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1. Introduction

This paper is a short survey over some dependence measures useful to deal with for time series analysis. It
may be seen as a simple toolbox to deal with some dependence questions. Indeed to derive statistical bounds
for the validity of procedures one needs more control of the dependence between past and future. The aim
of weak dependence structure is to derive results analogue to those, classical obtained under independence.
As this is generally assumed we mainly consider stationary models and under such assumptions a main
assumption is ergodicity which entails the Strong Law of Large Numbers. The latter result may be regarded
as the basic consistency result in statistics which proves the convergence of the basic empirical estimate for
the mean

- 1
X:E(X1+"'+Xn)7

for a given stationary time series (X;):ez. Section 2 is devoted to a rapid tour on some dependence conditions
suitable for time series analysis. The consistency of such estimates is considered through moment and prob-
ability inequalities in Section 3. A nice reference is the short monograph [35] which adresses several issues
of non parametric estimation and [13] provides minimax viewpoints based on wavelets shrinkage. A related
question is to know more precisely with quality of such estimates and Section 4 makes a rapid tour of Central
Limit results necessary to deal to get asymptotic confidence bounds. The Donsker variants of the CLT which
describe the behaviour of partial sums processes are useful for change point analysis. A last section 5 deals
with functional central limit theorems usually necessary to deal with general contrast estimation techniques
such as mean squares techniques, QMLE (quasi maximum likelihood) or Whittle estimates (periodogram
based). Those techniques are mathematically heavy and we describe them in details to make this section
useful for practitioners. Such results allow to deal with many types of estimates and the reference [9] gives
a tour on such questions, see also [2], [1], and [14] for various applications.

Our idea is not to provide a reader with a complete survey but only to give some few hints of how to deal
with dependence questions in the statistical context. This is why we restrained to some few of items and we
insist a bit more on some complex issues.

2. Some weak dependence conditions
2.1. Mixing conditions

A natural idea to deal with dependence in a process is to assume that two events occurring far from each
other in the process are almost independent. For a process (X;):ecz this roughly consist in assuming that,
for fixed ¢, the behavior of X; influence less and less X;,, as long as r increase. This influence is measured
in terms of mixing coefficients, of which the most famous are detailed in this section. The mixing conditions
introduced by Rosenblatt [34] are weak dependence conditions stated in terms of ¢ algebra.

Definition 2.1. Let (2,4, P) be a probability space. A map ¢ : Ax A — [0, +0o0] is called mixing coefficient
if for every independent o-algebra U, V C A, ¢ (U, V) = 0.
Among all possible mixing coefficients, the following five are commonly used.

e Strong mixing coefficient [34]

al, V)= sup [PUNV)-PO)PV)|.
veu,vev

e Absolute regularity coefficient [39]

I J
1
BU,V) = 5 sup sup g g [P(U; NV;) —P(U;)P(V;)|,
LJEN (Vi)icj<s€V7i75
WUi1<i<reul,
1
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where (U;)1<i<r € U' and (V})1<;<s € V7 are partitions of (2. This coefficient can be stated in a more
compact way as

BU,V) = |Pugy — Pu @ Pyrv.

e Maximal correlation coefficient [25]
p(U,V) = sup{|corr(X,Y)|: X e L2(U), Y e L*(V)}.

e Uniform mixing coefficient [24]

o P(UNV) _
where S = {(U,V) €U x V: P(U) > 0}.
e t-mixing coefficient [6]
P(UNV)
Uuv)= s — 1],
o= s | .

where H={(U,V)eU xV: P(U) > 0,P(V) > 0}.

The strong mixing coefficient for a random process X = (X;);cz is defined by, for r > 0,

a(r) = ax(r) = 21615 a(o(Xe,t <i),0(Xe,t >i+7)). (2)

The random process (X;)¢ez is called a-mixing if a(r) — 0. Accordingly, we shall use below the notations
r—00

B(r), p(r), ¢(r) and ¥ (r), which mean sequences defined by (2) with « replaced by 3, p, ¢ and v, respectively.

Those conditions are related to the following diagram

p-Mmixing

Y-mizing = ¢-mixing = B-mixing

= a-mixing.

The relationships between those mixing conditions are studied together with examples of models in [14]
and converse implications always fail to hold. Moreover examples of such mixing models may be found in
the same reference.

2.2. Weak dependence conditions

Even if the mixing coefficient previously introduced are useful to derive asymptotic results for dependent
sequences, in practice it is sometime difficult to establish that a given model satisfies a mixing condition.
That is why a more tractable weak dependence conditions were introduced. The first family of conditions
(Definitions 2.2 - 2.6) also relies on the fact that the dependence between the "past" and the "future" of
a time series decreases with the distance. However, it is focused on covariance between past and future
rather than corresponding c-algebra. Whereas the second family (Definitions 2.7 and 2.8) is concerned by
the difference between the distribution of the future and the distribution of the future given the past.

Definition 2.2. ([15]) The sequence (X¢)tez is (Yo, F, G, €.)-weakly dependent if there exists a sequence
€ = (€ )ren converging to zero at infinity and a function g with arguments (f,g) € F x G, f : R* — R,
g : RY — R such that for any (i1,...,4,) and (j1,...,7,) with i3 <.+ <4y, < j3 <+ <j, and j; — i, > 7,
one has

|COU (f(XH? RRE) Xiu)vg(lev s Vva)) | < wo(fvg)eT'

In this definition, it is required that any function f € F UG is a form from a finite dimensional vector
space. Is that, there exists dy € N* such f : R?% — R. Note that the dimension dy depend on f and two
functions on F may be defined on vector spaces with different dimensions. Note also that F and G are classes
of functions without any structure assumptions.

A natural way to describe different types of weak dependence is specifying such classes F and G but also
the application .

First consider that F = G be the space of bounded Lipschitz functions with uniform norm bounded by

one, namely

F=AY:={ferL>: Liph) <1, ||flle <1}.

imsart-generic ver. 2020/08/06 file: review-paper-BDF-15.tex date: January 6, 2022



/ 3
This class is used together with function 1)y, defined on (AM)2, such that

Yo(f,9) == v(dy,dg)u(Lip(f), Lip(g))

with v and u respectively defined on N? and Rf_. We will see in this section that the choice of g is of
particular interest.

