Flow decomposition for heat equations with memory
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Abstract

We build up a decomposition for the flow generated by the heat equation with a real
analytic memory kernel. It consists of three components: The first one is of parabolic
nature; the second one gathers the hyperbolic component of the dynamics, with null velocity
of propagation; the last one exhibits a finite smoothing effect. This decomposition reveals the
hybrid parabolic-hyperbolic nature of the flow and clearly illustrates the significant impact
of the memory term on the parabolic behavior of the system in the absence of memory terms.

Keywords. Heat equations with memory, decomposition of the flow, hybrid parabolic-

hyperbolic behavior

1 Introduction

1.1 Statement of the problem

In this paper, we will study the following heat equation with memory:

t
Ot )~ By(ta) + [ Mt = 9y(s.a)ds =0, () R X
0

y(t,z) =0, (t,r) € RT x 99,
y(0,2) = yo(), x €

(1.1)

Here, RT := (0,+00), Q@ C R"® (n € N* := {1,2,3,---}) is a bounded domain with a C*-
boundary 9, yo is an initial datum and M is a memory-kernel over R := [0, +-00).
Although our analysis can be generalized to less regular memory kernels, for the sake of

simplicity we assume that:

(¢)  the memory kernel M is a real analytic and nonzero function over R,
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Equations with memory arise in the modeling of many physical phenomena such as viscoelastici-
ty, heat conduction, etc. They can be traced back to the works of J. Maxwell [14], L. Boltzmann
[2, 3] and V. Volterra [19, 20]. For instance, in the analysis of elastic materials, L. Boltzmann
and V. Volterra represented the stress tensor in terms of the strain tensor as well as its his-
tory values. Equations involving memory terms have been widely studied: see for instance
[1,4,5,6,7,8,9,10, 11, 13, 17] and the references therein. In particular, in [11] the gener-
al memory effect in heat conduction processes was analyzed showing that temperature waves
travelling in the direction of the heat-flux propagate faster than wave travelling in the opposite
direction, while in [8] the asymptotic behavior of the systems of linear viscoelasticity at large
time was analyzed, introducing a new auxiliary variable to deal with the history of the states.
By standard methods (see, for instance, [18, Theorem 1.2 in Section 6.1, p. 184]), it can be
shown that the equation (1.1), with yo € L?(f2), has a unique mild solution, denoted by %(-; yo),
in the space C(R+; L?(€2)). For each t > 0, we let the evolution of the system be denoted by:

P(t)yo := y(t; o), yo € L*(Q). (1.2)

For each t > 0, the flow generated by the equation (1.1), ®(¢), belongs to L£L(L?(£2)). Here and
in what follows, we denote by L(E, F') (where E and F' are two Banach spaces) the space of all
linear and bounded operators from F to F', and simply write L(E) for L(E, E).

We shall use the notation {etA}tzo for the Cy semigroup generated by the heat equation in

the absence of memory term (i.e., when M = 0), where
Af := Af, with its domain D(A) := H*(Q) N H}(Q). (1.3)

Then z(t;yo) := e'yo, t > 0, solves (1.1) without memory, i.e., (1.1) when M = 0.
This paper is devoted to analyzing the dynamics of the system with memory term and, in
particular, to exhibiting the significant differences with the heat semigroup in the absence of

memory.

1.2 Main results

The aim of this paper is to build up a decomposition of the flow ®(t), revealing a hybrid
parabolic-hyperbolic dynamics of the (1.1).

To state our main results, we first introduce several concepts, definitions and notations.

e Let n; > 0 be the % eigenvalue of —A and let ej be the corresponding normalized

eigenfunction in L?(2). Define, for each s € R, the real Hilbert space:
oo o
H = {f = Zajej : (aj)jzl CR, Z ‘CLj‘QT]j- < +OO}, (1.4)
j=1 j=1
equipped with the inner product:

(fr, fohre o= _ajaajomi, o= ajxe; € H® (k=1,2).

J=1 Jj=1



For all ¢t > 0, @(t) belongs to L(H?) for any s € R (see Proposition 7.1).

‘We now introduce the classes:

H™> = U H® and HT™:= ﬂ H?. (1.5)

seR seR

e Recall that for each continuous function f over R*, the operator f(—A) can be defined by

the spectral functional calculus (see [15, Section 3, Chapter V.III}).

e Let us also define the following functions, related to the memory kernel M, that will play

important roles in the decomposition of the flow.

First, we introduce the flow kernel:

+o0 j
Ku(t, s) ::Z(_jf) M- xM(t—s), (t,s)€Sy:={(t,s)eR* : t>s}. (L6)
j=1 7 j

Here and throughout the paper, * denotes the usual convolution, i.e., when g;,g0 €

loc
t

g1 * go(t) :== / g1(t — s)ga(s)ds, t > 0.
0

Notice that the above K, is well-defined and it is real analytic over S, (see Proposition
2.3). The following holds (see Proposition 4.8)

t
O(t) = e + / Ky(t,7)e™dr, t>0,
0

which yields a clear description of the gap between the heat equation and the memory one

and justifies the terminology “flow kernel” employed.

Second, for each N € N7, let

t
Ryn(t,T) := / e T ON Ky (t,s)ds, t>0, 7>0. (1.7)
0

Third, we define two sequences of functions {h; };en and {p;};en (that will play the role of

coefficients in the expansions) in the following manner: for each ¢ > 0,

( ! d(l 7)
hy(t ZO >l<>l<M(1§)7
J
dU=3+m) (_t)m
— _ 1)1 I=j+m e
n() = —h(0) + (=1) Z+ (q TR o M(O)) —
27 —T;Lf IESNm’ <j /

(1.8)

Here, C' := pl/m!(B8 — m)! denotes the binomial coefficients and M x - - - * M := 0 when
—_—

j=0.



e Let f be a distribution over a domain D C R¥ (with & € N*). By the notation f € L? (q)

loc

(with ¢ € D), we refer to the fact that f|y, € L?(Up) for an open non-empty subset U
such that ¢ € Uy C D.

The main results of this paper are as follows.

Theorem 1.1. For each integer N > 2, the flow ®(t) admits the following decomposition:

@(t) = PN<t> + WN(t) + %N(t), t >0, (1.9)
with
Pa(t) = e+ eAS N p(t)(—A)7
Wi (t) = 2 () (=A)", t>0, (1.10)
Ry(t) = Ry(t,—A)(-A)N-1

where {h;}ien and {p;}ien are given by (1.8) and Ry is given by (1.7). Moreover, for each
t >0, neither {h(t)}1>1 nor {pi(t) hien is the null sequence, i.e.,

> @) >0 and Y |p(t)] > 0. (1.11)
>1 >1

Theorem 1.2. With the notation in Theorem 1.1, the following conclusions are true for each
integer N > 2:

(i) The first component Py exhibits a heat-like behavior: for each t > 0, Pn(t)H ™ C HT,
where HT>° and H™°° are given by (1.5).

(i) The second component Wy ezhibits a wave-like behavior: when yo € H™°, xo € Q and
to > 0,

Wi (yo & L (to, 20) <= YVt >0, Wn(-)yo &€ Li (¢, 0). (1.12)

In other words, the singularities of the solutions propagate in the time-like direction with

null velocity of propagation in the space-like direction.

(i1i) The last component Ry exhibits a time-uniform smoothing effect with a gain of 2N + 2
space derivatives: for each yo € H® with s € R, Ry (-)yo € C([O,+oo);HS+2N+2), while
A Te Ay, ATy, € C([O, +oo);7-[s+2j) for any 0 < j < N. And for each s € R, the term
Ry (in Ry ) belongs to C(RY; L(H®)) and fulfills the estimate:

N dj

| R (8, — A)| ey < et{ exp [N(l —|—t)<;00r£13%<t deM(T)‘>:| - 1}, £>0. (1.13)

(iv) For any yo € H™>°, zp € Q and t > 0,

ép()yo ¢ LIZOC(t7 .’L'()) g WN()yO g Ll200(t7 'CCO) And Aizyo € LZZOC(‘TO)’ (114)



Theorem 1.3. With the notation in Theorem 1.1, the following conclusions hold for each integer
N > 2: First, at the initial time,

i [ 2(0)ejlzai@) = lim [Py (O)ejllzzi) =1, lim [Wy(0)ejllra) =0, Ry (0) =0.
(1.15)
Second, at each time t > 0,
lim [|B(t)ejllya = Lm [Wi(t)ejllys = |M(2)],
j—+oo J—+too
lim [[@(t)ejllys = lm [|Wn(t)ejllas =0 for any s < 4,

Jj—+oo J—r+oo (116)
lim ||Pn(t)ejllns =0 for any s € R,
J—+oo

—~~

dim || (t)ejl|lus =0 for any s < 2N + 2.
J—+oo
Theorem 1.4. Given s € R, the following conclusions are true:

(i) There is Cy > 0 (independent of s) so that for any a € [0,4] and t > 0, D(t) belongs to
L(H®, H3TY) and satisfies

1B(8) | £(3ge 20740y < Cot™ % exp {2(1 +1)(1+ ||MHCQ([O¢D)]. (1.17)

(ii) If there is cy > 0 so that
D(t) € LIH®,HT) as t >0 in a neighborhood of 0, (1.18)
then ag < 4 and liminfts Pl (3¢5 300y > 0.
t—0t ’

(iii) For any yo € H®, ®()yo € C(RT; HT). Moreover, the index 4 is optimal in the sense
that if o > 4, then ®(-)jo ¢ C(RT; H5Y) for some gy € H?.

