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Abstract

We introduce a class of Markov chains that includes models of stochastic approximation by averag-
ing and non-averaging. Using a martingale approximation method, we establish various deviation
inequalities for separately Lipschitz functions of such a chain, with different moment conditions on
some dominating random variables of martingale differences. Finally, we apply these inequalities to
stochastic approximation by averaging and empirical risk minimisation.
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1. Introduction

Markov chains, or iterated random functions, are of fundamental importance to model dependent
phenomena. A nice reference on this topic is [10]. Probability inequalities for dependent variables were
developed in [13], and more recently in [15, 17] as well as in [25, 26, 6, 7, 11, 12]. Most of these papers
involve such inequalities for Markov chains. Recently, [8] provided such inequalities for contractive
Markov chains thanks to a martingale based technique.

In these papers, only time homogeneous contractive Markov chains are considered. However, in
many practical situations, such as stochastic approximation algorithms [20] and unit roots [21], the
contraction coefficients are time-varying, and will tend either to 0 or to 1 as n — oco. In this paper,
our objective is to provide results for such non-homogeneous Markov chains. Our framework is a large
class of non-homogeneous models introduced in Section 1.2. Practical examples of chains fitting such
conditions are considered in Section 1.3.

Using the martingale approximation method developed in [8], we establish various deviation in-
equalities for separately Lipschitz functions of such chains in Section 2. Our inequalities hold under
various moment conditions on some dominating random variables of the martingale differences. Sec-
tion 3 is dedicated to various classes of LP-norm concentration inequalities, such as Bernstein type
inequalities, semi-exponential bound, Fuk-Nagaev inequalities, as well as von Bahr-Esseen, McDiarmid
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and Hoeffding type bounds. Section 4 is devoted to moment inequalities: Marcinkiewicz-Zygmund
and von Bahr-Esseen type bounds. Finally, in Section 5 we apply these inequalities to the stochastic
approximation by averaging in Subsection 5.1 and to empirical risk minimisation (ERM) in Subsection
5.2.

1.1. Notations

In the paper, we adopt the convention that each x € R? is a column vector. The entries of z will
be denoted by (M), ..., 2@ The transpose of 2 will be denoted by z”, thus 2T = (;1:(1), . ,x(d)). The
set of di x dy real-valued matrices will be denoted by R4 %% and I; will denote the identity matrix
in R4, Let | - || denote a norm on R?. In most cases, we will use LP norms. In this case, we will
explicitely state that || - || = || - ||, where
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Let (92, A,P) be a probability space. All the random variables in the paper are defined over
(©, A,P). When V is a nonnegative real-valued random variable, we will let ||V ||~ denote its essential
supremum (note that there will be no ambiguity with the above). Finally, (X,d) and (),0) are two
complete separable metric spaces. Our non-homogeneous Markov chains will take values in X

1.2. A class of iterated random functions

Let (gi)i>1 be a sequence of independent copies of a Y-valued random variable €. Let X; be a
X-valued random variable independent of (&;);>2. We consider the Markov chain (X;);>1 such that

X, = F,(Xn-1,en), foranyn>2, (1.1)
where F), : X x Y — X satisfies that there exists a positive number ng such that for any n > ny,
E[d(Fy(z,e1), Fa(2',€1))] < prd(z, 2') (1.2)

for some p,, € [0,1), and
d(Fu(@,y), Fn(@,y) < md(y,y') + &n (1.3)

for some 7, > 0, &, > 0. The case &, = 0 corresponds to functions F;, that are Lipschitz with respect
to €5, while the case 7,, = 0 corresponds to bounded chains. Note that when 7,, = 0, the metric ¢ is
not involved in the properties of the chain.

The case where F,, = F, p, = p, 7, = 7 and &, = 0 for two constants p and 7 has been studied by
Dedecker and Fan [8]. See also Dedecker, Doukhan and Fan [9] who weakened the condition in (1.3).
In these papers, the authors have established very precise inequalities for Lipschitz functionals of
the chain, by assuming various moment conditions. However, the conditions F,, = F and p, = p
are restrictive. They are not satisfied in many extremely useful models. For instance, the recursive



algorithm of stochastic approximation in Polyak and Juditsky [20] returns a chain for which the
conditions (1.1)—(1.3) are satisfied with F,(z,y) = (Ig — myA)x + 7B — 1,y and p, = 1 — ¢ 7, with
Tn — 0, where A € R%*4 is a positive-definite matrix, z,y, B € R? and ¢, 7, > 0. A special case of
interest corresponds to p, = 1—c;/n® and 7, = co/n® for three positive constants ¢, ca and a € (0,1).
A second class of frequently used models which do not satisfy the condition p, = p is that of time
series auto-regressions with a unit root, see Phillips and Magdalinos [23]. In the model of Phillips and
Magdalinos [23], the conditions (1.1)—(1.3) are satisfied with p, = 1 — ¢;/n® and 7,, = ca. See also
Phillips [21, 22] for the case p, = e~“/" and 7, = co.

1.3. Examples
In this subsection, we give a non exhaustive list of models satisfying the conditions (1.1)—(1.3).

Example 1. In the case where X is a separable Banach space with norm || - || x, and d(z,2') =
|z — a'|| x, let us consider the following functional auto-regressive model
Xn = f(Xn—l) + g(gn) ’ (14)

where f: X = X and g : )Y — X are such that

1f(z) = f(@")|x < plle—2'|x and  lg(y) — g(y)llx < d(y,v)

for some constant p € [0,1). In this model, the conditions (1.1)—(1.3) are satisfied with

Fu(z,y) = f(x) +9(y), pn=p, Tn=1 and & =0 (1.5)

for any n > 1. This model is a typical example considered in Dedecker and Fan [8]. We refer to the
papers by Diaconis and Freedman [10] and Alquier et al. [1] for many other interesting examples.
Example 2. Consider the following auto-regression with a unit root model (see Phillips [21, 22]
or Phillips and Magdalinos [23]): for any n > 2,
1

X, = T ome Xn-1+én or (1.6)

X, = (1- n%)X”‘l Ten (1.7)

where X,,,e, € R, € (0,1) and c¢ is a positive constant. Let d(z,2') = §(x,2') = | — 2/|. In this
model, the conditions (1.1)—(1.3) are satisfied with

pn=1—— 7,=1 and & =0
n

for any n large enough. Moreover, if ¢ € (0, 1), the conditions (1.1)—(1.3) are satisfied for any n > 2.
Example 3. Consider the following generalized linear problem. Set X =) = R? and let d and &

be the LP-norm on R, that is d(z,2') = §(z,2') = ||z — 2'||, for p € [1,00]. Assume that (4;);>1 is a

sequence of positive-definite i.i.d. random matrices such that EA; = A € R¥*4, )\ffl)i)n(Al) > A almost

surely for some positive constant A\ and H/\%X(Al)uoo < o0, and that (B;);>1 is a sequence of i.i.d.

random vectors such that EB; = B € R%. Here, for any given i, A; and B; may not be independent.
These sequences are observed. We want to find «*, which is solution of the following equation:

Az = B. (1.8)



To obtain the sequence of estimates (X,,)n>1 of the solution z*, the following recursive algorithm will
be applied: for any n > 2,

XTL = anl - %Yn’ Yn - Anlenfl - anl + Mns (19)
_ 1<
Xn = > X, (1.10)
n
=1

where v € (0,00) and « € [0,1) are constants, and X; € R? can be an arbitrary deterministic point
or a random point independent of (Ay),>1 and (By)p>1. Here A,_1X,,_1 — By_1 is the prediction
residual, and 7, € R? is a random disturbance independent of (An)n>1 and (Bp)n>1 (the distinction
between B; and n); is kept because in applications, the user might add a random perturbation 7; to
the noise of the gradient B — B;).

In the special case A; = A and B; = B for any 4, the generalized linear problem becomes the
usual linear problem, see Polyak and Juditsky [20]. More generally, when B; can be random and
A; = A, this example matches our framework. Indeed, put e; = n; — B;_1, the conditions (1.1)—(1.3)
are satisfied with

Ful,y) = Fu(a,y) = (Ig — —=A)x —

na

A (A
lay’ _7 mlz( )’ Tn:la and é‘nEO
n n n

for any n > 2.

In the general case, A; and B; are random, so we will enrich the variable ¢; by ¢; = (4;—1,1n;—Bi—1).
The conditions might not be satisfied in this case. However, it is quite common to seek for the best
approximation of z* in the set C = {z : ||z|]2 < D}, that is 2* € C and

|Az* — Bl|s = min | Az — B|». (1.11)
zeC

In this case, it is natural to add a projection step on C. We then focus on p = 2. Let II¢ : R¢ — C
denote the orthogonal projection on C. Note that Il is such that |[Ilcz — Heyll2 < ||z — yl|2 for any
z,y € R? and Tz = 2 for any 2 € C. Then, for any n > 2, take

Xn = HC |:an1 - %Yn]a Yn = Anlenfl - anl + Mn, (112)
_ 1 &
X, = ~Y X, (1.13)
n
=1

The conditions (1.1)—(1.3) are satisfied, for y = (M, u), with

(2)
A 2D Amax (A1) || oo
Fo(z,y) =1l [(Id - %M)Hc[l’] - lau} , pn=1-— La, Tn = la and &, = il aa( ol
n n n n n

for any n > 3 and « € (0,1). For the case o = 0, the conditions (1.1)—(1.3) are also satisfied, but with
an additional assumption that v < 1/\.



