sy € [0,T), let
g = (g, ¢?) and H-valued random variable h5® in Domé be respectively given in (4.69),

(4.70) and (4.71) such that g(T') = 0, fol (]E(S?(h;f))% dr < oo and

lim E|§(h*?) — §(h?)| =0, ¢ € L*(R™" — R™ 1),

e—0t

Then we have
(i) For any f € %,(R™M), Prf is weakly L-differentiable at u, and moreover

DE(Prf) () = E(f(XF)5(h?)), ¢ € L*R™' — R™, ).
(ii) For any f € By(R™), Prf is L-differentiable at u, if E§*(h?) < Z||gb||%2 with a constant
L >0 and
E[5(h=?) — 5(h?)]

lim sup = 0.
Iéll.2 =0 ce(0,1) 1]z

Proof. Owing to (4.71), it is easy to see that (RyhS?)(t) = 0 for all t € [0, so]. Now, to show
assertions (i) and (ii), by Theorem 4.4 it remains to verify DRHhE,G;X;E*d’ = Vi (x) X707
S0

On one hand, according to Proposition 4.3, we obtain that for any ¢ € [0,1],¢ €
L2(R™* — R™H ) and s € [0, T), the Malliavin derivative process (V; := DRHhE@Xfw)te[QT]
50
solves

t
Y; N / <VY5b(1)(S’ ‘)(X567¢)’ vYSb(Q) (37 " "%X“E,db)(XéLE’d))) ds
0 S
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n /0 (0, 0(s)d(RuhZ?)(s))

t
_ / (Vb (s, ) (XE), Vb (s, -, e )(XE7) ) ds
t

ASo

(4.72) + /t (0,0(s)d(Rrh3)(5)) .

ASo

where the second equality is due to the fact that (Rghs?)(t) = 0 for t € [0, so].
Observe that by (4.70) and (4.71), we have that for any t € [0, 77,

t
€, 2 €,
92 (t) = Voo Xi™® + / [Vaob (s, Lyrs ) (XE)
t

ASo

+ (BUDH (5,9, ) (Lgreo)(XE), Vi XE) ) |, e | i

- / o(s)A(Rih?) (s).

ASo
Then, combining this with (4.69) implies that for any ¢ € [0, 7],

t

olt) = Vorxo X1 + [

tAsg

[(Vg(s)b(l)(S’ ,)<X55,¢), vg(s)b(2)(87 5 g e ¢)(XME ¢)>
(0, (BD" O (5., ) (L) (K4, Ty X279 ) |, )| s

_/t (0,0(s)d(RghZ?)(s)) -

NS

Consequently, in conjunction with (4.72), the above relation yields that for any ¢ € [0, 7],

t

Yi4 gt) = Voo X150 + /

tAsQ

(4.73) (0, (B(DHH (s, , ) (Lo ) (XE), Ve X4) ) |, e ) | ds,

On the other hand, for any ¢ € [0,1],¢ € L*(R™ — R™* 1) and s € [0,7T), applying
Proposition 4.2 with n = ¢(Xy), one sees that the directional derivative process (Z; :=
Vaxo) Xt ieo.r) solves

[(Vnw(s)b(l)(sy VXL, Vv gD @ (s, -, Lygreo) (X5 ¢)>

2= o)+ | (Tl (X9), T s ) X2))
0
(0, (E(DM (5,1, ) (Lo (XE), Z) )|, _yes ) | ds
= i+ [ (Vb6 AR, Vs, L) (XE))

(4.74) + (07 (E(DLb(Q)(s,y, N Lo ) (XE), Z >) |y:X5£,¢)} ds.
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Owing to (4.73), (4.74) and the uniqueness of solutions of the ODE, we conclude that
D XL + (0) = Voxg X0, t € [0,7].

This implies Dy B S Xt = = V(x0) XF? due to g(T) = 0. The proof is now complete. [

Next, we intend to apply Proposition 4.9 with concrete choices of g = (¢, g(2)). Without
of lost generality, we consider a special case of (4.67) with b (¢, 2,7y) = Az + By, where A
and B are two matrices of order m x m and m X [, respectively. That is,

(4.75) {de” = (AX{" + BX{")at,

dxX? = b (t, X,, Lx,)dt + o(t)dBH.

For the equation (4.75), we impose additional conditions on b?) and o which are similar to

(A2) and (A3).
(C2) There exists a constant K > 0 such that
(1) for aly tv s € [O7T]7 x,Y,%1,%2 € Rm+l7 MV € QQ(RWH_Z)’

IVO@ (-, ) () = Vb (s, -, v) ()| + [DPOP(t, 2, ) (1) (1) — DPOP (s, 9, ) (v) (22)]
<Kt = s + |z =yl + |21 = 2 + Wa(u,v)),

where o € (H —1/2,1] and 5o, 7 € (1 — 1/(2H), 1].
(i) o~! is Holder continuous of order &y € (H — 1/2,1]:
o (t) — o~ (s)|| < K|t — s|, t,se]0,T].
(C3) The derivatives

0DV (2, ) (1) ()) (1), V(DR -, -) (1) () (@),
DHD™ ) (¢, 2, ) ()W) (k) (2), V(DR (E 2, ) (1) ())(y)

exist and are bounded continuous in the corresponding arguments (¢, z, u, y) or (¢, x, 1, y, 2).
We denote the bounded constants by a common one K > 0.