Remark 1.5. Several comments are in order:

(al) Theorem 1.1 gives the decomposition (1.9) of the flow and besides shows the non-triviality
of Py and Wy for each t > 0, there is No(t) € NT so that Py (t) # 0 and Wy (t) # 0
when N > Ny(t). Theorem 1.2 explains the functionality of each term in the decomposition
(1.9). Theorems 1.3-1.4 are the consequences of the decomposition (1.9). The three terms
of the decomposition Py, Wy and Ry are referred to as the heat-like component, the
wave-like component and the remainder, respectively. The first two components are the
leading ones. Due to their asymptotic expression, we can clearly identify their nature
and this justifies the terminology heat/wave-like respectively. (This coincides with the

expected hybrid nature of the flow.)

(a2) The proof of Theorem 1.1 uses a Fourier expansion on the basis of eigenfunctions of A that
reduces the problem to consider an ODE with memory depending on the dual parameter

n > 0O:

t) + nw(t /Mt—s (s)ds=10, t>0;, w(0)=1. (1.19)



(ad)

The dynamics of this memory-ODE can be decomposed into three terms leading to the
three components in the decomposition (1.9). The asymptotics of this decomposition for
large 7 yields the main properties of the decomposition (1.9) of the memory-heat equation.

A careful analysis of the flow kernel K s plays a key role in this analysis.

In Theorem 1.2, the infinite order regularizing effect of the heat-like behavior of Py,
stated in (i), is the analog of the smoothing effect of the semigroup {e/4};>o generated
by the heat equation without memory terms; The wave-like component Wy exhibits the
propagation of singularities along the time-direction, as stated in (ii); The smoothing
effect of the remainder Ry, stated in (ii7), ensures the gain of 2N + 2 space-derivatives at
nonnegative time but differs from the infinite order smoothing effect of the heat semigroup
et4 at positive time (see Remark 4.4 for more discussions). The conclusion (iv) says, in
plain language, that when ¢ > 0, the singularity of Wy (t) determines the singularity of
&(t), more precisely, the singularity of the practical leading term in Wy (¢) determines the
singularity of @(t). Here, we notice that it follows by (1.8) that ho(t) = 0 and hi(t) =
—M (t), thus the practical leading term in Wy (t) is —M (t) A% where the coefficient M (t)

is not zero except for finitely many ¢ by the assumption (€).

From these, we conclude that the decomposition (1.9) in Theorem 1.1 reveals the hybrid

parabolic-hyperbolic behavior of the flow &(t).

Theorem 1.3 shows how the energy of solutions taking eigenfunctions of the operator A
as initial data is distributed over each component of (1.9) at time ¢ = 0 and time ¢ > 0
respectively. The conclusion (1.15) says that when ¢ = 0, the energy of ®(0)e; (which
is exactly e;) is almost concentrated in the heat-like component for large j, while (1.16)
can be explained as: when ¢ > 0, the energy of ®(t)e; almost focuses on the wave-like
component for large j. The first line in (1.16) is from the term —M (t)A~2 (in Wy) and
the order 4 in H* is exactly from the order —2 in A=2. The last line in (1.16) is from (i77)

in Theorem 1.2.

Theorem 1.4 exhibits the finite order smoothing effect of the flow. By it, we can see,
from the point of view of the smoothing effect, both big differences and some similarities
between the flow ®(t) and the semigroup e‘4:

First, on one hand, for any yo € H* (with s € R), e4yo € C(R*; HF) (Vk € N), while
d()yo € C(RT;H*T*) and moreover the index 4 is optimal, on the other hand, the
smoothing effect of the flow &(t) at points in the set {¢ > 0 : M(t) = 0} is better
than that at points in the set {t >0 : M(t) # 0} (see Remark 4.5 for more details);

Second, when t is large, both the semigroup e*4 and the flow &(t) are bounded from
the above by exponential functions of ¢, while when ¢ is small, they are bounded

from the above by the function t~2. Moreover, the flow &(t) is also bounded from



the below by =2 when t — 0. Here, by “e!4/®(t) is bounded by”, we mean “the
L(H*, H5T*)-norm of e /P(t) is bounded by”.

(a6) It follows from Theorem 1.1 that for each ¢t > 0, the wave-like component Wy (t), as well

A

as the gap between the heat-like component Py (t) and the heat semigroup e, are non-
trivial, when N is large enough. Thus, we may expect that as IV increases the heat-like and
the wave-like components include an increasing number of terms, just like in the Taylor

expansion, and the decomposition becomes sharper. (See the example in Section 5.)

The last component Ry does not fit completely into any of the two previous ones, but
is needed in order to complete the representation of solutions. We further explain SRy as

follows:

e Hybridity. It inherits a hybrid heat/wave structure from the flow (see the note (R2)

in Remark 5.2).

Smoothing effect. It has the time-uniform smoothing effect given in (#ii) of Theorem
1.2. Such time-uniform smoothing effect differs from the usual smoothing effect of

the heat semigroup. (This has be mentioned in (a3)).

From Theorems 1.1-1.2, as well as the example in Section 5, we can see what
follows: First, when ¢t = 0, SR (¢) has a better smoothing effect than that of Py (¢),
but when ¢ > 0, this is reversed. (The reason why the smoothing effect of Ry (t)
(with ¢ > 0) is weaker than that of Py(t) is due to wave-like terms contained in
MRy (t).) Second, when ¢ > 0, both Ry (t) and Px(t) have better smoothing effects
than that of Wx(t), thus as ¢ > 0, the singularity of the flow is dominated by the

wave-like component and the flow shows its wave-like nature.

Frequencies. In Fourier analysis, the smoothing effect of a pseudo-differential operator
corresponds to the growth of its symbol at high frequencies. The situation here is
similar—Theorem 1.1 and Theorem 3.1 corresponds to each other and the smoothing
effects of the components in (1.9) correspond to respectively the growths (in large )
of the components in (3.2). From this and (3.2), we can see that when ¢ = 0, the last
component in (3.2) (It corresponds to MR y.) has a faster decay (in large n) than the
first two components in (3.2), while when ¢ > 0, both the last one and the first one

have faster decay than the second one.

Non-triviality. Since the component 2Ry has a hybrid heat/wave structure as men-
tioned above (In particular, we would like to mention that it is not a finite dimensional

low frequency operator.) it is not negligible.

(a8) We require N > 2 in Theorem 1.1 since Wi (-) =0 (when N = 1).



(a9) Notice that both Py (0) and Wy (0) are not projection operators in general and that
Yo = Pn(0)yo + Wi (0)yo for each 3o € L?(Q) and %Ry (0) = 0.
This is further discussed in Proposition 4.7.

(al0) All the results of Theorems 1.1-1.2, except (1.11), (1.12) and (1.14), hold under the weaker
assumption M € C°°(RT). In Theorem 4.10 below we analyse the case of kernels M in
CNo(RT), with Ny > 2. The assumption (€) ensures (1.11), (1.12) and (1.14). Whether

the same holds under weaker conditions on the kernel is an open problem, see Section 6.

(all) The decomposition (1.9) has applications in control theory. It allows, in particular, to
compare the reachable sets for the controlled heat equations with and without memory

term. We refer to [21] for a complete analysis of this issue.

(al2) There is a large body of literature on the large time dynamics of memory like problems
(see, for instance, [8, 9]) which is surely an important direction. Unfortunately, we are not

able to use our decomposition to get such results.

1.3 Plan of the paper

The rest of the paper is organized as follows. In Section 2 we analyze the flow kernel Kjy;.
In Section 3 we present a decomposition for solutions to the ODE (1.19). Section 4 contains
the proofs of Theorems 1.1-1.4, and provides some other properties of the flow. In Section 5
we discuss, as an example, the case of the kernel M (t) = aeM. Section 6 lists several open

problems. Section 7 contains an appendix.

2 Properties of the flow kernel

In this section we present some properties of the flow kernel Kj; in (1.6), which will be used
later.

In what follows, the space C*([a,b]) (with & € N* and a < b) is endowed with the norm:
k
=0

dl
[ F e jae) = lz:‘ dJU];HC([@b])’ f € C*(la,b)).

