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Abstract

We introduce a class of Markov chains that includes models of stochastic approximation by averag-
ing and non-averaging. Using a martingale approximation method, we establish various deviation
inequalities for separately Lipschitz functions of such a chain, with different moment conditions on
some dominating random variables of martingale differences. Finally, we apply these inequalities to
stochastic approximation by averaging and empirical risk minimisation.
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1. Introduction

Markov chains, or iterated random functions, are of fundamental importance to model dependent
phenomena. A nice reference on this topic is [10]. Probability inequalities for dependent variables were
developed in [13], and more recently in [15, 17] as well as in [25, 26, 6, 7, 11, 12]. Most of these papers
involve such inequalities for Markov chains. Recently, [8] provided such inequalities for contractive
Markov chains thanks to a martingale based technique.

In these papers, only time homogeneous contractive Markov chains are considered. However, in
many practical situations, such as stochastic approximation algorithms [20] and unit roots [21], the
contraction coefficients are time-varying, and will tend either to 0 or to 1 as n → ∞. In this paper,
our objective is to provide results for such non-homogeneous Markov chains. Our framework is a large
class of non-homogeneous models introduced in Section 1.2. Practical examples of chains fitting such
conditions are considered in Section 1.3.

Using the martingale approximation method developed in [8], we establish various deviation in-
equalities for separately Lipschitz functions of such chains in Section 2. Our inequalities hold under
various moment conditions on some dominating random variables of the martingale differences. Sec-
tion 3 is dedicated to various classes of Lp-norm concentration inequalities, such as Bernstein type
inequalities, semi-exponential bound, Fuk-Nagaev inequalities, as well as von Bahr-Esseen, McDiarmid
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and Hoeffding type bounds. Section 4 is devoted to moment inequalities: Marcinkiewicz-Zygmund
and von Bahr-Esseen type bounds. Finally, in Section 5 we apply these inequalities to the stochastic
approximation by averaging in Subsection 5.1 and to empirical risk minimisation (ERM) in Subsection
5.2.

1.1. Notations

In the paper, we adopt the convention that each x ∈ Rd is a column vector. The entries of x will
be denoted by x(1), . . . , x(d). The transpose of x will be denoted by xT , thus xT = (x(1), . . . , x(d)). The
set of d1 × d2 real-valued matrices will be denoted by Rd1×d2 , and Id will denote the identity matrix
in Rd×d. Let ‖ · ‖ denote a norm on Rd. In most cases, we will use Lp norms. In this case, we will
explicitely state that ‖ · ‖ = ‖ · ‖p, where

‖x‖∞ = max
1≤i≤d

|x(i)| and ‖x‖p =
( d∑
i=1

|x(i)|p
)1/p

, p ∈ [1,∞).

For any M ∈ Rd×d, we put

λ
(p)
min(M) = inf

v 6=0

‖Mx‖p
‖x‖p

and λ(p)
max(M) = sup

x 6=0

‖Mx‖p
‖x‖p

.

Let (Ω,A,P) be a probability space. All the random variables in the paper are defined over
(Ω,A,P). When V is a nonnegative real-valued random variable, we will let ‖V ‖∞ denote its essential
supremum (note that there will be no ambiguity with the above). Finally, (X , d) and (Y, δ) are two
complete separable metric spaces. Our non-homogeneous Markov chains will take values in X .

1.2. A class of iterated random functions

Let (εi)i≥1 be a sequence of independent copies of a Y-valued random variable ε. Let X1 be a
X -valued random variable independent of (εi)i≥2. We consider the Markov chain (Xi)i≥1 such that

Xn = Fn(Xn−1, εn), for any n ≥ 2, (1.1)

where Fn : X × Y → X satisfies that there exists a positive number n0 such that for any n ≥ n0,

E
[
d
(
Fn(x, ε1), Fn(x′, ε1)

)]
≤ ρnd(x, x′) (1.2)

for some ρn ∈ [0, 1), and
d(Fn(x, y), Fn(x, y′)) ≤ τnδ(y, y′) + ξn (1.3)

for some τn ≥ 0, ξn ≥ 0. The case ξn ≡ 0 corresponds to functions Fn that are Lipschitz with respect
to εn, while the case τn ≡ 0 corresponds to bounded chains. Note that when τn ≡ 0, the metric δ is
not involved in the properties of the chain.

The case where Fn ≡ F, ρn ≡ ρ, τn ≡ τ and ξn ≡ 0 for two constants ρ and τ has been studied by
Dedecker and Fan [8]. See also Dedecker, Doukhan and Fan [9] who weakened the condition in (1.3).
In these papers, the authors have established very precise inequalities for Lipschitz functionals of
the chain, by assuming various moment conditions. However, the conditions Fn ≡ F and ρn ≡ ρ
are restrictive. They are not satisfied in many extremely useful models. For instance, the recursive
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algorithm of stochastic approximation in Polyak and Juditsky [20] returns a chain for which the
conditions (1.1)–(1.3) are satisfied with Fn(x, y) = (Id − τnA)x + τnB − τny and ρn = 1 − c τn with
τn → 0, where A ∈ Rd×d is a positive-definite matrix, x, y,B ∈ Rd and c, τn > 0. A special case of
interest corresponds to ρn = 1−c1/n

α and τn = c2/n
α for three positive constants c1, c2 and α ∈ (0, 1).

A second class of frequently used models which do not satisfy the condition ρn ≡ ρ is that of time
series auto-regressions with a unit root, see Phillips and Magdalinos [23]. In the model of Phillips and
Magdalinos [23], the conditions (1.1)–(1.3) are satisfied with ρn = 1 − c1/n

α and τn = c2. See also
Phillips [21, 22] for the case ρn = e−c1/n and τn = c2.

1.3. Examples

In this subsection, we give a non exhaustive list of models satisfying the conditions (1.1)–(1.3).
Example 1. In the case where X is a separable Banach space with norm ‖ · ‖X , and d(x, x′) =

‖x− x′‖X , let us consider the following functional auto-regressive model

Xn = f(Xn−1) + g(εn) , (1.4)

where f : X → X and g : Y → X are such that

‖f(x)− f(x′)‖X ≤ ρ‖x− x′‖X and ‖g(y)− g(y′)‖X ≤ δ(y, y′)

for some constant ρ ∈ [0, 1). In this model, the conditions (1.1)–(1.3) are satisfied with

Fn(x, y) = f(x) + g(y), ρn = ρ, τn = 1 and ξn ≡ 0 (1.5)

for any n ≥ 1. This model is a typical example considered in Dedecker and Fan [8]. We refer to the
papers by Diaconis and Freedman [10] and Alquier et al. [1] for many other interesting examples.

Example 2. Consider the following auto-regression with a unit root model (see Phillips [21, 22]
or Phillips and Magdalinos [23]): for any n ≥ 2,

Xn =
1

1 + c/nα
Xn−1 + εn or (1.6)

Xn = (1− c

nα
)Xn−1 + εn, (1.7)

where Xn, εn ∈ R, α ∈ (0, 1) and c is a positive constant. Let d(x, x′) = δ(x, x′) = |x − x′|. In this
model, the conditions (1.1)–(1.3) are satisfied with

ρn = 1− c

nα
, τn = 1 and ξn ≡ 0

for any n large enough. Moreover, if c ∈ (0, 1), the conditions (1.1)–(1.3) are satisfied for any n ≥ 2.
Example 3. Consider the following generalized linear problem. Set X = Y = Rd, and let d and δ

be the Lp-norm on Rd, that is d(x, x′) = δ(x, x′) = ‖x− x′‖p for p ∈ [1,∞]. Assume that (Ai)i≥1 is a

sequence of positive-definite i.i.d. random matrices such that EAi = A ∈ Rd×d, λ(p)
min(A1) ≥ λ almost

surely for some positive constant λ and ‖λ(p)
max(A1)‖∞ < ∞, and that (Bi)i≥1 is a sequence of i.i.d.

random vectors such that EBi = B ∈ Rd. Here, for any given i, Ai and Bi may not be independent.
These sequences are observed. We want to find x∗, which is solution of the following equation:

Ax = B. (1.8)
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To obtain the sequence of estimates (Xn)n≥1 of the solution x∗, the following recursive algorithm will
be applied: for any n ≥ 2,

Xn = Xn−1 −
γ

nα
Yn, Yn = An−1Xn−1 −Bn−1 + ηn, (1.9)

Xn =
1

n

n∑
i=1

Xi, (1.10)

where γ ∈ (0,∞) and α ∈ [0, 1) are constants, and X1 ∈ Rd can be an arbitrary deterministic point
or a random point independent of (An)n≥1 and (Bn)n≥1. Here An−1Xn−1 − Bn−1 is the prediction
residual, and ηn ∈ Rd is a random disturbance independent of (An)n≥1 and (Bn)n≥1 (the distinction
between Bi and ηi is kept because in applications, the user might add a random perturbation ηi to
the noise of the gradient B −Bi).

In the special case Ai ≡ A and Bi ≡ B for any i, the generalized linear problem becomes the
usual linear problem, see Polyak and Juditsky [20]. More generally, when Bi can be random and
Ai ≡ A, this example matches our framework. Indeed, put εi = ηi − Bi−1, the conditions (1.1)–(1.3)
are satisfied with

Fn(x, y) = Fn(x, y) = (Id −
γ

nα
A)x− γ

nα
y, ρn = 1−

γλ
(p)
min(A)

nα
, τn =

γ

nα
and ξn ≡ 0

for any n ≥ 2.
In the general case, Ai and Bi are random, so we will enrich the variable εi by εi = (Ai−1, ηi−Bi−1).

The conditions might not be satisfied in this case. However, it is quite common to seek for the best
approximation of x∗ in the set C = {x : ‖x‖2 ≤ D}, that is x∗ ∈ C and

‖Ax∗ −B‖2 = min
x∈C
‖Ax−B‖2. (1.11)

In this case, it is natural to add a projection step on C. We then focus on p = 2. Let ΠC : Rd → C
denote the orthogonal projection on C. Note that ΠC is such that ‖ΠCx − ΠCy‖2 ≤ ‖x − y‖2 for any
x, y ∈ Rd and ΠCx = x for any x ∈ C. Then, for any n ≥ 2, take

Xn = ΠC

[
Xn−1 −

γ

nα
Yn

]
, Yn = An−1Xn−1 −Bn−1 + ηn, (1.12)

Xn =
1

n

n∑
i=1

Xi. (1.13)

The conditions (1.1)–(1.3) are satisfied, for y = (M,u), with

Fn(x, y) = ΠC

[
(Id −

γ

nα
M)ΠC [x]− γ

nα
u
]
, ρn = 1− γλ

nα
, τn =

γ

nα
and ξn =

2Dγ‖λ(2)
max(A1)‖∞
nα

for any n ≥ 3 and α ∈ (0, 1). For the case α = 0, the conditions (1.1)–(1.3) are also satisfied, but with
an additional assumption that γ < 1/λ.
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Example 4. For the usual linear problem (cf. equation (1.8)), another recursive algorithm may
be applied: for any n ≥ 2,

Xn = Xn−1 − γ Yn, Yn = AXn−1 −B +
1

nα
εn, (1.14)

Xn =
1

n

n∑
i=1

Xi, (1.15)

where α ∈ (0, 1), γ ∈ (0,∞) is a constant such that γλ
(p)
min(A) ∈ (0, 1), and X1 ∈ Rd can be an

arbitrary deterministic point or a random point independent of (εn)n≥2. Let d and δ be the Lp-norm
on Rd. In this recursive algorithm, the conditions (1.1)–(1.3) are satisfied with

Fn(x, y) = (Id − γA)x+ γB − γ

nα
y, ρn = 1− γλ(p)

min(A), τn =
γ

nα
and ξn ≡ 0

for any n ≥ 2.
Example 5. A third recursive algorithm for the usual linear problem is given by: for any n ≥ 2,

Xn = Xn−1 −
γ

nα
Yn + εn, Yn = AXn−1 −B, (1.16)

Xn =
1

n

n∑
i=1

Xi, (1.17)

where α ∈ (0, 1), γ ∈ (0,∞) are constants such that γλ
(p)
min(A) ∈ (0, 1), and X1 ∈ Rd can be an

arbitrary deterministic point or a random point independent of (εn)n≥2. Let d and δ be the Lp-norm
on Rd. In this recursive algorithm, the conditions (1.1)–(1.3) are satisfied with

Fn(x, y) = (Id −
γ

nα
A)x+

γ

nα
B − γy, ρn = 1−

γλ
(p)
min(A)

nα
, τn ≡ γ and ξn ≡ 0

for any n ≥ 2.

