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Abstract

We build up a decomposition for the flow generated by the heat equation with a real
analytic memory kernel. It consists of three components: The first one is of parabolic
nature; the second one gathers the hyperbolic component of the dynamics, with null velocity
of propagation; the last one exhibits a finite smoothing effect. This decomposition reveals the
hybrid parabolic-hyperbolic nature of the flow and clearly illustrates the significant impact
of the memory term on the parabolic behavior of the system in the absence of memory terms.

Keywords. Heat equations with memory, decomposition of the flow, hybrid parabolic-

hyperbolic behavior

1 Introduction

1.1 Statement of the problem

In this paper, we will study the following heat equation with memory:
∂ty(t, x)−∆y(t, x) +

∫ t

0
M(t− s)y(s, x)ds = 0, (t, x) ∈ R+ × Ω,

y(t, x) = 0, (t, x) ∈ R+ × ∂Ω,
y(0, x) = y0(x), x ∈ Ω.

(1.1)

Here, R+ := (0,+∞), Ω ⊂ Rn (n ∈ N+ := {1, 2, 3, · · · }) is a bounded domain with a C2-

boundary ∂Ω, y0 is an initial datum and M is a memory-kernel over R+ := [0,+∞).

Although our analysis can be generalized to less regular memory kernels, for the sake of

simplicity we assume that:

(C) the memory kernel M is a real analytic and nonzero function over R+.
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Equations with memory arise in the modeling of many physical phenomena such as viscoelastici-

ty, heat conduction, etc. They can be traced back to the works of J. Maxwell [14], L. Boltzmann

[2, 3] and V. Volterra [19, 20]. For instance, in the analysis of elastic materials, L. Boltzmann

and V. Volterra represented the stress tensor in terms of the strain tensor as well as its his-

tory values. Equations involving memory terms have been widely studied: see for instance

[1, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17] and the references therein. In particular, in [11] the gener-

al memory effect in heat conduction processes was analyzed showing that temperature waves

travelling in the direction of the heat-flux propagate faster than wave travelling in the opposite

direction, while in [8] the asymptotic behavior of the systems of linear viscoelasticity at large

time was analyzed, introducing a new auxiliary variable to deal with the history of the states.

By standard methods (see, for instance, [18, Theorem 1.2 in Section 6.1, p. 184]), it can be

shown that the equation (1.1), with y0 ∈ L2(Ω), has a unique mild solution, denoted by y(·; y0),

in the space C(R+;L2(Ω)). For each t ≥ 0, we let the evolution of the system be denoted by:

Φ(t)y0 := y(t; y0), y0 ∈ L2(Ω). (1.2)

For each t ≥ 0, the flow generated by the equation (1.1), Φ(t), belongs to L(L2(Ω)). Here and

in what follows, we denote by L(E,F ) (where E and F are two Banach spaces) the space of all

linear and bounded operators from E to F , and simply write L(E) for L(E,E).

We shall use the notation {etA}t≥0 for the C0 semigroup generated by the heat equation in

the absence of memory term (i.e., when M ≡ 0), where

Af := ∆f, with its domain D(A) := H2(Ω) ∩H1
0 (Ω). (1.3)

Then z(t; y0) := etAy0, t ≥ 0, solves (1.1) without memory, i.e., (1.1) when M ≡ 0.

This paper is devoted to analyzing the dynamics of the system with memory term and, in

particular, to exhibiting the significant differences with the heat semigroup in the absence of

memory.

1.2 Main results

The aim of this paper is to build up a decomposition of the flow Φ(t), revealing a hybrid

parabolic-hyperbolic dynamics of the (1.1).

To state our main results, we first introduce several concepts, definitions and notations.

• Let ηj > 0 be the jth eigenvalue of −A and let ej be the corresponding normalized

eigenfunction in L2(Ω). Define, for each s ∈ R, the real Hilbert space:

Hs :=
{
f =

∞∑
j=1

ajej : (aj)j≥1 ⊂ R,
∞∑
j=1

|aj |2ηsj < +∞
}
, (1.4)

equipped with the inner product:

〈f1, f2〉Hs :=

∞∑
j=1

aj,1aj,2η
s
j , fk =

∞∑
j=1

aj,kej ∈ Hs (k = 1, 2).
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For all t ≥ 0, Φ(t) belongs to L(Hs) for any s ∈ R (see Proposition 7.1).

We now introduce the classes:

H−∞ :=
⋃
s∈R
Hs and H+∞ :=

⋂
s∈R
Hs. (1.5)

• Recall that for each continuous function f over R+, the operator f(−A) can be defined by

the spectral functional calculus (see [15, Section 3, Chapter V.III]).

• Let us also define the following functions, related to the memory kernel M , that will play

important roles in the decomposition of the flow.

First, we introduce the flow kernel:

KM (t, s) :=
+∞∑
j=1

(−s)j

j!
M ∗ · · · ∗M︸ ︷︷ ︸

j

(t− s), (t, s) ∈ S+ :=
{

(t, s) ∈ R2 : t ≥ s
}
. (1.6)

Here and throughout the paper, ∗ denotes the usual convolution, i.e., when g1, g2 ∈
L1
loc(R+),

g1 ∗ g2(t) :=

∫ t

0
g1(t− s)g2(s)ds, t ≥ 0.

Notice that the above KM is well-defined and it is real analytic over S+ (see Proposition

2.3). The following holds (see Proposition 4.8)

Φ(t) = etA +

∫ t

0
KM (t, τ)eτAdτ, t ≥ 0,

which yields a clear description of the gap between the heat equation and the memory one

and justifies the terminology “flow kernel” employed.

Second, for each N ∈ N+, let

RN (t, τ) :=

∫ t

0
τe−τs∂Ns KM (t, s)ds, t ≥ 0, τ ≥ 0. (1.7)

Third, we define two sequences of functions {hl}l∈N and {pl}l∈N (that will play the role of

coefficients in the expansions) in the following manner: for each t ≥ 0,
hl(t) := (−1)l

l∑
j=0

C l−jl

d(l−j)

dt(l−j)
M ∗ · · · ∗M︸ ︷︷ ︸

j

(t);

pl(t) := −hl(0) + (−1)l+1
∑

m, j ∈ N+,

2j − l− 1 ≤ m ≤ j

(
C l−j+ml

d(l−j+m)

dt(l−j+m)
M ∗ · · · ∗M︸ ︷︷ ︸

j

(0)

)
(−t)m

m!
.