The following result provides basic estimates on iterated convolutions that will be used in

the proof of Proposition 2.2. Its proof is put in the appendix.

Lemma 2.1. Let j,m € N*t. Then for each sequence {Ml}gzl C C™(RY), My * -+ x M; is in
the space C™ I~ RY¥) and satisfies that for each k € {0,1,...,m+j — 1},

d J—1 AN
ﬁMl*'”*Mj(t)’ < Z i HHMZHC‘P([O,t])v t>0, (2.1)
I=max{0,j—1—k} =1

where p := xn(k — 1) [(k‘ —ixnk—7g)+ 1] and xN 18 the characteristic function of the set N.



The following Proposition 2.2 provides estimates on the derivatives of the flow kernel K,
that will serve for the proof of Theorem 3.1, which is one of the tools in the proof of the

decomposition in Theorem 1.1.

Proposition 2.2. The flow kernel Ky € C*(S4) (where Sy is given in (1.6)) satisfies that
for each o, B € N,

‘ataasﬁKM(t, 8)} < etfs |:eXp (ﬁ(l + ’S’) "M“C"""‘ﬁ([(),tfs])) - 1:|, t > s. (22)

Proof. First of all, it follows from (1.6) that

“+o00
=> M,(t,s), t=>s, (2.3)
where
M-(ts)'—(_S)jM*---*M(t—s) t>s (2.4)
I\ T ]‘ —_—— ) = S. .

J

Next, we prove Kj; € C*(Sy) showing the convergence in C°°(S,) of the series on the
right-hand side of (2.3).

To this end, we will estimate M; with j € N*: By the assumption (€) and Lemma 2.1, we
see that M x --- % M belongs to C*°(R¥) and satisfies, for each k € N,

dk

o —— M x % M(7) <€T”MH01«([OT , T>0. (2.5)

J

From (2.4) it follows that M; € C*°(S5).
By direct computations, for «, 8 € N, we have t > s,

PO M;(t,s) =020 M;(t, s)

B _ (0%
:CZSB[( ]') (d(»iriaM* *M,(T))‘ths]
J

B m Y —m
=3 g (S e (e e o)

m=0 ;
min{g,j} _
—1)? ot - Jot+B-—m
_( j') S CRCrm) (=P (M M) |, (26)
) m=0 J'.

Here and in what follows, we use the conventional notation 0° := 1. By (2.6) and (2.5), one has
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that, when t > s,

1 J
at aBM t S ‘ Sﬁ Z C,B m' Cﬂn|3|‘7 m( = SHMHCoHrﬂ(Ot 5]))

J
ZCJ”ISP"“> M0
m=0

t—s

J
(&
(B0 4 DIMIwssoup ) (2.7

Now, by (2.7) it follows that the series in (2.3) converges in C*°(S).
Finally, by (2.3) and (2.7), after direct computations, we see that when t > s,

8P K (1, s)’ < i
j=1

aganj(t,s)\ <e’ [exp (6(1 + !s\)HMHcawqo,t_sp) - 1]-

This gives the desired estimate (2.2) and ends the proof of Proposition 2.2. O

The next Proposition 2.3 concerns the analyticity of the flow kernel K. It will be used in

the proofs of Proposition 2.4 and Proposition 4.9.
Proposition 2.3. The flow kernel Ky is real analytic on Sy (where Sy is given in (1.6)).

Proof. 1t suffices to prove that K, is real analytic over St for each T' > 0, where
Sp:={(t,s) eR* : 0<t—s<T}.

To this end, we fix an arbitrary 7 > 0. Due to the analyticity of M over RT, there is a domain
(7); of the complex plane C, with [0, 7] C (7); C C, so that M has a unique analytic extension M
to (9NT Moreover, we can take a bounded and convex subdomain Op so that [0,7] C Op CC (5;

The convolution * can then be extended to % in the following manner for f,g € C(Op;C),

fxg(z / f((1 = s)2)g(sz)zds, z € Or.
We now claim the following two properties:

(P1) For each j € NT, M%---%M is an analytic extension of M x ---x M over Orp;
— —
j j
(P2) There is C' > 0 so that

sup [MF - &M (z)] < ¢ for all j € N¥,
2€0p Y

Indeed, one has
when f,g € C(Or;C),

fxglor =
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Here, f*gljor), flio,r) and gljo,r) are respectively the restrictions of f*g, f and g over [0, T].
Then, property (P1) follows from the analyticity of M at once, while the property (P2) can be
proved by direct computations.

Define the following subset of C2:

Dr := {(t,s) eC? : t—sE(’)T}.

It is clear that S C Dp. According to (P2) above, the following series uniformly converges over

each compact subset of Dy:

(—s)f —  _—

N T ME- - EM(t - s), (t,s) € Dr.
| Se——

IS )

Meanwhile, by (P1), we find that each term in the above series is analytic over Dr. Hence, the
sum of this series is analytic over Dy. From this and (1.6), we see that Kjs|g, (the restriction

of Ky over St) can be analytically extended to Dp. Therefore, it is real analytic over Sp. This
ends the proof of Proposition 2.3. O

The next Proposition 2.4 can be interpreted as a strong unique continuation property or

non-degeneracy of the kernel Kj;, that will be used in the proof of Theorem 3.1.
Proposition 2.4. For each (to, so,v1,v2) € (Sy x SY)\ I, where
I:= {(t,t,T,T) cteR, 7= :I:l/\@} U {(t,O,T,O) t>0, 7= :I:l},
with Oz := v10; + v20s where U := (vy,v3), it holds that
OLK v (to, 50) # 0 for some 1 € N. (2.8)

Remark 2.5. Obviously, real analytic functions on R? do not necessarily fulfill the non-degeneracy

condition above. Indeed, polynomials, for instance, can vanish along lines in R2.

Proof of Proposition 2.4. It suffices to prove (2.8) in the case that ¥ = (0, 1), as other cases can

be proved in a very similar way. By contradiction, suppose that (2.8) with ¢ = (0, 1) fails, i.e.,
o1y Kar(to, s0) =0 for all 1 €N. (2.9)

Define
f(A) == Kp(to, to — A), A>0. (2.10)

Two facts on f are given as follows: First, by the real analyticity of M over Rt, we see from
Proposition 2.3 that Kj; is real analytic over S;. This, along with (2.10), yields that f is
real analytic over R*. Second, by (2.9) and (2.10), we find that f vanishes of infinite order at
A =ty — so. From these two facts, we see that f = 0 over R*, which, along with (2.10), yields

Kn(to,to—A) =0, A>0.
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The above, together with (1.6), shows

ozf()‘_to)jM*.-.*M()\) A>0
. b — b

|
= ;
which leads to

+oo -1

A —tg)!
0=DM() %M*m*M()\), A>0. (2.11)
— j T
J= J

Next, we arbitrarily fix 7" > 0. For each j € N\ {1}, we define an operator K; on C([0,7])
in the following manner: given g € C([0,T1]), set

()\ — to)j_l

Ki(g)(A) == i Mx---x Mxg(\), 0< AT, (2.12)

which is well-defined, linear and bounded. Let

“+oo
Q:=) K.
j=2

One can directly check that Q@ € L£(C([0,7])), the Banach space of all linear and bounded
operators on C([0,77]). Thus, we deduce from (2.11) that

(Id+ Q)(Mlz) = (Id+ Z/c ) (M) (2.13)

where Id is the identity operator on C([0,T7]).

We now claim that (Id + Q) ! exists in £(C([0,T])). When this is done, we can use (2.13),
(1.6) and the arbitrariness of T' to see that M = 0, which contradicts the assumption (&).
Consequently, (2.8) is true.

The remainder is to show the above claim. To this end, we arbitrarily fix £ € N* and then
estimate OF in the following manner: Set

Ty, := sup |A— to| = max {|to], |T — to|}
0<ALT

Then from (2.12), one can directly check that when ji,...,j; > 2,
1 1

ot jip—k
1K+ Kl ooy < =50 'le PN UM oy
: \_V_z
Ji++i—k

<ii g1t +ik—k Tt tin=k H HJH— +jp—k
Tl gl (14 e — R 10T

11 1 Jittik—k
< 5 (BT 1M legom)
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This, along with the definition of Q, yields

||QkH£(C([O,T])):H > KKy,

J1seesJk 22

L(c((o,11)

k .
1 1 Jm—1 1
S > il (TtOTHMHC([O,T])> S 7 &P (thoT”MHC([O,T])>-

m=1 \jm>2"""
+oo
So Z(—Q)k converges in £(C([0,77])). Then we have
k=0
“+oo
Id=(Id+Q)) (-9*.
k=0

Therefore, (Id + Q)1 exists in £(C([0,77])). This completes the proof of Proposition 2.4. [

The following Proposition 2.6 presents a weighted estimate of the flow kernel K. It will be
used in the proof of Proposition 4.8 that provides an explicit expression of the gap between the

heat evolution with and without memory.

