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Abstract— Parallel imaging is an important method to accel-
erate the acquisition of magnetic resonance imaging data, which
can shorten the breath-hold times and reduce motion artifacts.
In this paper, we propose a joint frequency domain and image
domain (dual-domain) reconstruction method by introducing
the full sampling condition for the undersampled multi-coil
MR data. The motivation is that the dual domain method can
provide more information for accurate image reconstruction.
An efficient iterative algorithm is developed based on the
variable splitting technique and alternating direction method
of multipliers, which is unrolled into an end-to-end trainable
deep neural network. We evaluate the proposed network on
complex valued multi-coil knee images for both 6-fold and 8-
fold acceleration factors, and compare with both variational and
deep learning based reconstruction algorithms. The numerical
results demonstrate that our method provides better reconstruc-
tion accuracy and perceptual quality by making using of the
dual domain information.

Clinical relevance: This improves the reconstruction quality
for accelerated parallel MRI data both visually and quantita-
tively.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is an important
medical imaging modality, which has been used for both
anatomical and functional usage. However, it suffers from a
long acquisition time to scan the full k-space data, which not
only results in motion artifacts, but also limits the availability
of MR scanner for users. Parallel MRI (p-MRI) [1] uses
an array of receiver coils to collect undersampled k-space
data to reconstruct full FOV images for accelerating the
acquisition of MRI data. P-MRI and compressed sensing
[15], [16] methods are widely used in imaging problems.

As a matter of fact, the k-space data contains plenty
of spatial frequency information. Eo er al. [2] developed
the KIKI-net for reconstructing undersampled MR images,
which consists of three components KCNN for k-space
completion, ICNN for removing artifacts and restoring image
details, and IDC for regularizing and activating network
learning. Souza, Lebel and Frayne [3] proposed a hybrid
dual domain cascade of convolutional neural networks inter-
calated with data consistency layers, which is trained end-
to-end for compressed sensing reconstruction of MR images.
Model based learning methods have been studied for MRI
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reconstruction during last several years, and achieved great
success in building up efficient network architectures [8], [9],
[14]. Based on the general CS p-MRI model, Duan et al.
[10] established VS-Net through variable splitting method.
Jun et al. [13] proposed a model-based joint reconstruction
network for MR images and coil sensitivities. Note that the
aforementioned approaches are investigated on the single-
coil acquisition setting, and the multi-coil acquisition data
can accelerate the imaging process.

Lin et al. [4] proposed an end-to-end trainable dual domain
network to simultaneously restore sinogram consistency and
CT images, which works well for CT metal artifact re-
duction. Similar idea has been utilized to recover k-space
and images for fast MRI with a deep T1 prior [5]. The
full sampling condition has been developed for joint spatial
and Radon domain reconstruction for computed tomography
(CT) reconstruction [6], [7], which successfully improved the
reconstruction quality for both sparse-view and limited angle
data. These studies demonstrate that dual domain strategy can
complement image domain information effectively.

The successes of both model-based approaches and dual
domain strategies provide the impetus for the establishment
of our model. More specifically, we propose a novel vari-
ational joint dual-domain reconstruction model for acceler-
ated p-MRI problem. The operator splitting and Alternating
Direction Method of Multipliers (ADMM) based algorithm
are developed for solving the proposed minimization prob-
lem, which is handled by end-to-end trainable deep neural
networks via deep unrolling strategy. We evaluate the Dual-
domain Variable Splitting Network (DVS-Net) on the public
dataset and testify the importance of dual-domain informa-
tion for parallel MRI reconstruction.

II. OUR APPROACH

Let m € CN be a complex-valued MR image, f € CV be
the k-space data corresponding to m, y; € CM be the under-
sampled k-space data measured from the ¢th MR receiver
coil, and n. be the total number of receiver coils. It is
straightforward to use following model to estimate the MR
image for accelerated p-MRI problem

A
min §;||D}"Sim—yi\|§+731(m), (1

where D € RMXN denotes the sampling matrix, F €
CN*N denotes the Fourier transform, S; € CV*N denotes
the 4-coil sensitivity, Ry(-) is the regularization term of
image data, and X is a positive constant used to balance
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Fig. 1: The end-to-end network structure guided by the dual-domain variable splitting algorithm, where the kth iteration is

displayed in details as an example.
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Fig. 2: The CNN block with convolution and activation
layers.

between the regularization term and data fidelity term. In
[10], the above model was formulated into an alternating
direction algorithm and solved by an end-to-end trainable
deep neural network, which achieved great success compared
to traditional and learning-based reconstruction methods.
However, the consistency between frequency domain and
image domain is ignored. Thus, we propose a novel dual-
domain reconstruction model for accelerated parallel MR
problem as follows
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where R () denotes the regularization term of k-space data,
11,7y are positive constants, and the L? term is used to boost
the consistency of between the frequency domain and image
domain data. In the followings, we use the variable splitting
method to reformulate the above minimization and built up
an alternating direction algorithm to solve the dual domain
reconstruction model. More specifically, we introduce auxil-
iary variables u and z;, ¢ = 1,...,n,, and rewrite the dual-
domain model (2) as a constrained minimization problem

min
m, f,u,x;

A
3 > IDFz; — yill3 + pRi(u) + R (f) 3)
=1

st, f=Fm, m=u, v; =5m.

