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Abstract

The Beltrami framework is a successful technique for color image denosing by regarding color
images as manifolds embedded in a five dimensional spatial-chromatic space. It can ideally
model the coupling between the color channels rather than treating them as if they were inde-
pendent. However, the resulting model with high nonlinearity makes the related optimization
problems difficult to solve numerically. In this paper, we propose an operator-splitting method
for a variant of the Beltrami regularization model. From the optimality conditions associated
with the minimization of the Beltrami regularized functional, we derive an initial value problem
(gradient flow). We solve the gradient flow problem by an operator-splitting scheme involv-
ing three fractional steps. All three subproblem solutions can be obtained in closed form or
computed by one-step Newton’s method. We demonstrate the efficiency and robustness of the
proposed algorithm by conducting a series of experiments on real image denoising problems,
where more than half of the computational time is saved compared to the existing augmented
Lagrangian method (ALM) based algorithm for solving the Beltrami minimization model.

Keywords: Color image denosing, Beltrami minimization, diffusion, operator-splitting method

1 Introduction

Along with the development of image acquisition technology, color images become increasingly pop-
ular and the demand for color image processing is fast growing [1-5]. One of the fundamental and
challenging tasks for color image processing is the coupling between the channels. Let €2 be an open
bounded domain in R?, and f = v+mn : Q — R3 be the degraded color image with v : O — R? being
the original color image and m being the interference noises. The goal of color image denoising is to
recover the latent image v from the corrupted image f by various methods such as filter methods,
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partial differential equation (PDE) based methods, variational regularization methods and machine
learning based methods.

In the past several decades, filter methods have been common strategies for effectively suppressing
the disturbing noises. Deng and Cahill [6] proposed an adaptive Gaussian filter to reduce the Gaussian
noises and preserve the broad outlines. However, it may result in signal distortion. Chen et al. [7]
presented a nonlinear filter, named the tri-state median filter, which can simultaneously suppress
impulse noises and preserve fine image details. The bilateral filter proposed by Tomasi and Manduchi
[8] is a non-iterative, local and nonlinear filter, which can smooth out noises as well as preserve
edges based on both geometric closeness and photometric similarity. The Wiener filter was used in
the wavelet domain, which minimizes the mean squared error between the estimated random process
and the desired process by the statistical approach [9]. Nevertheless, it is difficult to provide perfect
restoration owing to the uncertain statistical procedure during the acquisition. More recently, the non-
local means [10] and sparse 3D transform-domain collaborative filtering (BM3D) [1] were developed by
taking advantage of the similarities among patches for noise removal. Although this kind of methods
can achieve state-of-the-art denoising performance, it requires high computational costs in practice.
By taking the geometric properties of image into account, Gong et al. [11] proposed the curvature
filter to reduce the variational energies for image restoration. On the other hand, PDE based diffusion
methods have also been studied for image denoising problems [12-15]. For example, Tschumperlé [16]
introduced a tensor-driven PDE based on the curvatures of specific integral curves to well preserve
thin structures in image restoration. Shan, Sun and Guo [17] proposed a nonlinear diffusion equation
with smooth solution to remove multiplicative noises.

Although the filtering and PDE based methods can effectively reduce noises and preserve the main
image structures, these methods ignore prior information of images and lack theoretical guarantees.
Rudin, Osher and Fetami [18] proposed the well-known total variation (TV) regularizer for gray-scale
image denoising, which was shown effective for removing noises and preserving sharp jumps. The TV
model has been intensively studied and extended to the color image denoising problems by Blomgren
and Chan [19], leading to

where the multi-dimensional TV is defined as the Euclidean norm of the vector of channel-wise scalar
TV. Although the color TV couples the channels together and is global, it is very weak, all channels
being treated the same. Goldluecke et al. [20] derived a convex vectorial TV from the generalized
Jacobians in geometric measure theory. However, it may lead to undesirable uneven color effects and
result in a computational burden. To overcome these limitations, Ono and Yamada [21] presented
a decorrelated vectorial TV prior by measuring the discrete gradients of luminance component and
chrominance component. Later, Lefkimmiatis et al. [22] constructed a novel generic energy functional
by penalizing the eigenvalues of the structure tensor, named as the structure tensor total variation,
which can provide more robust measurement of the image variation by making use of the structure
tensor in capturing the first-order information. Jia, Ng and Wang [23] developed a saturation-value
total variation in the hue, saturation, and value color space for color image restoration, which achieves
better performance than the existing color image total variation both quantitatively and visually.
Different from the methods mentioned above, Batard and Bertalmio [24] presented a generalization
of the Euclidean and Riemannian total variation to a vector bundle based covariant differentiation
for color images, where the standard differentiation of a function is replaced by the covariant differ-
entiation of a section. Particularly, the generalized Laplacians acting on sections of vector bundles
over Riemannian manifolds were studied for multi-channel image processing in [25]. As a represen-
tative of generalized Laplacians, the Laplace-Beltrami operator has been studied for color image



Springer Nature 2021 ETEX template

A fast operator-splitting method for Beltrami color image denoising 3

problems [26], which generalizes the Laplacian from Euclidean space (flat domains) to Riemannian
space (curved manifolds) by regarding a color image as a two dimensional manifold embedded into a
five-dimensional spatial-chromatic space. More specifically, the Beltrami regularized model for color
image denoising can be formulated as follows

3 3
. p n
n%m/Q 1462 £_1|Vvi\2+7 E |Vv; x ijde+§ Q|f—v|2dx, (2)

ij=1

where [ is a positive constant used to determine the ratio between the spatial and color distances.
Note that the cross product term in (2) can penalize the misalignment of the gradient directions
between the color channels.

The essential idea of the Beltrami filter is to minimize the area of the image manifold. Due to
its success in color image denoising, the Beltrami filter has also been applied to other color image
processing tasks such as image enhancement [27], blind deblurring [28], image segmentation [29],
and image dehazing [30]. However, the minimization of the Beltrami functional is very challenging.
Kimmel, Malladi and Sochen [31] originally solved the Euler-Lagrange equation of the Beltrami
minimization model by gradient descent, which is stable only for very small time steps and therefore
require many iterations. Spira [32] constructed a 2D short time kernel for the Beltrami flow, which
enables the implementation of the Beltrami flow by convolving the image with the kernel similar to
the solution of the heat equation by a convolution with a Gaussian kernel. Rosman et al. [33] used
vector extrapolation techniques to accelerate the convergence of explicit schemes for the Beltrami
flow. Rosman et al. [34] introduced a semi-implicit Crank-Nicolson scheme based on locally one-
dimensional /additive operator splitting for implementing the anisotropic Beltrami operator. Later,
the authors proposed an augmented Lagrangian method (ALM) for color image processing with
Beltrami regularization [35]. Very recently, Wang and Ng [36] investigated vector bundles of color
images in saturation-value color space.