Definition 2.3 (n-dependence condition). Consider the function

Y1(f, 9) = dyLip(f) + dgLip(g).

The random process (X, )nez is 7-weakly dependent (or just n-dependent) if it is (1, A, A €,.)-weakly
dependent. In this case, we denote the sequence €, by 7.

Definition 2.4 (k-dependence condition). Consider the function

V2(f,9) = dgdgLip(f)Lip(g).

The random process (X, )nez is k-weakly dependent (or just x-dependent) if it is (o, A(D, A €, )-weakly
dependent. In this case, we denote the sequence €, by k..

Those definitions can be extended to for any integer j > 2 setting

;(f.9) = (dsLip(f) + dyLip(g))’ -

Secondly we may consider the classes of functions F of bounded functions with respect to the uniform
norm and G = AM or the class of 1-bounded Lipschitz functions.

Definition 2.5 (6-dependence condition). Consider the function

V' (f,9) = dgLip(g).
The random process (X, )ncz is -weakly dependent (or just f-dependent) if it is (¢, F, G, €, )-weakly de-

pendent. In this case, we denote the sequence ¢, by 6,..

This definition is a particular case of a more general definition holding in a causal case. We can refer to
section 2.3 of [9] for more details about the general definition of the coefficient 6.
In this framework, we can define a notion of weak convergence which include the cases n and &.

Definition 2.6 (A-dependence conditions). Consider the function

¥(f,9) = dgdgLip(f)Lip(g) + dyLip(f) + dgLip(g).
The random process (X, )nez is A-weakly dependent (or just A-dependent) if it is (¢, A, AD) ¢, )-weakly
dependent. In this case, we denote the sequence ¢, by A,.
The 7-dependence coeflicients were introduced in Dedecker and Prieur [11].

Definition 2.7 (7-dependence conditions). Let (£2,.4,P) a probability space and M a o-algebra of A. We
define the coefficient 7,, for d > 1 and a random variable X, by:

S (/g(x)lP’XM(dw)—/g(x)PX(d$)>H )

where Px and Py o denote respectively the distribution of X and the conditional distribution of X given
M. In practice we consider the o-algebras M; = o (X, j <1i) in order to introduce the coefficient 7, ;(r)
define by

Tp(M, X) =

1
_ h M, (X0 X))
Tp,ke(T) fgla;(k I i+T§j$111<I)~AA,<lep ( (X i)
We also recall Wu [40] and Wu and Shao [41]’s dependence structures.
Definition 2.8 (Physical dependence). Let (g;);cz be i.i.d. random variables, and denote F; = (...,&;-1,&;).
Let (€});ez be an independent copy of (¢;);cz and F} = (F_1,€(,€1, ..., €;) the coupled version of F;. Assume

Xi = g(...,Ei,hEi) S Lp, P > 0, (3)
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where g is a measurable function such that X; is well-defined. Define
Op(i) = | X; — X{[l, and Omp = Z Op (i),

where X! = g(F]). Denote F} = (...,&}_1,¢€}). Assume X; € LP,p > 2, and define
Ap(n) = Sup HXZ - g(]:i/—n75i—n+1a "'aEi)H}N

where g is a measurable function such that X; is well-defined.

The relationships between those mixing conditions are studied together with examples of models in [9] and
the relationships between all those coefficients are studied in details in this monograph. Moreover examples
of weakly dependent models may be found in the same reference.

3. Moment and probability inequalities

We present some moment and probability inequalities for weak dependence sequences. In this section, let
(X.)iez be a sequence of centered real valued random variables, and let S, = Z?:l X;,n > 1, be the partial
sum of (Xi>i€Z~

Denote 7(x) = supy>; 71.5(|x]), where |z] denote the greatest integer lower than x. Assume that there
exist three positive constants v, a and ¢ such that

7(z) <aexp{—cz"}, x>1, (4)
and that, for two constants v2 € (0, 00] and b € (0, 00), the following tail condition is satisfied:
supP(| X| > ¢) < exp{1 — (¢/b)"?}, t>0. (5)
k>0
Notice that when 75 = 00, (Xj)r>0 are uniformly bounded. Suppose furthermore that v < 1 and it is defined
by

Uy =1/m1+1/7. (6)

Merlevéde, Peligrad and Rio [27] have established the following Bernstein type inequality for 7-mixing
sequences.

Theorem 3.1 ([27]). Let
V = sup sup (var(on (X)) +2 3 eov(ionr (X0), ou (X)),
M>0 i>0 >0

where ppr(x) = (x A M)V (—=M). Assume the conditions (4), (5) and (6). Then V is finite and, for any
n > 4, there exist positive constants Cy,Co,Cs and Cy depending only on c,v and v, such that it holds for
any x > 0,

z7 x?
]P<1?j12n|5j| > x) < nexp{ — C,l} —|—exp{ — M}
22 27(1=7)
+ exp{ - C’;;neXp{Czl(logx)’Y}}’
Liu, Xiao and Wu [26] obtained the following Rosenthal type inequality for physical dependence random

variables.