(1.8)

Here, Cmβ := β!/m!(β −m)! denotes the binomial coefficients and M ∗ · · · ∗M︸ ︷︷ ︸
j

:= 0 when

j = 0.
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• Let f be a distribution over a domain D ⊂ Rk (with k ∈ N+). By the notation f ∈ L2
loc(q)

(with q ∈ D), we refer to the fact that f |U0 ∈ L2(U0) for an open non-empty subset U0

such that q ∈ U0 ⊂ D.

The main results of this paper are as follows.

Theorem 1.1. For each integer N ≥ 2, the flow Φ(t) admits the following decomposition:

Φ(t) = PN (t) +WN (t) + RN (t), t ≥ 0, (1.9)

with 
PN (t) := etA + etA

∑N−1
l=0 pl(t)(−A)−l−1,

WN (t) :=
∑N−1

l=0 hl(t)(−A)−l−1,
RN (t) := RN (t,−A)(−A)−N−1,

t ≥ 0, (1.10)

where {hl}l∈N and {pl}l∈N are given by (1.8) and RN is given by (1.7). Moreover, for each

t ≥ 0, neither {hl(t)}l≥1 nor {pl(t)}l∈N is the null sequence, i.e.,∑
l≥1

|hl(t)| > 0 and
∑
l≥1

|pl(t)| > 0. (1.11)

Theorem 1.2. With the notation in Theorem 1.1, the following conclusions are true for each

integer N ≥ 2:

(i) The first component PN exhibits a heat-like behavior: for each t > 0, PN (t)H−∞ ⊂ H+∞,

where H+∞ and H−∞ are given by (1.5).

(ii) The second component WN exhibits a wave-like behavior: when y0 ∈ H−∞, x0 ∈ Ω and

t0 > 0,

WN (·)y0 6∈ L2
loc(t0, x0) ⇐⇒ ∀ t > 0, WN (·)y0 6∈ L2

loc(t, x0). (1.12)

In other words, the singularities of the solutions propagate in the time-like direction with

null velocity of propagation in the space-like direction.

(iii) The last component RN exhibits a time-uniform smoothing effect with a gain of 2N + 2

space derivatives: for each y0 ∈ Hs with s ∈ R, RN (·)y0 ∈ C
(
[0,+∞);Hs+2N+2

)
, while

A−je·Ay0, A
−jy0 ∈ C

(
[0,+∞);Hs+2j

)
for any 0 ≤ j ≤ N . And for each s ∈ R, the term

RN (in RN ) belongs to C(R+;L(Hs)) and fulfills the estimate:

∥∥RN (t,−A)‖L(Hs) ≤ et
{

exp

[
N(1 + t)

( N∑
j=0

max
0≤τ≤t

∣∣∣ dj
dτ j

M(τ)
∣∣∣)]− 1

}
, t ≥ 0. (1.13)

(iv) For any y0 ∈ H−∞, x0 ∈ Ω and t > 0,

Φ(·)y0 6∈ L2
loc(t, x0)⇔WN (·)y0 6∈ L2

loc(t, x0)⇔ A−2y0 6∈ L2
loc(x0). (1.14)
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Theorem 1.3. With the notation in Theorem 1.1, the following conclusions hold for each integer

N ≥ 2: First, at the initial time,

lim
j→+∞

‖Φ(0)ej‖L2(Ω) = lim
j→+∞

‖PN (0)ej‖L2(Ω) = 1, lim
j→+∞

‖WN (0)ej‖L2(Ω) = 0, RN (0) = 0.

(1.15)

Second, at each time t > 0,

lim
j→+∞

‖Φ(t)ej‖H4 = lim
j→+∞

‖WN (t)ej‖H4 = |M(t)|,

lim
j→+∞

‖Φ(t)ej‖Hs = lim
j→+∞

‖WN (t)ej‖Hs = 0 for any s < 4,

lim
j→+∞

‖PN (t)ej‖Hs = 0 for any s ∈ R,

lim
j→+∞

‖RN (t)ej‖Hs = 0 for any s < 2N + 2.

(1.16)

Theorem 1.4. Given s ∈ R, the following conclusions are true:

(i) There is C0 > 0 (independent of s) so that for any α ∈ [0, 4] and t > 0, Φ(t) belongs to

L(Hs,Hs+α) and satisfies

‖Φ(t)‖L(Hs,Hs+α) ≤ C0t
−α

2 exp
[
2(1 + t)

(
1 + ‖M‖C2([0,t])

)]
. (1.17)

(ii) If there is α0 ≥ 0 so that

Φ(t) ∈ L(Hs,Hs+α0) as t > 0 in a neighborhood of 0, (1.18)

then α0 ≤ 4 and lim inf
t→0+

t
α0
2 ‖Φ(t)‖L(Hs,Hs+α0 ) > 0.

(iii) For any y0 ∈ Hs, Φ(·)y0 ∈ C(R+;Hs+4). Moreover, the index 4 is optimal in the sense

that if α > 4, then Φ(·)ŷ0 /∈ C(R+;Hs+α) for some ŷ0 ∈ Hs.

Remark 1.5. Several comments are in order:

(a1) Theorem 1.1 gives the decomposition (1.9) of the flow and besides shows the non-triviality

of PN and WN : for each t ≥ 0, there is N0(t) ∈ N+ so that PN (t) 6= 0 and WN (t) 6= 0

when N ≥ N0(t). Theorem 1.2 explains the functionality of each term in the decomposition

(1.9). Theorems 1.3-1.4 are the consequences of the decomposition (1.9). The three terms

of the decomposition PN , WN and RN are referred to as the heat-like component, the

wave-like component and the remainder, respectively. The first two components are the

leading ones. Due to their asymptotic expression, we can clearly identify their nature

and this justifies the terminology heat/wave-like respectively. (This coincides with the

expected hybrid nature of the flow.)

(a2) The proof of Theorem 1.1 uses a Fourier expansion on the basis of eigenfunctions of A that

reduces the problem to consider an ODE with memory depending on the dual parameter

η > 0:

w′(t) + ηw(t) +

∫ t

0
M(t− s)w(s)ds = 0, t > 0; w(0) = 1. (1.19)
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The dynamics of this memory-ODE can be decomposed into three terms leading to the

three components in the decomposition (1.9). The asymptotics of this decomposition for

large η yields the main properties of the decomposition (1.9) of the memory-heat equation.

A careful analysis of the flow kernel KM plays a key role in this analysis.