In this paper, we propose a novel operator-splitting method based on Lie scheme [37, 38] to effi-
ciently and effectively solve the Beltrami-related minimization problem for color image restoration.
We introduce the vector-valued and matrix-valued variables to replace the gradient norm and the
cross product term in (2), by which we decouple the nonlinearity from the differential operators and
make the energy easier to deal with. Then, we reformulate the energy functional by drawing into two
indicator functions and obtain an unconstrained minimization problem. Moreover, we derive the opti-
mality PDE system and transform it into an initial value problem by introducing an artificial time
variable. Eventually, we obtain the solutions to all subproblems associated with the Lie scheme frac-
tional steps by either closed-form solution/fast Fourier transform (FFT) or one-step iterative scheme.
Different from the augmented Lagrangian method, our proposed approach has much fewer parame-
ters to adjust and converges much faster under the same stopping criteria. Numerical experiments
demonstrate the efficiency and robustness of the proposed method for color image denoising both
quantitatively and qualitatively.

The remainder of this paper is organized as follows: The reformulation of the Beltrami minimiza-
tion model is described in Sect. 2. We describe the operator-splitting method based on the Lie scheme
in Sect. 3. In Sect. 4 we discuss the full discretization of the sub-problems and the solution of their
discrete analogues. In Sect. 5 we apply our methodology to the solution of various color imaging
problems. Finally, we summarize and conclude our paper in Sect. 6.

2 Reformulating the Beltrami minimization

Considering the advantages of Beltrami flow in color image problems and the lack of tractable solution
methodologies, we aim to establish more efficient methods to solve the Beltrami minimization problem.
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Supposing that 8 > 1, we can simplify the Beltrami minimization problem (2) by removing the
constants as follows

veV

inf / \/Vv|2 + 52 |V'v1 x Vv, 2dx + = /|f — v|%dx, (3)

where V' denotes the Sobolev space (H!(2))3. The proposed model can be regarded as a modified
color TV minimization problem, where we introduce a coupling cross term to model the alignments
between channels of color images. The minimization problem (3) is highly nonlinear, mostly due to
the coupled cross product term in the regularization. Thus, we introduce vector-valued and matrix-
valued variables to replace the gradient and cross product terms, respectively. In particular, we define
the matrix-valued function q as

q11 412
q=|¢q1 g2 | = Vv,
g31 432

where g; denotes the partial derivative 8—’“ for k =1,2,3 and [ = 1,2 making g the Jacobi matrix
of v. We then use the vector-valued function F (q) to denote the cross product term as follows

¢21932 — ¢22931
F(g)=|gn1q12 — q11g32 | = qr X qu,
11922 — 12921

where g = (gr1 qre) for k =1,2,3. We further define the sets ¥y and Z by

Zf:{qu‘HveV,s.t.q:Vv, /dex:/fdx Q= (L ())3“},

and
=={(a.2)€QxZ | 2=Fla), Q= (1*(2)***, Z = (1*(2))*}.

Based on the above notation, the original Beltrami minimization problem (3) can be reformulated in
the following equivalent form

mln /\/\q|2+ﬂ2|z\2dx+lzf /\f | dx, (4)

2)EQXZ

where Iy, and Iz are the indicator functionals defined by

I ( ) 0, if qEc Ef,
A 400, otherwise,

and

I=(q,z) = {0» if (q,2) € E,

400, otherwise.

Then, as introduced in [39, 40], v(q) becomes the solution of the following system

V2v(q) =V -q in €,
v(q) verifies periodic boundary condition on 0, (5)
Jov(@)dx = [, fdx.
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Above, q and v are vector and matrix-valued functions. The operators V? and V- are row-wise
operators. If ¢ € (L?())3*2, problem (5) has a optimal solution, which minimizes the original
problem (3).

Remark 2.1. Note that if 8 = 0 in the Beltrami regularization, the proposed model reduces to
the classical color TV model, which can remove noises and preserve sharp jumps, but suffers from
staircasing and uneven color effects. For B > 0 in the Beltrami regularization, the cross product term
can penalize the misalignment of the gradient directions between the color channels, which is helpful
to handle the drawbacks of color TV regularization.

Remark 2.2. Although the periodic boundary condition is used, there is mo problem to switch to
Neumann boundary condition. Actually, the model and algorithm proposed in this paper can be adapted
to zero Neumann boundary condition with minor modification.

Remark 2.3. The constraint fﬂ vdr = fQ fdx in Xy assumes the observed images are corrupted
by the additive Gaussian noises with zero mean and the standard deviation o. When the noises are
non-additive or with non-zero mean, the constraint has to be changed accordingly, but it will not
affect the general framework of the operator-splitting method. Suppose the images are degraded by the
additive Gaussian noises with mean p (p > 0) and standard deviation o. The constraint becomes
ﬁ Jo(f —v)dx = p and ﬁ Jo(f —v — p)?dx = 02 with || representing the area of image domain
[41]. Similarly, when the images are degraded by multiplicative noises with zero mean and the standard
deviation o, the data-fidelity term in (3) should be modified, subject to fQ (v— flogv)dx =0, and the
constraint becomes fQ vdx = fQ fdx and ﬁ fﬂ(% — 1)2dx = 02 accordingly; see the reference [}2]
for more details.

3 An operator-splitting method for the solution of problem (4)

In this section, we develop an operator-splitting approach to solve the unconstrained optimization
problem (4). Operator-splitting is a methodology which has been widely used for the solution of a
large variety of problems from Mechanics and Physics (see [38] for details and further references).
Recently it founds applications to the solution of various problems from image processing [37, 43, 44].