Theorem 3.2 ([26]). Let X; be defined by (3). Assume E|X;1|P < co,p > 2. Then

n

87p . S L 29p
| max S;l, < nm[ p292(ﬂ)+3(p—1)1/2 > 0,0) + ||X1|2}

1<5<
<j<n = P log p

87p(p — Y2 N 4o . 29p
ol [H S,y + 22 x|

log p = logp

In particular, it tmplies that

s Sl < ent 2O+ [Xall) +ent’?| S minGin)228,) + 1) |
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Denote by G,4(y) the following Gaussian-like tail function
Gqaly) =D exp{—j%’}, >0, ¢>0.
j=1

Note that sup Gq(y)ey2 = G4(1)e. Hence if y > 1,G,(y) < Gq(l)elf?f. With the notation of G4(y), Liu,
y=>1

Xiao and Wu [26] proved the following Nagaev type inequalities.
Theorem 3.3 ([26]). Let X; be defined by (3).
(1) Assume that

vi= Zuj < 0, where  u; = (jp/Q—lgg(j))l/(pH).
j=1
Then for any x > 0,
P( sup \S»|>;r) < ¢ Ii(vp+1_%”)(\vj +.4j§iexp Gt
1<j<n - P Hip nv2603(j)
cpr?
+ Zexp{ S }
nf X113

(ii) Assume that O = O(m™),a > 1/2 — 1/p. Then there exist positive constants Cy,C2 such that for
any x > 0,

j=1

Chx )

Cl(")p n
P( sup |Sj|ZCL‘) < %++4G172/p(ﬁ7®0
P

1<j<n

(iii) IfOmp =0(m %), a <1/2—1/p, then for any = > 0,

) < 019871)7110(1/2_@) Cox )

P( sup [5;| >« P +4Gp-2)/(p+1) (n(Qp—l—Qozp)/(Q-‘er)@O,p

1<j<n
Let p € [1,2]. For any x > 1, let r,, > 0 be the solution to the equation

2 .
_ v(p) 7;1;} _J 2p+1 ifpe (1,
r=(14+ry) exp{ 5 ) where v(p) { 6p—3 ifpe (s

One says that U, satisfies Cramér moderate deviations (CMD) with rate ¢,, and exponent p > 0 if, for every
a > 0, there exists a constant C' = Cj p,, does not depend on x or n, such that

’P(Un > ry)

X 1
TWn=2Te) gl o(Eym and
1—®(ry) ‘CQ) a

n

-~ = =7 _ < —\1+2p
e Bl

hold uniformly in z € [1, at,], where ®(x) is the standard normal distribution function. Wu and Zhao [42]
showed that physical dependence sequences satisfy CMD.

Theorem 3.4 (|42]). Let X; be defined by (3). Assume Xo € L*”,p € (1,2] and O¢ o, < co. Then the limit
0 =limp o0 ||Snll2/v/n exists and is finite. Assume that o > 0, and that there exist 0 < a < 3 < a+ % such
that the following conditions hold:

Oy =0(m™) and 3 63,(i) = O(m™>).

Letn = aB/(1+a). Then S,/(ov/n) satisfies CMD with rate t,, = nP~1, ort, = nP~1/log’ n, ort, = nP",
undern >1—1/p, orn=1—1/p, orn < 1—1/p, respectively, and exponent p.

Set a € (0,1). Let m = |n®] and k = |[n/(2m)]. Denote

l+s

Sl,s = Z Xz

i=l+1
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the block sums of X; for [ +1 <4 <1+ s, and Y = Sy(j—1),m- Set
k k
Sp=>Y; and  [S7 =) (V)"
j=1 j=1
Denote the interlacing self-normalized sums as follows
Wy = S¢Sk (7)

The following self-normalized Cramér moderate deviation result holds under a geometric moment contraction
condition.

Theorem 3.5 ([7]). Let X; be defined by (3). Assume that E|X;|? < ¢ for all i and a constant q € (2, 3]
and that

]E?Sl%s > cgs for alll >0 and s > 1.
Assume also that there exist three positive constants ay,as and T € (0,1] such that
Ay(n) < are™®m,

For any 0 < a < 1, then there exists a positive constant C, depending only on ¢1/ca,a1,a2,,q and T such

that
(14 )1
=C (nu—a)(qm—l) (8)

for all 0 < < ¢y min(n(1=®)/2 no7/2), In particular, it implies that

P(W?S > z)

e "8 @)

P(W5 = x)

iy = e 9)

forall0 < x = o(min(n(l_a)(q_z)/2q,nO‘T/Q)).
We also have the following self-normalized Cramér moderate deviations for S-mixing sequences.

Theorem 3.6 ([7]). Assume that B|X;|**" < 21 for all i and a constant v € (0,1], and that
]ES?,S 26%3 foralll >0 and s > 1.
Assume also that there exist three positive constants ay,as and T € (0, 1] such that
B(n) < aje=®"".
Then for any positive constant p < v,

P(W? > x)

1
1 "0 (x)

(1 _1_1:)2-"-0
< Cp <n(1(¥)p/2 (10)

uniform for 0 < z = o(min{n(1=*)/2 no7/2}) where cp depends only on co, c1,p,a1,a2 and T. In particular,
it implies that
P(W3 > z)
1—®(x)

uniformly for 0 < x = o(min{n(1=®)r/(4+2p) pot/21),

=1+o0(1) (11)

For 1-mixing sequences, we have the following self-normalized Cramér moderate deviations.

Theorem 3.7 ([21]). Assume that there exists a constant p € (0, 1] such that
E|S, |2+ < s /2634 (12)
and that

]ESI%S > cfs foralll >0 and s > 1. (13)
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Assume also that for some o € (0,1), it holds
P(n) = O(nf(Hp)/o‘), n — oo.
Then for any p € (0,1], the following equality holds

P(W? > z)

T8 Sl o(1) (14)

uniformly for 0 < x = o(n(1=®)r/(4+20)),

Similar results for stationary or ¢-mixing sequences, we refer to Fan [20].

4. Central limit theorems

In this section, we consider a random process (X, ),ez with finite expectation. We set, for all n € N,

n

S =) (X - EXy),

i=1

and, for all ¢t € [0,1],
| Lo

W (t) = EZ(Xi —EX;),

where |t] denote the greatest integer lower than ¢t. The aim of this section is to summarize some conditions
under which the asymptotic behaviors of n=/25,, and (W, (¢))sc0,1] are known.

4.1. Central limit theorems for sequences

This section is devoted to results about asymptotic normality of n='/2S,. Since we have introduce two
type of dependence measures, mixing and weak dependence, the additional assumptions differ depending on
which kind of dependence structure is fulfilled. Nevertheless, the general idea is, in each case the series of
corresponding coefficients should converge. The first result of asymptotic normality relies on a hypothesis
about the sum of covariances.