Example 4. For the usual linear problem (cf. equation (1.8)), another recursive algorithm may
be applied: for any n > 2,

1
Xn = Xn,1 — ’}/Yn, Yn = Aanl — B+ niaé\n, (114)
_ 1 &
X, = - X, (1.15)
n
i=1

where a € (0,1), v € (0,00) is a constant such that ’y)\gfi)n(A) € (0,1), and X; € R can be an
arbitrary deterministic point or a random point independent of (&,,),>2. Let d and ¢ be the LP-norm

on RY. In this recursive algorithm, the conditions (1.1)—(1.3) are satisfied with
v v
Fn(x7y) = (Id - WA)x +PYB - ﬁya Pn = 1- ’YAgil)n(A)? Tn = E and ‘Sn =0

for any n > 2.
Example 5. A third recursive algorithm for the usual linear problem is given by: for any n > 2,

X, = Xn,l—nlayn+sn, Y, = AX,_1 - B, (1.16)
_ 1 &
X, = > X, (1.17)
n
=1

where o € (0,1), v € (0,00) are constants such that 7)‘1(51)11(’4> € (0,1), and X; € R? can be an
arbitrary deterministic point or a random point independent of (&,,),>2. Let d and ¢ be the LP-norm
on RY. In this recursive algorithm, the conditions (1.1)—(1.3) are satisfied with

AP (A
Fn(w,y)Z(Id—% )éH%B—’yy, pn=1—7’;‘1‘3(), =7 and £ =0

for any n > 2.

Example 6. We extend the previous examples to optimization of non-linear functions. We still
consider X = Y = R? and focus on the L? norm in this example. In machine learning, we need
to minimize a function involving a large number of differentiable terms L(x) = Zfi 1 Zi(x) on the set
C ={z: ||z]]2 < D}. A popular strategy to this end is to use the projected stochastic gradient descent
(SGD): for any n > 2,

Xo=Te [Xnot = LV, L(Xam1)] |

where a € (0,1], I : R? — C denote the orthogonal projection on C, .J,, is drawn uniformly among
all the subsets of {1,..., N} with cardinality M and

A 1
Vo L) =57 > Vei(x).
1€Jn

Note that EW 7, L(x)] = VL(x) for any x. More generally, the stochastic gradient Langevin descent
(SGLD) is given by

Xo =Te [Xnot = 5V, L(Xnt) =~

5



for some i.i.d. sequence 7, of random perturbations added by the user. For y = (J,u), define

7 & v
Fo(z,y) =1l¢ [m - EVJL(.CL') — ol

If we define ¢; = (J;, n;), then this example fits (1.1). It is easy to see that
7 ¢ 7 e
1Fa(e.) = Fule )l < e 5950, L) o/ — L9, L)

~ ~ 2 ~ ~
= llz = oI} + || 5V, L) = Vs, L)) - 22— )T (5V, L(2) = 2V, L))

Common assumptions are that the ¢;’s are m-strongly convex, m > 0, which gives
(2= )T (Vo Ll@) = Vo, L(') ) = mlje - o'}
and that their gradients are ¢-Lipschitz, that is,
IV, L(w) = Vg, L") |3 < €|z — 2|3

We then obtain

2mry  0%+?
1Fule,y) - Fule, )3 < (1— O e -

ne n2a
my\2 (% —m?)y?
[0 -y Co g

and thus the condition (1.2) is satisfied with

Note that p, — 1 ~ m~vy/n®. So for any n large enough, we have for example

The condition also holds in the case o = 0, but with an additional assumption that 2my—¢242 € (0,1),
that can always be achieved with an adequate choice of v. Finally, let us assume that |V¢;(z)||2 < B
for any x € C and some B > 0. Condition (1.3) is satisfied with

Y 2By

Tn:n—a and &, = a

for any n large enough.

Example 7. Our final example illustrates that non-homogeneity can appear even in the context of
a time homogeneous chain, if it is only observed at non evenly spaced dates ¢, %2, .... Assume (¢;);>1
is an increasing sequence, put ky = t; and k; =t; — t;—1 > 0 for any ¢ > 1. Consider F,, = F', p, = p,
Tn =7, & = 0 and (X;);>1 the corresponding chain in (1.1)—(1.3). Assume that only the subsequence



(Xt,)i>1 is observed. Let eEZ)

n>1and y = (y;)i>1,

= (¢j4)j>1 be an i.i.d. copy of the sequence (g;);>1, and define, for any

E(x,y) = F(F(... F(F(2,91),Y2)s -« - s Yk —1)» Yk
(2)

(F,, only depends on the k,, first terms of the sequence y). It is clear that Z, = Féz)(Zn,l,sn )
admits the same distribution as Xy, . Then with the notations above, pq(zz) = pFn. and this quantity
tends to 0 as n — oo if k;, — 0o, which corresponds to a situation where sampling times become rarer
and rarer. The expression of TéZ) is not clear in general. Let us now restrict our attention to the
additive model in (1.4) (but note that even if (1.4) holds for (X;);>1, in general a similar expression

does not hold for (Z;);>1). In this case,

FD @,y) = FO @y <730 0" 6,0, (19

=1

so, for example with the sup metric on YN+, given by sup;en, 0(¥i,y,), we obtain T»,(LZ) = T(tzn) < 1Z—p.

2. Lipschitz functions of random vectors X;,..., X,

We remind that || - || is a norm on R%. Let f : X™ + R be a separately Lipschitz function, that is
1f (21,22, ) = f(21, 2, 2| < dla, 7)) + (w2, 25) + -+ + d(@n, 27,). (2.1)
Let Px, and P. be the distributions of X; and ¢, respectively. Assume that || - || satisfies

| [r@rs )] < [In@les ) and || [#epao)] < [ineied) @2

for any measurable function h : X" s R9. Clearly, if || - || = || - ||, p € [1,00], then the condition (2.2)
is satisfied.
Let
Sp = f(X1,..., X)) —E[f(X1,...,Xn)]. (2.3)

Denote (Fi)r>o0 the natural filtration of the chain (X)x>1, that is Fop = {0, Q} and for any k € N*,
Fir = o(X1,Xs,...,Xk). For any k € [0,n], define

and for any k € [1,n],
My = ge(X1, -, Xi) = ge—1(X1, ..., Xp1) - (2.5)

Then (My, Fi)i1<k<n is a finite sequence of martingale differences. For any k € [1,n — 1], let then
S =My + Mz + -+ + My,

and note that S, is already introduced in (2.3) and satisfies S,, = M; + My + --- + M,,. Then
(Sk, Fk)1<k<n is a martingale.

The following proposition gives some interesting properties of the functions (gx)1<x<n and of the
martingale differences (Mjy, Fi)i1<k<n. In this paper, we focus on the case ng = 2, where ng is given
by the conditions (1.2) and (1.3).



Lemma 2.1. For any k € [1,n] and py, in [0,1), let
Kin =1+ prg1 + prg1pPrs2 + -+ Prt1Pret2 Pns kK€ [L,n—1] and K,, = 1.

Let (X;)i>1 be a Markov chain satisfying (1.1) for some functions (Fy,)n>1 satisfying (1.2). We also
assume that || - || satisfies (2.2). Let g and My, be defined by (2.4) and (2.5), respectively.

1. The function gx is separately Lipschitz and such that
lgr(@1, 22, .. 2p) — gr(2h, @, @) || < d(z, @) + -+ d(2g—1, Th—y) + K nd(@p, 27,).

2. Let Gx, and Hy, . be functions defined by

G, (x) = / d(z, 2Py, (da)

and

Hiolo,) = [ d(Fy(a, ), o, DPdy)), b€ (2],
respectively. Then, the martingale difference My, satisfies that
M| < K1 nGx, (X1)
and for any k € [2,n],
[ M|l < KgnHpe(Xg—1,¢k) -
3. Assume moreover that F, satisfies (1.3), and let G be the function defined by

Goy) = / 5y, B-(dy)

Then Hy((z,y) < 1G:(y), and consequently, for any k € [2,n],
HMk;” < Kk,n[TkGE(sk) + fk] :

4. Assume moreover that there exist three constants o € [0,1), p € (0,1) and n € (0,00) such that
for anyn > 2,
pn <1—p/n® and max{&,, T} < n/n”. (2.6)
Then K1, = O(1) and (Kgn[me + &k))k>1 s uniformly bounded for all k and n.
5. Assume moreover that there exist three constants a € (0,1), p € (0,1) and n € (0,00) such that
for anyn > 2,
pn <1—p/n® and max{&,,m} <n. (2.7)
Then K1, = O(1) and Ky ,[1 + &) = O(k®) as k — oo.
6. Assume moreover that there exist three constants o € (0,1], p € (0,1) and n € (0,00) such that
for anyn > 2,
pn <p and max{&,, T} < n/n". (2.8)

Then K1, = O(1) and Ky, 7, = O(k™%) as k — oc.