Proposition 2.6. For each A € R,

t t
/ e M| Ky (¢, 5)|ds < exp <t/ e_’\T|M(T)|dT> -1, t>0. (2.14)
0 0
Proof. Arbitrarily fix A € R. Define the following weighted memory kernel:
My(t) := e MM(t), t>0. (2.15)

We claim
+oo (_
e MKyt s) = Z

=1

s)J

My - x My(t—s), (ts)€St. (2.16)
—

J
Indeed, (2.16) follows from (1.6) and the following identity:

4!

<

Mys--x My(t)=e Msx---x M(r), 7>0, jeNFt,
j J
which can be verified directly.

Next, we arbitrarily fix ¢ > 0. By the iterative use of the Young’s inequality:

I1f * gl 00y < If Iz 0.0 l9llzi 0,0, when f,g € L(0,1),

one has that

My - % Myl paony < 1Ml 0, 7 €N
j
This, along with (2.16), yields
t +00 tj
/0 [N Kar (e 8)ds < 37 UMy 5 Myl < exp (UM 0y) — 1.
j=1 :

j
Then (2.14) follows from (2.15). This concludes the proof of Proposition 2.6. O
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3 Parameterized ODEs with memory

In this section we analyze the ODE (1.19), i.e
t) + nw(t /Mt—s (s)ds=0, t>0; w(0)=1, (3.1)

where n > 0 is a parameter. First of all, by a standard method in the ODE theory, one can
easily check that the equation (3.1) has a unique solution, denoted by w,,, in the space C1(R¥).
The main result of this section is the next Theorem 3.1 which gives a decomposition in terms

of n for the solution w,. It lays a solid foundation for the proof of Theorem 1.1.

Theorem 3.1. For each integer N > 2, the solution w, (with n > 0) to the equation (3.1)

satisfies

N-1 N—-1
wy(t) = e (1 + ) pz(t)n‘l_1> + Y T + Byt N >0, (3.2)
=0 =0

where {h;}1en and {p;}i1en are given by (1.8) and Ry is given by (1.7). In addition, the following
conclusions are true:
(i) The function Ry is in the space C(RT x RT) N C(RT; C(R™)) and fulfills the estimate:

N

IRn(t )l ome) < et{ exp [N(l +t)<z max | M(S)D] - 1}, t>0. (3.3)

— 0<s<t | dsJ

(i1) For each t € RT, neither {h(t)};>1 nor {pi(t) hien is the null sequence.

Remark 3.2. (i) The decomposition (3.2) serves for that in (1.9). The components in the
decompositions (3.2) and (1.9) correspond to each other.

(1) The conclusion (ii) in Theorem 3.1 corresponds to (1.11) in Theorem 1.1 discussed in
Remark 1.5.

To prove Theorem 3.1, we need several lemmas. The first one refers to the representation of
the solutions of (3.1) in terms of the flow kernel Kjs (given by (1.6)).

Lemma 3.3. The solution w, (with n € R) to (3.1) satisfies
wy(t) = e + /Ot Ky (t,s)e"ds, t>0. (3.4)
Proof. Fix an arbitrary n € R. From (3.1), it follows that
wy () + mwn(t) = =M wy(t), t > 0; wy(0) = L.

The above yields

wy(t) = e — /0 e M=) (M « wy)(s)ds = e — (&7 x M xwy)(t), t > 0. (3.5)



15

Then we arbitrarily fix T' > 0 and define the following operator:
Qr(f):=e T« Mx f for each f e C([0,T)). (3.6)

One can easily check that Qr is a linear and bounded operator on C([0,7]). By (3.6), we see
that for each k € NT,

Oh(f)=(e"xM)s---x (e« M)xf, feC(0,T]). (3.7)

From (3.7), one can directly check

19% | ooy SNe™ * M) s - (7 % M) 1 o.my

t1 tr— 1
<|le”™ *MHC[OT] (/ / / mdt1>

(MM ) T

From this, we see that the series 7 (—Qr)¥ converges in £(C([0,7])) and that

o0

1+9r) ' =) (-on)k (3.8)

k=0

Meanwhile, it follows from (3.5) and (3.6) that

17 =—9r (wn|[O,T]> +e o1 (3.9)

Here, wyljo,r) and e~ [jg 77 denote respectively the restrictions of w, and e~ over [0, T7.
Now, by (3.9) and (3.8), we find

wy(t) = ((Z(—QTV) (e—”'no,ﬂ)) (1), t €10,7],
=0
from which and (3.7), it follows that

wy(t) = e M+ Z (e s« M)s---x (e« M)xe T(t)

J

= e”t+z e"* xe T x Mx---x M(t), t €[0,T].
j+1 J

This, together with the following equality:

6_77' Koo X e_”'(t) == e_nttj/jla t Z Oa ] € N+7
D e
j+1
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shows

w (t)—e”t—i—i/tem(_s)j]\/[* x M(t —s)ds, t € [0,T]
n = 0 j' — ’ L

Since T > 0 was arbitrarily taken, the above, along with (1.6), leads to (3.4). This ends the
proof of Lemma 3.3. O

The next lemma will be used to get an asymptotic expansion of the second term on the
right-hand side of (3.4).

Lemma 3.4. Given an integer N > 2 and a number n > 0, the following equality is true:

t N-1 N-1
/ e TP Ky(t,s)ds = e Z (— LK (t, 3)‘5:75)77_1_1 + Z <8éKM(t, 3)‘8:())77_1_1
0 1=0 1=0
t
+n—N/ e ON Ky (t,s)ds, t>0. (3.10)
0

Proof. Fix N > 2, n >0 and ¢ > 0 arbitrarily. Given g € C([0,¢]), we define

t
Fnlg) = /0 e g(s)ds. (3.11)

We first claim

N-1

Falg) = 0 NFy(g™) + Zn*lfl(g@(m —e*ntg@(t)), when g€ CV([0,4]). (3.12)
1=

Given g € CN([0,1]), from (3.11) and using the integration by parts, we find

Fila) = (=7t [ e aos

= o ()|t [ e

= 77 (900) = e7g() + 07 Fy o).

Now, the iterative use of the above equality (to the derivatives of g) gives (3.12).
Next, it follows by Proposition 2.2 that Kjps(t,-) € C*°([0,¢]). Thus we can apply (3.12)
(where g(s) = Kp(t,s), 0 < s <t)to get

t t

/KM(t,s)e_nsds = n_N/ e ON Ky (t,s)ds
0 0
N—-1

+y gt <8éKM(ta ) o — € 0K u (8, 8)‘S:t>'
=

This leads to (3.10) and completes the proof of Lemma 3.4. O

The following Lemma 3.5 will be used in the proof of (ii) in Theorem 3.1.
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Lemma 3.5. Let {h;}ien and {p;}ien be given by (1.8). Then for eachl € N,
aiKM(t, S)’s:() = hl(t) and aéKM(t, 3)‘s:t = —pl(t), t Z 0. (3.13)

Proof. Recall the conventional notation: 00 = 1. First of all, we recall that M is given in (2.4).
Given t > 0, by (2.6), where («, 8) = (0,1), it follows that

_1)! min{l,j} a gi-m
M (1:5) o = > crepmi((-or ) (Gl )0
m= j

(_1)l Nt d=i
= Xy ()Gt ) Z5 M x - - x M(2),
i

which, along with (2.3), yields

! )
8KM(ts|80—28/\/lts\so_— qutl] « M(t).
j=1 Jj=0 j
This, along with (1.8), leads to the first equality in (3.13).
Next, from (2.6) with (o, 8) = (0,1), it follows that
l )l min{l,j} dl m
DM (t, 8)|smt = ZO CprCrml(—t)~ ( M M) (0). (3.14)
m J
Meanwhile, by Lemma 2.1, we find
dlfm
————M - M(0) =0, when [ —m <j—1.
dr —m%‘,_/
J
From the above and (3.14), we see
mm{l,j} ( —m g-m
[
OsM(t, 8)|s=t =(— Z ar ,X[Ol —m)(J 1)W~M*"'*Mf(0)'

J

This, along with (2.3), yields

8ZKM(t S |s t—ZaZMJ t 3)|s =t
j=1
141 min{l,5,l—j+1} m l—m
1\ (_t)] l—m d -
1) jz; Z:O (] _ m)! (Cl dTl—mM(o))'
= m= J

Replacing j — m by a new variable ¢ in the above, using (1.8), we obtain the second equality in
(3.13).
Hence, we finish the proof of Lemma 3.5. O
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We now are on the position to prove Theorem 3.1.