3.1 The optimality condition
Let us define the functionals J; and J; by

Ji(q,z) =
{J2<q) =1 [o|f —v(q)|dx. (6)

Suppose that (p,y) is a minimizer of the functional in (4). Then (p,y) should (at least formally)
satisfy the following first-order optimality condition

{an1 (DY) + 0gI=(p,y) + Ols, (p) + DJa(p) 3 0, -

azjl(pay) + azIE(pa y) = 07

where {04, 0.} represent the partial derivatives with respect to (w.r.t.) {g, z} for smooth functions
and the sub-derivative for the indicator functions, and D denotes classical differentials.
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In order to solve (7), we introduce an artificial time variable and solve the following initial value
problem to steady state

9 1 9gJ1(p,y) + O0ql=(p,y) + OIs, (p) + DJ2(p) > 0,
'Y%? + 82J1(p7 y) + azIE(p, y) 30, (8)
(p(0),y(0)) = (Po, o),

where (po,yo) denotes a given initial condition, and ~ is a positive parameter used to control the
evolution speed of y. The initial value problem (8) is a natural candidate to a solution method of the
operator-splitting type, where Lie and Marchuk-Yanenko schemes are simplest and popular choices
and have been used for Euler’s elastica model [39, 40] and Gaussian curvature model [45].

3.2 An operator-splitting method

We employ an operator-splitting method based on the Lie scheme [37] to time-discretize problem (8).
Let n be the iteration number and 7 > 0 be a time discretization step. We set t” = n7 and compute
(p,y) by the following procedure

Initialization |. Set (p°,y°) = (po,yo). Then, do the following for n = 0,1,,2---
‘ The 1st fractional step ‘ Solve

9+ 9g11(py) 30,
7% +0.J1(p.y) 30, in Q x (t°, 1), ©

(p(t"),y(t")) = (p", y"),

and set (p" /3, ynt1/3) = (p(tn 1), y(1 ).
‘ The 2nd fractional step ‘ Solve

% + anE(pa y) 2 07
Y+ 0:1=(p,y) 20,  in Qx (¢, (10)

(p(t™),y(t")) = (pn+1/3, yn+1/3),

and set (p"*t?/3, 42/ = (p(t* ), y(t* ).
‘ The 3rd fractional step ‘ Solve

ot
v =0, in Q x (", ¢+, (11)
(p(t"),y(t")) _ (p”“/?’,y"“/?’),
and set (p"*1,y" ) = (p(t" ), y(1" ).

As can be observed, the Lie scheme (9)-(11) is only semi-discrete with three initial value problems.
Suppose that all subproblems are discretized using one step of the backward Fuler scheme. We have
the following time discretization scheme, namely Marchuk-Yanenko scheme

(%, 94°) = (Po, yo)- (12)
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For the iteration n > 0, we update (p",y"™) — (p"t1/3,y"+t1/3) = (pn+2/3 ynt+2/3) o (prtl yntl)
step by step as follows

n+1/3_.n n n ;
% + 0qJ1(p +1/3 4 +1/3) 50, O (p"+1/3 yn+1/3) (13)
’y% + ale(pn+1/37yn+1/3) > 07 7 )
then
n+2/3__n+1/3 n n
I’W%H/j— anE(p +2/37y +2/3) >0, in Q= (pn+2/3 yn+2/3) (14)
YRyt B, I=(p"+2/3, yn+2/3) 5 0, ’ ’
and finally
pn+1_pn+2/3 n-+1 n+1
%""812 P +DJ2P 907 . () n
{fyyn,+1yn+2/3 —0 f( ) ( ) in Q= (p +1ay +1)- (15)

Scheme (13)-(15) is an approximation to the gradient flow of (4), the convergence of which relies on
the choice of the step size 7. Because of the complex structure of the functions Ji, J2, I, and Iz
in our model, it is difficult to prove the convergence of the scheme theoretically, an issue need to be
studied in the future. More discussion on the convergence of Lie and Marchuk-Yanenko schemes are
provided in Appendix.

Remark 3.1. In fact, the above operator-splitting method can be implemented even when the constant
1 is kept in the Beltrami reqularized model (3). In that condition, the Euler-Lagrange equation of
system (13) becomes a highly nonlinear minimization problem, which is difficult to solve numerically,
resulting in slow convergence as well as high computational costs. More importantly, the reduced model
(3) can produece comparable restoration results shown by the numerical experiments in Sect. 5. Thus,
for the sake of simplicity and efficiency, we concern with the reduced Beltrami minimization model
and its operator-splitting scheme in this work.

3.3 On the solution of (13)

System (13) is nothing but the Euler-Lagrange equation of the following minimization problem

(g,2)eQxZ 2

—/ (p”-q+vy”-Z)dX+T/ Vlg? + B2|z|2dx.
Q Q

. 1
(Pn+1/37yn+1/3) =arg  inf / (|(J|2 + ’Y‘Z|2)dx
@ (16)

Pay attention that the choice of «y is used to balance the two variables g and z by |g|? + ~|z|?. Since
the combination is also determined by the Beltrami regularization term (i.e., |q|? + 3%|2|?), we simply
let v = 82 to maintain the consistency and reduce the burden of parameter selection. Hereafter, v
is replaced by 2 in all subproblems without further specification. Consequently, we can reformulate
the minimization problem (16) into an equivalent L? and L' minimization problem as follows

n+1/37yn+1/3)

(@, 82)||2 — (", By™), (4, 82)) + 7ll(q, B=)l|l,  (17)

. 1
=arg min

(p (@.2)eQxZ 2

where ((p,y),(q,2)) = [,P-q+y-2zdx, and ||(q,z)||2 =/{(q,2),(g,2)) forp,g€ Qand y,z € Z.
It is well-known that the above minimization problem has a closed-from solution. More specifically,
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a linear relation between the solutions of (n + 1/3)-th iteration and n-th iteration holds such that
pn+1/3 — )\pn yn+1/3 — )\yn

with X\ a positive scalar to be determined. Thus, we can rewrite (16) in terms of \ as

1
A =argmin (5N =) ([p"[* + B2ly" ) + A/ |p" 2 + B2y, (18)
the optimality condition of which satisfies
A =1)(Ip"1* + B2ly"*) + 7/ Ip"? + By 2 = 0. (19)

As can be seen, there exists a closed-form solution to the above one-dimensional minimization
problem, which is

+
A= (1 - . ) , (20)
VPP + By ?
where the operator (-)* is defined as (a)* := max(a,0) for a € R. Therefore, the solution to
(p" /3, ynt1/3) is given by