For any s¢ € [0,7), let

s s —so)(T —s s . (T—s)A*
(4.76) U = / ( O%g ) (T4 g poT-94 g > p()xm, t € (50, 7],
S0

where p € C([0,T1]) satisfies p(t) > 0 for any ¢ € (0,7] and I,,,x,, is the identity matrix on
R™ x R™, and set for ¢t € [0, 7],
¢
(4.77) g(l)(t) — et~ MSO)AV Xf/f;g (1)—1-/ e(t’S)ABg(Q)(s)ds
tAsg
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T—t
@) (t) = v Xﬂe,@(?)
g (1) Tt Asg ¥ X0 ins
t—tA T—1 «
_ ( ;02)( )B*e(T—t)A (U;o)—1e(T—so)AV¢(XO)X;LA5£,(1)
t—tA T—1 . T p_
(4.78) — ( ;02)( )B*e(T—t)A (U;o)—l/ e :0 e(T_S)ABV¢(XO)Xﬁ)s’¢’(2)ds.
50

Then our main result in the current part can be stated in the following theorem.

Theorem 4.10. Assume that (C1), (C2) and (C3) hold. Then for any u € Po(R™)
and f € By(R™), Prf is L-differentiable at y such that

DEPrf) () =E(f(X§‘~) / <K;1<RHh¢><t>,dm>), b LR 5 R™ ).

where the H-valued random variable h? belongs to Domd and satisfies for every t € [0,T],

(Rih®)(t) = / o1(5) [Vyb (s, -, L) (X)
T (B (s, g, ) (L) (XE), Vi X |y — (92)'(5)] dis

and g = (gV, g?) is given by (4.77) and (4.78) for so = 0 and (Vex X"V, Vixo X))
replacing (V¢<X0)X.”5"”’(l), V¢(XO)X.“€’¢’(2)).

Proof. Observe first that by (4.76), we can see that U;° is invertible with [[(U;°) || < 1/p(¢)
for every t € (so,T], and then g™ (¢) and g®(t) given respectively by (4.77) and (4.78) are
well-defined. Since Vb)) = (A, B), we have that g™V (t) satisfies (4.69). Owing to (4.78), it
is readily checked that ¢®(T) = 0 and (4.70) holds. Besides, by (4.77) and (4.78) again, we
have

T
g(l)(T) _ e(T—so)Av(b(Xo)XéLOs,qb:(l) +/ e(T—s)ABg(2)(S)dS

S0

T
T—s
= o0y, Xl Wy / eI BTy XU s
S0 - 20

T
§— 38 (T_S) -5 * —s)A* — —s 51
_ /s ( 07)12 e(T )ABB e(T )A dS(UYSwO) 1e(T O)Avtb(Xo)Xf:O 5(1)

0

T(S_SO)(T_S) —s * —5)A* S0\ — T T—s —s 2
_ / T e(T )ABB e(T VA dS(UTO) 1 / - ” e(T )ABV¢>(X0)X50 J6o( )dS
S0 S0

=0,

where the last equality is due to the definition of Uj°.
For any ¢ € [0,1] and s € [0,7T), let

_ t
B /t 07 (8) [ Vatb® (s, Ly (XL)

NS
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(4.79) o (B(DR (5,1, ) (Lo (XE), Vo X)) |, s = (92)'(5)] ds,

where ¢ and ¢ are defined by (4.77) and (4.78), respectively. Noting that the right-
1

hand side of (4.79) belongs to I£+2(L2([O,T],Rl)) due to (C1) and (C2), there exists

an H-valued random variable h%? such that Ryh%? = h$?. Under (C1) and (C2), the

adaptation of our calculations in Lemma 4.8 to the present degenerate case are straight-

forward. Then resorting to the same techniques as in (4.35) and [17, Theorem 3.2], we
obtain that K_l(Rth ?) = Kjhs? e L2([0,T] x Q,R!) (which implies that 6(h5?) =

Sw(K5he?) = [TUKG (Rihsf)(t), dW,)), and [ (E6%( hw))%dT < 00 as well as E62(h?) <

50

CrxrR, HH¢H 1o Furthermore with the help of (C3) and by a similar analysis of (4.45) we
derive that
E|6(h5?) — 6(h®
lim E|6(h%?) — §(h®)] =0 and lim sup 10(h=%) = 6(A7)] _ 0.

0+ 6120 € (0,1 10llzz

Therefore, the assertions follow from Proposition 4.9. ]

Remark 4.5. Similar to Remark 4.4(ii), we can obtain that there exist two positive constants
(T, K,K,H),i=1,2 such that

IDH(Prf) ()| < oT, K, K, H) [(Prf?)(u) — (Prf(u)?)?, | € BER™),
HgX; - gX%HV&r S C(T7 K, [?, H)Wz(ﬂ, l/), M,V c QQ(RmJﬂ),

where

- _ _ 11 1
(T K. K H):=o(T, KK H) + (T K, K H) (TH WON THp(T))

with ¢(T, K, K, H)=0 (%) when 7" — 0. If the following Kalman rank condition
Rank[B, AB,--- ,A*B] =

holds for some integer number k € [0, m — 1], then (4.76) is satisfied with p(t) = %ﬁfm

for two positive constants Cj,i = 1,2 (see, e.g., [42, Theorem 4.2]), which implies that
T, K,K,H) = O (zotemr) as T — 0.
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