Remark 2.1. Let us comment on the point 4 of Lemma 2.1. If &, = a =0, then Ky, <> 1" k(l —
p)t < ; and 1, <n for any k € [1,n] and n. Thus (KinTg)k>1 s uniformly bounded for all k and n,
which has been proved by Proposition 2.1 of Dedecker and Fan [8].

Remark 2.2. Let us return to the examples in Subsection 1.3. It is easy to see that Examples 1 and
7 satisfy the condition (2.6) with « = 0. Examples 2 and 5 satisfy the condition (2.7). Examples 3
and 6 satisfy the condition (2.6). Example 4 satisfies the condition (2.8).

Proof. The first point will be proved by recurrence in the backward sense. The result is obvious for

k = n, since g, = f. Assume that it is true at step k € [2,n], and let us prove it at step k — 1. By
definition

Ie-1(X1, ..o, Xi—1) = E[gr (X1, ..o, Xpp) [ Fra] = /gk(Xl,---,Xk17Fk(Xk17y))Pe(dy)-
By assumption (2.2), it follows that
gr—1(z1,22,. . 2p—1) = gr—1 (2, 5, -, )y |
= H /9k<3717332’--~7xk17Fk($k1:3/)) _gk(x,lax/%"'71’2717Fk<x2717y))Pé(dy>H
< [ lonCoras e soit o) = gu(ahoth, oy, Bl 1,0l

<d(z1,7)) + -+ d(zp_1,2)_1) + Kk,n/d(Fk(xk—lvy)y Fi(x)_1,9))P:(dy)

<d(xy,2h) 4 -+ d(zr—2, 7o) + (1 + prKppn)d(zr—1, 7))
< d(ﬂfl, 33/1) +oot d(‘rk—Qa x?{,‘—Q) + Kk—l,’n«d(l‘k—lv ‘r;c—l)ﬂ (29)

which completes the proof of the point 1.
Let us give a proof for the point 2. First note that

= 060 = [ ar(a), (@0)]| < Kuw [ X1, 0)Bx (o) = KrnGy(K0). (2.10)
In the same way, for any k € [2,n],
Ml = [|ge(X1, -+, Xi) — E[gr(X1, -+ Xi)| Frei]|]

/Hgk X1, F( X1, 60) — gi(X1, -+ Fi(X—1,9))||P=(dy)
< Kk:,n/d(Fk(Xk—la5k)>Fk(Xk—1ay))P€(dy) = K Hy o (Xp—1,€1) - (2.11)

The point 3 is clear, since if (1.3) is true, then

Hye(,y) = /d(Fk(w,y),Fk(ﬂf,y’))JP’e(dy') < /Tk5(y,y’)ﬂ”s(dy') + & = TkGe(y) + &



Consequently, for any k € [2,n],
[ My]| < Ky n[meGe(er) + k).

Next we give a proof for the point 4. It is easy to see that

(Pt pest) = Mppga+-o-+1Inppgy
k+1 k+l .
< —p Z i—a:_pnl—a Z (3)—04,”/—1
o . . n
i=k+1 i=k+1
p 11—« k+l 11—« k+1 -«
< 7 i _
- 1—an <( n ) ( n ) )
P 1o 1 I—=1 n®
<
= 714" 1-a n (k+ 1)~
p -1
= — . 2.12
(1—a)?(k+1)> (2.12)
Thus, we deduce that
K, < nnz_kex {— P (-1 }
btk = e TP a2 et e
k 00
n P -1 P -1
< _ _
- ka(é“p{ TG PR T ar e )
Ui
= — (L +1I
ka( 1+ I2)

For I, we have the following estimation

eXp{(l—pa k+1 }ZeXp{ 1—a)27l<k1_a}
1 l—«a
k:eXp{(l _pa)2 (k‘—l—ll)a}/o eXp{z— Mz}dw 1
1 291 — « ke
= kexp{(l _PQ)Q (k—{—l)o‘} [()]{210‘) <1 —eXp{ - M}>

2

< kaexp{(l _pa)z}Qo‘(lp—a) ‘

I

IN

IN

It is obvious that I is bounded for a € [0,1). Hence (K} ,7)k>1 is uniformly bounded for all k£ and
n and K;, = O(1).
For the point 5, from the proof of the point 4, it is easy to see that K, = O(1) and Ky, 7, =

O(k“), k — .
For the point 6, it is easy to see that Ky, <> = Ok pl < 1— and 7, < n/k® for all k € [1,n]. Thus
Ki, =0(1) and Ky 7, = O(1/k*) as k — oo. The proof of the lemma is now complete. O

10



3. Deviation inequalities for S,, with LP-norm

Let n > 2. In this section, we are interested in the concentration properties of S,, under the LP-
norm || - ||, where (X;);>1 is a Markov chain satisfying (1.1) for some functions (F},),>1 satisfying
(1.2) and (1.3). Clearly, it holds for any p € [1, 00},

N p
ol = (D 12D1) " < (D lolz) ™ = a el e. (3.1)
=1 =1

When 2 = z(I for all i € [1, d], the inequality is actually an equality. Set Son = Sp— M. By (3.1),
we have for any p € [1,00] and any = > 0,

P(ISull, > a/72) < B(I00l, > @/Pa/2) +B(11S20lly > d'/P2)

<P(IMille 2 2/2) +B([1S20ll 2 2/2)

d d
< Z (1M = 2/2) + ZP(!S&% > 1/2)
< d max P <\M1 ]>:z:/2> +d max P(\smy >x/2> (3.2)
Using the inequality
(M| < | Myl < Ki2Gx, (X1) (3.3)

(cf. the point 2 of Lemma 2.1), we have for any p € [1, 00| and any x > 0,

X
P(Isa 2 3 )
2}(1”) +d max, 1530 2

= I1(2) + I(x). (3.4)

IP(HSan > dl/px) < dIP(GXl (X1) >

Hence, to dominate P(||S,|, > d'/ Pz), we only need to establish deviation inequalities for I;(x) and
I(x). The term I;(x) represents the direct influence of the initial distribution of the chain, and it
will be most of the time negligible. For instance, when X; = x; is a deterministic point, we have
Gx,(X1) =0 and [;(x) = 0 for any x > 0. The main difficulty is to give an upper bound for I(z),
which is the purpose of the remaining of this section. By the point 3 of Lemma 2.1, the martingale
differences (M},)xea,n satisfy for all i € [1,d],

M| < | Myllp < KplriGe(er) + &, k€ [2,n]. (3.5)

Notice that S(Z => s M( & Slnce that G.(gx), k € [2,n], are i.i.d. random variables, (3.5) plays an

important role for estimating IP(|S | > 2/2) and thus Ir(z). Assuming various moment conditions
on G.(g), we can obtain different upper bounds for Is(x).

In the sequel, denote by ¢, 4 and c;, 4 Positive constants, which may depend on the constants p, d,
a, p and 1 but do not depend on z and n.
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3.1. Bernstein type bound

In this subsection, we are interested in establishing a deviation inequality for S,, under the Bernstein
condition. We refer to de la Pena [7] for related inequalities: in this paper similar tight Bernstein type
inequalities for martingales are proved. Using Lemma 2.1, we get the following proposition.

Proposition 3.1. Let p € [1,00]. Assume that there exist two positive constants Hy and Ay such that

for any integer k > 2,
k!

E[(Ge(e))"] < 5 HY 7 Ar (3.6)

Denote

n

V2= (14+4)Y @Kin(me+&))°  and 6, = max{2Ky (e Hy + &),k = 2,...,n}.
k=2

Then for any x > 0,

V2(1+ /14 20, /V,2) + pz/2

7/2)2
< Il(:z:)+2dexp{—2‘§2/f)5w}. (3.8)

P(ISully > d/Pe) < () +2dexp {— (@/2)" } (3.7

Assume moreover that there exits a positive constant ¢ such that for any x > 0,
P(Gx, (X1) > z) < clec®, (3.9)
Then inequality (3.8) implies that:

[i] If (2.6) is satisfied, then for any x > 0,
fasup % P (|Sullp > n2) < —cpa (2Liasty + 221 (0cnery)- (3.10)
[ii] If (2.7) is satisfied with « € (0,1/2), then for any x > 0,
hrILILSo%p 711%204 InP(||Syllp > nz) < —cpaz®. (3.11)
[iii] If (2.8) is satisfied, then for any x > 0,

1
limsup —InP (||Sy|lp > nz) < —cpqz. (3.12)
n—oo N

If either (2.6) or (2.8) holds, then from (3.10) and (3.12), it is easy to see that S, admits the
classical large deviation convergence rate e "¢, where ¢, > 0. Moreover, as x > 22 for 0 < z < 1, the
large deviation convergence rate in (3.12) is better than that in (3.10). Under the condition (2.7), the
large deviation convergence rate for S, becomes much worse, as shown by (3.11).