(21)

n+1/3 t /on
(pn+1/3> = (1 - . ) (pn> :
Yy /‘pn|2 +62|yn|2 Yy
3.4 On the solution of (14)

Similarly, the multi-variable system (14) with respect to (g, z) is the Euler-Lagrange equation of the
following minimization problem

n+2/37yn+2/3) —arg inf 7/9 <|q|2 +ﬂ2|z|2)dx—/§ (p +1/3 q+ 8%y +1/3 . z)dx. (22)
)

(P (g,2)€E 2

By replacing z by F(q), we obtain

yn+2/3 — F(pn+2/3) with

. 23
pn+2/3 — argggg %fﬂ(|q|2 + BZ\F(q)P)dx _ fﬂ <pn+1/3 g+ ,BQy"+1/3 . F(q))dx, ( )

in which we have

3 2
a? =>> au
k=1 1=1
and

|F(Q)|2 = (9216132 - Q22(]31)2 + (931(]12 - Q11Q32)2 + (Q11Q22 - q12Q21)2-
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By regarding q as a vector in RS, the first-order optimality condition of the minimization problem
(23) gives us a cubic system G((qkl)) = 0, which is given as follows

52 [(Q22 + C132)Q11 — (q21G22 + Q31Q32)Q12] +qu1 + 52( +1/3q - y;Jrl/SQM) - ?1“/3 0;
B2(g3 + @31)aiz — (q21422 + 31032)q11 ] + quz + B2(y H/Bq ng/B(Bl) - 711;1/3 = 0;
52 [( qiz + 113 )Q21 (Q11Q12 + %1‘132)(122] + q21 + 52( +1/3q y?+1/3(J32) - ;1“/3 = 0;
ﬁ2 [( q11 + (J3 )q22 — (qu1q12 + Q31Q32)QQ1] + g22 + 52( +1/3(1 ynH/BQH) — M = 0;
B%[(ady + @32)as1 — (quiqi2 + q21G22)q32] + g31 + B2 (yy P8 G yg+1/3<h2) - gfl/g = 0;
B2[(¢1 + a31)as2 — (@112 + 421422)q31] + az2 + B2 (yy T Ban =y ) —pi =0

(24)
The multivariate nonlinear equation system (24) can be solved by various iterative methods,
such as fixed-point method [46], Jacobi iterative method [47], Gauss-Seidel iterative method [48] and

Newton’s method [49, 50]. In this work, we use the one-step Newton’s method to obtain the solution
pn+2/3 and update yn+2/3 by yn+2/3 — F(pn+2/3)_

3.5 On the solution of (15)
We can directly obtain the solution y™** from (15) as

ynJrl — yn+2/3. (25)

Thus, we only need to solve p”t! from the following minimization problem

p Tt = arg_ 1nf /\q| dx—/ n+2/3 . qu+ /|f q)|dx. (26)

Since v(q) is the solution of system (5), we have p"*! = Vu"t! with u"t! = (u]T, uf ™ ug™)7,
which means that problem (26) is equivalent to

p" Tt = Vu"t! with
u™tl = arg mln 2 oI Vol2dx — [, p"T2/3 - Vwdx + T [ |f — v|?dx. (27)
As can be seen, ™! is the solution of the following well-posed linear variational problem
u"tl eV st. (28)
Jo Vurtt - Vvdx + ) [ u T - vdx = [, p" T3 Vvdx + 1 [, f -vdx, YveEV.
Equivalently, the solution to (28) is the weak solution of the following linear elliptic problem
V2t ottt = =V pt B i Q, (29)
u"t! verifies periodic boundary condition on 01,

which can be solved by fast dedicated algorithms such as FFT [51]. Once we obtain the solution u"*?,
we update p by p"t! = Vu"t!.
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3.6 Our algorithm

In summary, the proposed operator-splitting method based on the Lie-scheme to solve the Beltrami
minimization problem (4) for color image denoising is summarized in Algorithm 1 below.

Algorithm 1 The operator-splitting method for the Beltrami regularized model (3) and (4)

1: Input: The degraded image f, the weight parameters n > 0, § > 0, time step size 7, and stopping
threshold e.

2. Initialization: u° = f and p® = V£, y° = F(p°), and set n = 0.

3. while ||u"™ — u”||y/[|[u" |2 > € do

4: Compute {p"t1/3 y"+1/3} based on (16) and (21) to solve system (13);

5. Compute {p"+2/3 y"*2/3} based on (23) and (24) to solve system (14);

6: Compute {u"*1 p"*1 y"T1} based on (25), (27) and (29) to solve system (15);
7. Update n =n + 1;

8: end while

9: Output: The denoised image u* = u"*!.

4 Space discretization

4.1 Discrete operators

Let Q@ € R? be the discretized image domain with I x .J pixels, and let 2,y denote the
horizontal and vertical directional coordinates, respectively. For a vector-valued function uw =
(u1,uz,u3)T (resp. scalar-valued function u) defined on €, its (i, j)-th pixel is expressed by w(i, j) =
(u1(3,5), ua(i, 5),us(i, 5))T (vesp. u(i,5)). Based on the periodic boundary conditions, we define the
discrete forward (+) and backward (—) differential operators as

witL)—ud) 1< <]
0JU(1,J)_{u(Lj)—A5(m _

Ax s v=1,

u(i,j+1)—u(i,g)

.. A
3JU(Z»J) = {u(i,l)—uy(i,J)
Ay b )

, 1<) <,

u(i,g)—u(i—1,5) 1l<i<]
0y u(i,j) = {u(1,j)A7f(1,j) -
Az ’
wj)—ulbi=1l) | 5 < g
A X J<J,
0y uli, j) = {u(m)—uy(i,J) L _
— Ay J=4
where Ax and Ay denote the spatial mesh sizes. With the above notation, the discrete gradient
operator is defined using the forward differential operators as follows

Vu(i, j) = (05 u(i, ), 0, u(i, j)).
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Besides, we also define the discrete divergence operators using the backward differential operators for

p = (p1 p2) as
divp(i, j) = 9, p1(i, j) + 0, p2(i, ).

4.2 Approximating (p"t1/3,ynt1/3)

From (21), the discrete analogue of (p™t1/3,y™*1/3) in problem (16) is given by

T ..
le""l/3(,L ]) max (1 - 3 2 — 3 — 70)p2l(za])a
Vb )2+ B2 (6, )?
for k=1,2,3; 1=1,2

and

n T nge o
yk+1/3(Z J) max (1 - 3 5 — 3 — 70> Y (Zvj)v
VI S )2+ B2 (6, 9)?
for k=1,2,3.