Theorem 4.1 ([33]). Suppose (Xn)nen be stationary and ergodic random variables with finite second order
moment. If for Fo = o(X;, 1 <0) and n € N,

> “cov (B(Xn|Fo), Xi) < 00

k>0
and

lim su ’ cov (E(X,|Fo), Xk) | =0,
"_’+°°K>%k>zx (E(Xn|F0), Xk)

then n~tvar(S,) converges to a finite 0* > 0 and n~=1/28, converges in distribution to a normal distribution

N(0,0?%).

The extra assumption due to dependence in this theorem may be interpreted as a condition of summability
about coefficients €, in 2.2. In the case of mixing processes we can weaken this condition.

Theorem 4.2 ([33, 16]). Suppose (X,)nen be stationary and ergodic random variables with finite second
order moment. If the process (X, )nen fulfills one of the following two conditions, then n~tvar(S,) converges
to a finite 02 > 0 and n='/28,, converges in distribution to a normal distribution N(0,0?).

1. The process (Xp)nen is a-mizing and satisfies

| e tiuPau < .
where Qo(u) = inf{t : P(|Xo| >t) <u} and

a '(u) =inf{n € N : sup a(Fp, Xpyn) < u}.
keZ

imsart-generic ver. 2020/08/06 file: review-paper-BDF-15.tex date: January 6, 2022



/ 8

2. The sequence (Xp)nen has a common distribution and is S-mizing (resp a-mizing) with mizing coeffi-
cients satisfying

Zﬁ(n) < oo | resp Za(n) < oo

n>1 n>1

There exist an extension of this theorem, when it is stated in terms of condition 2, to the case of trans-
formation of the sequence (X, )nen, we refer to [33] for more details.

4.2. Donsker-type theorems

Donsker’s theorem always involve Wiener’s measure on [0, 1] denoted by W and the Skorohod space D([0, 1])
which is roughly the space of cadlag functions. We refer to the monography of Billingsley [5] for those clas-
sical definitions.

Theorem 4.3 ([33]). If the real valued strictly stationary process (Xp)nen Satisfies the assumption 1 of
Theorem 4.2, then n~*var(S,) — 0% > 0 and
W, — oW in D(]0,1]).
n—-+oo

Apart of mixing conditions, in several different types of weak convergence it is possible to describe explicitly
the rate of convergence required for (¢, )ren in order to have Donsker’s theorems.

Theorem 4.4 ([15]). Consider the real valued stationary process (X, )nen with zero mean such that
E|Xo|™ < +00  for a real number m > 2.

Then
o= Zcov(Xo,Xt) < 00
tez
and it holds
W, — oW in D([0,1)),

n—-+4oo

if one of the following assumptions is fulfilled:

e k-dependence : The process is k-weakly dependent and satisfies k, = O(r—"),r — oo, for some
k>24+1/(m—2).

e \-dependence : The process is A-weakly dependent and satisfies A\, = O(r=*),r — oo, for some
A>4+2/(m—2).

e O-dependence : The process is 0-weakly dependent and satisfies 6, = O(r=%),r — oo, for some
0>14+1/(m—2).

This theorem is a concatenation of the results of Dedecker and Doukhan [8] (for 6-dependence) and
Doukhan and Wintenberger [19] (for x and A-dependence).

4.3. Triangular arrays

In the context or triangular schemes conditions for asymptotic normality are stated in terms close to the
notion of #-weak dependence and rely on Lindeberg’s method. Triangular arrays appear as natural issues in
functional estimation which require windowing or thresholding as mentioned in [35].

Theorem 4.5 ([29]). Suppose that (X, k)1<k<n, 7 € N, is a triangular scheme of stationary random vari-
ables with EX,, x = 0 and Y_;_ EX?2 . < C for all n, k and some C < co. Furthermore, we assume that

n

D E (X2 1(x, u5e}) — 0

n—00
k=1

holds for all ¢ > 0 and that
var(Xp1+--+Xp0n) — o2 € [0,00).

n—oo

For all n large enough, there exists a monotonously nonincreasing and summable sequence (y(r))ren such
that, for all indices s1 < -+ < 8y < Sy + 1 =11 < tg, the following upper bounds for covariances hold true:
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e For all measurable and square integrable function g : R* — R,

1
|cov (Q(Xn,sl Yo Xn,su)v Xn)) | < %\/E(Q%Xnm sy Xns, ))Y(r).

e For all measurable and bounded functions g : R* — R,

1
lcov (9(Xnsrs- - Xnsi)s Xt Xnta)) [ < llgllooy (7).

Then

n

ZXn’k i> N(070'2),

n— o0

k=1

where —% stands for convergence in distribution.

Theorem 4.5 can be extended to the case where X, ,, € R? with d > 1. Such result can be found in [4].
For triangular arrays, we also have the following result similar to Theorem 4.5.

Theorem 4.6 (|28]). Suppose that (X k)1<k<n, 7 € N, is a triangular scheme of stationary random vari-
ables with EX,, j, =0 and >_;_, IEZXELJc < C for all n, k and some C < co. Furthermore, assume that

n

Y E (XD ilx,upsey) =2 0
k=1
holds for all € > 0 and that
var(Xp1 4+ Xpn) — o? € [0,00).

For all n large enough, there exists a summable sequence (y(r))ren such that, for all indices s1 < -+ <
Su < Sy + 1 = t1 < to, the following upper bounds for covariances hold true: for all measurable functions
g:R* - R,

|cov (9(Xnyss - s Xnsi) Xnss Xn)) | < (BXG ,, +EXZ +n71)y(r)

and
ICOU (g(Xn,61 yeee 7Xn)5u)7 Xn,hxn,tz)) ‘ < (EXZ,tl + EXTZL,tQ + n_l) 'Y(T)-

Then .
S Xop —5 N(0,0%).

n—oo
k=1

5. Functional central limit theorems

This section is concerned with a weak convergence of empirical measures. The empirical measure of a sample
X4,..., X, of random variables, taken their values in a space X, is defined as

1 n
P,=—-) ix,.
: n; X,
Considering a class of functions F we defined the F-indexed empirical process G,, by

feF=Guf =vn(P,f —Pf),
where P is the common distribution of the (X;)? ; and Qf denote, for any measure Q, f + fdQ. A functional

central limit theorem can be seen as a uniform version of the central limit theorem G,, f 4N (0,P(f—Pf)?).
In that sense we investigated in this section, under which conditions there exists a Gaussian process G such
that
Gn %G, 1°(F).