Example 6. We extend the previous examples to optimization of non-linear functions. We still
consider X = Y = Rd and focus on the L2 norm in this example. In machine learning, we need
to minimize a function involving a large number of differentiable terms L(x) =

∑N
i=1 `i(x) on the set

C = {x : ‖x‖2 ≤ D}. A popular strategy to this end is to use the projected stochastic gradient descent
(SGD): for any n ≥ 2,

Xn = ΠC

[
Xn−1 −

γ

nα
∇̂JnL(Xn−1)

]
,

where α ∈ (0, 1], ΠC : Rd → C denote the orthogonal projection on C, Jn is drawn uniformly among
all the subsets of {1, . . . , N} with cardinality M and

∇̂JnL(x) :=
1

M

∑
i∈Jn

∇`i(x).

Note that E[∇̂JnL(x)] = ∇L(x) for any x. More generally, the stochastic gradient Langevin descent
(SGLD) is given by

Xn = ΠC

[
Xn−1 −

γ

nα
∇̂JnL(Xn−1)− γ

nα
ηn

]
5



for some i.i.d. sequence ηn of random perturbations added by the user. For y = (J, u), define

Fn(x, y) = ΠC

[
x− γ

nα
∇̂JL(x)− γ

nα
u
]
.

If we define εi = (Ji, ηi), then this example fits (1.1). It is easy to see that

‖Fn(x, y)− Fn(x′, y)‖22 ≤ ‖x−
γ

nα
∇̂JnL(x)− x′ − γ

nα
∇̂JnL(x′)‖22

= ‖x− x′‖22 +
∥∥∥ γ
nα
∇̂JnL(x)− γ

nα
∇̂JnL(x′)

∥∥∥2

2
− 2(x− x′)T

( γ
nα
∇̂JnL(x)− γ

nα
∇̂JnL(x′)

)
.

Common assumptions are that the `i’s are m-strongly convex, m > 0, which gives

(x− x′)T
(
∇̂JnL(x)− ∇̂JnL(x′)

)
≥ m‖x− x′‖22

and that their gradients are `-Lipschitz, that is,

‖∇̂JnL(x)− ∇̂JnL(x′)‖22 ≤ `2‖x− x′‖22.

We then obtain

‖Fn(x, y)− Fn(x′, y)‖22 ≤
(

1− 2mγ

nα
+
`2γ2

n2α

)
‖x− x′‖22

=

[(
1− mγ

nα

)2
+

(`2 −m2)γ2

n2α

]
‖x− x′‖22

and thus the condition (1.2) is satisfied with

ρn =

√(
1− mγ

nα

)2
+

(`2 −m2)γ2

n2α
.

Note that ρn − 1 ∼ mγ/nα. So for any n large enough, we have for example

ρn ≤ 1− mγ

2nα
.

The condition also holds in the case α = 0, but with an additional assumption that 2mγ−`2γ2 ∈ (0, 1),
that can always be achieved with an adequate choice of γ. Finally, let us assume that ‖∇`i(x)‖2 ≤ B
for any x ∈ C and some B > 0. Condition (1.3) is satisfied with

τn =
γ

nα
and ξn =

2Bγ

nα

for any n large enough.
Example 7. Our final example illustrates that non-homogeneity can appear even in the context of

a time homogeneous chain, if it is only observed at non evenly spaced dates t1, t2, . . . . Assume (ti)i≥1

is an increasing sequence, put k1 = t1 and ki = ti − ti−1 > 0 for any i > 1. Consider Fn ≡ F , ρn ≡ ρ,
τn ≡ τ , ξn ≡ 0 and (Xi)i≥1 the corresponding chain in (1.1)–(1.3). Assume that only the subsequence
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(Xti)i≥1 is observed. Let ε
(Z)
i = (εj,i)j≥1 be an i.i.d. copy of the sequence (εi)i≥1, and define, for any

n ≥ 1 and y = (yi)i≥1,

F (Z)
n (x, y) = F (F (. . . F (F (x, y1), y2), . . . , ykn−1), ykn)

(Fn only depends on the kn first terms of the sequence y). It is clear that Zn = F
(Z)
n (Zn−1, ε

(Z)
n )

admits the same distribution as Xtn . Then with the notations above, ρ
(Z)
n = ρkn , and this quantity

tends to 0 as n→∞ if kn →∞, which corresponds to a situation where sampling times become rarer

and rarer. The expression of τ
(Z)
n is not clear in general. Let us now restrict our attention to the

additive model in (1.4) (but note that even if (1.4) holds for (Xi)i≥1, in general a similar expression
does not hold for (Zi)i≥1). In this case,

|F (Z)
n (x, y)− F (Z)

n (x, y′)| ≤ τ
n∑
i=1

ρn−iδ(yi, y
′
i), (1.18)

so, for example with the sup metric on YN∗ , given by supi∈N∗ δ(yi, y
′
i), we obtain τ

(Z)
n = τ(1−ρn)

1−ρ ≤ τ
1−ρ .

2. Lipschitz functions of random vectors X1, . . . , Xn

We remind that ‖ · ‖ is a norm on Rd. Let f : X n 7→ Rd be a separately Lipschitz function, that is

‖f(x1, x2, . . . , xn)− f(x′1, x
′
2, . . . , x

′
n)‖ ≤ d(x1, x

′
1) + d(x2, x

′
2) + · · ·+ d(xn, x

′
n). (2.1)

Let PX1 and Pε be the distributions of X1 and ε, respectively. Assume that ‖ · ‖ satisfies∥∥∥∫ h(x)PX1(dx)
∥∥∥ ≤ ∫ ‖h(x)‖PX1(dx) and

∥∥∥∫ h(x)Pε(dx)
∥∥∥ ≤ ∫ ‖h(x)‖Pε(dx) (2.2)

for any measurable function h : X n 7→ Rd. Clearly, if ‖ · ‖ = ‖ · ‖p, p ∈ [1,∞], then the condition (2.2)
is satisfied.

Let
Sn := f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] . (2.3)

Denote (Fk)k≥0 the natural filtration of the chain (Xk)k≥1, that is F0 = {∅,Ω} and for any k ∈ N∗,
Fk = σ(X1, X2, . . . , Xk). For any k ∈ [0, n], define

gk(X1, . . . , Xk) = E[f(X1, . . . , Xn)|Fk] (2.4)

and for any k ∈ [1, n],
Mk = gk(X1, . . . , Xk)− gk−1(X1, . . . , Xk−1) . (2.5)

Then (Mk,Fk)1≤k≤n is a finite sequence of martingale differences. For any k ∈ [1, n− 1], let then

Sk := M1 +M2 + · · ·+Mk ,

and note that Sn is already introduced in (2.3) and satisfies Sn = M1 + M2 + · · · + Mn . Then
(Sk,Fk)1≤k≤n is a martingale.

The following proposition gives some interesting properties of the functions (gk)1≤k≤n and of the
martingale differences (Mk,Fk)1≤k≤n. In this paper, we focus on the case n0 = 2, where n0 is given
by the conditions (1.2) and (1.3).
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Lemma 2.1. For any k ∈ [1, n] and ρk in [0, 1), let

Kk,n = 1 + ρk+1 + ρk+1ρk+2 + · · ·+ ρk+1ρk+2 · · · ρn, k ∈ [1, n− 1] and Kn,n = 1.

Let (Xi)i≥1 be a Markov chain satisfying (1.1) for some functions (Fn)n≥1 satisfying (1.2). We also
assume that ‖ · ‖ satisfies (2.2). Let gk and Mk be defined by (2.4) and (2.5), respectively.

1. The function gk is separately Lipschitz and such that

‖gk(x1, x2, . . . , xk)− gk(x′1, x′2, . . . , x′k)‖ ≤ d(x1, x
′
1) + · · ·+ d(xk−1, x

′
k−1) +Kk,nd(xk, x

′
k).

2. Let GX1 and Hk,ε be functions defined by

GX1(x) =

∫
d(x, x′)PX1(dx′)

and

Hk,ε(x, y) =

∫
d(Fk(x, y), Fk(x, y

′))Pε(dy′) , k ∈ [2, n],

respectively. Then, the martingale difference Mk satisfies that

‖M1‖ ≤ K1,nGX1(X1)

and for any k ∈ [2, n],
‖Mk‖ ≤ Kk,nHk,ε(Xk−1, εk) .

3. Assume moreover that Fn satisfies (1.3), and let Gε be the function defined by

Gε(y) =

∫
δ(y, y′)Pε(dy′) .

Then Hk,ε(x, y) ≤ τkGε(y), and consequently, for any k ∈ [2, n],

‖Mk‖ ≤ Kk,n[τkGε(εk) + ξk] .

4. Assume moreover that there exist three constants α ∈ [0, 1), ρ ∈ (0, 1) and η ∈ (0,∞) such that
for any n ≥ 2,

ρn ≤ 1− ρ/nα and max{ξn, τn} ≤ η/nα. (2.6)

Then K1,n = O(1) and (Kk,n[τk + ξk])k≥1 is uniformly bounded for all k and n.

5. Assume moreover that there exist three constants α ∈ (0, 1), ρ ∈ (0, 1) and η ∈ (0,∞) such that
for any n ≥ 2,

ρn ≤ 1− ρ/nα and max{ξn, τn} ≤ η. (2.7)

Then K1,n = O(1) and Kk,n[τk + ξk] = O(kα) as k →∞.
6. Assume moreover that there exist three constants α ∈ (0, 1], ρ ∈ (0, 1) and η ∈ (0,∞) such that

for any n ≥ 2,
ρn ≤ ρ and max{ξn, τn} ≤ η/nα. (2.8)

Then K1,n = O(1) and Kk,nτk = O(k−α) as k →∞.
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Remark 2.1. Let us comment on the point 4 of Lemma 2.1. If ξn ≡ α = 0, then Kk,n ≤
∑n−k

i=0 (1−
ρ)i < 1

ρ and τk ≤ η for any k ∈ [1, n] and n. Thus (Kk,nτk)k≥1 is uniformly bounded for all k and n,
which has been proved by Proposition 2.1 of Dedecker and Fan [8].