4.3 Approximating (p"+2/3,yn+2/3)

(30)

The minimization problem in (22) is a highly nonlinear functional. Its Euler Lagrange equation gives
the multivariate nonhomogeneous and nonlinear system (24). Using the one-step Newton’s method

to solve it, we obtain

G n _1
pn+2/3 _ pn+1/3 o G,<(pkl+1/3))

G((w),

where G’ denotes the Jacobian matrix of G. Correspondingly, we use

n+2/3 N n+2/3 . n+2/3 N n+2/3
2/3 2/3 P 2/3( i-J)Ps) 2/3( i3) = P2 2/3( bJ)Ps 2/3
y "2, 5) = F" 3 (0,5) = | (i, p’f+ i, ) — i, p”+ (i, )
n+2/3,. N n+2/3,. . n+2/3,. N n+2/3,. .
P11 / (%J)ng / (Za])_pIQ / (Z J)p21 / (7])
to obtain y"+2/3,

4.4 Approximating (p™*!,y™t1)

The tensor-valued function p™*! is obtained by p"*' = Vu"t!, where u"*t' = (u7T! uh™?,
is the solution of the following linear elliptic system

n+1 n+1 __ n+2/3 i
{_v%k* +muptt = -V - p, +7nfi in g, for k=1,2,3.
u

ZH verifies periodic boundary condition on OS2,

Thus, we discretize equation (34) as follows

(—0; 07 — 0707 + mT)ur ™ = —a;pp > — o pi i,

Us

(32)

(33)

n+1)

(34)
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(a) Noisy image (o = 20) (b) Color TV (c) ALM (d) Our algorithm

Fig. 1 The Gaussian denoising results (o = 20) for ‘Lena’ (top) and ‘Fruits’ (bottom) by color TV, augmented
Lagrangian method and the proposed operator splitting method for Beltrami regularization model. The parameters are
set as: (b) Color TV: A =15, r = 40, (¢) ALM: X\ = 0.4, 8 = v/4000, (d) Our algorithm: n = 10, 7 = 0.02, 8 = 10.
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Fig. 2 Evolution of PSNR and relative error for ‘Lena’ and ‘Fruits’ corrupted by a white Gaussian noises with mean
zero and standard deviation o = 20.

where Z denotes the identity operator. Then one can solve the above linear equation by FFT as

F(=o;pp% — o i3 + mife)
F (=03 0F — 0y 0 +I) ’

uZH = Real | F! for k =1,2,3, (35)

where F and F~! denote the discrete fast Fourier transform and its inverse, respectively, and Real(-)
denotes the real part of its argument. When we obtain u"*!, we compute p"*! as
pptt = Vuptt for k=1,2,3. (36)

According to (25), one has
yrt =yt for k=1,2,3. (37)
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Fig. 3 Energy changes for each subproblem for Gaussian denoising of ‘Lena’ (¢ = 20) by the proposed method.
From left to right: the p"t1/3_subproblem, the p™*2/3-subproblem, the p™*+l-subproblem, the y"+1/3—subproblem,
the y™+2/3_subproblem and the total energy, respectively.

Table 1 Comparison of color TV, augmented Lagrangian method and the proposed algorithm on color image
Gaussian noise removal.

Noise level | Images [ Methods [ PSNR | SSIM [ Iterations [ Time(s) [ Time/Iteration
Color TV 29.47 0.9420 69 2.20 0.0319
Lena (256 x 256) ALM 29.68 0.9425 188 15.83 0.0842
o =20 Our algorithm 29.94 0.9468 115 6.95 0.0604
Color TV 30.24 0.9355 68 9.71 0.1428
Fruits (512 x 480) ALM 30.01 0.9425 185 42.61 0.2303
Our algorithm 30.86 0.9480 100 20.99 0.2099
Color TV 27.76 0.9189 102 3.21 0.0315
Lena (256 x 256) ALM 27.94 0.9210 227 17.03 0.0750
o =30 Our algorithm 28.21 0.9261 177 10.95 0.0619
Color TV 28.56 0.9130 101 14.26 0.1412
Fruits (512 x 480) ALM 28.24 0.9205 209 55.18 0.2640
Our algorithm 28.98 0.9265 162 36.25 0.2238

5 Numerical experiments

In this section, the results of comprehensive experiments on color image restoration with different
noise distributions are reported. All numerical experiments are performed in a Matlab R2017b envi-
ronment on a machine with 3.40GHz Intel(R) Core(TM) i7-6700 CPU and 32GB RAM. Note that
the intensities of all images are normalized to the range of [0, 1]. For simplicity, we set the mesh size
as Ax = Ay = 1.

In our experiments, we adopt the popular Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measurement (SSIM) [52] to quantitatively evaluate the restoration performance
under different image degradation conditions. Generally speaking, higher PSNR and SSIM values
mean better denoising results. In addition, both relative error and numerical energy are provided to
illustrate the numerical convergence of the proposed operator-splitting algorithm. These quantities
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(a) Noisy(c = 30) (b) Color TV (c) ALM (d) Our algorithm

Fig. 4 The Gaussian denoising results (o = 30) for ‘Lena’ (top) and ‘Fruits’ (bottom) by color TV, augmented
Lagrangian method and the proposed operator splitting method for Beltrami regularization model. The parameters are
set as: (b) Color TV: A =9, r =40, (¢) ALM: X = 0.25, 8 = /4000, (d) Our algorithm: n = 6, 7 = 0.02, 8 = 10.
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Fig. 5 The comparison of PSNR and relative error for ‘Lena’ and ‘Fruits’ corrupted by Gaussian noises with mean
zero and standard deviation o = 30 between ALM and our operator-splitting method.

are defined by u -
u” —u" |2

ReErr(u”) = 38
(u”) T s (38)
and
E(u") = /Q \/|Vuk|2 + 32 Z:Wui»c x Vul|2dx + g/9|f — uf|?dx, (39)
,J
respectively.