Based on the penalty method, we can obtain the uncon-
strained multi-variable minimization problem as follows

Ne
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where a, 8 > 0 are penalty weights. We then implement the
ADMM to solve the above minimization problem by splitting
it into the following four sub-minimization problems

H;lbn %Z?:Cl |IDFz; — yill3 + g2 Il — Sim*|3,

min 5w — m|3 + Ry (w);

min Jf = Fm|l3 + R (f);

min § 531 2 = Soml3+ 5wt~ ml3
+3 /5 = Fmli3.

Now we discuss the solutions to the sub-minimization prob-
lems. Both u-subproblem and f-subproblem are composed
of a data fidelity term and a regularization term, which can
be solved as follows

Y = (BT + pdR;) 1 (Bm"),

“4)

and

&)

respectively, where I denotes the identity operator. Instead
of hand-craft regularization terms, we use neural networks
to learn suitable regularization term for both variables u and
f. On the other hand, both z; and m can be solved by the
closed-form solutions. Then we summarize the algorithm for
solving our joint dual domain reconstruction (2) in below.
Note that we directly use u**! to update f**+! supposing
the constraint m = w holds unconditionally, which can help
to speed up the convergence.

FHH = (VI + ORg) ™ (v FmP),
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Fig. 3: The curves of three quantitative indicators(Loss, PSNR, SSIM) with the number of epoch during training and testing.
The three curves in each picture are curves under three different iterations. The first row is on the training set, and the

second row is on the test set.

The Dual-domain Variable Splitting Algorithm

1: Initialize u°, fO, mP, x? fori=1,...,n

2: for k=1,...,n4, do

30 2™ F (el +ADTD) " HaF S;mk +ADTy;)),
fori=1,...,n¢

4:  uFtl « CNN(Bm*);

5: fFHl« CNN(yFubth);

6: mFtt o ((B+ NI +ad SZHf)’i)fl(Buk+1 +
'y]:_lfk+1 + O‘E?;1 SiHmi_chl);

7: return m, f

According to our Algorithm, we establish an end-to-end
network structure as shown in Fig.l. The wu-subproblem
and f-subproblem are processed by convolutional neural
network instead of hand-craft regularization terms. And this
network is a residual network with a residual layer after
CNN block. Fig.2 shows the CNN block which is composed
of multiple convolution and activation layers. We stack the
real and imaginary parts of the input into two-channel image
to change complex value into real value. In this work, we
use a simple network structure which can be replaced by
more advanced networks such as U-Net [17] to improve the
reconstruction effect, but this is not our focus.

Note that both x; and m are updated by the correspond-
ing Euler-Lagrange equation.We can obtain under-sampled
multi-coil k-space data y; and coil sensitivity S; from the
data, and estimate the masks D and under-sampled MR
images m°. The input m* passes through a CNN block to
obtain ©**1, and then go by Fourier transform followed by
another CNN block to obtain f**!. In addition, m* and
S;, D, y; are also taken as inputs to estimate xk“, which are

i
integrated with u**1 and f**! to obtain the output mF+!
as shown in Fig. 1.

IIT. IMPLEMENTATION AND EXPERIMENTS
A. Loss function

We use the following dual domain loss function to train
the network

uz
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i=1
where n; is the number of training images, and g; is the
reference image.This loss function expresses the difference
between the reconstruction and the ground truth on the dual
domain.

TABLE I: Experimental results of learning-based methods
using different iterations (n;;) on Axial T2 dataset.

Nt = 5 nit = 10 Nt = 15
Method PSNR SSIM PSNR SSIM PSNR SSIM
VS-Net 39.06 | 0.9565 | 39.50 | 0.9583 | 39.65 | 0.9582
DVS-Net | 39.37 | 0.9502 | 3994 | 0.9595 | 40.05 | 0.9575

B. Dataset and training details

We use a public knee MR dataset' in [11] for evaluation.
Each protocol contains 20 volumes with about 40 slices.
The total number of receiver coils (n.) is 15 and the coil
sensitivities has been given. For each protocol, we take 19
volumes out of the 20 volumes to train the neural networks,
and use the remaining one for testing. During training, we
used the non-uniform Cartesian sampling method to down
sample the original data, and combine the coil sensitivities
to obtain the under-sampled MR image. Note that 24 lines
in the central region are retained for each under-sampling
volume.