12



As mentioned above, when X; = x; a.s. is deterministic, it follows that Gx, (X1) = 0 a.s., and so
the condition (3.9) holds for any constant ¢ € (0, 1].

Since Ge(y) < d(y,y0) + E[0(yo,¢)], it follows that E[(Gs(e))k} < QkE[(é(s,yo))k]. Hence, the
following condition

k! _
E[(5(e,50))"] < §A(yo)k *B(yo), k>2, (3.13)
implies the condition (3.6) with H; = 2A(yo) and Ay = 4B(yo).
In Examples 3, 4 and 5, when X =Y = R%, we can take f(z1,29,...,2n) = >0z, |- | =1 - I
and d(z,2’) = 6(x,2’) = ||x — 2'||p- Then the condition (3.6) is satisfied, provided that
. |
Ele®* < %H{HAL ie(l,d and k> 2. (3.14)

To show this, by (3.13) with yo = 0, we only need to prove that

Ele|* < k—(H dPtD/Pyk=2 A 2D/ > 9, (3.15)

Iy
Clearly, it holds
d ) k d A
folf < (@73 160)) < dbrat YO, k22
=1 i=1
Hence, by (3.14), we have

E k dk/pdk 1 E () k’ H d( p+1)/p\k— 2A d2(p+l)/ k>9
lelly < ; £ =5 ( 1 ) > 2,
which gives (3.15).
Proof. Notice that 5’ =Y oM Z is a sum of martingale differences. By (3.5), we have for any
k€ [2,n],
MOV < K mGe(en) + &l < 27 K[ (Celen) + €] < PR [ (Gelen) + )

and so for any ¢t > 0,

[e.e]

)21+ e 3 CHu (B (0] + ).

j=
Using the condition (3.6), we deduce that for any k € [2,n] and any ¢ € [0,4,!),

(i) S Y I ;
E[eth] < 1—1—2 (2K )’ [gJQH{ 2A1—|—§4

, N 2 .
:1+2§)%M%mLﬁﬂ2m+ﬂg]
=2 ‘

< 1+ t2(2K,m Ztﬂ 2 (2K o) 2 (A1 + 1)[meHy + 172 (10 + )
j=2

12(Ay + 1) (2K (7 + &)
2(1 —t0,) '

IN
—_

(3.16)
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Applying the inequality 1 +u < e* for u > 0 to (3.16), we deduce that for any k € [2,n] and any
t€[0,0,1),

(3.17)

E [ | i) < exp {tm + A1) (2K (1 + &) } |

2(1 — t4,)

By the tower property of conditional expectation and the last inequality, it is easy to see that for any
n > 2 and any t € [0,6, 1),

B [etSSL] - E[E (eS| Fuil] (3.18)

(i) (7)
= E[e"2n1E [ | F,q]]

s 2(1 4+ Ay) (2K (m + &)
< E[et , ]exp{ 2(1—t5n)
V2

(1)
Clearly, the same bound holds for E [eitSQ,"]. Returning to (3.4), by the exponential Markov inequal-
ity, we have for any x > 0 and any t € [0, 1),

) 1 @ _1
Iy(z) < dlrgfag(dlﬁl [exp {tSQm — 575:5)} +exp{ — S5, — §ta:}]
1 22
< 2 ——t — 5. 2
< exp{ 2x+2(1_t5n)} (3.20)
The last bound reaches its minimum at
2
t=t(x):= 2/ Va .
20n/V2+ 1+ /14 x6,/V2
Substituting ¢ = ¢(x) in (3.20), we obtain for any x > 0,
2 2
Ir(x) < 2dexpq — (2/2)
V2(1+ /14 x6,/V2) + 20,/2
(z/2)
< 2 —_——
- P { 2V2+ab, |7

where the last line follows by the inequality \/1+ x8,/V;2 < 1+ 26,/(2V,2). Applying the upper
bounds to (3.4), we obtain the inequalities (3.7) and (3.8).

Condition (3.9) implies that

Li(z) < de ! exp{ — 2;{? } (3.21)

)
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If the condition (2.6) is satisfied, then we have K, = O(1), V,2 = O(n) and 6, = O(1) as n — oo, by
the point 4 of Lemma 2.1. Applying (3.21) to (3.8), we deduce that for any = > 0,

/

d (nx)?
P (|S, |, > nz) < de~! —d 2d S U

This last inequalitiy implies (3.10).
If the condition (2.7) is satisfied, from the point 5 of Lemma 2.1, then we have K; , = O(1),

2 200 1+2c N2 & 1+2«
vz =0 Yk = o+ 3 (Bl — ooy
k=2 k=2
and 0, = O(n®) as n — oo. Applying (3.21) to (3.8), we deduce that for any a € (0,1/2) and any
z >0,

ol o,
P([[Snllp = na) < de™ exp § — ¢, gna ¢ + 2dexp § - cp.a(nt 2o + nan)

The last inequality implies (3.11).
If the condition (2.8) is satisfied, by the point 6 of Lemma 2.1, then we have K, = O(1),

no O(n!=2%) if0<a<1/2
VZ=0(1)) 32 =\ Ollon) ifa=1/2 (3.22)
k=1 o1 if1/2<a<1

and 6, = O(1) as n — oo. Applying (3.21) to (3.8), we deduce that for any = > 0,

c/

p,d(nx)2
epa(nt=2evinn+nx) [

P (||Sullp > nz) < dc! exp{ - ;’dnx} + 2d exp {—

The last line implies (3.12). This completes the proof of Proposition 3.1. O

3.2. Semi-exponential bound

If both Gx,(X1) and G¢(e) have semi-exponential moments, the following proposition holds. It
can be compared to the corresponding results in Borovkov [5] for partial sums of independent random
variables, Merlevede et al. [17] for partial sums of weakly dependent sequences, Lesigne and Volny
[15] and Fan et al. [12] for martingales.

Proposition 3.2. Let p € [1,00] and q € (0,1). Assume that there exists a positive constant Ay such
that

E[(Ge(e))Q exp {(G:(e))?}] < A;. (3.23)

Denote

Vn2 = 2e Z K,in (T,?Al + 5,3E[6‘G5(€)|q]> and 9, = max {Kkmrk, Kinéik=2,... ,n}.
k=2

15



If V,, > 1, then for any x > 0,

T 2
P (HSan > dl/p;];) < Il(a;) + 4dexp{ — Q(V,,LQ 4—((5)2)2453) } (3.24)

Assume moreover that there exits a positive constant ¢ such that for any x > 0,

P(Gx,(X1) > z) <c te o™ (3.25)
Then inequality (3.24) implies that:
[i] If (2.6) or (2.8) is satisfied, then for any x > 0,

1
limsup — InP (||Sy|lp, > nx) < —cp g2t (3.26)
n—oo N4

[ii] Assume that (2.7) is satisfied with « € (0,1/2). If 0 < a < %%g, then for any x > 0,

lim su
nane pa(i=a)

InP ([|Snllp = ne) < —cp gz,
If a = ;%g, then for any x > 0,

1
lim sup =0 InP ([|Syp][p > nx) < —cp7d(wq1{m21} + x21{0<x<1}).

n—oo

If2 g<oz<f then for any x > 0,

1
hmsup 5o P ([|Snl, > nx) < —cpart.

n—o0

If either (2.6) or (2.8) is satisfied, from (3.26), it is easy to see that the large deviation convergence
rate is the same as the classical one. On the contrary under the condition (2.7), this convergence rate
becomes worsen as « increases.

Proof. Notice that S /6n =3, ,gi) /0n is a sum of martingale differences. By (3.5) and the
condition (3.23), it is easy to see that for any k € [2,n],

‘ - ! - T) € q
E[(M/8,)2eM" /01" < 5 2R (K [rhGe (ex) + &) 2elKhon [mGe ()64 /0nl]
< 2(Kpudy PE [(mGe(e))® + €0)el O+
< Qe(Kk,n(s;l)?(T,fE [(G-(e))%el =) 4 GR[elCe( >|q]>
< 2€(Kk,n5;1)2<773141+§%E[6‘GE(€)|(}]>.

If V.6, > 1, using inequality (2.7) of Fan et al. [12], then we have for any ¢ > 0,

(4) t2
g > < — ) )
P (|S2,n/5n| > t) < 4exp{ 2(‘/112552 ) } (3.27)
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Substituting ¢ = x/(24,) in (3.27), we get for any z > 0,

P52 2) < de0 |~ 55 %3;”)}

From (3.4) and the last inequality, we obtain the desired inequality (3.24).
Condition (3.25) implies that

Ii(z) < dc™ ! exp { —c <2f?1,n)q}. (3.28)
If the condition (2.6) is satisfied, then by the point 4 of Lemma 2.1, we obtain Kj , = O(1), V;2 = O(n)
and 0, = O(1) as n — oco. Applying inequality (3.28) together with (3.24), we deduce that for any
z >0,

¢, 4(nz)? }

-1
P (|[Snllp = nz) < de exp{ N c;d(na?)q} * 4dexp{ B cpa(n + (nx)?-9)

From the last inequality, we get (3.26).