Here, [*°(F) denotes the space of F-indexed process endowed with uniform metric. Considering a stationary
sequence (X;)ez, the candidate of the limit Gaussian process is entirely determined by finite dimensional
convergences, also known as fi-di convergences. Indeed, for any p € N* and any vector (fi,..., fp) C F we
have

(Gufis- -, Gufy) B N(0,%), (15)

where ¥; ; := IP(( fi—=Pf)(f; —P fJ)) Consequently, under weak dependence assumption for which previous
convergences holds, only the question of the existence of a such Gaussian limit remains. The following
theorem gives a baseline of a general strategy to solve this problem. In the two following subsections, we
present results adapted for particular type of classes F.
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Lemma 5.1. Let p be a metric on F. Assume the following two conditions:

1. The convergence (15) hold for any p € N*.
2. For every e >0 and n > 0, there exists § > 0 such that

limsup P* sup |Gn(f) —Gun(g)|>n | <e.
n—00 (f,9)€F?
P(fl9)<s

Then there exists a tight Gaussian process G with margins given by (15) such that G, 4G in [°(F).
Conversely, if G, 4G inl® (F) where G is a tight Gaussian process then conditions 1 and 2 are fulfilled.

In Lemma 5.1, the notation P* denotes the outer probability, which is the probability of the lowest
measurable set containing our set of interest. This precaution is necessary since, in the empirical processes
theory, non measurable map might easily appears (see e.g. Example 3 p. 48 in [37]). Note that, even if those
details are hidden here, the weak convergence is defined in terms of outer expectation to avoid problems of
measurability [23]. The condition 2 is commonly named asymptotic p-equicontinuity and is closely related
with the asymptotic tightness of G. For the i.i.d. case, we refer to the monographs of Van der Vaart and
Wellner [37] or Pollard [31].

5.1. Empirical cumulative distribution functions

We first consider the case, may be the more natural, of empirical cumulative distribution function (cdf) of
real valued random variable. This correspond to the case where the class F is the class of indicators of the
half real line, that is

F = {ﬂ{.gw}, x e R}

This definition can be easily extended to the case of random variable with value in R? considering the class
of indicators of quadrant understanding "<" components wise.

For the class of indicators, the condition 2 of Lemma 5.1 is easy to check, this leads functional CLT which
can be clearly stated.

The next theorem presents some functional CLTs for univariate cdf.

Theorem 5.2 ([33, 36, 18]). Let (Xi)icz be a stationary sequence of real random variables with common
continuous cumulative distribution function F'. There exists a tight Gaussian process G such that

G, %G, inl®R),
if one of the following assertion are fulfilled:
1. The sequence (a(r))r>0 of strong mizing coefficients satisfies
a(r)<er™™, witha>1andc>1.

2. The sequence (p(1))r>0 of mazimal correlation coefficients satisfies
oo
Zp(2”) < 00.
n=1

3. The sequence (Xi)icz is n-weakly dependent with dependence coefficients satisfying
Ny = O(?”_15/2_V), with v > 0.
4. The sequence (Xi)iez is k-weakly with dependence coefficients satisfying
Kkr =0 (1*57”) ,  with v > 0.
Under a and S-mixing conditions, we have the following functional CLT for multivariate cdf.

Theorem 5.3 ([33, 3|). Let (X;)iez be a stationary sequence of random variables with values in RY. We
assume that the univariate cdf of the margins are continuous. There exists a tight Gaussian process G such
that

Gn %G, inl®[RY,

if one of the following assertion is fulfilled:
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1. The sequence (a(r))r>0 of strong mizing coefficients satisfies

alr) <cr™®, witha>1andc> 1.

2. The sequence (B(r))r>0 of absolute regularity coefficients satisfies

In order to derive a multivariate central limit theorem, it is convenient to introduce a particular case
of the coefficient 7, which is more adapted to deal with empirical processes. Consider, for p € [1, 0], the
coefficient

Bp(j»1v)()::

b

sw ([ BgnstePria(an) - [ foopsa)

(t)is ERD = =t ,

where gy, i = L{z<¢,y — P(X; < t;). We define quantities Bp’k(r) in the same way as Definition 2.7.
The following theorem gives a functional CLT for multivariate cdf under weak dependence.

Theorem 5.4 ([12]). Let (X;):ez be a stationary sequence of random variables taking their values on RY.
There exists a tight Gaussian process G such that

Gn %G, inl®[RY,

if one of the following assertion are fulfilled:

1. There exists e € (0,1] and p' > d(2 + €)/(2¢) such that Ba (r) = O(r—1¢).
2. There exists € > 0 such that

o ~
Zr521d+5 (r) < oo.
r=1

3. There exists ¢ > 0 such that 32700(7:) = O(r179).
4. There exists € > 0 such that 52)1(’[") = O(r*Qd*E)'
5. Each component of X1 has a bounded density and there exists € > 0 such that T3 o0 (r) = O(r=27¢).
6. Each component of X1 has a bounded density and there exists € > 0 such that 72 1(r) = O(r=44-¢).

Note that the conditions in this theorem are linked following the diagrams 5 =3 =1 and 6 = 4 = 2.

5.2. Classes of functions with finite entropy

The aim of this section is to pick out conditions on the class F under which the point 2) of Lemma 5.1
is fulfilled. Since this condition is concerned in equicontinuity, we can investigate from the side of class of
regular functions. Following this way, if we take F as a ball in the space of Lipschitz square integrable
functions endowed with a suitable metric, then Lemma 5.1 holds under assumption of sumability of strong
mixing coefficients. We refer to section 8.2 in [33] to the construction of such balls and more specially to
Theorem 8.1 to the result.