5.1 Comparison methods and parameters selection

We verify the efficiency and robustness of the proposed operator-splitting method for (3) by comparing
with both the color TV method [53] and the augmented Lagrangian method for Beltrami minimization
model [35]. For a fair comparison, the parameters of each method are tuned in order to provide the
best possible results, the settings of which are given as follows
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(a) Noisy image (b) Color TV (c) ALM (d) Our algorithm

Fig. 6 Gaussian denoising results and local surfaces for the ‘Bird’ image. (a) Noisy image corrupted by mean 0 and
standard deviation 20; (b) denoising result by the color TV method (PSNR/SSIM: 31.73/0.9005); (c) denoising result
by ALM (PSNR/SSIM: 32.01/0.9263); (d) denoising result by the proposed algorithm (PSNR/SSIM: 32.22/0.9298).

o Color TV method: the regularization parameter is selected from A € [0.5,15], and the penalty
factor is set as r € [10, 50].

o Augmented Lagrangian method (ALM): the regularization parameter is set as A € [0.01,0.5], the
parameter 3 is chosen from [10, 100], and the penalty factor is selected as r € [0.1, 10].

o Operator-splitting method: the regularization parameter is adjusted in the range n € [0.5,15], the
parameter §3 is selected from [1,20], and the time step is set as 7 € [0.01, 0.05].

The parameters of all methods are appropriately chosen for the best restoration results as well as a
fair comparison, the specific values of which are provided in each experiment. In particular, we discuss
the effects of the three parameters, namlely 7, 8, 7, to the performance of our method as follows. The
most important parameter in our algorithm is 7, which is used to balance the contribution between
the data fidelity and Beltrami regularization term. The smaller 7 is, the smoother the restoration is.
If n is too large, the model fails to remove the noises and results in low-quality images. On the other
hand, if 1 is too small, the restoration becomes over-smoothed and some features may be lost. The
parameter 3 is used to balance the computational efficiency and reconstruction quality. Although we
assume [ > 1 should be held to obtain the simplified Beltrami minimization (3), § is usually chosen
in interval [1, 20]. There are two reasons for that: a larger 8 will result in slow convergence and small 3
can produce satisfactory results. One of the main advantages of the proposed algorithm is that it only
involves the time step 7 as the free algorithmic parameter to be chosen. The time step 7 affects the
convergence speed and robustness of the proposed algorithm. A larger 7 may lead to fast convergence
and inferior restoration of the proposed method. Specifically, we use the parameter sweep method to
find the optimal values for the parameters by fixing one parameter and exhaustive searching the other
two parameters through a manually specified subset of the parameter space. Last but not least, the
stopping criterion for the iterative procedure is given as e = 1 x 10~° throughout all the experiments.
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(a) Noisy image (b) Color TV (¢) ALM (d) Our algorithm

Fig. 7 Gaussian denoising results and local surfaces for the ‘Man’ image. (a) Noisy image corrupted by mean 0 and
standard deviation 20; (b) denoising result by the color TV method (PSNR/SSIM: 31.34/0.8981); (c) denoising result
by ALM (PSNR/SSIM: 31.80/0.9269); (d) denoising result by the proposed algorithm (PSNR/SSIM: 32.17/0.9327).

5.2 Gaussian noise removal

To demonstrate the effectiveness and efficiency of the proposed operator-splitting method, we first
evaluate the performance on Gaussian noise removal. As shown in Figs. 1 and 4, the color images ‘Lena’
and ‘Fruits’ are contaminated by additive Gaussian noises with mean zero and standard deviation
o = 20 and o = 30. The experiment-dependent parameters for our operator-splitting algorithm are
set as n = {10,6} for o = {20,30}, 7 = 0.02 and 8 = 10 for the two noise levels, respectively.

Both the denoising results and corresponding local magnification views are displayed in Figs.
1 and 4, where all the methods we compare can effectively remove noises. However, the color TV
method suffers from unnatural staircase-like artifacts on slanted regions and loses some important
image details (e.g., the brim and peel). On the contrary, both Beltrami-based methods can effectively
remove the artifacts that do not fit the appearance of natural images and preserve slight image details.
Table 1 reports the PSNR, SSIM, computational time and the number of iterations for each algorithm,
where the highest PSNR and SSIM are always obtained by the proposed method for both test images.
More importantly, our proposed algorithm converges much faster than the ALM, saving more than
half of the computational costs, which verifies the advantage of the operator-splitting method.

We also tracked the evolution of PSNR and the relative error on u* for both ALM and our
proposed algorithm. As displayed in Fig. 2 and Fig. 5, our method can obtain higher and more stable
PSNR with less CPU time and reach the predefined relative error with fewer iterations compared to
the ALM based Beltrami minimization. Moreover, as reported in Fig. 3, we monitored the numerical
energy changes of each subproblem and the original problem (39) on image ‘Lena’ corrupted by white
Gaussian noise with mean zero and standard deviation ¢ = 20. As can be seen, the energies of the p-
subproblems {p"t1/3 p"+2/3 pr+11 and y-subproblems {y"+1/3, y"+2/3} decrease to a stable value
as the iteration number n increases. Pay attention that the total numerical energy decreases to a
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(a) Noisy image (b) B=0 (c) B=10.0 (d) B =20.0 (e) ALM

Fig. 8 Gaussian denoising results and local surfaces for the ‘Starfish’ image by the proposed algorithm for different
values of 8 and ALM.
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Fig. 9 Energy decays for the ‘Starfish’ image corrupted by Gaussian noises, where different values of 3 are used in
the proposed algorithm.

higher value since it takes the fidelity term into account. These plots can demonstrate the convergence
of the iterative process and the stability of the proposed algorithm.

To further verify the effectiveness of our proposed algorithm, we implemented the color surface
denoising by comparing with the classical color TV and ALM of Beltrami regularization. The test
images ‘Bird’ and ‘Man’ are degraded by Gaussian noises with mean zero and standard deviation
o = 20. The parameters in our method are set as n = 8, f = 10 and 7 = 0.02. We present the denoising
results and local surfaces generated by the color TV, ALM and our operator-splitting method in Fig.
6 and Fig. 7. We see that, the color TV method suffers from obvious staircase artifacts resulting in
the rough and uneven color surfaces, while the ALM presents certain oscillations near the edges and
inhomogeneity in the slanted regions. On the other hand, our algorithm produces better restoration
results with sharp edges and homogeneous color effects, which are also verified by the PSNR and
SSIM comparison.