(a3) In Theorem 1.2, the infinite order regularizing effect of the heat-like behavior of PN ,

stated in (i), is the analog of the smoothing effect of the semigroup {etA}t≥0 generated

by the heat equation without memory terms; The wave-like component WN exhibits the

propagation of singularities along the time-direction, as stated in (ii); The smoothing

effect of the remainder RN , stated in (iii), ensures the gain of 2N + 2 space-derivatives at

nonnegative time but differs from the infinite order smoothing effect of the heat semigroup

etA at positive time (see Remark 4.4 for more discussions). The conclusion (iv) says, in

plain language, that when t > 0, the singularity of WN (t) determines the singularity of

Φ(t), more precisely, the singularity of the practical leading term in WN (t) determines the

singularity of Φ(t). Here, we notice that it follows by (1.8) that h0(t) ≡ 0 and h1(t) =

−M(t), thus the practical leading term in WN (t) is −M(t)A2 where the coefficient M(t)

is not zero except for finitely many t by the assumption (C).

From these, we conclude that the decomposition (1.9) in Theorem 1.1 reveals the hybrid

parabolic-hyperbolic behavior of the flow Φ(t).

(a4) Theorem 1.3 shows how the energy of solutions taking eigenfunctions of the operator A

as initial data is distributed over each component of (1.9) at time t = 0 and time t > 0

respectively. The conclusion (1.15) says that when t = 0, the energy of Φ(0)ej (which

is exactly ej) is almost concentrated in the heat-like component for large j, while (1.16)

can be explained as: when t > 0, the energy of Φ(t)ej almost focuses on the wave-like

component for large j. The first line in (1.16) is from the term −M(t)A−2 (in WN ) and

the order 4 in H4 is exactly from the order −2 in A−2. The last line in (1.16) is from (iii)

in Theorem 1.2.

(a5) Theorem 1.4 exhibits the finite order smoothing effect of the flow. By it, we can see,

from the point of view of the smoothing effect, both big differences and some similarities

between the flow Φ(t) and the semigroup etA:

First, on one hand, for any y0 ∈ Hs (with s ∈ R), e·Ay0 ∈ C(R+;Hk) (∀ k ∈ N), while

Φ(·)y0 ∈ C(R+;Hs+4) and moreover the index 4 is optimal, on the other hand, the

smoothing effect of the flow Φ(t) at points in the set {t > 0 : M(t) = 0} is better

than that at points in the set {t > 0 : M(t) 6= 0} (see Remark 4.5 for more details);

Second, when t is large, both the semigroup etA and the flow Φ(t) are bounded from

the above by exponential functions of t, while when t is small, they are bounded

from the above by the function t−2. Moreover, the flow Φ(t) is also bounded from
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the below by t−2 when t → 0+. Here, by “etA/Φ(t) is bounded by”, we mean “the

L(Hs,Hs+4)-norm of etA/Φ(t) is bounded by”.

(a6) It follows from Theorem 1.1 that for each t ≥ 0, the wave-like component WN (t), as well

as the gap between the heat-like component PN (t) and the heat semigroup etA, are non-

trivial, when N is large enough. Thus, we may expect that as N increases the heat-like and

the wave-like components include an increasing number of terms, just like in the Taylor

expansion, and the decomposition becomes sharper. (See the example in Section 5.)

(a7) The last component RN does not fit completely into any of the two previous ones, but

is needed in order to complete the representation of solutions. We further explain RN as

follows:

• Hybridity. It inherits a hybrid heat/wave structure from the flow (see the note (R2)

in Remark 5.2).

• Smoothing effect. It has the time-uniform smoothing effect given in (iii) of Theorem

1.2. Such time-uniform smoothing effect differs from the usual smoothing effect of

the heat semigroup. (This has be mentioned in (a3)).

From Theorems 1.1-1.2, as well as the example in Section 5, we can see what

follows: First, when t = 0, RN (t) has a better smoothing effect than that of PN (t),

but when t > 0, this is reversed. (The reason why the smoothing effect of RN (t)

(with t > 0) is weaker than that of PN (t) is due to wave-like terms contained in

RN (t).) Second, when t > 0, both RN (t) and PN (t) have better smoothing effects

than that of WN (t), thus as t > 0, the singularity of the flow is dominated by the

wave-like component and the flow shows its wave-like nature.

• Frequencies. In Fourier analysis, the smoothing effect of a pseudo-differential operator

corresponds to the growth of its symbol at high frequencies. The situation here is

similar—Theorem 1.1 and Theorem 3.1 corresponds to each other and the smoothing

effects of the components in (1.9) correspond to respectively the growths (in large η)

of the components in (3.2). From this and (3.2), we can see that when t = 0, the last

component in (3.2) (It corresponds to RN .) has a faster decay (in large η) than the

first two components in (3.2), while when t > 0, both the last one and the first one

have faster decay than the second one.

• Non-triviality. Since the component RN has a hybrid heat/wave structure as men-

tioned above (In particular, we would like to mention that it is not a finite dimensional

low frequency operator.) it is not negligible.

(a8) We require N ≥ 2 in Theorem 1.1 since W1(·) ≡ 0 (when N = 1).
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(a9) Notice that both PN (0) and WN (0) are not projection operators in general and that

y0 = PN (0)y0 +WN (0)y0 for each y0 ∈ L2(Ω) and RN (0) = 0.

This is further discussed in Proposition 4.7.

(a10) All the results of Theorems 1.1-1.2, except (1.11), (1.12) and (1.14), hold under the weaker

assumption M ∈ C∞(R+). In Theorem 4.10 below we analyse the case of kernels M in

CN0(R+), with N0 ≥ 2. The assumption (C) ensures (1.11), (1.12) and (1.14). Whether

the same holds under weaker conditions on the kernel is an open problem, see Section 6.

(a11) The decomposition (1.9) has applications in control theory. It allows, in particular, to

compare the reachable sets for the controlled heat equations with and without memory

term. We refer to [21] for a complete analysis of this issue.

(a12) There is a large body of literature on the large time dynamics of memory like problems

(see, for instance, [8, 9]) which is surely an important direction. Unfortunately, we are not

able to use our decomposition to get such results.

1.3 Plan of the paper

The rest of the paper is organized as follows. In Section 2 we analyze the flow kernel KM .

In Section 3 we present a decomposition for solutions to the ODE (1.19). Section 4 contains

the proofs of Theorems 1.1-1.4, and provides some other properties of the flow. In Section 5

we discuss, as an example, the case of the kernel M(t) = αeλt. Section 6 lists several open

problems. Section 7 contains an appendix.

2 Properties of the flow kernel

In this section we present some properties of the flow kernel KM in (1.6), which will be used

later.

In what follows, the space Ck([a, b]) (with k ∈ N+ and a < b) is endowed with the norm:

‖f‖Ck([a,b]) :=

k∑
l=0

∥∥∥dlf
dxl

∥∥∥
C([a,b])

, f ∈ Ck([a, b]).

The following result provides basic estimates on iterated convolutions that will be used in

the proof of Proposition 2.2. Its proof is put in the appendix.