However, the fact that a class F, fulfilling the equicontinuity conditions, is related to its "size". The size is
defined in term of entropy with brackets (also call bracket entropy or bracketing number) or metric entropy
number.

5.2.1. Bracketting entropy numbers

Definition 5.1. Consider H a vector space of functions and F C H.

1. Let f, g € F, such that f < g (pointwise). We define the interval of functions or "brackets" between
f and g, denoted by [f, g], the set
{heM: f<h<g}

When F is endowed by a distance d, d(f, g) is the diameter of [f, g].
2. The class F is said totally bounded with brackets if for every § > 0, there exists a finite set S(J) of
brackets with diameter at most ¢ such that for all f € F, there exists [h, g] € S(0) such that f € [h, g].
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3. We define the bracketing number of F as the lowest cardinal of sets S(§). This bracketing number is
denoted N (6, F).
4. The entropy (with brackets) number of F is defined by

H[ ]((5,}—, d) = log (max(./\/'[ ]((S, ]:),2)) .

Note that bracketing number and entropy with brackets both depend on the diameter § and on the metric
on F.

For i.i.d. sequence with common distribution P, when F C L?(P), the condition

1
/0 VHp (@, FL|l.]J2)de < oo

is sufficient so that the F—indexed empirical process satisfies a functional central limit theorem. See [30].
However this condition can’t be used as well in a dependent setting. For (X} )rez stationary [-mixing
sequence we introduce a weighted version of the Euclidean norm:

1fll2,8 = \//0 A= wUF (w)d(w),

where 57! is the inverse function of r € N ~ §(r) for (8(r)),en the sequence of B-mixing coefficients and
Uy is the inverse function of ¢ — P(| f(Xo)| > t). We denote by L*#(P) the space of functions for which the
norm ||.||2,5 is finite.

Theorem 5.5 ([17]). Let (Xj)rez be stationary S-mizing sequence with common distribution P such that

Zﬁ(r) < 00.

r>0

If F ¢ L*B(P) fulfills

1
| Vi@ F s < o (16)

then G, 5 G in [ (F).

The condition (16) is not that easy to be checked. Even the class of quadrant do not fulfill this condition.
To avoid this issue, the idea is to use the maximal coupling of Goldstein [22] to built a suitable measure for
which F fulfills the equicontinuity condition with the unweighted norms of L? or L.

Theorem 5.6. Let (Xy)rez be a stationary B-mizing sequence with common distribution P such that
Zﬁ(r) < 0.
r>0

Let Q be a positive measure built by mazimal coupling and F C L*(Q) a class of functions taking their values
n [—1,1]. If F is totally bounded in L'(Q) and

1
/O VHO @ FL ) da < oo,

then G, 5 G in [ (F).

The measure Q exists and is positive when the coefficients 3(r) are summable and its construction is
explicit. One can find this construction in the monography of Rio [33] p. 112.

Dedecker and Louichi [15] established the counterpart of Theorem 5.6 in terms of ¢-mixing. We recall
that those mixing coefficients are defined for r € N* as

d)k(’f‘) = sup ¢(U(Xza 1 < O)va(XiU"-ink))'

r<ip<---<ig

Theorem 5.7 (|15]). Let (X;)icz be a stationary sequence with common distribution P and F C L*(P).
Then G, 4G in [°(F) if one of the following assumptions is fulfilled.

imsart-generic ver. 2020/08/06 file: review-paper-BDF-15.tex date: January 6, 2022



o The sequence (X,;)icz is ¢-mizing such that

1
> kea(k) <o and / VH (@, FL || 4)de < oo
k>0 0

o The sequence (X;)icz is ¢-mizing such that ¢2(k) = O(k~°) for some b € (1,2) and

1
/0 \/H[ ](Z‘,]:, ||.H2b/(b,1))dac < 0.

5.2.2. Metric entropy numbers

Definition 5.2. Let F be a class of functions endowed by a seminorm p and a real € > 0. The covering
number N(e, F,p) is a minimal number of balls of radius € needed to cover F. We so define the metric
entropy number as

H(e, F,p) =log(N (e, F,p)).

In the i.i.d. case this approach is often preferred since the metric entropy number with respect to the
uniform metric can be easily controlled for the classes of Vapnik-Chervonenkis [38]. But the consideration
of those classes is not relevant in the present dependent case and many references restrict to classes of
BV -functions.

A real function h is said to be a BV-function if there exists a finite signed measure dh such that,
h(z) = h(0) + dh([0,z)) if z > 0 and h(x) = h(0) — dh([z,0)) if z < 0. Following the Hahn-Jordan
decomposition, there exist a unique couple (dhy,dh_) of (positive) measures such that dh = dhy — dh_.
We so define the norm ||dh|| = dhi(R) + dh_(R). Moreover we said that h is BV; if his BV and ||dh|| < 1.
Note that the map h +— |h|, = ||dh|| defines a seminorm over any class of BV functions.

In order to derive central limit theorem it is convenient to set ¢-mixing coeflicient in terms of BV}
functions. For X a real valued random variable of distribution Px and M a g-algebra, Dedecker and Prieur
[12] showed that

(M, X) = | sup
feBVy

/ F ()P pa(dz) — / f(@)Py (dz)

1

Others mixing coefficients can be expressed in the same way, we refer to [12] for proofs and comparison
relations between those coefficients. We further define, for a positive integer k, the coefficients

o(k) = sup O(0(Xj,J <)y Xpti)-

Theorem 5.8. Let (X¢)iez be a stationary and ergodic sequence of real-valued random variables and F a
class of BV functions. If we have

00 1
> ¢(k) < 0o and / VH(e, F,|.],)de < oo,
k=1 0

then
Gn %G inl®(F).

Note that a class of convex Lipschitz functions always satisfies the metric entropy condition.