Remark 2.2. Let us return to the examples in Subsection 1.3. It is easy to see that Examples 1 and
7 satisfy the condition (2.6) with α = 0. Examples 2 and 5 satisfy the condition (2.7). Examples 3
and 6 satisfy the condition (2.6). Example 4 satisfies the condition (2.8).

Proof. The first point will be proved by recurrence in the backward sense. The result is obvious for
k = n, since gn = f . Assume that it is true at step k ∈ [2, n], and let us prove it at step k − 1. By
definition

gk−1(X1, . . . , Xk−1) = E[gk(X1, . . . , Xk)|Fk−1] =

∫
gk(X1, . . . , Xk−1, Fk(Xk−1, y))Pε(dy) .

By assumption (2.2), it follows that

‖gk−1(x1, x2, . . . , xk−1)− gk−1(x′1, x
′
2, . . . , x

′
k−1)‖

=
∥∥∥∫ gk(x1, x2, . . . , xk−1, Fk(xk−1, y))− gk(x′1, x′2, . . . , x′k−1, Fk(x

′
k−1, y))Pε(dy)

∥∥∥
≤
∫
‖gk(x1, x2, . . . , xk−1, Fk(xk−1, y))− gk(x′1, x′2, . . . , x′k−1, Fk(x

′
k−1, y))‖Pε(dy)

≤ d(x1, x
′
1) + · · ·+ d(xk−1, x

′
k−1) +Kk,n

∫
d(Fk(xk−1, y), Fk(x

′
k−1, y))Pε(dy)

≤ d(x1, x
′
1) + · · ·+ d(xk−2, x

′
k−2) + (1 + ρkKk,n)d(xk−1, x

′
k−1)

≤ d(x1, x
′
1) + · · ·+ d(xk−2, x

′
k−2) +Kk−1,nd(xk−1, x

′
k−1), (2.9)

which completes the proof of the point 1.
Let us give a proof for the point 2. First note that

‖M1‖ =
∥∥∥g1(X1)−

∫
g1(x)PX1(dx)

∥∥∥ ≤ K1,n

∫
d(X1, x)PX1(dx) = K1,nGX1(X1) . (2.10)

In the same way, for any k ∈ [2, n],

‖Mk‖ =
∥∥gk(X1, · · · , Xk)− E[gk(X1, · · · , Xk)|Fk−1]

∥∥
≤
∫ ∥∥gk(X1, · · · , Fk(Xk−1, εk))− gk(X1, · · · , Fk(Xk−1, y))

∥∥Pε(dy)

≤ Kk,n

∫
d(Fk(Xk−1, εk), Fk(Xk−1, y))Pε(dy) = Kk,nHk,ε(Xk−1, εk) . (2.11)

The point 3 is clear, since if (1.3) is true, then

Hk,ε(x, y) =

∫
d(Fk(x, y), Fk(x, y

′))Pε(dy′) ≤
∫
τkδ(y, y

′)Pε(dy′) + ξk = τkGε(y) + ξk.
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Consequently, for any k ∈ [2, n],

‖Mk‖ ≤ Kk,n[τkGε(εk) + ξk].

Next we give a proof for the point 4. It is easy to see that

ln(ρk+1 · · · ρk+l) = ln ρk+1 + · · ·+ ln ρk+l

≤ −ρ
k+l∑

i=k+1

i−α = −ρn1−α
k+l∑

i=k+1

(
i

n
)−αn−1

≤ − ρ

1− α
n1−α

(
(
k + l

n
)1−α − (

k + 1

n
)1−α

)
≤ − ρ

1− α
n1−α 1

1− α
l − 1

n

nα

(k + l)α

= − ρ

(1− α)2

l − 1

(k + l)α
. (2.12)

Thus, we deduce that

Kk,nτk ≤
η

kα

n−k∑
l=1

exp
{
− ρ

(1− α)2

l − 1

(k + l)α

}
≤ η

kα

( k∑
l=1

exp
{
− ρ

(1− α)2

l − 1

(k + l)α

}
+
∞∑
l=k

exp
{
− ρ

(1− α)2

l − 1

(k + l)α

})
=:

η

kα
(I1 + I2).

For I1, we have the following estimation

I1 ≤ exp
{ ρ

(1− α)2

1

(k + 1)α

} k∑
l=1

exp
{
− ρ

2α(1− α)2

l

k
k1−α

}
≤ k exp

{ ρ

(1− α)2

1

(k + 1)α

}∫ 1

0
exp

{
− ρk1−α

2α(1− α)2
x
}
dx

= k exp
{ ρ

(1− α)2

1

(k + 1)α

}2α(1− α)2

ρk1−α

(
1− exp

{
− ρk1−α

2α(1− α)2

})
≤ kα exp

{ ρ

(1− α)2

}2α(1− α)2

ρ
.

It is obvious that I2 is bounded for α ∈ [0, 1). Hence (Kk,nτk)k≥1 is uniformly bounded for all k and
n and K1,n = O(1).

For the point 5, from the proof of the point 4, it is easy to see that K1,n = O(1) and Kk,nτk =
O(kα), k →∞.

For the point 6, it is easy to see that Kk,n ≤
∑n−k

i=0 ρ
i < 1

1−ρ and τk ≤ η/kα for all k ∈ [1, n]. Thus
K1,n = O(1) and Kk,nτk = O(1/kα) as k →∞. The proof of the lemma is now complete. �

10



3. Deviation inequalities for Sn with Lp-norm

Let n ≥ 2. In this section, we are interested in the concentration properties of Sn under the Lp-
norm ‖ · ‖p, where (Xi)i≥1 is a Markov chain satisfying (1.1) for some functions (Fn)n≥1 satisfying
(1.2) and (1.3). Clearly, it holds for any p ∈ [1,∞],

‖x‖p =
( d∑
i=1

|x(i)|p
)1/p

≤
( d∑
i=1

‖x‖p∞
)1/p

= d1/p‖x‖∞. (3.1)

When x(i) = x(1) for all i ∈ [1, d], the inequality is actually an equality. Set S2,n = Sn−M1. By (3.1),
we have for any p ∈ [1,∞] and any x > 0,

P
(
‖Sn‖p ≥ d1/px

)
≤ P

(
‖M1‖p ≥ d1/px/2

)
+ P

(
‖S2,n‖p ≥ d1/px/2

)
≤ P

(
‖M1‖∞ ≥ x/2

)
+ P

(
‖S2,n‖∞ ≥ x/2

)
≤

d∑
i=1

P
(
|M (i)

1 | ≥ x/2
)

+
d∑
i=1

P
(
|S(i)

2,n| ≥ x/2
)

≤ d max
1≤i≤d

P
(
|M (i)

1 | ≥ x/2
)

+ d max
1≤i≤d

P
(
|S(i)

2,n| ≥ x/2
)
. (3.2)

Using the inequality

|M (i)
1 | ≤ ‖M1‖p ≤ K1,nGX1(X1) (3.3)

(cf. the point 2 of Lemma 2.1), we have for any p ∈ [1,∞] and any x > 0,

P
(
‖Sn‖p ≥ d1/px

)
≤ dP

(
GX1(X1) ≥ x

2K1,n

)
+ d max

1≤i≤d
P
(
|S(i)

2,n| ≥
x

2

)
=: I1(x) + I2(x) . (3.4)

Hence, to dominate P
(
‖Sn‖p ≥ d1/px

)
, we only need to establish deviation inequalities for I1(x) and

I2(x). The term I1(x) represents the direct influence of the initial distribution of the chain, and it
will be most of the time negligible. For instance, when X1 = x1 is a deterministic point, we have
GX1(X1) = 0 and I1(x) = 0 for any x > 0. The main difficulty is to give an upper bound for I2(x),
which is the purpose of the remaining of this section. By the point 3 of Lemma 2.1, the martingale
differences (Mk)k∈[2,n] satisfy for all i ∈ [1, d],

|M (i)
k | ≤ ‖Mk‖p ≤ Kk,n[τkGε(εk) + ξk], k ∈ [2, n]. (3.5)

Notice that S
(i)
2,n =

∑n
k=2M

(i)
k . Since that Gε(εk), k ∈ [2, n], are i.i.d. random variables, (3.5) plays an

important role for estimating P
(
|S(i)

2,n| ≥ x/2
)

and thus I2(x). Assuming various moment conditions
on Gε(ε), we can obtain different upper bounds for I2(x).

In the sequel, denote by cp,d and c′p,d positive constants, which may depend on the constants p, d,
α, ρ and η but do not depend on x and n.
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3.1. Bernstein type bound

In this subsection, we are interested in establishing a deviation inequality for Sn under the Bernstein
condition. We refer to de la Peña [7] for related inequalities: in this paper similar tight Bernstein type
inequalities for martingales are proved. Using Lemma 2.1, we get the following proposition.

Proposition 3.1. Let p ∈ [1,∞]. Assume that there exist two positive constants H1 and A1 such that
for any integer k ≥ 2,

E
[(
Gε(ε)

)k] ≤ k!

2
Hk−2

1 A1 . (3.6)

Denote

V 2
n = (1 +A1)

n∑
k=2

(
2Kk,n(τk + ξk)

)2
and δn = max{2Kk,n(τkH1 + ξk), k = 2, . . . , n}.

Then for any x > 0,

P
(
‖Sn‖p ≥ d1/px

)
≤ I1(x) + 2d exp

{
− (x/2)2

V 2
n (1 +

√
1 + xδn/V 2

n ) + δnx/2

}
(3.7)

≤ I1(x) + 2d exp

{
− (x/2)2

2V 2
n + δnx

}
. (3.8)

Assume moreover that there exits a positive constant c such that for any x > 0,

P
(
GX1(X1) ≥ x

)
≤ c−1 e−c x. (3.9)

Then inequality (3.8) implies that:

[i] If (2.6) is satisfied, then for any x > 0,

lim sup
n→∞

1

n
lnP (‖Sn‖p ≥ nx) ≤ − cp,d

(
x1{x≥1} + x21{0<x<1}

)
. (3.10)

[ii] If (2.7) is satisfied with α ∈ (0, 1/2), then for any x > 0,

lim sup
n→∞

1

n1−2α
lnP (‖Sn‖p ≥ nx) ≤ −cp,d x2. (3.11)

[iii] If (2.8) is satisfied, then for any x > 0,

lim sup
n→∞

1

n
lnP (‖Sn‖p ≥ nx) ≤ − cp,d x. (3.12)

If either (2.6) or (2.8) holds, then from (3.10) and (3.12), it is easy to see that Sn admits the
classical large deviation convergence rate e−ncx , where cx > 0. Moreover, as x > x2 for 0 < x < 1, the
large deviation convergence rate in (3.12) is better than that in (3.10). Under the condition (2.7), the
large deviation convergence rate for Sn becomes much worse, as shown by (3.11).
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As mentioned above, when X1 = x1 a.s. is deterministic, it follows that GX1(X1) = 0 a.s., and so
the condition (3.9) holds for any constant c ∈ (0, 1].