Lemma 2.1. Let j,m ∈ N+. Then for each sequence {Ml}jl=1 ⊂ Cm(R+), M1 ∗ · · · ∗Mj is in

the space Cm+j−1(R+) and satisfies that for each k ∈ {0, 1, . . . ,m+ j − 1},

∣∣∣ dk
dtk

M1 ∗ · · · ∗Mj(t)
∣∣∣ ≤

 j−1∑
l=max{0,j−1−k}

tl

l!

 j∏
l=1

‖Ml‖Cp([0,t]), t > 0, (2.1)

where p := χN(k − 1)
[
(k − j)χN(k − j) + 1

]
and χN is the characteristic function of the set N.
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The following Proposition 2.2 provides estimates on the derivatives of the flow kernel KM

that will serve for the proof of Theorem 3.1, which is one of the tools in the proof of the

decomposition in Theorem 1.1.

Proposition 2.2. The flow kernel KM ∈ C∞(S+) (where S+ is given in (1.6)) satisfies that

for each α, β ∈ N,

∣∣∂αt ∂βsKM (t, s)
∣∣ ≤ et−s[ exp

(
β
(
1 + |s|

)
‖M‖Cα+β([0,t−s])

)
− 1

]
, t > s. (2.2)

Proof. First of all, it follows from (1.6) that

KM (t, s) =

+∞∑
j=1

Mj(t, s), t ≥ s, (2.3)

where

Mj(t, s) :=
(−s)j

j!
M ∗ · · · ∗M︸ ︷︷ ︸

j

(t− s), t ≥ s. (2.4)

Next, we prove KM ∈ C∞(S+) showing the convergence in C∞(S+) of the series on the

right-hand side of (2.3).

To this end, we will estimate Mj with j ∈ N+: By the assumption (C) and Lemma 2.1, we

see that M ∗ · · · ∗M︸ ︷︷ ︸
j

belongs to C∞(R+) and satisfies, for each k ∈ N,

∣∣∣ dk
dτk

M ∗ · · · ∗M︸ ︷︷ ︸
j

(τ)
∣∣∣ ≤ eτ‖M‖jCk([0,τ ])

, τ > 0. (2.5)

From (2.4) it follows that Mj ∈ C∞(S+).

By direct computations, for α, β ∈ N, we have t ≥ s,

∂αt ∂
β
sMj(t, s) =∂βs ∂

α
tMj(t, s)

=
dβ

dsβ

[
(−s)j

j!

( dα
dτα

M ∗ · · · ∗M︸ ︷︷ ︸
j

(τ)
)∣∣
τ=t−s

]

=

β∑
m=0

Cmβ
dm

dτm

((−s)j

j!

)
(−1)β−m

( dβ−m
dτβ−m

dα

dτα
M ∗ · · · ∗M︸ ︷︷ ︸

j

(τ)
)∣∣
τ=t−s

=
(−1)β

j!

min{β,j}∑
m=0

Cmβ (Cmj m!)(−s)j−m
( dα+β−m

dτα+β−mM ∗ · · · ∗M︸ ︷︷ ︸
j

(τ)
)∣∣
τ=t−s. (2.6)

Here and in what follows, we use the conventional notation 00 := 1. By (2.6) and (2.5), one has
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that, when t > s,

∣∣∣∂αt ∂βsMj(t, s)
∣∣∣ ≤ 1

j!

j∑
m=0

(Cmβ m!)Cmj |s|j−m
(
et−s‖M‖j

Cα+β([0,t−s])

)
≤ 1

j!
βj

(
j∑

m=0

Cmj |s|j−m
)
et−s‖M‖j

Cα+β([0,t−s])

=
et−s

j!

(
β(1 + |s|)‖M‖Cα+β([0,t−s])

)j
. (2.7)

Now, by (2.7) it follows that the series in (2.3) converges in C∞(S+).

Finally, by (2.3) and (2.7), after direct computations, we see that when t > s,

∣∣∣∂αt ∂βsKM (t, s)
∣∣∣ ≤ ∞∑

j=1

∣∣∣∂αt ∂βsMj(t, s)
∣∣∣ ≤ et−s[ exp

(
β(1 + |s|)‖M‖Cα+β([0,t−s])

)
− 1

]
.

This gives the desired estimate (2.2) and ends the proof of Proposition 2.2.

The next Proposition 2.3 concerns the analyticity of the flow kernel KM . It will be used in

the proofs of Proposition 2.4 and Proposition 4.9.

Proposition 2.3. The flow kernel KM is real analytic on S+ (where S+ is given in (1.6)).

Proof. It suffices to prove that KM is real analytic over ST for each T > 0, where

ST :=
{

(t, s) ∈ R2 : 0 ≤ t− s ≤ T
}
.

To this end, we fix an arbitrary T > 0. Due to the analyticity of M over R+, there is a domain

ÕT of the complex plane C, with [0, T ] ⊂ ÕT ⊂ C, so that M has a unique analytic extension M̃

to ÕT . Moreover, we can take a bounded and convex subdomain OT so that [0, T ] ⊂ OT ⊂⊂ ÕT .

The convolution ∗ can then be extended to ∗̃ in the following manner for f, g ∈ C(OT ;C),

f ∗̃g(z) :=

∫ 1

0
f((1− s)z)g(sz)zds, z ∈ OT .

We now claim the following two properties:

(P1) For each j ∈ N+, M̃ ∗̃ · · · ∗̃M̃︸ ︷︷ ︸
j

is an analytic extension of M ∗ · · · ∗M︸ ︷︷ ︸
j

over OT ;

(P2) There is C > 0 so that

sup
z∈OT

|M̃ ∗̃ · · · ∗̃M̃︸ ︷︷ ︸
j

(z)| ≤ Cj for all j ∈ N+.

Indeed, one has

f ∗̃g|[0,T ] = f |[0,T ] ∗ g|[0,T ], when f, g ∈ C(OT ;C),
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Here, f ∗̃g|[0,T ], f |[0,T ] and g|[0,T ] are respectively the restrictions of f ∗̃g, f and g over [0, T ].

Then, property (P1) follows from the analyticity of M at once, while the property (P2) can be

proved by direct computations.

Define the following subset of C2:

DT :=
{

(t, s) ∈ C2 : t− s ∈ OT
}
.

It is clear that ST ⊂ DT . According to (P2) above, the following series uniformly converges over

each compact subset of DT :∑
j≥1

(−s)j

j!
M̃ ∗̃ · · · ∗̃M̃︸ ︷︷ ︸

j

(t− s), (t, s) ∈ DT .