Proof of Theorem 3.1. Fix N > 2 and n > 0 arbitrarily. The proof is structured in three steps.
Step 1. Proof of (3.2).
By Lemmas 3.3, 3.4 and 3.5, and by (1.7), we find

N—

>_A

wy(t) =e~ me—mz (- Kuts)] )=+ 3 (B Ku(ts)] o)
=0
t
+77N/ e MON Ky (t,s)ds
0
- N-1
=3 (L4 ) + 3 ™+ Ryl N £ 0,
= =0
which leads to (3.2).
Step 2. Proof of conclusion (7).
First, we have
Ry € C(RT x RT). (3.15)
Indeed, we apply Proposition 2.2 to see
Ky € C(S4). (3.16)
From (1.7) and (3.16), (3.15) follows at once.
Second, we have
Ry € C(RT;C(R™)). (3.17)

Indeed, it follows from (1.7) that when to > t1 > 0,

BN (t1, ) — Bn(t2,)llcm+)

t1 to
<sup {/ Te*Tt](?éVKM(tl,s) — QﬁvKM(tg, s)|ds —i—/ T677t|8£VKM(t2,S)|dS

>0 t1

1 [
<0 Kas(tr,) = 0 Kna(ta, Mooy + 1 [ 10 Kt s)lds.

t1

This, along with (3.16), yields (3.17).
Third, from (1.7) and Proposition 2.2 (with («a, 5) = (0, N)), we see

t
IRt o <(sup [ reras) N Kt Mo
7>0.J0

;Z]M(S)D] - 1}, t>0,

N

< t
<e { exp [N(l +1) < ZO Jnax,
J
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which leads to (3.3).
Step 3. Proof of conclusion (ii).

Fix any ¢ > 0. We apply Proposition 2.4 to (tg,s0) = (¢,0) and ¢ = (0,1); (to,s0) = (¢, 1)
and ¥ = (0, 1), respectively, to find ji, j2 € N so that

O K (t,0) #0 and 072K p(t,t) # 0. (3.18)
Meanwhile, by (1.8) and (3.13), we have
ho =0, 'Ky (t,0) = hj (t) and 02K (t,t) = —pj, (1) (3.19)

Now, from (3.18) and (3.19), we see that neither {h;(¢)};>1 nor {p;(t)}ien is the zero sequence.
This concludes the proof of Theorem 3.1. O

4 Analysis of the memory-flow

In this section we present several technical propositions describing the nature of each component
of the decomposition (1.9). We then prove Theorems 1.1-1.4 one by one. At last we prove some

complementary properties of the flow and present an extension of Theorems 1.1-1.2.

4.1 On the components in the decomposition

The aim of this subsection is to explain the meaning of each component in the decomposi-
tion (1.9), and discuss their regularity properties. This will help us understanding the hybrid
parabolic-hyperbolic behavior of the flow more deeply.

The next Proposition 4.1 (which is the conclusion (i) in Theorem 1.2) assures the smoothing

effect of the first component in (1.9).
Proposition 4.1. Let N > 2 be an integer. Then Py (t)H > C HT> for all t > 0.

Proof. This directly follows from the definition of Py(-) (in (1.10)) and the smoothing effect of
the heat semigroup {e?4};>0. O

The next Proposition 4.2 (which contains the conclusion (i7) in Theorem 1.2) shows the
propagation of singularities along the time direction for the second component Wy (-). This

shows the hyperbolic nature of Wy (+), with null velocity of propagation.

Proposition 4.2. Let N > 2 be an integer and let yg € H™>° and xg € 2. Then the following

statements are equivalent:
(i) For some to >0, Wn(-)yo € L2, .(to, T0);

(ii) For eacht >0, Wn(-)yo & L2, .(t, x0);
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(iii) It holds that A=2yy & L? (xg).

loc

Proof. We first claim that if z € H~°° satisfies 2 € L? (), then

loc
—1 2
A7z € Ly (xo). (4.1)

The proof of (4.1) is classical and, for the sake of completeness, we present it as follows: Write
g := A71z. Itis clear that Ag € L? (x0). Then by (1.3) and some computations, we can see that

loc

Ag € L}, (xo). Since A is elliptic at xg, one has that g|p () € H?(B(xo,r)) for some r > 0

loc

(see, for instance, [12, Theorem 18.1.29]). Thus, g € L? (), which gives that A1z € L2 (x0).

loc loc

We next prove that (i)=-(i77). By contradiction, we suppose that (i) is true, but
A72y0 € LZZOC(Q;O)' (42)

Since M is analytic, it follows from (1.8) that hg = 0 and each h; is smooth. Then by (4.2) and
(4.1), one has

N—

[y

N-1
h()(=A) "o = D () (=A)THHAPyo) € Lf,(t,x9) for each ¢ > 0.
= =1

This, along with the definition of Wy (+) (in (1.10)), implies that
Wn()yo € Li(t,z0) for each ¢ >0,

which contradicts (7). Therefore, (iii) is true.

We now show that (i7i)=-(i7). By contradiction, we suppose that (ii7) holds, but W (-)yo €
L?oc(fo, o) for some £y > 0. Then from (1.10), we find

N—

[y

hi()(=A) " Yyo € L2 (Lo, x0). (4.3)
=

We will use (4.3) to prove that
A%y € L} (20). (4.4)

When this is done, we are led to a contradiction with (éi7), and then the statement (i7) is true.
To prove (4.4), we observe that there are only two possibilities: either N = 2 or N > 3.
When that N = 2, we see from (4.3) and (1.8) that

N-1
—M(-)A ?yy = Z h(-)(—A) " tyo € Li(fo, x0).
1=0

Since M is nonzero, (4.4) (for this case) follows by integrating the above in the time variable.
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When N > 3, it follows from (1.8) that hg = 0 and hy = —M. Thus, the leading term of
the sum in (4.3) is —M(-)A~2. From this and the fact that M is nonzero, by integrating (4.3)

in the time variable, we see

N—1
A %yo + Z A"y € LY (w) for some {¢}i,' CR.
1=2
Write A := — l]igl ;A7 Then the above leads to
for=(1—A)(A%y) € L}, (x0). (4.5)

Since yg € H™°°, there is m € N* so that yo € H~™. This, along with (4.5), yields
Ay — (L4+ A+ -+ A" 1) fo = A™(A %y) € L*(9). (4.6)

At the same time, since fo € L? (z0) in (4.5), it follows from (4.1) that

loc

Al fg € L} (xo) for each j € N.

Thus, (4.4) (for N > 3) follows from (4.6). Hence, (4.4) is true.

Finally, it is clear that (i¢)=-(¢). Hence, we finish the proof of Proposition 4.2. O

The following Proposition 4.3 (which is partially the conclusion (i) in Theorem 1.2) gives

an important time-uniform smoothing effect of the last component Ry (-).

Proposition 4.3. Let N > 2 be an integer. Then the last component Ry in (1.9) exhibits a
time-uniform smoothing effect with a gain of 2N + 2 space derivatives: for each yo € H® with

seR,
R ()yo € C(RT; HT2N42) | while A Te My, Ay € C(RYH™) (0<j<N). (4.7

Remark 4.4. There is a delicate point worth to clarifying. Although the map ¢t — A~ Jet4,
t > 0 (for a fixed j) has infinite order smoothing effect at positive time, it has the finite time-
uniform smoothing effect (given in (4.7)) with only 2; space-derivatives gained. This index 2j
is optimal due to the following fact: for given yp € H~>° and s € R, A 7e 4y € C(@; 'H$+2j)
if and only if yg € H?, which can be directly checked.

Proof of Proposition 4.3. The second statement in (4.7) is clearly true. We now show the first
statement in (4.7). To this end, we arbitrarily fix s € R, yo € H® and tg > 0. We aim to show
the continuity of By (-)yo at time tp. Fix any € > 0. Write yo = Zjo’;l Yo,j€j. Since yg € H*, we
can choose j. € NT large enough so that ij j njyaj < €2, This, along with the definitions of
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Ry () (see (1.10)) and Ry (see (1.7)), yields that for each ¢ € [0,¢9 + 1],

H%N(t)yo — Ry (to)y()”’?-[er2N+2
=||Rn(t,—A)yo — Rn(to, —A)yo|3

=" |Ru(t,my) — Rav(to, ny) 2w
i>1

2
< max |Ry(t ) = B (to, )| (X2 985m5) + 41BN 0011500
j=>1

From this and (3.3), one can find some C > 0 (independent of €) and § € (0,1) so that

198N (E)yo — R (to)yoll5savs2 < Ce?, when t € (tg — 6,t0 +6) NRT.

This leads to the continuity of Ry (-)yo at time ¢y and ends the proof of Proposition 4.3.

4.2 Proof of main theorems

We now give the proofs of Theorems 1.1-1.4 one by one.

O

Proof of Theorem 1.1. First of all, (1.11) (with ¢ > 0) follows from the conclusion (ii) of Theo-

rem 3.1 at once.