Since Gε(y) ≤ δ(y, y0) + E[δ(y0, ε)], it follows that E
[(
Gε(ε)

)k] ≤ 2kE
[(
δ(ε, y0)

)k]
. Hence, the

following condition

E
[(
δ(ε, y0)

)k] ≤ k!

2
A(y0)k−2B(y0), k ≥ 2, (3.13)

implies the condition (3.6) with H1 = 2A(y0) and A1 = 4B(y0).
In Examples 3, 4 and 5, when X = Y = Rd, we can take f(x1, x2, . . . , xn) =

∑n
i=1 xi, ‖ · ‖ = ‖ · ‖p

and d(x, x′) = δ(x, x′) = ‖x− x′‖p. Then the condition (3.6) is satisfied, provided that

E|ε(i)|k ≤ k!

2
Hk−2

1 A1, i ∈ [1, d] and k ≥ 2. (3.14)

To show this, by (3.13) with y0 = 0, we only need to prove that

E‖ε‖kp ≤
k!

2
(H1d

(p+1)/p)k−2A1d
2(p+1)/p, k ≥ 2. (3.15)

Clearly, it holds

‖x‖kp ≤
(
d1/p

d∑
i=1

|x(i)|
)k
≤ dk/pdk−1

d∑
i=1

|x(i)|k, k ≥ 2.

Hence, by (3.14), we have

E‖ε‖kp ≤ dk/pdk−1
d∑
i=1

E|ε(i)|k ≤ k!

2
(H1d

(p+1)/p)k−2A1d
2(p+1)/p, k ≥ 2,

which gives (3.15).

Proof. Notice that S
(i)
2,n =

∑n
k=2M

(i)
k is a sum of martingale differences. By (3.5), we have for any

k ∈ [2, n],

|M (i)
k |

j ≤ Kj
k,n[τkGε(εk) + ξk]

j ≤ 2j−1Kj
k,n[τ jk(Gε(εk))

j + ξjk] ≤ 2jKj
k,n[τ jk(Gε(εk))

j + ξjk]

and so for any t > 0,

E [etM
(i)
k ] ≤ 1 +

∞∑
j=2

tj

j!
E [|M (i)

k |
j ] ≤ 1 +

∞∑
j=2

tj

j!
(2Kk,n)j

[
τ jkE

[(
Gε(εk)

)j]
+ ξjk

]
.

Using the condition (3.6), we deduce that for any k ∈ [2, n] and any t ∈ [0, δ−1
n ),

E [etM
(i)
k ] ≤ 1 +

∞∑
j=2

tj

j!
(2Kk,n)j

[
τ jk
j!

2
Hj−2

1 A1 + ξjk

]

= 1 +
1

2

∞∑
j=2

tj(2Kk,n)j
[
τ jkH

j−2
1 A1 +

2

j!
ξjk

]

≤ 1 +
1

2
t2(2Kk,n)2

∞∑
j=2

tj−2 (2Kk,n)j−2(A1 + 1)[τkH1 + ξk]
j−2(τk + ξk)

2

≤ 1 +
t2(A1 + 1)

(
2Kk,n(τk + ξk)

)2
2(1− t δn)

. (3.16)
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Applying the inequality 1 + u ≤ eu for u ≥ 0 to (3.16), we deduce that for any k ∈ [2, n] and any
t ∈ [0, δ−1

n ),

E [etM
(i)
k |Fk−1] ≤ exp

{
t2(1 +A1)

(
2Kk,n(τk + ξk)

)2
2(1− t δn)

}
. (3.17)

By the tower property of conditional expectation and the last inequality, it is easy to see that for any
n ≥ 2 and any t ∈ [0, δ−1

n ),

E
[
etS

(i)
2,n
]

= E
[
E [etS

(i)
2,n |Fn−1]

]
(3.18)

= E
[
etS

(i)
2,n−1E [etM

(i)
n |Fn−1]

]
≤ E

[
etS

(i)
2,n−1

]
exp

{
t2(1 +A1)

(
2Kk,n(τk + ξk)

)2
2(1− t δn)

}

≤ exp

{
t2V 2

n

2(1− t δn)

}
. (3.19)

Clearly, the same bound holds for E
[
e−tS

(i)
2,n
]
. Returning to (3.4), by the exponential Markov inequal-

ity, we have for any x > 0 and any t ∈ [0, δ−1
n ),

I2(x) ≤ d max
1≤i≤d

E
[

exp
{
tS

(i)
2,n −

1

2
tx)
}

+ exp
{
− tS(i)

2,n −
1

2
tx
}]

≤ 2d exp

{
−1

2
t x+

t2V 2
n

2(1− t δn)

}
. (3.20)

The last bound reaches its minimum at

t = t(x) :=
x/V 2

n

xδn/V 2
n + 1 +

√
1 + xδn/V 2

n

.

Substituting t = t(x) in (3.20), we obtain for any x > 0,

I2(x) ≤ 2d exp

{
− (x/2)2

V 2
n (1 +

√
1 + xδn/V 2

n ) + xδn/2

}

≤ 2d exp

{
− (x/2)2

2V 2
n + xδn

}
,

where the last line follows by the inequality
√

1 + x δn/V 2
n ≤ 1 + x δn/(2V

2
n ). Applying the upper

bounds to (3.4), we obtain the inequalities (3.7) and (3.8).

Condition (3.9) implies that

I1(x) ≤ dc−1 exp

{
− c x

2K1,n

}
. (3.21)
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If the condition (2.6) is satisfied, then we have K1,n = O(1), V 2
n = O(n) and δn = O(1) as n→∞, by

the point 4 of Lemma 2.1. Applying (3.21) to (3.8), we deduce that for any x > 0,

P (‖Sn‖p ≥ nx) ≤ dc−1 exp

{
− c′p,dnx

}
+ 2d exp

{
−

c′p,d(nx)2

cp,d(n+ nx)

}
.

This last inequalitiy implies (3.10).

If the condition (2.7) is satisfied, from the point 5 of Lemma 2.1, then we have K1,n = O(1),

V 2
n = O(1)

n∑
k=2

k2α = O(1)n1+2α
n∑
k=2

(
k

n
)2α 1

n
= O(n1+2α)

and δn = O(nα) as n → ∞. Applying (3.21) to (3.8), we deduce that for any α ∈ (0, 1/2) and any
x > 0,

P (‖Sn‖p ≥ nx) ≤ dc−1 exp

{
− c′p,dnx

}
+ 2d exp

{
−

c′p,d(nx)2

cp,d(n1+2α + nxnα)

}
.

The last inequality implies (3.11).

If the condition (2.8) is satisfied, by the point 6 of Lemma 2.1, then we have K1,n = O(1),

V 2
n = O(1)

n∑
k=1

1

k2α
=


O(n1−2α) if 0 ≤ α < 1/2
O(lnn) if α = 1/2
O(1) if 1/2 < α ≤ 1

(3.22)

and δn = O(1) as n→∞. Applying (3.21) to (3.8), we deduce that for any x > 0,

P (‖Sn‖p ≥ nx) ≤ dc−1 exp

{
− c′p,dnx

}
+ 2d exp

{
−

c′p,d(nx)2

cp,d(n1−2α ∨ lnn+ nx)

}
.

The last line implies (3.12). This completes the proof of Proposition 3.1. �

3.2. Semi-exponential bound

If both GX1(X1) and Gε(ε) have semi-exponential moments, the following proposition holds. It
can be compared to the corresponding results in Borovkov [5] for partial sums of independent random
variables, Merlevède et al. [17] for partial sums of weakly dependent sequences, Lesigne and Volný
[15] and Fan et al. [12] for martingales.

Proposition 3.2. Let p ∈ [1,∞] and q ∈ (0, 1). Assume that there exists a positive constant A1 such
that

E
[(
Gε(ε)

)2
exp

{(
Gε(ε)

)q}] ≤ A1 . (3.23)

Denote

V 2
n = 2e

n∑
k=2

K2
k,n

(
τ2
kA1 + ξ2

kE[e|Gε(ε)|
q
]
)

and δn = max
{
Kk,nτk,Kk,nξk, k = 2, . . . , n

}
.
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If Vn ≥ 1, then for any x > 0,

P
(
‖Sn‖p ≥ d1/px

)
≤ I1(x) + 4d exp

{
− (x/2)2

2(V 2
n + (x/2)2−qδqn)

}
. (3.24)

Assume moreover that there exits a positive constant c such that for any x > 0,

P
(
GX1(X1) ≥ x

)
≤ c−1 e−c x

q
. (3.25)

Then inequality (3.24) implies that:

[i] If (2.6) or (2.8) is satisfied, then for any x > 0,

lim sup
n→∞

1

nq
lnP (‖Sn‖p ≥ nx) ≤ −cp,dxq. (3.26)

[ii] Assume that (2.7) is satisfied with α ∈ (0, 1/2). If 0 < α < 1−q
2−q , then for any x > 0,

lim sup
n→∞

1

nq(1−α)
lnP (‖Sn‖p ≥ nx) ≤ −cp,dxq.

If α = 1−q
2−q , then for any x > 0,

lim sup
n→∞

1

nq/(2−q)
lnP (‖Sn‖p ≥ nx) ≤ −cp,d

(
xq1{x≥1} + x21{0<x<1}

)
.

If 1−q
2−q < α < 1

2 , then for any x > 0,

lim sup
n→∞

1

n1−2α
lnP (‖Sn‖p ≥ nx) ≤ −cp,dx2.

If either (2.6) or (2.8) is satisfied, from (3.26), it is easy to see that the large deviation convergence
rate is the same as the classical one. On the contrary under the condition (2.7), this convergence rate
becomes worsen as α increases.

Proof. Notice that S
(i)
2,n/δn =

∑n
k=2M

(i)
k /δn is a sum of martingale differences. By (3.5) and the

condition (3.23), it is easy to see that for any k ∈ [2, n],

E [(M
(i)
k /δn)2e|M

(i)
k /δn|q ] ≤ δ−2

n E [(Kk,n[τkGε(εk) + ξk])
2e|Kk,n[τkGε(εk)+ξk]/δn|q ]

≤ 2(Kk,nδ
−1
n )2E [((τkGε(ε))

2 + ξ2
k)e|Gε(ε)|

q+1]

≤ 2e(Kk,nδ
−1
n )2

(
τ2
kE [(Gε(ε))

2e|Gε(ε)|
q
] + ξ2

kE[e|Gε(ε)|
q
]
)

≤ 2e(Kk,nδ
−1
n )2

(
τ2
kA1 + ξ2

kE[e|Gε(ε)|
q
]
)
.

If Vnδ
−1
n ≥ 1, using inequality (2.7) of Fan et al. [12], then we have for any t > 0,

P
(
|S(i)

2,n/δn| ≥ t
)
≤ 4 exp

{
− t2

2(V 2
n δ
−2
n + t2−q)

}
. (3.27)
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Substituting t = x/(2δn) in (3.27), we get for any x > 0,

P
(
|S(i)

2,n| ≥ x/2
)
≤ 4 exp

{
− (x/2)2

2(V 2
n + (x/2)2−qδqn)

}
.

From (3.4) and the last inequality, we obtain the desired inequality (3.24).