Meanwhile, by (P1), we find that each term in the above series is analytic over DT . Hence, the

sum of this series is analytic over DT . From this and (1.6), we see that KM |ST (the restriction

of KM over ST ) can be analytically extended to DT . Therefore, it is real analytic over ST . This

ends the proof of Proposition 2.3.

The next Proposition 2.4 can be interpreted as a strong unique continuation property or

non-degeneracy of the kernel KM , that will be used in the proof of Theorem 3.1.

Proposition 2.4. For each (t0, s0, v1, v2) ∈ (S+ × S1) \ I, where

I :=
{

(t, t, τ, τ) : t ∈ R, τ = ±1/
√

2
}
∪
{

(t, 0, τ, 0) : t ≥ 0, τ = ±1
}
,

with ∂~v := v1∂t + v2∂s where ~v := (v1, v2), it holds that

∂l~vKM (t0, s0) 6= 0 for some l ∈ N. (2.8)

Remark 2.5. Obviously, real analytic functions on R2 do not necessarily fulfill the non-degeneracy

condition above. Indeed, polynomials, for instance, can vanish along lines in R2.

Proof of Proposition 2.4. It suffices to prove (2.8) in the case that ~v = (0, 1), as other cases can

be proved in a very similar way. By contradiction, suppose that (2.8) with ~v = (0, 1) fails, i.e.,

∂l(0,1)KM (t0, s0) = 0 for all l ∈ N. (2.9)

Define

f(λ) := KM (t0, t0 − λ), λ ≥ 0. (2.10)

Two facts on f are given as follows: First, by the real analyticity of M over R+, we see from

Proposition 2.3 that KM is real analytic over S+. This, along with (2.10), yields that f is

real analytic over R+. Second, by (2.9) and (2.10), we find that f vanishes of infinite order at

λ = t0 − s0. From these two facts, we see that f ≡ 0 over R+, which, along with (2.10), yields

KM (t0, t0 − λ) = 0, λ ≥ 0.
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The above, together with (1.6), shows

0 =
+∞∑
j=1

(λ− t0)j

j!
M ∗ · · · ∗M︸ ︷︷ ︸

j

(λ), λ ≥ 0,

which leads to

0 = M(λ) +

+∞∑
j=2

(λ− t0)j−1

j!
M ∗ · · · ∗M︸ ︷︷ ︸

j

(λ), λ ≥ 0. (2.11)

Next, we arbitrarily fix T > 0. For each j ∈ N+ \ {1}, we define an operator Kj on C([0, T ])

in the following manner: given g ∈ C([0, T ]), set

Kj(g)(λ) :=
(λ− t0)j−1

j!
M ∗ · · · ∗M︸ ︷︷ ︸

j−1

∗ g(λ), 0 ≤ λ ≤ T, (2.12)

which is well-defined, linear and bounded. Let

Q :=

+∞∑
j=2

Kj .

One can directly check that Q ∈ L(C([0, T ])), the Banach space of all linear and bounded

operators on C([0, T ]). Thus, we deduce from (2.11) that

(Id+Q)(M |[0,T ]) =
(
Id+

+∞∑
j=2

Kj
)

(M |[0,T ]) = 0, (2.13)

where Id is the identity operator on C([0, T ]).

We now claim that (Id+Q)−1 exists in L(C([0, T ])). When this is done, we can use (2.13),

(1.6) and the arbitrariness of T to see that M ≡ 0, which contradicts the assumption (C).

Consequently, (2.8) is true.

The remainder is to show the above claim. To this end, we arbitrarily fix k ∈ N+ and then

estimate Qk in the following manner: Set

Tt0 := sup
0≤λ≤T

|λ− t0| = max
{
|t0|, |T − t0|

}
.

Then from (2.12), one can directly check that when j1, . . . , jk ≥ 2,

‖Kj1 · · · Kjk‖L(C([0,T ])) ≤
1

j1!
· · · 1

jk!
T j1+···+jk−k
t0

∥∥|M | ∗ · · · ∗ |M |︸ ︷︷ ︸
j1+···+jk−k

∥∥
L1([0,T ])

≤ 1

j1!
· · · 1

jk!
T j1+···+jk−k
t0

T j1+···+jk−k

(j1 + · · ·+ jk − k)!
‖M‖j1+···+jk−k

C([0,T ])

≤ 1

k!

1

j1!
· · · 1

jk!

(
Tt0T‖M‖C([0,T ])

)j1+···+jk−k
.
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This, along with the definition of Q, yields

‖Qk‖L(C([0,T ])) =
∥∥∥ ∑
j1,...,jk≥2

Kj1 · · · Kjk
∥∥∥
L(C([0,T ]))

≤ 1

k!

k∏
m=1

∑
jm≥2

1

jm!

(
Tt0T‖M‖C([0,T ])

)jm−1

 ≤ 1

k!
exp

(
kTt0T‖M‖C([0,T ])

)
.

So
+∞∑
k=0

(−Q)k converges in L(C([0, T ])). Then we have

Id = (Id+Q)

+∞∑
k=0

(−Q)k.

Therefore, (Id+Q)−1 exists in L(C([0, T ])). This completes the proof of Proposition 2.4.

The following Proposition 2.6 presents a weighted estimate of the flow kernel KM . It will be

used in the proof of Proposition 4.8 that provides an explicit expression of the gap between the

heat evolution with and without memory.

Proposition 2.6. For each λ ∈ R,∫ t

0
e−λ(t−s)|KM (t, s)|ds ≤ exp

(
t

∫ t

0
e−λτ |M(τ)|dτ

)
− 1, t ≥ 0. (2.14)

Proof. Arbitrarily fix λ ∈ R. Define the following weighted memory kernel:

Mλ(t) := e−λtM(t), t ≥ 0. (2.15)

We claim

e−λ(t−s)KM (t, s) =
+∞∑
j=1

(−s)j

j!
Mλ ∗ · · · ∗Mλ︸ ︷︷ ︸

j

(t− s), (t, s) ∈ S+. (2.16)

Indeed, (2.16) follows from (1.6) and the following identity:

Mλ ∗ · · · ∗Mλ︸ ︷︷ ︸
j

(τ) = e−λτM ∗ · · · ∗M︸ ︷︷ ︸
j

(τ), τ ≥ 0, j ∈ N+,

which can be verified directly.

Next, we arbitrarily fix t > 0. By the iterative use of the Young’s inequality:

‖f ∗ g‖L1(0,t) ≤ ‖f‖L1(0,t)‖g‖L1(0,t), when f, g ∈ L1(0, t),

one has that

‖Mλ ∗ · · · ∗Mλ︸ ︷︷ ︸
j

‖L1(0,t) ≤ ‖Mλ‖jL1(0,t)
, j ∈ N+.