If the condition (2.7) is satisfied, then by the point 5 of Lemma 2.1, we have K;, = O(1),
V2 = O0(n'*2??) and 6, = O(n%) as n — co. Applying (3.28) to inequality (3.24), we deduce that for
any « € (0,1/2) and any = > 0,

c (nz)?
P (||Sullp, > nz) < dc! exp{ - cg)yd(mc)q} + 4dexp{ - pan?) }

Cp,d(n1+2a + (n$)27qnqa)

The last inequality implies the point [ii] of Proposition 3.2. Note that when 0 < o < ;%g, we have
n?~atae > plt2e while when % < a < 3, then p?7aHae < plt2e

If the condition (2.8) is satisfied, then by the point 6 of Lemma 2.1, we have K, = O(1), (3.22)
and 6, = O(1) as n — oco. Applying again inequalities (3.28) and (3.24), we deduce that for any = > 0,

¢, 4(n) 2 } ‘

P (|[S,ll, > < de ! —c 75+ 4d -
(ISnllp = na) < de EXP{ cp.a(ne) }+ eXp{ cpa(nt=2@Vinn + (nx)?-9)

Inequality (3.26) is an easy consequence of this last inequality. O

3.8. Fuk-Nagaev type bound

If the martingale differences (M;);>2 admit finite gth order moments (¢ > 2), then we have the
following Fuk-Nagaev type inequality (cf. Corollary 3" of Fuk [13] and Nagaev [19]).

Proposition 3.3. Let p € [1,00] and q € [2,00). Assume that there exist two positive constants A;
and Bi1(q) such that

E[(Ge(e)) ] € A1 and  E[(G:(¢))’] < Bilq). (3.29)
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Denote
VZ=2) K}, (7,3,41 + 5,3) and  Hy(q)=27") K], (T,ZBl(q) + é‘i{) :
k=2 k=2

Then for any x > 0,

H,(q)

x4

9 2
P(Hsnup > dl/pa:> < I(z) + 2q+1d(1 + 5)q + 2dexp {_2:,:} . (3.30)

(g +2)%e?V;?
Assume moreover that there exists a positive constant ¢ such that for any x > 0,
P(Gx,(X1) > z) <ca™?, (3.31)
then inequality (3.30) implies that:
[i] If (2.6) is satisfied, then for any x > 0,

C ,d
P(ISulp > na) < 24 L (3.32)
[ii] If (2.7) is satisfied with 0 < o < %, then for any x > 0,
Cpd 1
P([|Sullp > nz) < % i Tag (3.33)
[iii] If (2.8) is satisfied, then for any x > 0,
Cp.d 1 : 1
F . W, ZfO <oa< L
1
P(||Snllp > nz) < 2d. 20 ifa=1, (3.34)
x4 nd q
cpa 1 .
\ﬁ'ﬁ, ’Lfé<0(<1

Under the condition (2.6), then from (3.32), it is easy to see that the large deviation convergence
rate is the same as the classical one, which is of order n'=% as n — co. When the condition (2.7) is
satisfied, from (3.33), we find that the large deviation convergence rate becomes worse when « tends
to 1/2. Moreover, the large deviation convergence rate is slower than the classical one. Now, if the
condition (2.8) is satisfied, then the inequalities (3.34) imply that this convergence rate is much better
than the classical one.

Proof. By (3.5) and the condition (3.29), it follows that

n

SCEIMO N F ] < D EI(Kin(meGeler) + &) = 2070 ((Kenm) ELG(0)7] + K€1)

k=2 k=2 k=2

2003 kY (1Bi () + €F) = Halg),
k=2

IN
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Notice that H,,(2) = V,2. Using the Corollary 3’ in Fuk [13], we have for any = > 0,

2
)| > 479y < ga+1(1 4 2)7. n(@) I
P(IS)| > 2/2) < 2 (1 + q) LoD e | (3.35)

Applying the last inequality to (3.4), we get the first desired inequality.
The condition (3.31) implies that for any = > 0,

Lz) < cd(ﬂén)_q. (3.36)

If the condition (2.6) is satisfied, then from the point 4 of Lemma 2.1, we have K; , = O(1), V;2 = O(n)
and H,(q) = O(n) as n — oo. Applying (3.36) to (3.30), we get for any = > 0,

P(||Snllp > nz) < (na)” + (s + 2d exp {_Cp,d o
The inequality (3.32) follows from the last inequality.
If the condition (2.7) is satisfied, by the point 5 of Lemma 2.1, then we have K;, = O(1),
V.2 = O(n'*?*) and H,(q) = O(1) Y}, k™ = O(n'T*%) as n — co. Applying (3.36) to (3.30), we get

for any =z > 0,
14+aq 2
Cpd Cpan ,  (nx)
’ + 2de —C = .
e+ e +ow{ i

The inequality (3.33) follows from this last inequality. Note that if & < 1/2, then the third term in
the right hand side of the last inequality tends to 0 as n — oo.

If the condition (2.8) is satisfied, then by the point 6 of Lemma 2.1, we have K, = O(1), (3.22)
and

P((Snllp > nx) <

O(nl=), if 0 < a<1/q,
H,(q) =0(1) Zk:*aq =< O(lnn), ifa=1/q,
0o(1), ifl/g<a<1
as n — oo. Similarly, we prove that the inequality (3.30) implies (3.34). O

3.4. von Bahr-FEsseen type bound
If the dominating random variables Gx, (X1) and G.(¢) admit only a finite moment with order
q € [1,2], we have the following von Bahr-Esseen type deviation bound.

Proposition 3.4. Let p € [1,00| and q € [1,2]. Assume that there exists a positive constant Aj(q)
such that
E[(G:())"] < Ai(a)- (3.37)
Denote .
Va(q) = 207" [K%n(Té’Al(q) +&5) + 2271 K] (i Ai(e) + €] |-
k=3
Then for any x > 0,

P(||5n||p > dl/px) < Ii(z) + QQdeff). (3.38)

Assume moreover (3.31). Then inequality (3.38) implies that:
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[i] If (2.6) is satisfied, then (3.32) holds.
[ii] If (2.7) is satisfied with 0 < a <1 — L, then (3.33) holds.
[iii] If (2.8) is satisfied, then (3.34) holds.

Remark 3.1. The constant 2279 in V,,(q) can be replaced by the more precise constant é'q described
in Proposition 1.8 of Pinelis [24].

Proof. Notice that Sézzl =Y oM ,ii) is a sum of martingale differences. Using a refinement of the
von Bahr-Esseen inequality (cf. Proposition 1.8 of Pinelis [24]), we get for any ¢ € [1, 2],

E|SS)1¢ < EIMY | + 2270 S E|MY |
k=3

By (3.5) and (3.37), we deduce that for any ¢ € [1, 2],

EISYT < K§,E[(nGe(e) + &)1 +2270Y KL E[(mGe(e) + &)]

k=3
< 2 [KS,RE[(mGe(s))q +€8] + 2271y K{LE[(Ge(e) + €] ]
k=3
< 2 KL, () + )+ 2 QZK,Z () + €]
= V(). (3.39)
By Markov’s inequality, we get for any = > 0,
PS> 2/2) < 2‘17‘ 2|
2,’” — — xq
< QqVL(Q). (3.40)
x4

Applying the last inequality to (3.4), we get the desired inequality (3.38). The remaining of the proof
is similar to the proof of Proposition 3.3. g
Next, we consider the case where the random variables Gx, (X1) and Ge(g) have only a weak
moment. Recall that for any real-valued random variable Z and any ¢ > 1, the weak moment of order
q is defined by
1Z|Z, , = sup 2?P(|Z] > ). (3.41)
>0

When the variables Gx, (X1) and G¢(¢) have only a weak moment of order g € (1,2), we have the
following deviation inequality.