Condition (3.25) implies that

I1(x) ≤ dc−1 exp

{
− c

( x

2K1,n

)q}
. (3.28)

If the condition (2.6) is satisfied, then by the point 4 of Lemma 2.1, we obtain K1,n = O(1), V 2
n = O(n)

and δn = O(1) as n → ∞. Applying inequality (3.28) together with (3.24), we deduce that for any
x > 0,

P (‖Sn‖p ≥ nx) ≤ dc−1 exp

{
− c′p,d(nx)q

}
+ 4d exp

{
−

c′p,d(nx)2

cp,d(n+ (nx)2−q)

}
.

From the last inequality, we get (3.26).

If the condition (2.7) is satisfied, then by the point 5 of Lemma 2.1, we have K1,n = O(1),
V 2
n = O(n1+2α) and δn = O(nα) as n → ∞. Applying (3.28) to inequality (3.24), we deduce that for

any α ∈ (0, 1/2) and any x > 0,

P (‖Sn‖p ≥ nx) ≤ dc−1 exp

{
− c′p,d(nx)q

}
+ 4d exp

{
−

c′p,d(nx)2

cp,d(n1+2α + (nx)2−qnqα)

}
.

The last inequality implies the point [ii] of Proposition 3.2. Note that when 0 < α < 1−q
2−q , we have

n2−q+qα > n1+2α, while when 1−q
2−q < α < 1

2 , then n2−q+qα < n1+2α.
If the condition (2.8) is satisfied, then by the point 6 of Lemma 2.1, we have K1,n = O(1), (3.22)

and δn = O(1) as n→∞. Applying again inequalities (3.28) and (3.24), we deduce that for any x > 0,

P (‖Sn‖p ≥ nx) ≤ dc−1 exp

{
− c′p,d(nx)q

}
+ 4d exp

{
−

c′p,d(nx)2

cp,d(n1−2α ∨ lnn+ (nx)2−q)

}
.

Inequality (3.26) is an easy consequence of this last inequality. �

3.3. Fuk-Nagaev type bound

If the martingale differences (Mi)i≥2 admit finite qth order moments (q ≥ 2), then we have the
following Fuk-Nagaev type inequality (cf. Corollary 3′ of Fuk [13] and Nagaev [19]).

Proposition 3.3. Let p ∈ [1,∞] and q ∈ [2,∞). Assume that there exist two positive constants A1

and B1(q) such that

E
[(
Gε(ε)

)2] ≤ A1 and E
[(
Gε(ε)

)q] ≤ B1(q) . (3.29)

17



Denote

V 2
n = 2

n∑
k=2

K2
k,n

(
τ2
kA1 + ξ2

k

)
and Hn(q) = 2q−1

n∑
k=2

Kq
k,n

(
τ qkB1(q) + ξqk

)
.

Then for any x > 0,

P
(
‖Sn‖p ≥ d1/px

)
≤ I1(x) + 2q+1d

(
1 +

2

q

)qHn(q)

xq
+ 2d exp

{
− x2

2(q + 2)2eqV 2
n

}
. (3.30)

Assume moreover that there exists a positive constant c such that for any x > 0,

P
(
GX1(X1) ≥ x

)
≤ c x−q, (3.31)

then inequality (3.30) implies that:

[i] If (2.6) is satisfied, then for any x > 0,

P (‖Sn‖p ≥ nx) ≤
cp,d
xq
· 1

nq−1
. (3.32)

[ii] If (2.7) is satisfied with 0 < α < 1
2 , then for any x > 0,

P (‖Sn‖p ≥ nx) ≤
cp,d
xq
· 1

nq−1−αq . (3.33)

[iii] If (2.8) is satisfied, then for any x > 0,

P (‖Sn‖p ≥ nx) ≤



cp,d
xq
· 1

nq−1+αq
, if 0 < α < 1

q ,

cp,d
xq
· lnn

nq
, if α = 1

q ,

cp,d
xq
· 1

nq
, if 1

q < α < 1.

(3.34)

Under the condition (2.6), then from (3.32), it is easy to see that the large deviation convergence
rate is the same as the classical one, which is of order n1−q as n → ∞. When the condition (2.7) is
satisfied, from (3.33), we find that the large deviation convergence rate becomes worse when α tends
to 1/2. Moreover, the large deviation convergence rate is slower than the classical one. Now, if the
condition (2.8) is satisfied, then the inequalities (3.34) imply that this convergence rate is much better
than the classical one.
Proof. By (3.5) and the condition (3.29), it follows that

n∑
k=2

E[|M (i)
k |

q|Fk−1] ≤
n∑
k=2

E[
(
Kk,n(τkGε(εk) + ξk)

)q
] = 2q−1

n∑
k=2

((
Kk,nτk

)qE[(Gε(ε))
q] +Kq

k,nξ
q
k

)
≤ 2q−1

n∑
k=2

Kq
k,n

(
τ qkB1(q) + ξqk

)
= Hn(q).

18



Notice that Hn(2) = V 2
n . Using the Corollary 3′ in Fuk [13], we have for any x > 0,

P(|S(i)
2,n| ≥ x/2) ≤ 2q+1

(
1 +

2

q

)q
· Hn(q)

xq
+ 2 exp

{
− x2

2(q + 2)2eqV 2
n

}
. (3.35)

Applying the last inequality to (3.4), we get the first desired inequality.
The condition (3.31) implies that for any x > 0,

I1(x) ≤ c d
( x

2K1,n

)−q
. (3.36)

If the condition (2.6) is satisfied, then from the point 4 of Lemma 2.1, we have K1,n = O(1), V 2
n = O(n)

and Hn(q) = O(n) as n→∞. Applying (3.36) to (3.30), we get for any x > 0,

P(‖Sn‖p ≥ nx) ≤
cp,d(
nx
)q +

cp,d n

(nx)q
+ 2d exp

{
−c′p,d

(nx)2

n

}
.

The inequality (3.32) follows from the last inequality.
If the condition (2.7) is satisfied, by the point 5 of Lemma 2.1, then we have K1,n = O(1),

V 2
n = O(n1+2α) and Hn(q) = O(1)

∑n
k=2 k

αq = O(n1+αq) as n→∞. Applying (3.36) to (3.30), we get
for any x > 0,

P(‖Sn‖p ≥ nx) ≤
cp,d(
nx
)q +

cp,d n
1+αq

(nx)q
+ 2d exp

{
−c′p,d

(nx)2

n1+2α

}
.

The inequality (3.33) follows from this last inequality. Note that if α < 1/2, then the third term in
the right hand side of the last inequality tends to 0 as n→∞.

If the condition (2.8) is satisfied, then by the point 6 of Lemma 2.1, we have K1,n = O(1), (3.22)
and

Hn(q) = O(1)

n∑
k=1

k−αq =


O(n1−αq) , if 0 ≤ α < 1/q,
O(lnn) , if α = 1/q,
O(1) , if 1/q < α < 1

as n→∞. Similarly, we prove that the inequality (3.30) implies (3.34). �

3.4. von Bahr-Esseen type bound

If the dominating random variables GX1(X1) and Gε(ε) admit only a finite moment with order
q ∈ [1, 2], we have the following von Bahr-Esseen type deviation bound.

Proposition 3.4. Let p ∈ [1,∞] and q ∈ [1, 2]. Assume that there exists a positive constant A1(q)
such that

E
[(
Gε(ε)

)q] ≤ A1(q) . (3.37)

Denote

Vn(q) = 2q−1

[
Kq

2,n(τ q2A1(q) + ξq2) + 22−q
n∑
k=3

Kq
k,n

(
τ qkA1(q) + ξqk

)]
.

Then for any x > 0,

P
(
‖Sn‖p ≥ d1/px

)
≤ I1(x) + 2qd

Vn(q)

xq
. (3.38)

Assume moreover (3.31). Then inequality (3.38) implies that:
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[i] If (2.6) is satisfied, then (3.32) holds.

[ii] If (2.7) is satisfied with 0 < α < 1− 1
q , then (3.33) holds.

[iii] If (2.8) is satisfied, then (3.34) holds.

Remark 3.1. The constant 22−q in Vn(q) can be replaced by the more precise constant C̃q described
in Proposition 1.8 of Pinelis [24].

Proof. Notice that S
(i)
2,n =

∑n
k=2M

(i)
k is a sum of martingale differences. Using a refinement of the

von Bahr-Esseen inequality (cf. Proposition 1.8 of Pinelis [24]), we get for any q ∈ [1, 2],

E|S(i)
2,n|

q ≤ E|M (i)
2 |

q + 22−q
n∑
k=3

E|M (i)
k |

q .

By (3.5) and (3.37), we deduce that for any q ∈ [1, 2],

E|S(i)
2,n|

q ≤ Kq
2,nE

[(
τ2Gε(ε) + ξ2

)q]
+ 22−q

n∑
k=3

Kq
k,nE

[(
τkGε(ε) + ξk

)q]
≤ 2q−1

[
Kq

2,nE
[(
τ2Gε(ε))

q + ξq2
]

+ 22−q
n∑
k=3

Kq
k,nE

[(
τkGε(ε))

q + ξqk
] ]

≤ 2q−1

[
Kq

2,n(τ q2A1(q) + ξq2) + 22−q
n∑
k=3

Kq
k,n

(
τ qkA1(q) + ξqk

)]
= Vn(q). (3.39)

By Markov’s inequality, we get for any x > 0,

P(|S(i)
2,n| ≥ x/2) ≤ 2q

E|S(i)
2,n|q

xq

≤ 2q
Vn(q)

xq
. (3.40)

Applying the last inequality to (3.4), we get the desired inequality (3.38). The remaining of the proof
is similar to the proof of Proposition 3.3. �

Next, we consider the case where the random variables GX1(X1) and Gε(ε) have only a weak
moment. Recall that for any real-valued random variable Z and any q ≥ 1, the weak moment of order
q is defined by

‖Z‖qw,q = sup
x>0

xqP(|Z| > x) . (3.41)

When the variables GX1(X1) and Gε(ε) have only a weak moment of order q ∈ (1, 2), we have the
following deviation inequality.

Proposition 3.5. Let p ∈ [1,∞] and q ∈ (1, 2). Assume that there exists a positive constant A1(q)
such that ∥∥Gε(ε)∥∥qw,q ≤ A1(q) . (3.42)

20



Then for any x > 0,

P
(
‖Sn‖p ≥ d1/px

)
≤ I1(x) + Cd,q

B(n, q)

xq
, (3.43)

where

Cd,q = 22+qd
( q

q − 1
+

2

2− q

)
and B(n, q) =

n∑
k=2

(2Kk,n)q(τ qkA1(q) + ξqk).

Assume moreover
∥∥GX1(X1)

∥∥q
w,q

<∞. Then inequality (3.43) implies that:

[i] If (2.6) is satisfied, then (3.32) holds.

[ii] If (2.7) is satisfied with 0 < α < 1− 1
q , then (3.33) holds.

[iii] If (2.8) is satisfied, then (3.34) holds.