5.2.3. The Sobolev balls

In this example, we consider a probability space (Q, A,P) and T : Q —  bimeasurable which preserve P.
Consider the sequence (Xj)x>o defined as Xj, = X o T* and the filtration My, = T*(M,) with Mg a sub-
o-algebra of A. Moreover, we denote by Z the o-algebra of all T-invariant sets. In this framework, Merlevéde
and Dedecker [10] considered the special case of the class of functions indexed by the general Sobolev balls.
They see F,, — F, where F), is the empirical cumulative distribution function of the (X;)1<i<n with common
distribution F, as a random element of L?(u) for a certain probability measure p and 1 < p < co. In this
framework, the considered class of functions is

W) = {£: 50 =10+ [ F@uo)too - [ pdo)oson |}

[0,t) (¢,0]
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with p’ the conjugate exponent of p namely 1/p + 1/p’ = 1. With this class one can express the 7-mixing
coefficient as

TupalM X) = sup | /deX‘M - /deX .-

FeEWq1 (1) q

We naturally define for an integer k, 7, p (k) as 7, p (Mo, Xg). Since central limit theorems involve weak
convergence in [*°(class of functions), we need an isometry between LP(p) and [ (W), 1(1)). The natural
candidate for a such map is the application h : LP(u) — 1°°(W,, 1(1)) defined as h(g) = {u(f'g), f €
Wy 1(p)}. This need come from the fact that the present setup involves an LP space instead of [*°

Theorem 5.9 ([10]). Define the function F), for x € R by Fj,(x) = p([0,z)) if x > 0 and F,,(x) = —p([z,0))
if v < 0. Assume that || |F,,(Xo)|*/? |2 is finite. The empirical process {G,(f), f € W1} weakly converges in
h(Wy 1(1)) to a tight process which is Gaussian centered conditionally to I if one of the following conditions
1s fulfilled:

1. pe[2,00) and Y 7, p2(k) < 0o.
k>0
2. p=2, p(R) < oo and Y 7,21(k) < cc.
k>0

3. p=2, FXUlM—oo =F and kz HHFXHMO - FXk\M_l
>0

|2,ull2 < o0

The knowledge of the result for 7-mixing sequence is enough to deal with a large amount of mixing
sequences since many of this dependence coefficient can control the coefficient 7.

Proposition 5.10. Let X be a real valued random variable and M a sub-o-algebra of A. Then

1. for any p,q € [1,00] and for any measure p: 7, (M, X) < u(R)YPp(M, X),

2. for any p,q € [1,00] and for any measure y: 7, o(M, X) < p(R)YPB(M, X))V,

3. if t = p((—o0,t]) is K-Lipschitz, then for any p,q € [1,00]: T\ p.q(M, X) < (Kp(M, X))1/P,

4. if t = p((—o0,t]) is K-Lipschitz, then for any p € [1,00] and q < p: Ty pq(M, X) < (K7(M, X))V/P.

5.2.4. Classes of functions with bounded variations

In this section we denote by Z, (x), = € R, the empirical process indexed by indicators of half lines in R (this
is the case treated in section 5.1). The aim of this section is to deduce asymptotic gaussianity for G,, from the
asymptotic gaussianity of Z,, together with regularity conditions. Consider first, for a function g : R — R,
the total variation norm defined by

lgllrv = Sup Z 9(@iv1) — g(zi),

T, Ti41 EH
where II denote the set of all countable partitions of R. Consider the set, for T" > 0,
BVp = {g: R — R such that ||g||lrv < T\ ||gllcc <T}.

Caution, do not confuse BVy with the set BV introduced in section 5.2.2. Moreover we denote by BV the
subset of BV of right continuous functions.

Theorem 5.11 ([32]). Assume that there exists a distribution function Fy such at the process Z, converges
weakly (as n — o0) to a tight Gaussian process with uniformly continuous sample paths with respect to
the distance d(s,t) = |Fy(s) — Fo(t)|. Then for any T > 0 and any class of functions G C BV], the G-
indexed empirical process converges weakly on 1°°(G) to a Gaussian process. Moreover, the Gaussian limit
has uniformly Ly (Fp)-continuous sample paths.

Note that, Theorem 5.11 remains true if we replace Z,, by any processes satisfying the following conditions:
e lim Z,(¢t) =0,
[t]—o0

e the sample paths of Z,, are right continuous and of bounded variations,

and if we interpret G,, as a process indexed by G, namely

{/g(x)dZn(:c),g € Q}-

imsart-generic ver. 2020/08/06 file: review-paper-BDF-15.tex date: January 6, 2022



Acknowledgements

The authors would like to thank the editor and an anonymous referee for their helpful comments. This work
was funded by CY Initiative of Excellence (grant "Investissements d’Avenir" ANR-16-IDEX-0008), Project
"EcoDep" PSI-AAP2020-0000000013, and by the Labex MME-DII (https://labex-mme-dii.u-cergy.fr/).

References

[1] Ango Nze, P., Bithlmann, P., and Doukhan, P. (2002). Weak dependence beyond mixing and asymptotics
for non parametric regression. Ann. Statist., 30(2):397-430.

[2] Ango-Nze, P. and Doukhan, P. (2002). Weak dependence: models and applications. Dehling W. et al.
(ed.), Empirical Processes Techniques for Dependent Data, pages 117-137.

[3] Arcones, M. A. and Yu, B. (1994). Central limit theorems for empirical and U-processes of stationary
mixing sequences. J. Theoret. Probab., 7(1):47-71.

[4] Bardet, J. M., Doukhan, P., Lang, G., and Ragache, N. (2008). Dependent Lindeberg central limit
theorem and some applications. ESAIM: Probab. Statist., 12:154-172.

[5] Billingsley, P. (1968). Convergence of probability measures. John Wiley & Sons, Inc., New York-London-
Sydney.

[6] Blum, J. R., Hanson, D. L., and Koopmans, L. H. (1963). On the strong law of large numbers for a class
of stochastic processes. Probab. Theory Related Fields, 2:1-11.

[7] Chen, X., Shao, Q.-M., Wu, W. B.; and Xu, L. (2016). Self-normalized Cramér-type moderate deviations
under dependence. Ann. Statist., 44(4):1593-1617.

[8] Dedecker, J. and Doukhan, P. (2003). A new covariance inequality and applications. Stochastic Process.
Appl., 106(1):63-80.