Proposition 3.5. Let p € [1,00] and q € (1,2). Assume that there exists a positive constant Ai(q)
such that
1Ge(e)][;,, < Arla) - (3.42)

w,q —
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Then for any x > 0,

B(n,
B(ISullp > 7)< (e) + Cay (3.43)
where
2 n
Caog=214( 2 45— )  end  Blng)= Y (2K (rAi(a) + &),
k=2
Assume moreover HGX1 (Xl)HZ; g < 00 Then inequality (3.43) implies that:
[i] If (2.6) is satisfied, then (3.32) holds.
[ii] If (2.7) is satisfied with 0 < o < 1 — %, then (3.33) holds.
[iii] If (2.8) is satisfied, then (3.34) holds.
Proof. By Proposition 3.3 of Cuny, Dedecker and Merlevede [6], we have for any = > 0,
P(1S5)| > x/2) < qZH 1,0
where C, = 22“1((17&1 + ﬁ) By (3.4), we have for any z > 0,
1/p 4 q
P15l > d/72) < 1(2) xqgngM4n,q (3.44)

Using (3.5), we have for any k € [2,n],

124711,

sup 27P(Ky 1 Ge(€) + Kinr > )

x>0

(2K &)+ sup 29P(Ky,1:Ge(e) > 2/2)
m>2Kk,n

(2Kkn&r)? + Sulg(QKk,nkaU)qP(Gs(€) > )
x>

?q S

IN

IA

(2Kk,n£k>q + (sz,nTk>qHG5(5)HZ)’q
(2Kkn&k)? + (2Kyn7r) " A1(q)-

IA A

Returning to (3.44), we get for any = > 0,

n
Cd,q

x4
k=2

P(|[Snlly > d'/Pz) < Ii(z) + (2Kk) (€ + 71 A1(q)),

which is exactly the first desired inequality. The remaining of the proof is similar to the proof of
Proposition 3.3. U
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3.5. McDiarmid type bound

In this section, we consider the case where the increments M}, are bounded in Ly.-norm. We shall
make use of a refinement of the well-known McDiarmid inequality, which has been recently established

by Rio [26]. Following the notations in Rio [26], denote
()= (t—Int—1)+t(e! —1)L+In(1—e?) forall ¢t>0,
and let
0*(z) = sup (wt — L(t)), x>0,
>0
be the Young transform of £(¢). As quoted by Rio [26], for any x € [0, 1), it holds
*(z) > (2% — 22)In(1 — z) > 222
Denote by ¢’ an independent copy of e, and X an independent copy of X.
Proposition 3.6. Let p € [1,00]. Assume that there exists a positive constant T} such that

16(2,€) oo < T

Let

= Z K} (T + &) and Dy, = Z K111 + &)
k=2 k=2

Then, for any x € [0,2D,,],

P(|]Sn||p2d1/px) < Lz )—|—2dexp{ 6’2 *(QZan)}

Consequently, for any x € [0,2D,],

Dpa— u/z)?

1/p < 71‘/2
P(Iu0y 2 a72) < nie)+20 (2

22
Assume moreover ||d(X1, X])||co < 00. Then we have:

[i] If (2.6) is satisfied, then for any x > 0,

lim sup fln]P’(HS lp > nx) < —cpa a?

n—oo
[ii] If (2.7) is satisfied with o € (0,1/2), then for any x > 0,

1
hmsup 5o P ([|Spllp > nx) < —cpaz’.
n—oo

22

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)



[iii] Assume the condition (2.8). If 0 < o < 1/2, then for any x > 0,

lim sup mP(HSan >nx) < —Cpa a?.
n—oo M

If a« = 1/2, then for any x > 0,
1
limsup 5 P (|[Sull, > nz) < —cpaa? .
n—oo TN
If1/2 < a < 1, then for any x > 0,

1
limsup — P (|| Sullp > nr) < —cpa z?.
n—oo N

Proof. For any k € [2,n], let

u](jll(xlv B xk—l) = €88 181}591(;) (xla s ,Fk(.l'k_l, Sk‘))a
and ‘ '
U;(;Zl(m, ..y, Tk_1) = €sSsup g,(:) (:L’l, ooy Fr(xp—1, z—:k))
ek

From the proof of Proposition 2.1, it follows that for any k € [2,n],
D (X, Xee) < MO <o (X, X
up” (X1, Xpm1) S M7 < vp” (X, Xgmn)
By the proof of Proposition 2.1 and the condition (3.46), we have
v,(ﬁl(Xl, vy Xpo1) — u](le(Xl, vy Xp1) < K (611 +8k) 5 k€ [2,n)].

Now, with an argument similar to the proof of Theorem 3.1 of Rio [26] with Ay, = Ky, ,, (1611 + &), k €
[2,n], we get for any x € [0,2D,,],

(i DY
P(IS$)| > z/2) < Qexp{ 7 ¢ (ZDH)}. (3.52)

Applying this last inequality to (3.4), we obtain (3.47). By the inequality £*(z) > (22—2z)In(1—2),z €
[0, 1), inequality (3.48) follows from (3.47). Since for any x € [0,1), (z?—2z)In(1—z) > 222, it follows
Dpaz—(z/2)?
2

that for any = € [0,2D,],
B 2
Do—z/2y v o= 1
D, 2V;7
which gives (3.49).

If || d(X1, X})|loo < 00, then we have for any z > 0,

< ! >_ T ).
) < a2 XDl > 372 )
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The last inequality implies that I;(z) = 0 for > 2K ,,||d(X1, X1)]|cc-
If the condition (2.6) is satisfied, by the point 4 of Lemma 2.1, then it holds V,2 = O(n). Thus,
inequality (3.49) implies that for any z > 0,

-1/ (93”)2
P (|[Snllp > nx) < Ii(nxd /P) 4+ 2dexp { —cpd (- (3.53)

The last inequality implies (3.50).
If the condition (2.7) is satisfied, by the point 5 of Lemma 2.1, then we have V2 = O(n!*2%) as
n — oo. Thus, inequality (3.49) implies that for any = > 0,

—1/p (xn)2
P (||Snllp > nx) < Ii(nzd " /P) + 2dexp  —C¢pd Troa (-
From the last inequality, we get (3.51).
If the condition (2.8) is satisfied, by the point 6 of Lemma 2.1, then we have (3.22). Thus, inequality
(3.49) implies that for any x > 0,

oy @n)? |
Li(nzd™/P) +2dexp{ —¢pd —15=» ¢ » f0<a<1/2
n

2

Inn

I (nxd /Py + 2dexp{ - cp7d(:rn)2} , if1/2<a<1.
From (3.54), we obtain the point [iii] of the property. O

3.6. Hoeffding type bound

The next proposition is an application of Corollary 2.3 of Fan et al. [11], which is an extension of
Hoeffding’s inequality for super-martingales.

Proposition 3.7. Assume that there exists a positive constant Ay such that
2
B[(G.(:))?] < Ar.
Put .
Vi=2 Z K,%,n(T,fAl +&)  and 6, = max{ Ky, 7, Kinr, b =2,...,n}. (3.55)
k=2

Then for any x,y > 0,

v,
> dtry) < v n .
P(Hsnup > d w) < Ii(z) + 2d H, <2(y T 1)5n> +2dP (2@3;(;5(%) > y) . (3.56)

1)2 I+U2 n n—x n+v2
Hn(xa U) = (.%' + vQ) <n — l’) 1{a:§n} ) (357)

where




with the convention that (+00) = 1 (which applies when x = n). In particular, if
Ge(e) <T a.s.,

for a positive constant T, then (3.56) implies that for any x > 0,

;
> JUre) < i n ) .
P10 > 472) < 1)+ 2018, (s o s ) (3.58)

Proof. We adapt the Corollary 2.3 of Fan et al. [11] with the truncature level (y 4+ 1)d,. By (3.5), we
obtain ]M,gz)] < 0p(Ge(e) + 1) for k € [2,n] and i € [1,d]. Hence, for any k € [2,n],

E[(M")1

IN

2(Kpnmh) E[(G=(€))?] + 2(Kknér)?
2K13,n(7'13A1 +&2).

(9 <y Fe-1]

IN

By Corollary 2.3 of Fan et al. [11], it follows that

| ” |
P(SY >z/2) < H, ° L P MY > (y+1)s,
(S >x/2) < (2(y+1)5"7(y+1)5n>+ <2I£113%<n 2> (y+1)
@ v,
< H, ’ n p G | -
- (2(y +1)0n" (y+ 1)5n> * (Jélﬁgn e(ex) > y) (3.59)
Moreover, the same bound holds for P(~S{ > x/2). Applying (3.59) to (3.4), we obtain the desired
inequality. D

Remark 3.2. Using the Remark 2.1 of Fan et al. [11], we have for any x,v > 0,

’U2 +v?

Hy(z,v) < B(z,v):= (m +02> e’ (3.60)
22

< Bi(z,v) :=exp {_2(1)24-:1530)} . (3.61)

Note that B(z,v) and Bi(x,v) are respectively known as Bennett’s and Bernstein’s bounds. Then,
inequality (3.58) also implies the following Bennett’s and Bernstein’s bounds. For any x > 0, we have

l/p X Vn
P(|ISully > d'Pz) < h<$>+2d3(2@+1>5n’<T+1>an)
xr Vn
- .