Proof. By Proposition 3.3 of Cuny, Dedecker and Merlevède [6], we have for any x > 0,

P
(
|S(i)

2,n| ≥ x/2
)
≤ Cq
xq

n∑
k=2

‖M (i)
k ‖

q
w,q,

where Cq = 22+q( q
q−1 + 2

2−q ). By (3.4), we have for any x > 0,

P
(
‖Sn‖p ≥ d1/px

)
≤ I1(x) +

Cd,q
xq

max
1≤i≤d

n∑
k=2

‖M (i)
k ‖

q
w,q. (3.44)

Using (3.5), we have for any k ∈ [2, n],

‖M (i)
k ‖

q
w,q ≤ sup

x>0
xqP(Kk,nτkGε(ε) +Kk,nξk > x)

≤ (2Kk,nξk)
q + sup

x>2Kk,n

xqP(Kk,nτkGε(ε) > x/2)

≤ (2Kk,nξk)
q + sup

x>0
(2Kk,nτkx)qP(Gε(ε) > x)

≤ (2Kk,nξk)
q + (2Kk,nτk)

q
∥∥Gε(ε)∥∥qw,q

≤ (2Kk,nξk)
q + (2Kk,nτk)

qA1(q).

Returning to (3.44), we get for any x > 0,

P
(
‖Sn‖p ≥ d1/px

)
≤ I1(x) +

Cd,q
xq

n∑
k=2

(2Kk,n)q(ξqk + τ qkA1(q)),

which is exactly the first desired inequality. The remaining of the proof is similar to the proof of
Proposition 3.3. �
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3.5. McDiarmid type bound

In this section, we consider the case where the increments Mk are bounded in L∞-norm. We shall
make use of a refinement of the well-known McDiarmid inequality, which has been recently established
by Rio [26]. Following the notations in Rio [26], denote

`(t) = (t− ln t− 1) + t(et − 1)−1 + ln(1− e−t) for all t > 0,

and let
`∗(x) = sup

t>0

(
xt− `(t)

)
, x > 0,

be the Young transform of `(t). As quoted by Rio [26], for any x ∈ [0, 1), it holds

`∗(x) ≥ (x2 − 2x) ln(1− x) ≥ 2x2. (3.45)

Denote by ε′ an independent copy of ε, and X ′1 an independent copy of X1.

Proposition 3.6. Let p ∈ [1,∞]. Assume that there exists a positive constant T1 such that

‖δ(ε, ε′)‖∞ ≤ T1. (3.46)

Let

V 2
n =

n∑
k=2

K2
k,n(τkT1 + ξk)

2 and Dn =

n∑
k=2

Kk,n(τkT1 + ξk).

Then, for any x ∈ [0, 2Dn],

P
(
‖Sn‖p ≥ d1/px

)
≤ I1(x) + 2d exp

{
−D

2
n

V 2
n

`∗
( x

2Dn

)}
. (3.47)

Consequently, for any x ∈ [0, 2Dn],

P
(
‖Sn‖p ≥ d1/px

)
≤ I1(x) + 2d

(
Dn − x/2

Dn

)Dnx−(x/2)2

V 2
n

(3.48)

≤ I1(x) + 2d exp

{
− x2

2V 2
n

}
. (3.49)

Assume moreover ‖d(X1, X
′
1)‖∞ <∞. Then we have:

[i] If (2.6) is satisfied, then for any x > 0,

lim sup
n→∞

1

n
lnP (‖Sn‖p ≥ nx) ≤ −cp,d x2. (3.50)

[ii] If (2.7) is satisfied with α ∈ (0, 1/2), then for any x > 0,

lim sup
n→∞

1

n1−2α
lnP (‖Sn‖p ≥ nx) ≤ −cp,d x2. (3.51)
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[iii] Assume the condition (2.8). If 0 < α < 1/2, then for any x > 0,

lim sup
n→∞

1

n1+2α
P (‖Sn‖p ≥ nx) ≤ −cp,d x2 .

If α = 1/2, then for any x > 0,

lim sup
n→∞

lnn

n2
P (‖Sn‖p ≥ nx) ≤ −cp,d x2 .

If 1/2 < α < 1, then for any x > 0,

lim sup
n→∞

1

n2
P (‖Sn‖p ≥ nx) ≤ −cp,d x2 .

Proof. For any k ∈ [2, n], let

u
(i)
k−1(x1, . . . , xk−1) = ess inf

εk
g

(i)
k

(
x1, . . . , Fk(xk−1, εk)

)
,

and
v

(i)
k−1(x1, . . . , xk−1) = ess sup

εk

g
(i)
k

(
x1, . . . , Fk(xk−1, εk)

)
.

From the proof of Proposition 2.1, it follows that for any k ∈ [2, n],

u
(i)
k−1(X1, . . . , Xk−1) ≤M (i)

k ≤ v
(i)
k−1(X1, . . . , Xk−1) .

By the proof of Proposition 2.1 and the condition (3.46), we have

v
(i)
k−1(X1, . . . , Xk−1)− u(i)

k−1(X1, . . . , Xk−1) ≤ Kk,n(τkT1 + ξk) , k ∈ [2, n].

Now, with an argument similar to the proof of Theorem 3.1 of Rio [26] with ∆k = Kk,n(τkT1 +ξk), k ∈
[2, n], we get for any x ∈ [0, 2Dn],

P
(
|S(i)

2,n| ≥ x/2
)
≤ 2 exp

{
−D

2
n

V 2
n

`∗
( x

2Dn

)}
. (3.52)

Applying this last inequality to (3.4), we obtain (3.47). By the inequality `∗(x) ≥ (x2−2x) ln(1−x), x ∈
[0, 1), inequality (3.48) follows from (3.47). Since for any x ∈ [0, 1), (x2−2x) ln(1−x) ≥ 2x2, it follows
that for any x ∈ [0, 2Dn],

(
Dn − x/2

Dn

)Dnx−(x/2)2

V 2
n ≤ exp

{
− x2

2V 2
n

}
,

which gives (3.49).
If ‖d(X1, X

′
1)‖∞ <∞, then we have for any x > 0,

I1(x) ≤ dP
(
‖d(X1, X

′
1)‖∞ ≥

x

2K1,n

)
.
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The last inequality implies that I1(x) = 0 for x > 2K1,n‖d(X1, X
′
1)‖∞.

If the condition (2.6) is satisfied, by the point 4 of Lemma 2.1, then it holds V 2
n = O(n). Thus,

inequality (3.49) implies that for any x > 0,

P (‖Sn‖p ≥ nx) ≤ I1(nxd−1/p) + 2d exp

{
−cp,d

(xn)2

n

}
. (3.53)

The last inequality implies (3.50).
If the condition (2.7) is satisfied, by the point 5 of Lemma 2.1, then we have V 2

n = O(n1+2α) as
n→∞. Thus, inequality (3.49) implies that for any x > 0,

P (‖Sn‖p ≥ nx) ≤ I1(nxd−1/p) + 2d exp

{
−cp,d

(xn)2

n1+2α

}
.

From the last inequality, we get (3.51).
If the condition (2.8) is satisfied, by the point 6 of Lemma 2.1, then we have (3.22). Thus, inequality

(3.49) implies that for any x > 0,

P (‖Sn‖p ≥ nx) ≤



I1(nxd−1/p) + 2d exp

{
−cp,d

(xn)2

n1−2α
,

}
, if 0 ≤ α < 1/2,

I1(nxd−1/p) + 2d exp

{
−cp,d

(xn)2

lnn

}
, if α = 1/2,

I1(nxd−1/p) + 2d exp
{
− cp,d(xn)2

}
, if 1/2 < α ≤ 1.

(3.54)

From (3.54), we obtain the point [iii] of the property. �

3.6. Hoeffding type bound

The next proposition is an application of Corollary 2.3 of Fan et al. [11], which is an extension of
Hoeffding’s inequality for super-martingales.

Proposition 3.7. Assume that there exists a positive constant A1 such that

E
[(
Gε(ε)

)2] ≤ A1 .

Put

V 2
n = 2

n∑
k=2

K2
k,n(τ2

kA1 + ξ2
k) and δn = max{Kk,nτk,Kk,nξk, k = 2, . . . , n}. (3.55)

Then for any x, y > 0,

P
(
‖Sn‖p ≥ d1/px

)
≤ I1(x) + 2dHn

(
x

2(y + 1)δn
,

Vn
(y + 1)δn

)
+ 2dP

(
max

2≤k≤n
Gε(εk) > y

)
, (3.56)

where

Hn(x, v) =

{(
v2

x+ v2

)x+v2 (
n

n− x

)n−x} n
n+v2

1{x≤n} , (3.57)
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with the convention that (+∞)0 = 1 (which applies when x = n). In particular, if

Gε(ε) ≤ T a.s.,

for a positive constant T , then (3.56) implies that for any x > 0,

P
(
‖Sn‖p ≥ d1/px

)
≤ I1(x) + 2dHn

(
x

2(T + 1)δn
,

Vn
(T + 1)δn

)
. (3.58)

Proof. We adapt the Corollary 2.3 of Fan et al. [11] with the truncature level (y + 1)δn. By (3.5), we

obtain |M (i)
k | ≤ δn(Gε(εk) + 1) for k ∈ [2, n] and i ∈ [1, d]. Hence, for any k ∈ [2, n],

E
[
(M

(i)
k )21{M(i)

k ≤yδn}
|Fk−1

]
≤ 2(Kk,nτk)

2E
[(
Gε(ε)

)2]
+ 2(Kk,nξk)

2

≤ 2K2
k,n(τ2

kA1 + ξ2
k).

By Corollary 2.3 of Fan et al. [11], it follows that

P(S(i)
n ≥ x/2) ≤ Hn

(
x

2(y + 1)δn
,

Vn
(y + 1)δn

)
+ P

(
max

2≤k≤n
M

(i)
k ≥ (y + 1)δn

)
≤ Hn

(
x

2(y + 1)δn
,

Vn
(y + 1)δn

)
+ P

(
max

2≤k≤n
Gε(εk) > y

)
. (3.59)

Moreover, the same bound holds for P(−S(i)
n ≥ x/2). Applying (3.59) to (3.4), we obtain the desired

inequality. �

Remark 3.2. Using the Remark 2.1 of Fan et al. [11], we have for any x, v > 0,

Hn(x, v) ≤ B(x, v) :=

(
v2

x+ v2

)x+v2

ex (3.60)

≤ B1(x, v) := exp

{
− x2

2(v2 + 1
3x)

}
. (3.61)

Note that B(x, v) and B1(x, v) are respectively known as Bennett’s and Bernstein’s bounds. Then,
inequality (3.58) also implies the following Bennett’s and Bernstein’s bounds. For any x > 0, we have

P
(
‖Sn‖p ≥ d1/px

)
≤ I1(x) + 2dB

(
x

2(T + 1)δn
,

Vn
(T + 1)δn

)
≤ I1(x) + 2dB1

(
x

2(T + 1)δn
,

Vn
(T + 1)δn

)
.

4. Moment inequalities

4.1. Marcinkiewicz-Zygmund type bound

If the martingale differences (Mi)i≥1 have finite qth moments (q ≥ 2), then we have the following
Marcinkiewicz-Zygmund type inequality (cf. Rio [25]).
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Proposition 4.1. Let q ≥ 2. Assume that there exist two positive constants B1(q) and B2(q) such
that

E
[(
GX1(X1)

)q] ≤ B1(q) and E
[(
Gε(ε)

)q] ≤ B2(q) . (4.1)

Denote

Tn(q) = K2
1,n

(
B1(q)

)2/q
+ (q − 1)22−2/q

n∑
k=2

K2
k,n

(
τ qkB2(q) + ξqk

)2/q
.