The remainder is to show (1.9). Fix s € R and yo € H®. Recall that 7; is the jt" eigenvalue

of —A and e; is the corresponding normalized eigenfunction in L?(). Then we can write

yO_Zy()je] and y(t;y0) = Zyg Jej, >0,
7>1 j>1

where yo,; = (Y0, €)1 5 and y;(-) satisfies
t
yg(t) +n;y,(t) + / M(t—1)y;(t)dr =0, t>0; y;(0)=uyo;.
0
By (4.9) and (3.1), we see that for each j € NT,
y](t) = Y0,j Wn, <t)7 t> 07

where wy,, (-) is the solution to (3.1) with n = ;. Then by (4.8) and (4.10), we have

t yO anj yo,]eja t>0,
ji>1

From (4.11) and (3.2) (in Theorem 3.1), we see that when t > 0,

y(tigo) = [e"”t (1 +

>1 1=0

N-1
mi(t _l 1> th l "+ Ryt 77;)"7 Hyoes

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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Meanwhile, by functional calculus, we have

=

N-1
RHS of (4.12) = [ (¢ + e > p(t)(=4)771) + 3 hu(t)(=4) """ + Ryt~ A) (= 4) ™ .
=0 l

Il
o

(4.13)

Here, RHS of (4.12) denotes the expression on the right-hand side of (4.12).
Since yo was arbitrarily taken from H*, we can use (4.12), (4.13), (1.10) and Proposition 7.1
(in Appendix) to get (1.9). This concludes the proof of Theorem 1.1. O

Proof of Theorem 1.2. First of all, the conclusions (i)-(i7) in Theorem 1.2 follow from Proposi-
tion 4.1 and Proposition 4.2, respectively. In what follows, the conclusions (7ii)-(iv) in Theorem

1.2 will be proved one by one.

Step 1. The proof of the conclusion (iii) in Theorem 1.2
By Proposition 4.3, we only need to show (1.13). For this purpose, we first claim

Rn(-, —A)|g+ € C(RT; L(H?)) for each s € R. (4.14)
To prove (4.14), we arbitrarily fix s € R and t9 > ¢ > 0. Set
R(—A) := Ry(ta, —A) — Ry(t1,—A). (4.15)

Then R(—A) is the operator obtained by the functional calculus of the function: Ry (ta,-) —
Rn(t1,-). By (1.4) and by the spectral representation of R(—A), we see

~ ~ 2 =X s 2 ~ 2
IR(=A)|[Z3s) = sup H ZR(nj)ZjejH C= sup Y nf|R(my)| 2 < sup|R(n)|".
Xnjz<l >y LD L2 Rt >0

This, along with (4.15), yields
|RN (t2, —A) — R (t1, = A) || pasy = IR(—=A)l| ey < IR (E2,) — Byt )lows).  (4.16)

Since Ry € C(R*; C(R")) (see Theorem 3.1), (4.14) follows from (4.16) at once.
We now show (1.13). Indeed, arguing as in the proof of (4.16), we can obtain

BN (= Al eensy < NBNE llowe), ©20.

This, along with (3.3) (in Theorem 3.1), leads to (1.13).
Hence, the conclusion (#i¢) in Theorem 1.2 is true.
Step 2. The proof of the conclusion (iv) in Theorem 1.2
Arbitrarily fix yo € H™>°, g € Q and ¢t > 0. There is an integer m > 2 so that

Yo € H2m,
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Then by (1.9) and (1.13) (where N is replaced by m), one can easily check
B( Vo — P ()0 — Win()yo € LiS(RF; L2()). (4.17)
Combine (4.17) and Proposition 4.1 (where N is replaced by m) to get
D()yo & Line(t: w0) & Win(-)yo & Liye(t, x0). (4.18)
Meanwhile, for each integer k > 2, it follows by Proposition 4.2 (where N is replaced by k) that
Wi()90 & Lioe(t, 20) & A™%yo & Lise(20),
in particular,
Win(-)yo & Line(t, 20) & W (-)yo & Lie(t, zo).
This, along with (4.18), yields
D()yo & Line(t,0) & W ()yo & Line(t, o). (4.19)
Thus, the conclusion (iv) follows from (4.19) and Proposition 4.2 at once.
Hence, we complete the proof of Theorem 1.2. O

Proof of Theorem 1.53. Arbitrarily fix an integer N > 2. We first show (1.15). Indeed, one can
see from (1.2), (1.10) and (1.7) that for each j € N,

D(0)ej = 5, Pr(0)e; = (1+ S5 p(0)ny ™ e,
Ry (0)e; =0, Wi (0)e; = (X15" m(0)ny '~ e

Since lim n; = 400, the above leads to (1.15) at once.
J—>+oo

We next prove (1.16). Arbitrarily fix ¢ > 0. On one hand, it follows from (1.8) that ho = 0
and hy(t) = —M (t), which, along with (1.10), yield

Wi (t)e; = _M(t)77526j + Z hl(t)n;lflej for all j > 1.

1<I<KN-1
This implies
dim Wi (t)ejllya = [M(t)] and  lim |[Wn(t)ejllys =0, Vs < 4. (4.20)
J—+o0 J—+oo

On the other hand, from (1.10), it follows that for each j > 1,

N-1

Pn(t)e; = et (1 + Z pl(t)n;lfl)ej and Ry(t)e; = n;NflRN(t, —Ae;.
=0
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Since lim n;' = lim nfe*t”j =0 (s € R), the above, together with (1.13), gives
Jj—+o0 J—+o00

lim HPN(t)ejH'HSl = lg_n H%N(t)ej”yw =0, s1 €R, s9 <2N + 2. (4.21)
j 00

Jj—+oo

Now, by (4.20) and (4.21), we can use the decomposition (1.9) (with the above N > 2) to
get

lim_[[@(t)e; s = [M()] and  lim_[[@(t)e; ]l =0, Vs < 4.
Jj—+oo

Jj—+oo

These, along with (4.20)-(4.21), lead to (1.16). This completes the proof of Theorem 1.3. O

Proof of Theorem 1.4. Arbitrarily fix s € R. We will prove the conclusions (i)-(iii) one by one.

(i) Arbitrarily fix a € [0,4] and ¢t > 0. We apply (1.9) (with N = 2), as well as (1.10) and
(1.8), to obtain

P(t) = (etA —po(t)A"te!t + pl(t)A_QetA) — M(t)A™2 + Ry(t, —A)(—A) 3. (4.22)

Meanwhile, notice that

j—2

a a4 . s a . o )
| A2 J€tAH£(HS)( = sup 7’ e t’“) <972 and [|[A2 7772 gy < P , 7=0,1,2.

jeENT

These, along with (4.22), yield

o a_9 a_3
1P cas prsroy <72 (1 + t[po(t)| +t2lp1(t)|) +uf M@ 07 1Rt )l eiere-

After direct computations, we obtain (1.17) from the above, (1.8) and (1.13) (where N = 2).
(ii) Assume that (1.18) holds for t € (0,dp). We first claim

Qg _
+00 > limsupn,?

A 2, Le, ap <4 (4.23)
J—r+0o0

Indeed, by the assumption (€), we can choose small tg € (0,0y) so that
M (to) # 0. (4.24)

Then from (4.22) and (1.13) (where N = 2), it follows that for each j > 1,

02 _
12(t0) | 220y = I2(t0)es gsseo /lesllres = >~ (1M (1) + OG5 Y)),
(Here and what follows, by 0(77;1) with 7 > 1, we mean that there is C7 > 0, independent of
J, so that \O(nj_l)\ < C’lnj_l.) This, along with (1.18) (where t = tg), (4.24) and the fact that
lim 7; = 400, leads to (4.23).

Jj—+oo
We next claim

-
htlgoujft 2|2l £(35 pasteny > 0. (4.25)
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In fact, from (1.18) (where z = ¢;), (4.22) and (1.13), we see that when t € (0,8p) and j € N,

20 o
E2 ()] s sy 22 |D(E)ej ]300 /[l €]l0e
>(tn) % ([L+ 00y M]e™ — 00r7)). (4.26)

Meanwhile, it follows by Weyl’s asymptotic formula for the eigenvalues (see for instance [16,
XII1.15]) that lim 7;41/n; = 1. Thus, there is jo € NT so that
Jj—+oo

(Mo, +00) = Uj>jo[n, 2n;5)-

Therefore, for each t € (0, nj_ol], there is an integer j; > jg so that

tt T P
E[njw n]t)a Le., 9 < th — =

This, along with (4.26), leads to (4.25).
Finally, the conclusion (ii) follows from (4.23) and (4.25) at once.

(iii) We first claim
O()yo € C(RT; 15T for each yo € H. (4.27)

To this end, we arbitrarily fix yo € H?, to > 0 and € > 0. Since yg € H?, there is j. € NT so

that
Je
Iy — Yo,j. [l < € where yo ;. := Z@O, €j )3 H—sCj- (4.28)
=1

At the same time, one can easily check ®(-)yp ;. € C(RT;H™), which implies there is 0. €
(0,t0/2) so that

sup 12(t)y0,5. — P(t0)vo,j.ll3s+e < e
to—0e <t<to+0e

This, together with (4.28), gives

sup [ @(t)yo — P(to)yollps+a <e+2  sup |B(7)| gips ms+a)es
to—0e<t<to+0e t0/2§7’§2t0

which, along with (1.17), leads to (4.27).