4. Moment inequalities

4.1. Marcinkiewicz-Zygmund type bound

If the martingale differences (M/;);>1 have finite gth moments (¢ > 2), then we have the following
Marcinkiewicz-Zygmund type inequality (cf. Rio [25]).
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Proposition 4.1. Let ¢ > 2. Assume that there exist two positive constants B1(q) and Ba(q) such
that

E[(Gx,(X1))"] <Bi(g) and  E[(Ge(€))?] < Ba(q)- (4.1)
Denote
To(q) = K2,,(Bi(0))"" + (¢ — 1)2* Q/qZK,m (q) +€0)°/".
Then
EHSan < d'/ Tn(‘l)- (4-2>

Proof. Using Theorem 2.1 of Rio [25], we have for any ¢ > 2,

n

(E[SP9)21 < (BIMIP|9%9 4 (g —1) Y (M99,

=
Again by (3.3), (3.5) and (4.1), we deduce that
ElsP < (Bl G, (x0))71) qlkznjz( (KinlrGler) + &)
< (Bl Cx x0)7) (0 - ) :2 (2171 (i B (Gl +0)
< K (Bi@)”" + (a— 12 2/‘12 (q) + &)/

Using Jensen’s inequality and the last inequality, we get

d Nia\ M4 d S oN1/g d ~ \1/q
Bls.ly = (X Is0r) < (X 1s01) T = (X Eisr)
=1 i=1 i=1
< dV'Tu(g),
which is the desired inequality. 0

4.2. von Bahr-Esseen type bound

When the dominating random variables Gx, (X1) and G¢(¢) have a moment of order ¢ € [1,2], we
have the following von Bahr-Esseen type bound.

Proposition 4.2. Let g € [1,2]. Assume that

IE[(GXl (Xl))q] < Ai(q) and E[(Gg(e))q] < As(q) . (4.3)
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Let
Valq) = +2ZKM T Aa(q) + &),

Then
El|Sally < (dVa(a)) ", (4.4)

Proof. By an argument similar to the proof of (3.39), we have

E|S§) ¢

IA

E[(K1..Gx, (X1))"] + 2%~ QZK [(:Gele) + &)

< K{,E[(Gx,(X1))"] +2712% Z K} E[(meGe(e))? + &f]
k=2

It is easy to see that

d . 1/q d . 1/q d . 1/q 1
ESulle =E(D1891) 7 < (B Is917) 7 = (DEISPE) T < (@Vala) s,
=1 =1 =1
which gives (4.4). O

5. Applications

5.1. Stochastic approrimation by averaging

Let us return to the general linear problem of Example 3 in Subsection 1.3. In Subsection 5.1, we
fix some p € [1,00] and X = Y = R? equipped with d(z,2') = §(x, ') = ||z —2'||p. For linear problem,
the central limit theorems for X, — z* have been well studied by Polyak and Juditsky [20]. In this
subsection, we focus on deviation inequalities for X, — z*.

We first consider the case of Example 3 where A; = A is deterministic. Recall that a € [0, 1),
Az*=B  and  Xp=Xp1 — L (AXp_1 + 1 — Bu_1).
ne —_———
=€&n
From the last line, we deduce that

EX, —a* = EX,_ 1——AEXn 1+lB—x*

- EX, 1——AEXn 1—1—le*—33*

= (Id—fA)(EXn 1—[E)

= JJa.- %A)(Exl — ).
k=2
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Thus, we have

n
IBX, — &l < IIBXy — 2™, [T s

k=2
(p) (»)
where p, = 1 — %ﬁ;(m Using inequality (2.12), we have [[;_, pr < exp{ — 7()‘1@‘&()?)%}, which
leads to
(»)
YA (A)n—2
EX, —z*|, < |EX;—z* {f min } 1
BX, — ol < JBXy—a*pexp { - i) 22 (5.1
and
Rvd * 1 - * CO
[EXn — 2%l < + S IEXe — o'l < 2,
k=1
where
o0 (p)
k=2

Taking f(X1, Xa,...,X,) =nX,, we can see that (2.1). Clearly, it holds
X,—-z*=X, -EX, +EX, —z*,
which implies that

5 * Y 5 5% * B 2 C
X0 = 2[lp < 11X~ EXullp + [EX 5 — 27|, < X — EXufl, + -

Hence, we have

(I ~ EXuly > 2 - @)

B(|X, ], > )
p n

IN

P
- IP(Hf(Xl,...,Xn) ~E[f(X1,..., X)), > ne — Co)
P([|u]l, > nz — Co).

Notice that the condition (2.6) is satisfied in Example 3. Thus, the following qualitative inequalities
are consequences of our deviation inequalities.

e If (3.6) and (3.9) hold, then there exist some positive constants c; , 4 and ¢z 4, such that
1 o —Clpd® if x € (1,00)
limsupfln]P’(HXn—a:*HPZx) < (5.3)

noo T —C2.p > if = e (0,1].

This follows from the point [i] in Proposition 3.1.
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e If (3.23) and (3.25) hold for some ¢ € (0,1), then there exists a positive constant ¢, 4 such that
for any = > 0,

1 _
hrlgsolip ElnP(HXn - a:*Hp > .CC) < —cpaad. (5.4)

This follows from the point [i] in Proposition 3.2.

e If (3.31) and (3.37) hold for some g > 1, then there exists a positive constant ¢, 4 such that for
any x > 0,

lim sup nq_lP(HYn — x*Hp > x) < d (5.5)

n—00 1

This follows from the points [i] in Proposition 3.3 (case ¢ > 2) and Proposition 3.4 (case ¢ €

[1,2)).
And for the moment bounds of S,,:
e If (4.1) holds for some g > 2, then, by (4.2) and the point 4 of Lemma 2.1,

— * 1 CO C ,d
E| X, —z*||, < EEHSan + < % (5.6)

e If (4.3) holds for some g € [1,2], then, by (4.4) and V,,(¢) = O(n),

G pd
n — nl-1/4

., - = Co 1
E|[ X, - 2"llg < E|Xn — EXully + —* < ~E[ISully + (5.7)

Remark 5.1. Let us make some comments on the performances of uniform averaging X ,,, final iterate
X, and suffiz averaging X,, = %Z?:[n/?] X;.

1. Clearly, if X,,—x* is replaced by X, —x*, then inequalities (5.3)-(5.6) hold true, with Co replaced
by
)\(p)

* minA n—2
C, =n|EX; —z Hpexp{—(l_(a)g - }

which is smaller than Cy defined by (5.2) for any n large enough. Hoverer, this does not improve
the convergence rates for the bounds (5.3)-(5.6). Thus uniform averaging X, and final iterate
X, have almost the same performance for estimating x* in a long time view.

2. When uniform averaging Xn is replaced by suffiz averaging X,, the inequalities (5.3)-(5.6) re-
main valid.

Let us now focus on the case where A; is stochastic. Recall that « € [0,1),

o =argmin Az~ Bl and X, =l [Xn,l — %(Anlenfl i — Bt

29



For the sake of simplicity, assume that X; € C, and that the condition (3.6) is satisfied. Under our
assumptions, with moreover o € [1/2,1), and assuming that 7, and B,_; have moments of order 4,

Theorem 3 of [18] leads to

_ . C,
E|[X, — 2*[ls = —=

Vn
for some Cy > 0. Combining this with the point [i] in Proposition 3.1, we obtain for any x > 0,
: 1 ~ * 2
limsup —InP ([|[ X, — 2|2 > 2) < —coa(2lips1y +2 1{0<$<1}), (5.8)
n—oo T

from which we get for any 6 € (0, 1),

P [Xn =22 <

for all n large enough.

5.2. Empirical risk minimization

It has been shown in the past how Bernstein type inequalities allow to control the error of the
empirical risk minimizer, and thus to perform model selection for time series [16, 4, 3, 14, 2, 1]. These
results are available under restrictive assumptions. For example, [4, 3, 1] focus on stationary series.
In [2], nonstationary Markov chains as in (1.1) are considered, under the restriction that p, < p < 1
and 7, <7 in the conditions (1.2) and (1.3). Our new Bernstein type bound, Proposition 3.1, allows
to extend these results to a more general setting.

The context is as follows. For simplicity, here, X will be a Banach space with norm || - || . Assume
we have a parameter set © and a family of functions f,(6,z) of # € © and x € X, with f,(0,0) = 0.
We observe that X1, ..., X, satisfy (1.1), with Fy,(z,y) = f.(0°,2) +y for some unknown 6° € ©. Of
course, the distributions of X7 and of the ¢,’s are also unknown.

Remark 5.2. We review here some examples studied in the aforementioned references. In the case
X =RY, [1] studied functions of the form

fn(0,2) = 0z

where 6 is some d X d matriz. Note that in this case, the model does actually not depend on n. On the
other hand, [2] considered a T-periodic version of these functions: for @ = (Ai|...|Ar) where each Ay
s a d X d matrix, they used

fn(97 l’) = An(modT):L"
Other examples include nonlinear autoregression with neural networks [4].

Let ¢ : X — [0,400) be a function with £(0) = 0, it is usually refered to as the loss function. We
will measure the performance of a predictor through its risk:

Ra(0) = —— S E[0(Xk — ful6, X))
=2

n—1
k
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A classical loss function is simply given by the norm ¢(z) = ||z||x but other examples can be used, for
example [3] used quantile losses in the case X = R. Our objective will be to estimate the minimizer
0* of R,. Under suitable assumptions, §* = #°: this is for example the case when X is actually a
Hilbert space, ¢(z) = ||z|% and the &, are centered with E||e,||3 < oo. However, this has no reason
to be true in general, and it is important to note that if the objective is to minimize the loss of the
predictions, to estimate #* is more important than to estimate §°. We define the ERM estimator 6
(for Empirical Risk Minimizer) by

.  —

0 = arg Iopinrn(e), where r,(0) = —— E(Xk — fk(G,Xk_l)).