Then
E‖Sn‖q ≤ d1/q

√
Tn(q). (4.2)

Proof. Using Theorem 2.1 of Rio [25], we have for any q ≥ 2,

(E|S(i)
n |q)2/q ≤ (E|M (i)

1 |
q)2/q + (q − 1)

n∑
k=2

(E|M (i)
k |

q)2/q.

Again by (3.3), (3.5) and (4.1), we deduce that

(E|S(i)
n |q)2/q ≤

(
E[(K1,nGX1(X1))q]

)2/q
+ (q − 1)

n∑
k=2

(
E[(Kk,n[τkGε(εk) + ξk])

q]
)2/q

≤
(
E[(K1,nGX1(X1))q]

)2/q
+ (q − 1)

n∑
k=2

(
2q−1(Kk,n)qE[(τkGε(εk))

q + ξqk]
)2/q

≤ K2
1,n

(
B1(q)

)2/q
+ (q − 1)22−2/q

n∑
k=2

K2
k,n

(
τ qkB2(q) + ξqk

)2/q
= Tn(q).

Using Jensen’s inequality and the last inequality, we get

E‖Sn‖q = E
( d∑
i=1

|S(i)
n |q

)1/q
≤
(
E

d∑
i=1

|S(i)
n |q

)1/q
=
( d∑
i=1

E|S(i)
n |q

)1/q

≤ d1/q
√
Tn(q) ,

which is the desired inequality. �

4.2. von Bahr-Esseen type bound

When the dominating random variables GX1(X1) and Gε(ε) have a moment of order q ∈ [1, 2], we
have the following von Bahr-Esseen type bound.

Proposition 4.2. Let q ∈ [1, 2]. Assume that

E
[(
GX1(X1)

)q] ≤ A1(q) and E
[(
Gε(ε)

)q] ≤ A2(q) . (4.3)
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Let

Vn(q) = Kq
1,nA1(q) + 2

n∑
k=2

Kq
k,n

(
τ qkA2(q) + ξqk

)
.

Then
E‖Sn‖q ≤

(
d Vn(q)

)1/q
. (4.4)

Proof. By an argument similar to the proof of (3.39), we have

E|S(i)
2,n|

q ≤ E
[(
K1,nGX1(X1)

)q]
+ 22−q

n∑
k=2

Kq
k,nE

[(
τkGε(ε) + ξk

)q]
≤ Kq

1,nE
[(
GX1(X1)

)q]
+ 2q−122−q

n∑
k=2

Kq
k,nE

[(
τkGε(ε))

q + ξqk
]

≤ Kq
1,nA1(q) + 2

n∑
k=2

Kq
k,n

(
τ qkA2(q) + ξqk

)
= Vn(q).

It is easy to see that

E‖Sn‖q = E
( d∑
i=1

|S(i)
n |q

)1/q
≤
(
E

d∑
i=1

|S(i)
n |q

)1/q
=
( d∑
i=1

E|S(i)
n |q

)1/q
≤ (d Vn(q))1/q,

which gives (4.4). �

5. Applications

5.1. Stochastic approximation by averaging

Let us return to the general linear problem of Example 3 in Subsection 1.3. In Subsection 5.1, we
fix some p ∈ [1,∞] and X = Y = Rd equipped with d(x, x′) = δ(x, x′) = ‖x−x′‖p. For linear problem,
the central limit theorems for Xn − x∗ have been well studied by Polyak and Juditsky [20]. In this
subsection, we focus on deviation inequalities for Xn − x∗.

We first consider the case of Example 3 where Ai ≡ A is deterministic. Recall that α ∈ [0, 1),

Ax∗ = B and Xn = Xn−1 −
γ

nα
(AXn−1 + ηn −Bn−1︸ ︷︷ ︸

=εn

).

From the last line, we deduce that

EXn − x∗ = EXn−1 −
γ

nα
A EXn−1 +

γ

nα
B − x∗

= EXn−1 −
γ

nα
A EXn−1 +

γ

nα
Ax∗ − x∗

= (Id −
γ

nα
A)(EXn−1 − x∗)

=
n∏
k=2

(Id −
γ

kα
A)(EX1 − x∗).
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Thus, we have

‖EXn − x∗‖p ≤ ‖EX1 − x∗‖p
n∏
k=2

ρk,

where ρn = 1 − γλ
(p)
min(A)
nα . Using inequality (2.12), we have

∏n
k=2 ρk ≤ exp

{
− γλ

(p)
min(A)

(1−α)2
n−2
nα

}
, which

leads to

‖EXn − x∗‖p ≤ ‖EX1 − x∗‖p exp
{
−
γλ

(p)
min(A)

(1− α)2

n− 2

nα

}
(5.1)

and

‖EXn − x∗‖p ≤
1

n

n∑
k=1

‖EXk − x∗‖p ≤
C0

n
,

where

C0 = ‖EX1 − x∗‖p
(

1 +

∞∑
k=2

exp
{
−
γλ

(p)
min(A)

(1− α)2

k − 2

kα

})
. (5.2)

Taking f(X1, X2, . . . , Xn) = nXn, we can see that (2.1). Clearly, it holds

Xn − x∗ = Xn − EXn + EXn − x∗,

which implies that

‖Xn − x∗‖p ≤ ‖Xn − EXn‖p + ‖EXn − x∗‖p ≤ ‖Xn − EXn‖p +
C0

n
.

Hence, we have

P
(∥∥Xn − x∗

∥∥
p
≥ x

)
≤ P

(∥∥Xn − EXn‖p ≥ x−
C0

n

)
= P

(∥∥f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]
∥∥
p
≥ nx− C0

)
= P

(∥∥Sn∥∥p ≥ nx− C0

)
.

Notice that the condition (2.6) is satisfied in Example 3. Thus, the following qualitative inequalities
are consequences of our deviation inequalities.

• If (3.6) and (3.9) hold, then there exist some positive constants c1,p,d and c2,p,d, such that

lim sup
n→∞

1

n
lnP

(∥∥Xn − x∗
∥∥
p
≥ x

)
≤

−c1,p,d x if x ∈ (1,∞)

−c2,p,dx
2 if x ∈ (0, 1].

(5.3)

This follows from the point [i] in Proposition 3.1.
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• If (3.23) and (3.25) hold for some q ∈ (0, 1), then there exists a positive constant cp,d such that
for any x > 0,

lim sup
n→∞

1

nq
lnP

(∥∥Xn − x∗
∥∥
p
≥ x

)
≤ −cp,d xq. (5.4)

This follows from the point [i] in Proposition 3.2.

• If (3.31) and (3.37) hold for some q ≥ 1, then there exists a positive constant cp,d such that for
any x > 0,

lim sup
n→∞

nq−1P
(∥∥Xn − x∗

∥∥
p
≥ x

)
≤
cp,d
xq

. (5.5)

This follows from the points [i] in Proposition 3.3 (case q ≥ 2) and Proposition 3.4 (case q ∈
[1, 2)).

And for the moment bounds of Sn:

• If (4.1) holds for some q ≥ 2, then, by (4.2) and the point 4 of Lemma 2.1,

E‖Xn − x∗‖q ≤
1

n
E‖Sn‖q +

C0

n
≤
cp,d√
n
. (5.6)

• If (4.3) holds for some q ∈ [1, 2], then, by (4.4) and Vn(q) = O(n),

E‖Xn − x∗‖q ≤ E‖Xn − EXn‖q +
C0

n
≤ 1

n
E‖Sn‖q +

C0

n
≤

cp,d

n1−1/q
. (5.7)

Remark 5.1. Let us make some comments on the performances of uniform averaging Xn, final iterate
Xn and suffix averaging X̂n = 2

n

∑n
i=[n/2]Xi.

1. Clearly, if Xn−x∗ is replaced by Xn−x∗, then inequalities (5.3)-(5.6) hold true, with C0 replaced
by

Cn = n‖EX1 − x∗‖p exp
{
−
λ

(p)
min(A)

(1− α)2

n− 2

nα

}
which is smaller than C0 defined by (5.2) for any n large enough. Hoverer, this does not improve
the convergence rates for the bounds (5.3)-(5.6). Thus uniform averaging Xn and final iterate
Xn have almost the same performance for estimating x∗ in a long time view.

2. When uniform averaging Xn is replaced by suffix averaging X̂n, the inequalities (5.3)-(5.6) re-
main valid.

Let us now focus on the case where Ai is stochastic. Recall that α ∈ [0, 1),

x∗ = arg min
x∈C
‖Ax−B‖2 and Xn = ΠC

[
Xn−1 −

γ

nα
(An−1Xn−1 + ηn −Bn−1)

]
.
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For the sake of simplicity, assume that X1 ∈ C, and that the condition (3.6) is satisfied. Under our
assumptions, with moreover α ∈ [1/2, 1), and assuming that ηn and Bn−1 have moments of order 4,
Theorem 3 of [18] leads to

E‖Xn − x∗‖2 =
C0√
n

for some C0 > 0. Combining this with the point [i] in Proposition 3.1, we obtain for any x > 0,

lim sup
n→∞

1

n
lnP

(
‖Xn − x∗‖2 ≥ x

)
≤ − c2,d

(
x1{x≥1} + x21{0<x<1}

)
, (5.8)

from which we get for any δ ∈ (0, 1),

P

‖Xn − x∗‖2 ≤
C0 +

√
2
c2,d

ln 1
δ

√
n

 ≥ 1− δ

for all n large enough.

5.2. Empirical risk minimization

It has been shown in the past how Bernstein type inequalities allow to control the error of the
empirical risk minimizer, and thus to perform model selection for time series [16, 4, 3, 14, 2, 1]. These
results are available under restrictive assumptions. For example, [4, 3, 1] focus on stationary series.
In [2], nonstationary Markov chains as in (1.1) are considered, under the restriction that ρn ≤ ρ < 1
and τn ≤ η in the conditions (1.2) and (1.3). Our new Bernstein type bound, Proposition 3.1, allows
to extend these results to a more general setting.

The context is as follows. For simplicity, here, X will be a Banach space with norm ‖ · ‖X . Assume
we have a parameter set Θ and a family of functions fn(θ, x) of θ ∈ Θ and x ∈ X , with fn(θ, 0) = 0.
We observe that X1, . . . , Xn satisfy (1.1), with Fn(x, y) = fn(θ0, x) + y for some unknown θ0 ∈ Θ. Of
course, the distributions of X1 and of the εn’s are also unknown.

Remark 5.2. We review here some examples studied in the aforementioned references. In the case
X = Rd, [1] studied functions of the form

fn(θ, x) = θx

where θ is some d×d matrix. Note that in this case, the model does actually not depend on n. On the
other hand, [2] considered a T -periodic version of these functions: for θ = (A1| . . . |AT ) where each At
is a d× d matrix, they used

fn(θ, x) = An(modT )x.

Other examples include nonlinear autoregression with neural networks [4].