We next claim that for each a > 4,
P(-)jo & C(RT;H*T) for some go € H°. (4.29)

For this purpose, we arbitrarily fix @ > 4. Since ho(t) = 0 and hy(t) = —M(t) (see (1.8)), we
apply (1.9) (with N = 2), as well as (1.10) and (1.13), to obtain

lim n?(@(t)ej, ej)r2(q) = —M(t) for each t > 0. (4.30)

j—+oo



27

Meanwhile, by the assumption (€), we can choose fg > 0 so that M () # 0. This, along with
(4.30) and the fact that a > 4, yields

0} |(@(Fo)ej, e5) ragay| — +00 as j — +oo.
Thus we can choose a subsequence {k;};>1 of N so that
U;§j|<@(fo)€kj,€kj>m(n)| > j2/ for each j > 1. (4.31)
We now define g9 € H?® as follows:

1o = Z 2_j77k_j§ €k (4.32)
j=1

Then, by (4.31) and (4.32), we find

- ) 2
[0o)golese = D 1 ({@(Fo)e, s en,) 2 G0s €8, )ras <)

7j>1
=3 (@i cx)i2) 2 Y057 =
j>1 j>1

which implies ®(ty)go & H5+. This leads to (4.29).

In conclusion, we complete the proof of Theorem 1.4. ]

Remark 4.5. By a very similar way to that used in the proof of (1.17) (in Theorem 1.4), we

can also show what follows: For each t > 0,
B(t) € LIHE, HHTDF2) for each s € R, (4.33)

where k(t) := min{l > 1 : hy(t) # 0}.

From (4.33) and the fact that hi(t) = —M(¢) (which follows from (1.8)), we conclude that
the smoothing effect of the flow ®(t) at points in the set {t >0 : M(t) = 0} is better than that
at points in the set {t >0 : M(t) # 0}.

4.3 Other properties of the flow and the components

This subsection presents more properties of the flow and the components. More precisely, first,
we formulate Propositions 4.6 to illustrate how the component Py influences the flow, from
the perspective of the singularities; (In plain language, it tells us that the singularity of Px(0)
determines the singularity of ¢(0).); second, we give Proposition 4.7 to show that both Py (0) and
W (0) are not projections; last, we present Propositions 4.8-4.9, which might have independent

interest.

Proposition 4.6. Let N > 2 be an integer and let yo € H™>° and xg € Q. Then (yo =) ®(0)yo &

LZZOC(:J:O) if and only if Pn(0)yo & Lloc( 0)-
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Proof. First of all, since &(0)yo = yo, we have

@(O)yo g L?oc(xo) < Yo g L%oc(xo)' (434)

We claim

P (0)yo & Lige(x0) 3o & Lige(0) (4.35)

When this is proved, the conclusion in this proposition follows from (4.34) and (4.35) at once.
We now show (4.35). To prove the necessity, we suppose, by contradiction, that the statement
on the left-hand side of (4.35) is true, but yo € L2, .(z). Then we apply (4.1) to obtain that

A7lyy € L} (x) for each j e N.

At the same time, it follows from (1.10) that

Pr(0)yo =yo + > pu(0)(—A4) " e

These imply that Py (0)yo € L7, (xo), which contradicts the statement on the left-hand side of
(4.35). Therefore, we have shown the necessity.

To show the sufficiency, we suppose, by contradiction, that the statement on the right-hand
side of (4.35) holds, but Px(0)yo € L?,.(z0). Then from (1.10), there is a sequence (&)1 ;' € R
so that

N-1

Yo + ZClA = 1y0€Lloc( )
=0

Then by the similar way as that used in the proof of “(4.3) = (4.4)”, one can get that
Yo € Lloc(xo). This contradicts the statement on the right-hand side of (4.35). Therefore,
the sufficiency is proved. Hence, we finish the proof of Proposition 4.6. O

Proposition 4.7. The following conclusions are true:
(i) For each integer N > 2,

Ry (0) =0 and yo = Pn(0)yo +Wn(0)yo for each yo € L*(Q). (4.36)
(ii) For each integer N > 2, Pn(0) and Wy (0) are projections over L*(Q) if and only if
MO)=--=MD0O)=-.. = MN2(0) = 0. (4.37)

Proof. First, the conclusion (i) follows from (1.10), (1.7) and (1.9) (with ¢t = 0) at once.
We next prove the conclusion (ii). To show the sufficiency, we assume that (4.37) is true.
Then by (4.37), we can apply (2.1) (with ¢ — 07) to get
!
—Mx---xM(0)=0, je Nt 1€{0,...,N —2}.

dtl h/—’
J
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This, along with (1.8), yields
m(0)=0, 0<I<N -1,

from which and (1.10), it follows Wy (0) = 0 and consequently, Wy (0) is a projection. Then by
the second equality in (4.36), we see that Py (0) is a projection.
To prove the necessity, we suppose that Py (0) and Wy (0) are projections over L2(Q2). Then

we have
Wy (0)2yo = Wi (0)yo for each yo € L*(9).

Taking yo = e; with j € NT in the above and using (1.10), we find

N-1 2 N-1 2
< > hl(o)”jH) €= ( > hl(o)(_A)_l_l) ej = Wn(0)*yo
=0 =0

= Wn(0)yo = (szlhz(o)(—fl)_l_l>€j = <szlhl(0)”jll)ef'

This implies

N-1 2 N-1
( > hz(O)nj‘l‘l) = h(0)y; ! forall j>1.
=0

=0

Since lim n; = +oo, the above, divided by nj_l, e ,nj_N respectively, gives hy(0) = 0, 0 <

J—r+oo
I < N —1. Then by direct computations and by (1.8), we get (4.37). This ends the proof of
Proposition 4.7. 0

Proposition 4.8. Let Ky be given by (1.6). Then
t
B(t)* = (L) = A + / Kni(t,7)e™dr, > 0. (4.38)
0
Moreover, it holds that

t
sup ||P(t) — etAHE(Hs) < inf M [exp (t/ e_AT|M(7')|d7') - 1], t>0. (4.39)
s€R AZ—m 0

(Here, —ny is the first eigenvalue of A.)

Proof. Arbitrarily fix s € R and yg € H*®. By (4.8), (4.11) and Lemma 3.3, we find
t
y(t; y()) = anj (t)y()’jej = Z (e*njt +/ KM(t,T)e*andT> Yyo,j€5, t = 0. (4.40)
j>1 j>1 0

Now the second equality in (4.38) follows from (4.40) and (1.2), while the first equality in (4.38)
follows by the second one in (4.38) and the fact that for each ¢ > 0, et4 = e!4” in L(H?).
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Finally, it follows from (4.38) that

t t
1B(8) — | ey < /0 1Al 2| K (8,7 < / e K (1, 7)dr, ¢ > 0.

This, along with (2.14) in Proposition 2.6, where A\ > —ny, yields

t t
|D(t) — etAHE(Hs) < e)‘t/ e_’\(t_T)|KM(t,7')|d7' <M [exp <t/ e_>‘7|M(7')|d7'> — 1} , >0,
0 0
which leads to (4.39) and completes the proof of Proposition 4.8. ]

Proposition 4.9. Let s € R. Then ®(-) is real analytic from Rt to L(H?®).

Proof. According to Proposition 2.3, Kj; is real analytic over S;. Then by (4.38) and the
analyticity of {e/4};~o, we obtain that &(-) is real analytic from R* to £(#*). This ends the
proof of Proposition 4.9. O

4.4 Less regular memory kernels

The techniques of this paper can also be employed to handle less regular memory kernels. Assume
that:

(¢1) The memory kernel M is in CNo(R+) for a fixed integer Ny > 2.

Then, the following holds, and can be proved by the same arguments of the proofs of Theorems
1.1-1.2.

Theorem 4.10. Suppose that (&) is true. Then for each N € {2,...,No}, all results of
Theorems 1.1-1.2, except for (1.11)-(1.12) and (1.14), are true.

5 An example

In this section we analyze with more details the decomposition (1.9) in the particular case of

the following memory kernel:
M(t) = ae*, t>0, where \,a € R, witha # 0.
In what follows, we adopt the conventional notation: 0° := 1 and Z = 0.