5.3 The effect of parameter 3

In this subsection, we explore the effect of 8 with fixed parameters n = 10, 7 = 0.02 for Gaussian noise
removal. The image ‘Starfish’ is corrupted by additive Gaussian noise with mean zero and standard
deviation o = 20, where /3 in our operator-splitting method is chosen as 8 = {0, 10.0,20.0} to evaluate
the denoising performances. The noisy image and restoration results are displayed in the first row
of Fig. 8. It is clear that our Beltrami minimization model reduces to the color TV minimization
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(a) Noisy image (60 = 20%) (b) Color TV (c) ALM (d) Our algorithm

Fig. 10 Comparison results for ‘House’ (top) and ‘Yacht’ (bottom) corrupted by salt and pepper noises 6 = 20%
between the color TV, augmented Lagrangian method and our algorithm for Bletrami minimization model. The param-
eters are set as: Color TV: A = 1.2, r; = 10, ro = 20, ALM: A = 0.05, » = 0.5, 8 = /4000, and our algorithm: n = 0.8,
r=0.2,7=0.04, 8 =2.0.
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Fig. 11 Comparison for PSNR and relative error on ‘House’ and ‘Yacht’ corrupted by the salt and pepper noises
0 = 20% between ALM and our operator-splitting method.

model for 5 = 0. As can be observed, the restoration tends to be increasingly smoother as 5 becomes
larger in a certain degree, while the results become inhomogeneous and noise-retaining for a too large
5. On the second row of Fig. 8, we display the surface plots of the zoomed region. The surfaces
obtained by our model look much more homogeneous than the color TV model, which convinces that
the alignment between channels is important for color image processing. Indeed, our results are even
better than the ALM for minimizing the Beltrami regularization model because it is much easier to
choose parameters in our approach. Besides, the energy decays obtained by different values of 3 are
exhibited in Fig. 9, where all energies go down as the iteration number increases. Note that more
iterations are consumed to reach the convergence for large values of 5. Therefore, we usually choose
[ less than 20 in practice.
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Fig. 12 Energy changes for each subproblem for salt and pepper denoising of ‘House’ (§ = 20%) by the pro-
posed method. From left to right: the p”t!/3-subproblem, the p™*2/3-subproblem, the p™t!-subproblem, the
y"+1/3_subproblem, the y™*+2/3-subproblem and the total energy, respectively.

Table 2 The comparison of PSNR, SSIM, number of iterations, computational time and efficiency on color images
corrupted by salt and pepper noises.

Noise level ]| Images [ Methods [ PSNR | SSIM | Iterations [ Time(s) [ Time/Tteration
Color TV 29.90 0.9654 262 7.66 0.0292
House (256 x 256) ALM 29.42 0.9631 549 46.44 0.0846
0 = 20% Our algorithm 30.40 0.9688 200 13.38 0.0669
Color TV 30.34 0.9617 240 30.29 0.1262
Yacht (512 x 480) ALM 30.07 0.9416 742 178.67 0.2408
Our algorithm 30.85 0.9636 227 52.56 0.2315
Color TV 27.56 0.9365 260 7.40 0.0285
House (256 x 256) ALM 27.02 0.9302 615 51.46 0.0837
Our algorithm 27.88 0.9418 288 19.19 0.0666
0 = 40%
Color TV 25.22 0.8779 234 29.10 0.1244
Yacht (512 x 480) ALM 25.44 0.8823 722 174.03 0.2410
Our algorithm 25.66 0.8955 296 68.72 0.2322

5.4 Salt and pepper noise removal

We implemented the color TV minimization model [54], Beltrami regularization model [35], and our
operator splitting method on another two color images ‘House’” and ‘Yacht’, which are degraded by the
salt and pepper noises with 8 = {20%,40%}. The parameters in our method are set as n = {0.8,0.6}
for 0 = {20%,40%}, 7 = 0.04 and 8 = 2.0 for the two noise levels, respectively.

The noisy images and restoration results are displayed in Fig. 10 and Fig. 13. Similarly, we obverse
that the images obtained by color TV model exhibit obvious staircase effect and some remaining
noises, especially on the edges. The ALM for Beltrami minimization tends to provide over-smoothed
recovery results with fine details missing, such as the digital watermarking and edges of the chimney.
By contrast, the proposed operator splitting method produces better restoration results with clear
watermarking and sharp edges. The associated PSNR, SSIM and computational time are reported
in Table 2, which agree with the visual results. Our proposed algorithm gives the highest PSNR and
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(a) Noisy(0 = 40%) (b) Color TV (c) ALM (d) Proposed

Fig. 13 Comparison results for ‘House’ (top) and ‘Yacht’ (bottom) corrupted by salt and pepper noises § = 40% among
the color TV, augmented Lagrangian method and our algorithm for Bletrami minimization model. The parameters are
set as: Color TV: A = 0.6, r1 = 10, r2 = 20, ALM: XA = 0.03, » = 0.5, 8 = v/4000, and our algorithm: n = 0.6, r = 0.2,
T=0.04, 8 = 2.0.
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Fig. 14 Comparison for PSNR and relative error on ‘House’ and ‘Yacht’ corrupted by the salt and pepper noises
0 = 40% between ALM and our operator-splitting method.

SSIM values, which illustrate the importance of modeling the couplings between the channels and
the ease of parameter selection.

Furthermore, we monitored the PSNR value against running time and relative error decay against
the number of iterations in Fig. 11 and Fig. 14. Compared to the augmented Lagrangian method, our
proposed algorithm always reaches the stopping criteria with a significantly fewer number of iterations.
Fig. 12 shows the energy decays, where all energies decrease to a stable value as the iteration number
n increases. Thus, we conclude that the proposed method is more effective and efficient than the
ALM based Beltrami minimization model in removing salt and pepper noises.

5.5 Comparison on dataset

In this subsection, we further compare the denoising performance of the color TV, ALM and our
algorithm on a dataset consisting of 20 color images. As shown in Fig. 15, the sizes of images from
the first row to fourth row images are: 256 x 256, 321 x 481, 480 x 512 and 512 x 512, respectively.
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Fig. 15 Display of the 20 color test images for comparing the color TV, augmented Lagrangian method and our
algorithm for Bletrami minimization model. The size of images are set as: the 1st row of 256 x 256, the 2nd row of
321 x 481, the 3rd row of 480 x 512 and the 4th row of 512 x 512, respectively.