This, along with (2.16), yields∫ t

0

∣∣e−λ(t−s)KM (t, s)
∣∣ds ≤ +∞∑

j=1

tj

j!
‖Mλ ∗ · · · ∗Mλ︸ ︷︷ ︸

j

‖L1(0,t) ≤ exp
(
t‖Mλ‖L1(0,t)

)
− 1.

Then (2.14) follows from (2.15). This concludes the proof of Proposition 2.6.
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3 Parameterized ODEs with memory

In this section we analyze the ODE (1.19), i.e.,

w′(t) + ηw(t) +

∫ t

0
M(t− s)w(s)ds = 0, t > 0; w(0) = 1, (3.1)

where η > 0 is a parameter. First of all, by a standard method in the ODE theory, one can

easily check that the equation (3.1) has a unique solution, denoted by wη, in the space C1(R+).

The main result of this section is the next Theorem 3.1 which gives a decomposition in terms

of η for the solution wη. It lays a solid foundation for the proof of Theorem 1.1.

Theorem 3.1. For each integer N ≥ 2, the solution wη (with η > 0) to the equation (3.1)

satisfies

wη(t) = e−ηt
(

1 +
N−1∑
l=0

pl(t)η
−l−1

)
+
N−1∑
l=0

hl(t)η
−l−1 +RN (t, η)η−N−1, t ≥ 0, (3.2)

where {hl}l∈N and {pl}l∈N are given by (1.8) and RN is given by (1.7). In addition, the following

conclusions are true:

(i) The function RN is in the space C
(
R+ × R+

)
∩ C

(
R+;C(R+)

)
and fulfills the estimate:

‖RN (t, ·)‖C(R+) ≤ et
{

exp

[
N(1 + t)

( N∑
j=0

max
0≤s≤t

∣∣∣ dj
dsj

M(s)
∣∣∣)]− 1

}
, t ≥ 0. (3.3)

(ii) For each t ∈ R+, neither {hl(t)}l≥1 nor {pl(t)}l∈N is the null sequence.

Remark 3.2. (i) The decomposition (3.2) serves for that in (1.9). The components in the

decompositions (3.2) and (1.9) correspond to each other.

(ii) The conclusion (ii) in Theorem 3.1 corresponds to (1.11) in Theorem 1.1 discussed in

Remark 1.5.

To prove Theorem 3.1, we need several lemmas. The first one refers to the representation of

the solutions of (3.1) in terms of the flow kernel KM (given by (1.6)).

Lemma 3.3. The solution wη (with η ∈ R) to (3.1) satisfies

wη(t) = e−ηt +

∫ t

0
KM (t, s)e−ηsds, t ≥ 0. (3.4)

Proof. Fix an arbitrary η ∈ R. From (3.1), it follows that

w′η(t) + ηwη(t) = −M ∗ wη(t), t ≥ 0; wη(0) = 1.

The above yields

wη(t) = e−ηt −
∫ t

0
e−η(t−s)(M ∗ wη)(s)ds = e−ηt − (e−η· ∗M ∗ wη)(t), t ≥ 0. (3.5)
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Then we arbitrarily fix T > 0 and define the following operator:

QT (f) := e−η· ∗M ∗ f for each f ∈ C([0, T ]). (3.6)

One can easily check that QT is a linear and bounded operator on C([0, T ]). By (3.6), we see

that for each k ∈ N+,

QkT (f) = (e−η· ∗M) ∗ · · · ∗ (e−η· ∗M)︸ ︷︷ ︸
k

∗ f, f ∈ C([0, T ]). (3.7)

From (3.7), one can directly check

‖QkT ‖L(C([0,T ])) ≤‖(e−η· ∗M) ∗ · · · ∗ (e−η· ∗M)︸ ︷︷ ︸
k

‖L1(0,T )

≤‖e−η· ∗M‖kC([0,T ])

(∫ T

0

∫ t1

0
· · ·
∫ tk−1

0
dtk · · · dt1

)
≤
(
eT |η|‖M‖L1(0,T )

)kT k
k!
.

From this, we see that the series
∑∞

k=0(−QT )k converges in L
(
C([0, T ])

)
and that

(1 +QT )−1 =
∞∑
k=0

(−QT )k. (3.8)

Meanwhile, it follows from (3.5) and (3.6) that

wη|[0,T ] = −QT
(
wη|[0,T ]

)
+ e−η·|[0,T ]. (3.9)

Here, wη|[0,T ] and e−η·|[0,T ] denote respectively the restrictions of wη and e−η· over [0, T ].

Now, by (3.9) and (3.8), we find

wη(t) =

(( ∞∑
j=0

(−QT )j
)(
e−η·|[0,T ]

))
(t), t ∈ [0, T ],

from which and (3.7), it follows that

wη(t) = e−ηt +
∞∑
j=1

(−1)j(e−η· ∗M) ∗ · · · ∗ (e−η· ∗M)︸ ︷︷ ︸
j

∗ e−η·(t)

= e−ηt +

∞∑
j=1

(−1)je−η· ∗ · · · ∗ e−η·︸ ︷︷ ︸
j+1

∗M ∗ · · · ∗M︸ ︷︷ ︸
j

(t), t ∈ [0, T ].

This, together with the following equality:

e−η· ∗ · · · ∗ e−η·︸ ︷︷ ︸
j+1

(t) = e−ηttj/j!, t ≥ 0, j ∈ N+,
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shows

wη(t) = e−ηt +

∞∑
j=1

∫ t

0
e−ηs

(−s)j

j!
M ∗ · · · ∗M︸ ︷︷ ︸

j

(t− s)ds, t ∈ [0, T ].

Since T > 0 was arbitrarily taken, the above, along with (1.6), leads to (3.4). This ends the

proof of Lemma 3.3.

The next lemma will be used to get an asymptotic expansion of the second term on the

right-hand side of (3.4).

Lemma 3.4. Given an integer N ≥ 2 and a number η > 0, the following equality is true:∫ t

0
e−ηsKM (t, s)ds = e−ηt

N−1∑
l=0

(
− ∂lsKM (t, s)

∣∣
s=t

)
η−l−1 +

N−1∑
l=0

(
∂lsKM (t, s)

∣∣
s=0

)
η−l−1

+ η−N
∫ t

0
e−ηs∂Ns KM (t, s)ds, t ≥ 0. (3.10)

Proof. Fix N ≥ 2, η > 0 and t > 0 arbitrarily. Given g ∈ C([0, t]), we define

Fη(g) :=

∫ t

0
e−ηsg(s)ds. (3.11)

We first claim

Fη(g) = η−NFη(g(N)) +

N−1∑
l=0

η−l−1
(
g(l)(0)− e−ηtg(l)(t)

)
, when g ∈ CN ([0, t]). (3.12)

Given g ∈ CN ([0, t]), from (3.11) and using the integration by parts, we find

Fη(g) = (−η)−1

∫ t

0

d

ds
e−ηsg(s)ds

= (−η)−1
(
e−ηsg(s)

)∣∣∣t
s=0

+
1

η

∫ t

0
e−ηsg′(s)ds

= η−1
(
g(0)− e−ηtg(t)

)
+ η−1Fη(g′).