Because the training data set is relatively small, we use five
convolutions in the m-CNN block and three convolutions in

Thttps://github.com/VLOGroup/mri-variationalnetwork
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Fig. 4: The visual comparison of four reconstruction methods on the Coronal PD dataset undersampled 6-fold.

TABLE II: Comparison results on four datasets obtained by Zero-filling, BM3D, VS-Net and DVS-Net.

Axial T2 Coronal PD Sagittal PD Sagittal T2
Method PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
Zero-filling 3421 | 09325 | 3095 | 0.8589 | 36.60 | 0.9495 | 3598 | 0.9191
BM3D-MRI | 37.23 | 0.9433 | 36.26 | 0.9099 | 41.05 | 0.9579 | 37.57 | 0.9135
VS-Net 39.50 | 0.9583 | 38.06 | 0.9299 | 42.71 | 0.9738 | 39.75 | 0.9335
DVS-Net 3994 | 09595 | 38.43 | 0.9310 | 43.15 | 0.9736 | 40.03 | 0.9311

the f~-CNN block to avoid over-fitting of the network during
training process. We set the number of epoch to be 200 and
batch size to be 1, and use Adam with learning rate 103
and decay rate 0.1 to optimize the networks.

C. Experimental results

We compare the performance of DVS-Net with zero-
filling, BM3D-MRI [12] and VS-Net [10] for under-sampled
parallel MRI data in a variety of situations, and use both
Peak Signal to Noise Ratio (PSNR) and Structural Similarity
(SSIM) to evaluate the quality of the reconstructed image.
For the single-coil method BM3D-MRI, the under-sampled
k-space data is reconstructed separately, and integrated to-
gether by combining the coil sensitivities. We retrain the
VS-Net using the same parameter settings as suggested in
the original papers.

On the first place, we evaluate DVS-Net and VS-Net with
different numbers of iterations. As shown in Table I, the
PSNR value of both the two methods increases as the itera-
tion number n;; increases from 5 to 15, and the advantages of
DVS-Net is very stable with different numbers of iterations.
Fig.3 shows the change curves of three evaluation indicators
in both training process and testing process when different
iterations are selected. It can be seen that there is no over-
fitting phenomenon, and the results of selecting 10 and 15
iterations are not much different and even tend to be the

same on the test set. Therefore, we simply set n;; = 10 in
the followings. Table II shows the quantitative evaluations
among zero-filling, BM3D-MRI, VS-Net and DVS-Net on
four protocols with 6-fold acceleration factors. The visual
comparison on the Coronal PD dataset are displayed in Fig.
4. As can be seen, the learning-based methods outperform
the BM3D-MRI method for all protocols, and DVS-Net out-
performs VS-Net due to the joint dual domain reconstruction
strategy.

Moreover, we degrade the two protocols by white Gaus-
sian noises with mean O and standard deviation 0.005 and
evaluate the learning based methods for both 6-fold and
8-fold acceleration factors. Table III provides the PSNR
and SSIM on two protocol sagittal PD and T2, where the
proposed dual domain reconstruction method always gives
higher PSNR than the SOTA VS-Net. The visual comparison
for the 8-fold T2 data are displayed in Fig.5. As shown by
the residual images, DVS-Net presents less information than
VS-Net, which also concur with the PSNR comparison.

IV. CONCLUSION

In this paper, we proposed a novel dual-domain recon-
struction model to fully make use of information in fre-
quency domain and image domain, where a data term on
the frequency domain and image domain was introduced to
maintain data consistency. In order to integrate the advances
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Fig. 5: The visual comparison of DVS-Net and VS-Net of the Sagittal T2 dataset with Gaussian noise undersampled 8-fold.

TABLE III: The comparison results obtained by the learning
based methods when reconstructing noisy data, where ‘acc’
stands for the acceleration factor.

acc=06 acc=8
Protocol Method PSNR | SSIM | PSNR SSIM
Zero-filling | 23.04 | 0.1142 | 23.03 0.1124
Sagittal PD VS-Net 4252 | 09733 | 41.28 | 0.9679
DVS-Net 4298 | 09733 | 41.64 0.9674
Zero-filling | 25.14 | 0.1826 [ 25.18 0.1831
Sagittal T2 VS-Net 39.65 | 0.9329 | 39.07 0.9267
DVS-Net 40.03 | 0.9324 | 39.48 0.9229

of both model-based and learning-based approaches, we
implemented the ADMM to obtain an iterative algorithm,
where the deep neural network was used to approximate the
resolvent operators and gain an end-to-end trainable network.
Numerical experiments on knee MR data were conducted to
demonstrate that the dual-domain method can improve the
reconstruction accuracy.
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