In this particular case, we have the following explicit expressions: For each [ € N,

/ m
— A1)l I=j i \k L
hi(t) = eM(—1) > Gl N, >0,
m,k €N, jeNT
k—m+2j=1+1,
mik<l—1
T
pi(t) = (1) > o em gy (D )' , t>0, (5.1)
m,k €N, jeNT m
k—m+2j=1+1,
mAk<i+1
Ry(t,7) = (=1)V N! f(f Te TN Fn(t, s)ds, t, >0,
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where

Falt,s) = > )l Uk bV

B1,B2,B83 €N,j € NT
B1+ B2+ B3 =N,
B1 <5 B2<i—1

For this example, the following holds:

Proposition 5.1. For almost every t > 0 and for each | € NT, it holds that

hi(t) 20 and p(t) # 0. (5.2)

Proof. Fix | > 1 arbitrarily. It follows from (5.1) that the function ¢ +— e *h(t) (t > 0) is a

polynomial of the order [ — 1 and satisfies

tl*l -2
-t — ! L
e Mhy(t) = (—a) 1 +) ™ t>0.
m=0
Thus hy(t) # 0 for a.e. ¢t > 0, which implies the first inequality in (5.2). The same can be done
for p; by the similar argument. This ends the proof. O

Remark 5.2. The following comments on Proposition 5.1 are worth considering.

(R1) As N increases, for almost every ¢t > 0, both Py(t) and Wy (t) involve more and more

nontrivial terms.

(R2) For each N € NT and for a.e. ¢ > 0, the remainder Ry (t) inherits a hybrid heat/wave
structure (and thus is not negligible). Indeed, from (1.9)-(1.10), one can directly obtain

the following recursive equality:
R (1) = Rya (1) + py (DA (- A) T+ hy((-A) I 120, jENT. (5.3)

From this and (5.2), it follows that for each N € NT and for a.e. ¢t > 0, Ry(t) contains
both nontrivial terms in Py1(¢) and Wy1(t), and thus inherits the hybrid structure.

(R3) Initial data of the form Py (0)yo (resp., Wi (0)yo), under the action of the flow @(-), may
lead to three nontrivial components. More precisely, given a fixed integer N > 2, there is

j € NT so that the following equality

O(t)(Pn(0)ej) = Ina(t) + Ina(t) + Ina(t)
= P (t) (Pn(0)es) + W () (Pn(0)e;) + R (t) (Pr(0)e;), ¢ =0

has the property
Ina(t), Ina(t), In3(t) # 0 in L*(Q2) for a.e. t > 0. (5.4)

(This is also true when Px(0)e; is replaced by W (0)e; in the above statement.)
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Indeed, one can see from (1.10) and (5.3) that for each j > 1 and t > 0,

Pr(t)(Pr(0)e;) = et (1+zl 0 pz<t>nj )(1+zl o' 0y ey,

Wy (Py0)e;) = (S5 ) (14 S5 m(0)n;! 1)ej,

Ry (1) (Pn(0)e;) = hN( ) N +pN() “in N Ry (8 Y 2)
(1+ 2 Oy ey

Since lim n; = 400, the above, along with the first inequality in (5.2) and the estimate

j—4oo

(3.3), implies

\

'PN(~)€]',WN(-)6]',9{N(~)€]' % 0 for large j € NT.

At the same time, the three functions on the left hand side above are analytic from R
to L?(Q2). (For the first two functions, their analyticity follows from (1.10) and (5.1) and
then the analyticity of the last one is derived from Proposition 4.9.) Therefore, they are
non-trivial almost everywhere. This is exactly (5.4). (In a similar way, (5.4) can be verified
in the case that Py (0)e; is replaced by Wi (0)e;.)

6 Conclusions and further comments

In this paper we have presented a decomposition for the flow generated by the equation (1.1),

which reveals the hybrid parabolic-hyperbolic behavior of the flow. We have also described the

nature of each of the components in the decomposition; that has been illustrated through an

example.

A number of interesting issues could be considered in connection with the results and methods

developed in this paper. Here, we briefly give some of them.

Smooth memory kernels. It would be interesting to analyze whether (1.11), (1.12) and
(1.14) hold under the assumption that M € C°(R¥)\ {0}.

Decomposition with infinite series. It would be interesting to obtain a meaningful de-

composition without the intervention of the third remainder term.

Space-dependent memory kernels. The extension of the results of this paper to the space-

dependent memory kernels M = M (¢, x) is open.

Memory kernels in the principal part of the model. It would be interesting to extend our
decomposition and analysis to the following two types of heat equations with memory

kernels:

(i) Oy — Ay — fot M (t — s)Ay(s)ds = 0;
(1) By — [y M(t — s)Ay(s)ds = 0,
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that are more relevant from an applied and modelling viewpoint.
e Other equations with memory. It would be interesting to extend this decomposition to

other models such as wave equations with memory kernels.

7 Appendix

Proposition 7.1. For each t > 0 and s € R, it holds that

P(t)yo = y(t;90), yo € H* (7.1)
and that ®(t) belongs to L(H?®).

Proof. Arbitrarily fix s € R. Since {etA}tZO is a Cy semigroup over H*, we can use a standard
method (see for instance [18, Theorem 1.2 in Section 6.1, p. 184]) to show that for each yq €
H*, the solution y(-;y0) belongs to the space C(RT;H?®). This, along with (1.2), yields (7.1).
Moreover, one can directly check that for each t > 0, ®(¢) € L(H®). This completes the
proof. O

The proof of Lemma 2.1 is given as follows.

Proof of Lemma 2.1. By standard density arguments, it suffices to show that for each k£ € N,
the following property (&) is true: For all kernels {]\41}{21 C C*®(RT),
d* .
WMl Kok Mj(t)‘ <C(j, k1) H HMchp(j,k)([o,t]) H ||Ml||cp<j,k)71([o,t])7 t>0. (7.2)
1<q(j:k) 1>q(3,k)

Here and in what follows, we set H :=1 and let

0
(4, k) = max{k—j+1,1},
q(j;k) = min{k,j},
j—1 4 (7.3)
CEkt) = D xull)y, t>0.
I=j—1—k

Now we will use the induction to prove the above (&) for each k£ € N. To this end, we first
check (&). Indeed, for each j € N and each {Ml}{zl C C*®(R*), we have that

J

J t t1 ti—1 t‘j_l
| My s - -x My(2)] < (H HMlHC([o,t])) /0 /0 /O dtj---dty = G-1 111l
=1 ’

=1

This, along with (7.3), leads to (7.2) with £ = 0. Therefore (&) is true.
Next, we will show (Eg,41) for any ko € N, under the assumption that (&) holds for all
k < kg. For this purpose, we arbitrarily fix kg € N, 5 € NT and {Ml}{:1 C C®°(R*). Since
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(7.2), with j = 1, holds clearly, we only need to focus on the situation that j > 2. There are
only two possibilities for j: either kg < j — 1 or kg > j.

In the case when ky < j — 1, we have three observations: First, by direct computations, we
find

dkotl d* d
ko
= (Ml(o)Mg*...*Mj+M{*MQ*...*M]-)
ko o ,
:Ml(o)dtk My - % M;+ dtkOM -k My« My, (7.4)
Second, we apply (&f,) twice to find that for each ¢ > 0,
d*o ,
g Moo Mj(t)‘ <C(j— 1,ko,t)< 11 HMlHCl([O,t})> < 11 ||Mz||0([o,t])); (7.5)
2<I<ko+1 I>ko+1
d*o / , /
TR Mz x ek My« M1(t)‘ <CG.ko,t) T IMilleron T 1Millcqo 1M1 lc o)
2<i<ko+1 I>ko+1
(7.6)
Third, from the third definition in (7.3), we see
max {C(j ~ 1, ko, 1), C(j, ko,t)} <C(j ko +1,8), t>0. (7.7)

Now, from (7.4), (7.5), (7.6) and (7.7), it follows that for each ¢ > 0,

dk0+1

gt MLE Mj(t)’ <C(j, ko +1,1) (HM1||C([O,t]) + ||M{HC([0¢})>

X ( 11 ”MlHCl([O,t])> ( 11 HMl”C’([O,t}))-
2<I<ko+1 I>ko+1
This, along with (7.3), leads to (7.2) (with & = ko + 1 < j). Therefore, (E,+1) is true when
ko <j—1.
In the case that kg > j, we see from (7.3) that

(ko +1) =p(j — 1, ko) = p(j, ko) +1 = ko — j + 2;
q(j, ko +1) = q(j, ko) = q(j — 1, ko) +1 = j.

Then by the similar arguments as those in (7.4)-(7.7), one can get that for each ¢t > 0,

dk:0+l

<C(j, ko +1,1) (HMIHC([O,t]) + ||M{”cp(j,ko>([o7t])>

j
X H I1Mi| r-1.00) ([0,
1=2

J
C(j,ko+1,1) H ‘MlHCP(J ko+1)([0,¢]) "
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This, together with (7.3), leads to (7.2) (with k = kg + 1 > j). Therefore, (Ex,+1) holds in the
case that kg > j.

Hence, we complete the proof of Lemma 2.1. O
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