[9] Dedecker, J., Doukhan, P., Lang, G., Leon, J. R., Louhichi, S., and Prieur, C. (2007). Weak Dependence:
With Examples and Applications. Springer Verlag.

[10] Dedecker, J. and Merlevede, F. (2007). The empirical distribution function for dependent variables:
asymptotic and nonasymptotic results in LP. ESAIM: Probab. Statist., 11:102-114.

[11] Dedecker, J. and Prieur, C. (2005). New dependence coefficients. Examples and applications to statistics.
Probab. Theory Related Fields, 132(2):203-236.

[12] Dedecker, J. and Prieur, C. (2007). An empirical central limit theorem for dependent sequences. S-
tochastic Process. Appl., 117(1):121-142.

[13] Donoho, D. and Johnstone, I. (1998). Minimax estimation via wavelet shrinkage. Ann. Statist.,
26(3):879-921.

[14] Doukhan, P. (1994). Mizing: Examples and Properties, volume 85. Springer.

[15] Doukhan, P. and Louhichi, S. (1999). A new weak dependence condition and applications to moment
inequalities. Stochastic Process. Appl., 84(2):313-342.

[16] Doukhan, P., Massart, P., and Rio, E. (1994). The functional central limit theorem for strongly mixing
processes. Ann. Inst. H. Poincaré Probab. Statist., 30(1):63-82.

[17] Doukhan, P., Massart, P., and Rio, E. (1995). Invariance principles for absolutely regular empirical
processes. Ann. Inst. H. Poincaré Probab. Statist., 31(2):393-427.

[18] Doukhan, P. and Neumann, M. H. (2008). The notion of ¢)-weak dependence and its applications to
bootstrapping time series. Probab. Surv., 5:146-168.

[19] Doukhan, P. and Wintenberger, O. (2007). An invariance principle for weakly dependent stationary
general models. Probab. Math. Statist., 27(1):45-73.

[20] Fan, X. (2019). Crameér type moderate deviations for stationary sequences of bounded random variables.
C. R. Acad. Sci. Paris, Ser. I, 357(5):463-477.

[21] Fan, X. (2020). Cramér type moderate deviations for self-normalized -mixing sequences. J. Math.
Anal. Appl., 486(2):123902.

[22] Goldstein, S. (1979). Maximal coupling. Probab. Theory Related Fields, 46:193-204.

[23] Hoffmann-Jgrgensen, J. (1991). Stochastic processes on Polish spaces, volume 39 of Various Publications
Series (Aarhus). Aarhus Universitet, Matematisk Institut, Aarhus.

[24] Ibragimov, I. A. (1962). Some limit theorems for stationary processes. Theory Probab. Appl., 7:361-392.

[25] Kolmogorov, A. N. and Rozanov, J. A. (1960). On a strong mixing condition for stationary Gaussian
processes. Theory Probab. Appl., 5:222-227.

[26] Liu, W., Xiao, H., and Wu, W. B. (2013). Probability and moment inequalities under dependence.
Statist. Sinica, 23:1257-1272.

[27] Merlevede, F., Peligrad, M., and Rio, E. (2011). A Bernstein type inequality and moderate deviations
for weakly dependent sequences. Probab. Theory Relat. Fields, 151:435-474.

imsart-generic ver. 2020/08/06 file: review-paper-BDF-15.tex date: January 6, 2022



/ 16

[28] Neumann, M. H. (2013). A central limit theorem for triangular arrays of weakly dependent random
variables, with applications in statistics. ESAIM: Probab. Statist., 17:120-134.

[29] Neumann, M. H. and Paparoditis, E. (2008). Goodness-of-fit tests for Markovian time series models :
Central limit theory and bootstrap approximations. Bernoulli, 14:14—46.

[30] Ossiander, M. (1987). A central limit theorem under metric entropy with Lo bracketing. Ann. Probab.,
15(3):897-919.

[31] Pollard, D. (1990). Empirical processes: theory and applications, volume 2 of NSF-CBMS Regional Con-
ference Series in Probability and Statistics. Institute of Mathematical Statistics, Hayward, CA; American
Statistical Association, Alexandria, VA.

[32] Radulovic, D. and Wegkamp, M. (2018). Weak convergence of stationary empirical processes. J. Statist.
Plann. Inference, 194:75-84.

[33] Rio, E. (2017). Asymptotic theory of weakly dependent random processes, volume 80 of Probability Theory
and Stochastic Modelling. Springer, Berlin. Translated from the 2000 French edition | MR2117923].

[34] Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci.
U.S.A., 42:43-47.

[35] Rosenblatt, M. (1991). Stochastic Curve Estimation, volume 3 of NSF-CBMS Regional Conference Series
in Probability and Statistics. Institute of Mathematical Statistics, Hayward, CA; American Statistical
Association, Alexandria, VA.

[36] Shao, Q.-M. and Yu, H. (1996). Weak convergence for weighted empirical processes of dependent
sequences. Ann. Probab., 24(4):2098-2127.

[37] van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and empirical processes. Springer
Series in Statistics. Springer-Verlag, New York. With applications to statistics.

[38] Vapnik, V. N. and Chervonenkis, A. Y. (1982). Necessary and sufficient conditions for the uniform
convergence of means to their expectations. Theory Probab. Appl., 26:532-553.

[39] Volkonskil, V. A. and Rozanov, Y. A. (1959). Some limit theorems for random functions. I. Theory
Probab. Appl., 4:178-197.

[40] Wu, W. B. (2005). Nonlinear system theory: another look at dependence. Proc. Natl. Acad. Sci. USA,
102(40):14150-14154.

[41] Wu, W. B. and Shao, X. (2004). Limit theorems for iterated random functions. J. Appl. Probab.,
41(2):425-436.

[42] Wu, W. B. and Zhao, Z. (2008). Moderate deviations for stationary processes. Statist. Sinica, 18(2):769—
782.

imsart-generic ver. 2020/08/06 file: review-paper-BDF-15.tex date: January 6, 2022