€O n—1
k=2

Definition 5.1. Define the covering number N (O, €) as the cardinality of the smallest set ©, C ©
such that for any 0 € O, there exists a 0. € ©, such that

| f2(0,2) — fr(0c, )|l x
sup  sup
ke{2,..,n} z€X 2| x

<e€

Define the entropy of © by H(©,¢) =1V InN(O,e).

Examples of computation of H(©,¢€) for some models can be found in references [2, 1]. In most
classical examples, (0, €) is roughly in 1V [D In(1 + C/¢)], where D is the dimension of © and C' > 0
is some constant.

Proposition 5.1. Let Xi,..., X, satisfy (1.1), (1.2) and (1.3) with (7,) and (py) satisfying (2.7)
with a € (0,1/2) and d(z,y) = 6(x,y) = ||z — y||x (note that &, = 0 in this case). Assume that (3.6)
is satisfied, and that { is L-Lipschitz, that is for any (z,y) € X?,

[£(z) = L(y)| < Llz — yllx-

Assume also that all the functions in the model are \-Lipschitz: for any (x,y) € X2, any k € N and
any 6 € O,

11100, %) = fr(0,9)llx < Allz = yllx,
and that H(©,1/(Ln)) < Dlnn for some constant D. For n large enough, we have for any n € (0,1),

Dlnn o 1—|—ln(%)
n1—2a+ 2 Vnl-2a

with probability at least 1 — n, where C1 and Co are constants that depend only on A, L, and the
constant ¢, q in the proof of Proposition 3.1.

Ry (0) < min R,(0) + C,
0cO

In particular, for a = 0, we recover bounds that are similar to the ones in [2, 1].

In the case where several models are available and one doesn’t know which one contains the truth,
the previous result can be used to perform model selection. We refer the reader to [2] for example for
details on this classical construction.

31



Proof. Fix 6 € © and consider the random variable S, = g(X1,...,X,) — E[g(X1,...,X,)], where

g1, ... xn) = )\+1 Ze (z — fr(0, 2_1)) .
Note that
C(zp1 — for1(0,25)) — € (Thg1 — for1(0,2%))]
— T <’ + + + + k
|g($1, 7xn) g(:U1, y Lles 7$n)| = L()\—l- 1)
n 1 (xp — fr(0,mp-1)) — £ (2}, — fr(0,2-1))]
L+ 1)
< W1 (0, 28) = fra (0, 23)llx + 2w — il
- A+1

<k — 2 l|x,s

which means that ¢ is separately Lipschitz. So we apply (3.19) in the proof of Proposition 3.1, that
is, for any t € [0, 1),

2V,
Elexp {£tS,}] < exp 5 ot

) —E[r,(0)]), and R,(0) = E[r,(0)]. Set s = t(n—1)/L(1+\). We
Hn = 1)/L(1+ V),

Note that S,, = 1+>\ (rn (0
obtain that, for any s € [0, 0,

(5.9)

$2(1+ N2
Elexp {£s(r,(0) — R (0))}] < exp 2(n — 1) — 25(1 + \)onL

Fix now € > 0 and a set ©. C © as in Definition 5.1. For any 0 € O, we have § € © and so (5.9)
holds. Then, for any s € [0,5,,(n —1)/L(1 + )\)) and any z > 0, we have

P <€s;161))€ |rn(0) — 0)| > a;) 0; P (|rn(0) — Rn(0)] > x)
< 37 Elexp {slru(6) — Ra(6)] — 5]
0cO,
s2(1+ A)2L2 Lo
< 2N(©,¢€) exp { T (1)+ 2)3(1 f;l)(snlz — sx} . (5.10)

Thanks to the definition of ©, for any 6 € © there is a 6, such that

sup  sup I fi(0,z) — fi(0c, )| x

<e.
i€{2,...n} TEX [E41EY

So

[6( Xk — fr(Oe, Xip—1)) — €( Xk — [0, Xp—1))| < Ll fe(Oc, Xp—1) — fi(0, Xp—1)llx < Lel| Xp—1llx
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and as a consequence, we obtain

[rn(60) = (6)] <

(5.11)

and

|Rn(0) — Ry (6e)| < Le

— (5.12)
k=1

Using Proposition 3.1 with f(X1,..., X,) = Y721 | Xkl x, we get for any y > 0 and any u € [0, 5, "),

n—1 n—1 n—1 n—1
P I1Xklx > DBl Xklx +y) < Eexp {u(z 1 Xkl = D ElIXellx — y)}
k=1 k=1 k=1 k=1

u?V,
< —_ — . .
< exp { 501 = udy) uy} (5.13)

From now, let us use the short notation z, = >.7~1 E||X}||x and consider the “favorable” event

= {z_: 1 Xkllx < 2n —i—y} m { sup |r,(0) — R,(0)| < x} .

Pt 0€0.

On &, by (5.11) and (5.12), we have

Rp(6) < Ry(6,) + eL—" S < ra(f) +at el

n— n—1
i Y
< L
<rp(0) +a4e [ n_1+n_1]
. ty
= 0 e
lgélél’l“n()-i—l“F n—l
< minr,(0) + x + eL——= 220 1Y
CECE n—l
nty
< min R, (0) + 2z + L
0O, n—1
3zn +y

< min R, (0) + 2z + €L .
6cO n—1

In particular, the choice e = 1/(Ln) ensures:

Ry, (0) < min Ry, (0) + 2z + 3%n 1Y

C) n(n—1) (5.14)

Inequalities (5.10) and (5.13) lead to

c u2Vn 1 82(1+)\)2L2%
P (&) < exp{2(1_u5n) - uy} —|—2./\/'(@,Ln)exp{2(n_ =251+ \ouL ST o . (5.15)
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As it was explained in the proof of Proposition 3.1, we get §,, = O(n®) and V;, = O(n'*2®). So, letting
¢p,d be as in the proof of Proposition 3.1, we get

2 142

uscp an s2(1 + \)2L%c, gn*

2(n—1) —2s(1 + X)cp gn®L a

P(£%) < exp{ )—uy} +2/\/(@,L1n)exp{

. (5.16
2 (1 — ucpy gn® sx} (5-16)
Fix n € (0,1) and put

s(1+ N\)2L2%¢c, gn*® n H(O, ;) +1n (%)
2(n—1) —2s(1 + X)cp gn®L s

xTr =

In(2 14+2a
and y = . g") + 2?10 Z’ng:nf")' Note that, plugging x and y into (5.16), those choices ensure P(€¢) <

n/2+mn/2 =n, while (5.14) becomes:

. . s(14 N)2L2c, 4n>> Dln(n) +In (é)
R.(0) < Rn(0 L u
) < e6 (6)+ (n—1) —2s(1 4+ N)epgn®L
32, In (%) ucy gntt

_.|_

nn—1) wun(n—1)  2(1 —uc,gn®)n(n —1)

The final steps are to choose u € [0,6,!), s € [0,6,'(n —1)/L(1 + X)) and to provide an upper bound
on z,. First, put v = 1/(2¢, 4n®) and

n—1 2D1n(n)
S A R

Note that we always have u < d,,1. Moreover, we have sn® = o(n), so for n large enough, the condition
on s is satisfied too. Thus, for n large enough, there are constants C; and C5 such that

A Dlnn 1+1n(;) 3z
,(0) < min R, = 1 L 1
R,(0) < Ié(le(glR 0) +C4 120 + O 20 + n(n—1) (5.17)
Let us now present an upper bound of 2, = Y72 E|| X/ x. Recall that E[| X;||x = [ [|lz—0||xPx, (dz) =

Gx,(0) and Elle||x = [ ||z — 0]|xP-(dz) = G-(0). Then, by the point 5 of Lemma 2.1 and inequality
(2.12), we have

El|Xnllx = Ell fa-1(0, Xn-1) + enllx < E|[fo-1(6, Xn—1) — fn-1(6,0)[[x + Ellenlx
< PE(| Xn-1llx + Ge(0) <+ - < pn - paE[ X [|x + Ko nElle]|x
(n—1)p
< Cs3n® N L7 ,
< C5n*G.(0) + exp { 0= arne }GX1 (0)

Therefore, it holds
2 < Cyntte.
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Applying the last inequality to (5.17), we get

. Dlnn 1+ In (l) 3Cyntte
n(0) < minRy(0 \/ L
R,(0) < IerélélR()—FCH n1*20‘+02 e +n(n—1)
_ [Dlnn , 1+In(y)
S gélél Rn(e) + 05 n1_2a + 02 \/ﬁ 9
which gives the desired result. O
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