Now, the iterative use of the above equality (to the derivatives of g) gives (3.12).

Next, it follows by Proposition 2.2 that KM (t, ·) ∈ C∞([0, t]). Thus we can apply (3.12)

(where g(s) = KM (t, s), 0 ≤ s ≤ t) to get∫ t

0
KM (t, s)e−ηsds = η−N

∫ t

0
e−ηs∂Ns KM (t, s)ds

+
N−1∑
l=0

η−l−1

(
∂lsKM (t, s)

∣∣
s=0
− e−ηt∂lsKM (t, s)

∣∣
s=t

)
.

This leads to (3.10) and completes the proof of Lemma 3.4.

The following Lemma 3.5 will be used in the proof of (ii) in Theorem 3.1.



17

Lemma 3.5. Let {hl}l∈N and {pl}l∈N be given by (1.8). Then for each l ∈ N,

∂lsKM (t, s)|s=0 = hl(t) and ∂lsKM (t, s)|s=t = −pl(t), t ≥ 0. (3.13)

Proof. Recall the conventional notation: 00 = 1. First of all, we recall thatMj is given in (2.4).

Given t ≥ 0, by (2.6), where (α, β) = (0, l), it follows that

∂lsMj(t, s)|s=0 =
(−1)l

j!

min{l,j}∑
m=0

Cml C
m
j m!

(
(−s)j−m

∣∣
s=0

)( dl−m
dτ l−m

M ∗ · · · ∗M︸ ︷︷ ︸
j

)
(t)

=
(−1)l

j!

(
χ[0,l](j)C

j
l j!

)
dl−j

dtl−j
M ∗ · · · ∗M︸ ︷︷ ︸

j

(t),

which, along with (2.3), yields

∂lsKM (t, s)|s=0 =
+∞∑
j=1

∂lsMj(t, s)|s=0 = (−1)l
l∑

j=0

Cjl
dl−j

dtl−j
M ∗ · · · ∗M︸ ︷︷ ︸

j

(t).

This, along with (1.8), leads to the first equality in (3.13).

Next, from (2.6) with (α, β) = (0, l), it follows that

∂lsMj(t, s)|s=t =
(−1)l

j!

min{l,j}∑
m=0

Cml C
m
j m!(−t)j−m

( dl−m
dτ l−m

M ∗ · · · ∗M︸ ︷︷ ︸
j

)
(0). (3.14)

Meanwhile, by Lemma 2.1, we find

dl−m

dτ l−m
M ∗ · · · ∗M︸ ︷︷ ︸

j

(0) = 0, when l −m < j − 1.

From the above and (3.14), we see

∂lsMj(t, s)|s=t =(−1)l
min{l,j}∑
m=0

Cml
(−t)j−m

(j −m)!
χ[0,l−m](j − 1)

dl−m

dτ l−m
M ∗ · · · ∗M︸ ︷︷ ︸

j

(0).

This, along with (2.3), yields

∂lsKM (t, s)|s=t =

+∞∑
j=1

∂lsMj(t, s)|s=t

=(−1)l
l+1∑
j=1

min{l,j,l−j+1}∑
m=0

(−t)j−m

(j −m)!

(
C l−ml

dl−m

dτ l−m
M ∗ · · · ∗M︸ ︷︷ ︸

j

(0)
)
.

Replacing j −m by a new variable q in the above, using (1.8), we obtain the second equality in

(3.13).

Hence, we finish the proof of Lemma 3.5.
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We now are on the position to prove Theorem 3.1.

Proof of Theorem 3.1. Fix N ≥ 2 and η > 0 arbitrarily. The proof is structured in three steps.

Step 1. Proof of (3.2).

By Lemmas 3.3, 3.4 and 3.5, and by (1.7), we find

wη(t) =e−ηt + e−ηt
N−1∑
l=0

(
− ∂lsKM (t, s)

∣∣
s=t

)
η−l−1 +

N−1∑
l=0

(
∂lsKM (t, s)

∣∣
s=0

)
η−l−1

+ η−N
∫ t

0
e−ηs∂Ns KM (t, s)ds

=e−ηt
N−1∑
l=0

(
1 + pl(t)η

−l−1
)

+
N−1∑
l=0

hl(t)η
−l−1 +RN (t, η)η−N−1, t ≥ 0,

which leads to (3.2).

Step 2. Proof of conclusion (i).

First, we have

RN ∈ C(R+ × R+). (3.15)

Indeed, we apply Proposition 2.2 to see

KM ∈ C∞(S+). (3.16)

From (1.7) and (3.16), (3.15) follows at once.

Second, we have

RN ∈ C(R+;C(R+)). (3.17)

Indeed, it follows from (1.7) that when t2 ≥ t1 > 0,

‖RN (t1, ·)−RN (t2, ·)‖C(R+)

≤ sup
τ>0

[∫ t1

0
τe−τt|∂Ns KM (t1, s)− ∂Ns KM (t2, s)|ds+

∫ t2

t1

τe−τt|∂Ns KM (t2, s)|ds
]

≤‖∂Ns KM (t1, ·)− ∂Ns KM (t2, ·)‖L∞(0,t1) +
1

t1

∫ t2

t1

|∂Ns KM (t2, s)|ds.

This, along with (3.16), yields (3.17).

Third, from (1.7) and Proposition 2.2 (with (α, β) = (0, N)), we see

‖RN (t, ·)‖C(R+) ≤
(

sup
τ>0

∫ t

0
τe−τsds

)
‖∂Ns KM (t, ·)‖L∞(0,t)

≤et
{

exp

[
N(1 + t)

( N∑
j=0

max
0≤s≤t

∣∣∣ dj
dsj

M(s)
∣∣∣)]− 1

}
, t ≥ 0,
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which leads to (3.3).

Step 3. Proof of conclusion (ii).

Fix any t ≥ 0. We apply Proposition 2.4 to (t0, s0) = (t, 0) and ~v = (0, 1); (t0, s0) = (t, t)

and ~v = (0, 1), respectively, to find j1, j2 ∈ N so that

∂j1s KM (t, 0) 6= 0 and ∂j2s KM (t, t) 6= 0. (3.18)

Meanwhile, by (1.8) and (3.13), we have

h0 ≡ 0, ∂j1s KM (t, 0) = hj1(t) and ∂j2s KM (t, t) = −pj2(t). (3.19)

Now, from (3.18) and (3.19), we see that neither {hl(t)}l≥1 nor {pl(t)}l∈N is the zero sequence.