The Gaussian noises of zero mean and variance o = {20, 30} are added into clean images. We track
the PSNR, SSIM, CPU time and iterations on 20 test images as displayed in Fig. 16, where the
averaged PSNR, SSIM, number of iterations, total computational time and time per iteration are
recorded in Table 3. As can be observed, our operator-splitting method achieves the highest values
of both PSNR and SSIM. Meanwhile, our method consumes less computational time and iterations
than ALM, which verify the superiority and effectiveness of the operator-splitting strategy. Moreover,
we introduce the salt and peppers noises with noise level 8 = {20%,40%} to the test images. The
comparison results are exhibited in Fig. 17 and Table 4, which are completely in accord with the case
of Gaussian noises. Thus, we arrive at the conclusion that our operator-splitting algorithm is more
effective for color image denoising problems, providing better restoration quality in reasonable time.

6 Conclusion

We proposed an effective and efficient operator-splitting method to deal with the Beltrami min-
imization model for color image denoising problems. We introduced two auxiliary variables and
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Fig. 16 Comparison results on 20 test images in Fig. 15 corrupted by Gaussian noises o = 20 (top) and o = 30
(bottom) among the color TV (blue curves), augmented Lagrangian method (green curves) and our algorithm (red
curves). The parameters for o = {20, 30} are set as: color TV: A = {15,9} and r = 40, ALM: A = {0.4,0.25} and
B =+/4000, and our algorithm: n = {10,6}, 7 = 0.02 and 8 = 10.

Table 3 The comparison among color TV, ALM and our method on the averaged PSNR, SSIM, number of
iterations, computational time and time per iteration of the 20 test images in Fig. 15 corrupted by Gaussian noises.

Noise level | Methods [ PSNR | SSIM | Iterations [ Time(s) [ Time/Tteration
Color TV 29.80 0.9182 66 5.55 0.0849
o =20 ALM 29.90 0.9314 201 38.88 0.1946
Our algorithm 30.39 0.9371 101 16.23 0.1617
Color TV 27.96 0.8899 98 8.34 0.0854
o =30 ALM 28.04 0.9053 251 46.36 0.1878
Our algorithm 28.52 0.9132 164 26.47 0.1631

Table 4 The comparison among color TV, ALM and our method on the averages PSNR, SSIM, number of
iterations, computational time and time per iteration of 20 test images in Fig. 15 corrupted by salt and pepper noises.

Noise level | Methods [ PSNR | SSIM | Tterations [ Time(s) [ Time/Iteration
Color TV 31.17 0.9668 196 15.18 0.0758
6 =20% ALM 31.39 0.9632 813 160.60 0.1998
Our algorithm 31.72 0.9689 256 45.98 0.1772
Color TV 26.95 0.9118 225 16.73 0.0767
6 = 40% ALM 27.17 0.9178 748 156.79 0.2206
Our algorithm 27.65 0.9245 278 50.95 0.1868

reformulated the original model into an equivalent form, which was solved by a time discretiza-
tion problem using an operator-splitting method. Compared to the existing augmented Lagrangian
method, the proposed algorithm contained only one time step parameter, which was much easier
to be implemented in practice. Plentiful numerical experiments were provided to demonstrate the
superiority of the proposed algorithm, which was shown more efficient and effective than the ALM
based algorithm, and outperformed the color TV model in restoration quality. The proposal has a
wide potential in other color image processing problems, such as image deblurring, image inpainting,
image super-resolution, etc.
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Fig. 17 Comparison results on 20 test images in Fig. 15 corrupted by salt and pepper noises 8 = 20% (top) and
0 = 40% (bottom) among the color TV (blue curves), augmented Lagrangian method (green curves) and our method
(red curves). The parameters for 0 = {20%,40%} are set as: color TV: A = {1.2,0.6}, r1 = 10 and r» = 20, ALM:
A = {0.05,0.03}, » = 0.5 and 8 = v/4000, and our method: n = {1.0,0.6}, r = 0.2, 7 = 0.04 and 8 = 2.

Appendix

Now we provide a brief introduction on the Lie and Marchuk-Yanenko schemes for the time-
discretization of initial value problems. Consider the following steady-state problem

A(X) =0, (40)

where the operator A maps the vector space V into itself. The classical method to solve (40) is to
formulated it as the following initial value problem

92X L A(X)20 on (0,7) (with 0 < T < +00),

X(0) = Xo. (41)

Suppose that the problem (41) has steady-state solutions. These solutions are necessarily solutions
of problem (40). We further assume the operator A has a nontrivial decomposition, namely

A=A (42)

where J > 2 and all 4;,0 < j < J, are individually simpler than A. Let 7 > 0 be a time-discretization
step, and denote nr by t". Assuming that X™ is the approximation of X (¢"), the Lie scheme for
solving (41) is given by (see Chapter 6 of [55] for its derivation)

X% = X,, (43)
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then, for n > 0, X” — X"*! are updated as follows
00X
T+ A(X;) =0 ¢, gt
o A (X5) =0 on (17,4717, for j=1,--,J. (44)
X, (1) = X001 Xl = X (1),

The Lie scheme (43) and (44) is only semiconstructive since it requires to solve a series of initial value
problems. Therefore, by discretizing the subproblems (44) using one step of backward Euler scheme,
we obtain the following Marchuk-Yanenko scheme

Xn+i/d _ xn+(G-1)/J .
+ Aj (XY =0, for j=1,---,J (45)

T

Due to asymptotic properties of the Lie and Marchuk-Yanenko schemes, the following phenomena
generically holds [39]

e If converging for j = 1,...,J, the sequences (X"*j/‘])nzo converge to different limits than the
solution of (40) with the distances between them being O(7) at best.

e None of the above limits is a steady-state solution, but their distance to a steady-state solution
converges to 0 as 7 — 0 (if a steady-state solution does exist).

The above convergence theory has been proved in Chapter 6 of [55] supposing the space V' being
finite dimensional and the operators A; being affine. Since the properties for A; do not hold in our
Beltrami minimization model, the existing convergence theory cannot be applied to our algorithm,
which need to be studied separately as our future works. Moreover, when the Lie or Marchuk-Yanenko
scheme applies to multivalued operators such as the subdifferential of proper, lower semicontinuous,
convex functionals, the first order accuracy is not guaranteed as well (our case in Sect. 3).
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