Let ` : X → [0,+∞) be a function with `(0) = 0, it is usually refered to as the loss function. We
will measure the performance of a predictor through its risk:

Rn(θ) =
1

n− 1

n∑
k=2

E
[
`
(
Xk − fk(θ,Xk−1)

)]
.
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A classical loss function is simply given by the norm `(x) = ‖x‖X but other examples can be used, for
example [3] used quantile losses in the case X = R. Our objective will be to estimate the minimizer
θ∗ of Rn. Under suitable assumptions, θ∗ = θ0: this is for example the case when X is actually a
Hilbert space, `(x) = ‖x‖2X and the εn are centered with E‖εn‖2X < ∞. However, this has no reason
to be true in general, and it is important to note that if the objective is to minimize the loss of the
predictions, to estimate θ∗ is more important than to estimate θ0. We define the ERM estimator θ̂
(for Empirical Risk Minimizer) by

θ̂ = arg min
θ∈Θ

rn(θ), where rn(θ) =
1

n− 1

n∑
k=2

`
(
Xk − fk(θ,Xk−1)

)
.

Definition 5.1. Define the covering number N (Θ, ε) as the cardinality of the smallest set Θε ⊂ Θ
such that for any θ ∈ Θ, there exists a θε ∈ Θε such that

sup
k∈{2,...,n}

sup
x∈X

‖fk(θ, x)− fk(θε, x)‖X
‖x‖X

≤ ε.

Define the entropy of Θ by H(Θ, ε) = 1 ∨ lnN (Θ, ε).

Examples of computation of H(Θ, ε) for some models can be found in references [2, 1]. In most
classical examples, H(Θ, ε) is roughly in 1∨ [D ln(1 +C/ε)], where D is the dimension of Θ and C > 0
is some constant.

Proposition 5.1. Let X1, . . . , Xn satisfy (1.1), (1.2) and (1.3) with (τn) and (ρn) satisfying (2.7)
with α ∈ (0, 1/2) and d(x, y) = δ(x, y) = ‖x− y‖X (note that ξn ≡ 0 in this case). Assume that (3.6)
is satisfied, and that ` is L-Lipschitz, that is for any (x, y) ∈ X 2,

|`(x)− `(y)| ≤ L‖x− y‖X .

Assume also that all the functions in the model are λ-Lipschitz: for any (x, y) ∈ X 2, any k ∈ N and
any θ ∈ Θ,

‖fk(θ, x)− fk(θ, y)‖X ≤ λ‖x− y‖X ,

and that H(Θ, 1/(Ln)) ≤ D lnn for some constant D. For n large enough, we have for any η ∈ (0, 1),

Rn(θ̂) ≤ min
θ∈Θ

Rn(θ) + C1

√
D lnn

n1−2α
+ C2

1 + ln
(

1
η

)
√
n1−2α

with probability at least 1 − η, where C1 and C2 are constants that depend only on λ, L, and the
constant cp,d in the proof of Proposition 3.1.

In particular, for α = 0, we recover bounds that are similar to the ones in [2, 1].
In the case where several models are available and one doesn’t know which one contains the truth,

the previous result can be used to perform model selection. We refer the reader to [2] for example for
details on this classical construction.
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Proof. Fix θ ∈ Θ and consider the random variable Sn = g(X1, . . . , Xn)− E[g(X1, . . . , Xn)], where

g(x1, . . . , xn) =
1

L(λ+ 1)

n∑
k=2

` (xk − fk(θ, xk−1)) .

Note that

|g(x1, . . . , xn)− g(x1, . . . , x
′
k, . . . , xn)| ≤

|` (xk+1 − fk+1(θ, xk))− ` (xk+1 − fk+1(θ, x′k))|
L(λ+ 1)

+
|` (xk − fk(θ, xk−1))− ` (x′k − fk(θ, xk−1))|

L(λ+ 1)

≤
‖fk+1(θ, xk)− fk+1(θ, x′k)‖X + ‖xk − x′k‖X

λ+ 1

≤ ‖xk − x′k‖X ,

which means that g is separately Lipschitz. So we apply (3.19) in the proof of Proposition 3.1, that
is, for any t ∈ [0, δ−1

n ),

E[exp {±tSn}] ≤ exp

{
t2Vn

2− 2tδn

}
.

Note that Sn = n−1
L(1+λ) (rn(θ)− E[rn(θ)]), and Rn(θ) = E[rn(θ)]. Set s = t(n− 1)/L(1 + λ). We

obtain that, for any s ∈ [0, δ−1
n (n− 1)/L(1 + λ)),

E[exp {±s(rn(θ)−Rn(θ))}] ≤ exp

{
s2(1 + λ)2L2 Vn

n−1

2(n− 1)− 2s(1 + λ)δnL

}
. (5.9)

Fix now ε > 0 and a set Θε ⊂ Θ as in Definition 5.1. For any θ ∈ Θε, we have θ ∈ Θ and so (5.9)
holds. Then, for any s ∈ [0, δ−1

n (n− 1)/L(1 + λ)) and any x > 0, we have

P
(

sup
θ∈Θε

|rn(θ)−Rn(θ)| > x

)
≤
∑
θ∈Θε

P (|rn(θ)−Rn(θ)| > x)

≤
∑
θ∈Θε

E[exp {s|rn(θ)−Rn(θ)| − sx}]

≤ 2N (Θ, ε) exp

{
s2(1 + λ)2L2 Vn

n−1

2(n− 1)− 2s(1 + λ)δnL
− sx

}
. (5.10)

Thanks to the definition of Θε, for any θ ∈ Θ there is a θε such that

sup
i∈{2,...,n}

sup
x∈X

‖fi(θ, x)− fi(θε, x)‖X
‖x‖X

≤ ε.

So

|`(Xk − fk(θε, Xk−1))− `(Xk − fk(θ,Xk−1))| ≤ L‖fk(θε, Xk−1)− fk(θ,Xk−1)‖X ≤ Lε‖Xk−1‖X
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and as a consequence, we obtain

|rn(θ)− rn(θε)| ≤ Lε ·
1

n− 1

n−1∑
k=1

‖Xk‖X (5.11)

and

|Rn(θ)−Rn(θε)| ≤ Lε ·
1

n− 1

n−1∑
k=1

E‖Xk‖X . (5.12)

Using Proposition 3.1 with f(X1, . . . , Xn) =
∑n−1

k=1 ‖Xk‖X , we get for any y > 0 and any u ∈ [0, δ−1
n ),

P
( n−1∑
k=1

‖Xk‖X >
n−1∑
k=1

E‖Xk‖X + y
)
≤ E exp

{
u
( n−1∑
k=1

‖Xk‖X −
n−1∑
k=1

E‖Xk‖X − y
)}

≤ exp

{
u2Vn

2 (1− uδn)
− uy

}
. (5.13)

From now, let us use the short notation zn =
∑n−1

k=1 E‖Xk‖X and consider the “favorable” event

E =

{
n−1∑
k=1

‖Xk‖X ≤ zn + y

}⋂{
sup
θ∈Θε

|rn(θ)−Rn(θ)| ≤ x
}
.

On E , by (5.11) and (5.12), we have

Rn(θ̂) ≤ Rn(θ̂ε) + εL
zn

n− 1
≤ rn(θ̂ε) + x+ εL

zn
n− 1

≤ rn(θ̂) + x+ εL

[
2
zn

n− 1
+

y

n− 1

]
= min

θ∈Θ
rn(θ) + x+ εL

2zn + y

n− 1

≤ min
θ∈Θε

rn(θ) + x+ εL
2zn + y

n− 1

≤ min
θ∈Θε

Rn(θ) + 2x+ εL
2zn + y

n− 1

≤ min
θ∈Θ

Rn(θ) + 2x+ εL
3zn + y

n− 1
.

In particular, the choice ε = 1/(Ln) ensures:

Rn(θ̂) ≤ min
θ∈Θ

Rn(θ) + 2x+
3zn + y

n(n− 1)
. (5.14)

Inequalities (5.10) and (5.13) lead to

P (Ec) ≤ exp

{
u2Vn

2 (1− uδn)
− uy

}
+ 2N (Θ,

1

Ln
) exp

{
s2(1 + λ)2L2 Vn

n−1

2(n− 1)− 2s(1 + λ)δnL
− sx

}
. (5.15)
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As it was explained in the proof of Proposition 3.1, we get δn = O(nα) and Vn = O(n1+2α). So, letting
cp,d be as in the proof of Proposition 3.1, we get

P (Ec) ≤ exp

{
u2cp,dn

1+2α

2 (1− ucp,dnα)
− uy

}
+ 2N (Θ,

1

Ln
) exp

{
s2(1 + λ)2L2cp,dn

2α

2(n− 1)− 2s(1 + λ)cp,dnαL
− sx

}
. (5.16)

Fix η ∈ (0, 1) and put

x =
s(1 + λ)2L2cp,dn

2α

2(n− 1)− 2s(1 + λ)cp,dnαL
+
H(Θ, 1

Ln) + ln
(

4
η

)
s

and y =
ln
(

2
η

)
u +

ucp,dn
1+2α

2(1−ucp,dnα) . Note that, plugging x and y into (5.16), those choices ensure P(Ec) ≤
η/2 + η/2 = η, while (5.14) becomes:

Rn(θ̂) ≤ min
θ∈Θ

Rn(θ) +
s(1 + λ)2L2cp,dn

2α

(n− 1)− 2s(1 + λ)cp,dnαL
+ 2

D ln(n) + ln
(

4
η

)
s

+
3zn

n(n− 1)
+

ln
(

2
η

)
un(n− 1)

+
ucp,dn

1+2α

2(1− ucp,dnα)n(n− 1)
.

The final steps are to choose u ∈ [0, δ−1
n ), s ∈ [0, δ−1

n (n− 1)/L(1 + λ)) and to provide an upper bound
on zn. First, put u = 1/(2cp,dn

α) and

s =
n− 1

(1 + λ)L

√
2D ln(n)

n1+2α
.

Note that we always have u < δ−1
n . Moreover, we have snα = o(n), so for n large enough, the condition

on s is satisfied too. Thus, for n large enough, there are constants C1 and C2 such that

Rn(θ̂) ≤ min
θ∈Θ

Rn(θ) + C1

√
D lnn

n1−2α
+ C2

1 + ln
(

1
η

)
√
n1−2α

+
3zn

n(n− 1)
. (5.17)

Let us now present an upper bound of zn =
∑n−1

k=1 E‖Xk‖X . Recall that E‖X1‖X =
∫
‖x−0‖XPX1(dx) =

GX1(0) and E‖ε‖X =
∫
‖x − 0‖XPε(dx) = Gε(0). Then, by the point 5 of Lemma 2.1 and inequality

(2.12), we have

E‖Xn‖X = E‖fn−1(θ,Xn−1) + εn‖X ≤ E‖fn−1(θ,Xn−1)− fn−1(θ, 0)‖X + E‖εn‖X
≤ ρnE‖Xn−1‖X +Gε(0) ≤ · · · ≤ ρn · · · ρ2E‖X1‖X +K2,nE‖ε‖X

≤ C3n
αGε(0) + exp

{
− (n− 1)ρ

(1− α)2nα

}
GX1(0).

Therefore, it holds
zn ≤ C4n

1+α.
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Applying the last inequality to (5.17), we get

Rn(θ̂) ≤ min
θ∈Θ

Rn(θ) + C1

√
D lnn

n1−2α
+ C2

1 + ln
(

1
η

)
√
n1−2α

+
3C4n

1+α

n(n− 1)

≤ min
θ∈Θ

Rn(θ) + C5

√
D lnn

n1−2α
+ C2

1 + ln
(

1
η

)
√
n1−2α

,

which gives the desired result. �
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