This concludes the proof of Theorem 3.1.

4 Analysis of the memory-flow

In this section we present several technical propositions describing the nature of each component

of the decomposition (1.9). We then prove Theorems 1.1-1.4 one by one. At last we prove some

complementary properties of the flow and present an extension of Theorems 1.1-1.2.

4.1 On the components in the decomposition

The aim of this subsection is to explain the meaning of each component in the decomposi-

tion (1.9), and discuss their regularity properties. This will help us understanding the hybrid

parabolic-hyperbolic behavior of the flow more deeply.

The next Proposition 4.1 (which is the conclusion (i) in Theorem 1.2) assures the smoothing

effect of the first component in (1.9).

Proposition 4.1. Let N ≥ 2 be an integer. Then PN (t)H−∞ ⊂ H+∞ for all t > 0.

Proof. This directly follows from the definition of PN (·) (in (1.10)) and the smoothing effect of

the heat semigroup {etA}t≥0.

The next Proposition 4.2 (which contains the conclusion (ii) in Theorem 1.2) shows the

propagation of singularities along the time direction for the second component WN (·). This

shows the hyperbolic nature of WN (·), with null velocity of propagation.

Proposition 4.2. Let N ≥ 2 be an integer and let y0 ∈ H−∞ and x0 ∈ Ω. Then the following

statements are equivalent:

(i) For some t0 > 0, WN (·)y0 6∈ L2
loc(t0, x0);

(ii) For each t > 0, WN (·)y0 6∈ L2
loc(t, x0);
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(iii) It holds that A−2y0 6∈ L2
loc(x0).

Proof. We first claim that if z ∈ H−∞ satisfies z ∈ L2
loc(x0), then

A−1z ∈ L2
loc(x0). (4.1)

The proof of (4.1) is classical and, for the sake of completeness, we present it as follows: Write

g := A−1z. It is clear that Ag ∈ L2
loc(x0). Then by (1.3) and some computations, we can see that

∆g ∈ L2
loc(x0). Since ∆ is elliptic at x0, one has that g|B(x0,r) ∈ H2

(
B(x0, r)

)
for some r > 0

(see, for instance, [12, Theorem 18.1.29]). Thus, g ∈ L2
loc(x0), which gives that A−1z ∈ L2

loc(x0).

We next prove that (i)⇒(iii). By contradiction, we suppose that (i) is true, but

A−2y0 ∈ L2
loc(x0). (4.2)

Since M is analytic, it follows from (1.8) that h0 ≡ 0 and each hl is smooth. Then by (4.2) and

(4.1), one has

N−1∑
l=0

hl(·)(−A)−l−1y0 =
N−1∑
l=1

hl(·)(−A)−l+1(A−2y0) ∈ L2
loc(t, x0) for each t > 0.

This, along with the definition of WN (·) (in (1.10)), implies that

WN (·)y0 ∈ L2
loc(t, x0) for each t > 0,

which contradicts (i). Therefore, (iii) is true.

We now show that (iii)⇒(ii). By contradiction, we suppose that (iii) holds, but WN (·)y0 ∈
L2
loc(t̂0, x0) for some t̂0 > 0. Then from (1.10), we find

N−1∑
l=0

hl(·)(−A)−l−1y0 ∈ L2
loc(t̂0, x0). (4.3)

We will use (4.3) to prove that

A−2y0 ∈ L2
loc(x0). (4.4)

When this is done, we are led to a contradiction with (iii), and then the statement (ii) is true.

To prove (4.4), we observe that there are only two possibilities: either N = 2 or N ≥ 3.

When that N = 2, we see from (4.3) and (1.8) that

−M(·)A−2y0 =

N−1∑
l=0

hl(·)(−A)−l−1y0 ∈ L2
loc(t̂0, x0).

Since M is nonzero, (4.4) (for this case) follows by integrating the above in the time variable.
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When N ≥ 3, it follows from (1.8) that h0 = 0 and h1 = −M . Thus, the leading term of

the sum in (4.3) is −M(·)A−2. From this and the fact that M is nonzero, by integrating (4.3)

in the time variable, we see

A−2y0 +

N−1∑
l=2

clA
−l−1y0 ∈ L2

loc(x0) for some {cl}N−1
l=2 ⊂ R.

Write A := −
∑N−1

l=2 clA
−l+1. Then the above leads to

f0 := (1−A)
(
A−2y0

)
∈ L2

loc(x0). (4.5)

Since y0 ∈ H−∞, there is m ∈ N+ so that y0 ∈ H−m. This, along with (4.5), yields

A−2y0 − (1 +A+ · · ·+Am−1)f0 = Am(A−2y0) ∈ L2(Ω). (4.6)

At the same time, since f0 ∈ L2
loc(x0) in (4.5), it follows from (4.1) that

Ajf0 ∈ L2
loc(x0) for each j ∈ N.

Thus, (4.4) (for N ≥ 3) follows from (4.6). Hence, (4.4) is true.

Finally, it is clear that (ii)⇒(i). Hence, we finish the proof of Proposition 4.2.

The following Proposition 4.3 (which is partially the conclusion (iii) in Theorem 1.2) gives

an important time-uniform smoothing effect of the last component RN (·).

Proposition 4.3. Let N ≥ 2 be an integer. Then the last component RN in (1.9) exhibits a

time-uniform smoothing effect with a gain of 2N + 2 space derivatives: for each y0 ∈ Hs with

s ∈ R,

RN (·)y0 ∈ C
(
R+;Hs+2N+2

)
, while A−je·Ay0, A

−jy0 ∈ C
(
R+;Hs+2j

)
(0 ≤ j ≤ N). (4.7)

Remark 4.4. There is a delicate point worth to clarifying. Although the map t 7→ A−jetA,

t ≥ 0 (for a fixed j) has infinite order smoothing effect at positive time, it has the finite time-

uniform smoothing effect (given in (4.7)) with only 2j space-derivatives gained. This index 2j

is optimal due to the following fact: for given y0 ∈ H−∞ and s ∈ R, A−je·Ay0 ∈ C
(
R+;Hs+2j

)
if and only if y0 ∈ Hs, which can be directly checked.

Proof of Proposition 4.3. The second statement in (4.7) is clearly true. We now show the first

statement in (4.7). To this end, we arbitrarily fix s ∈ R, y0 ∈ Hs and t0 ≥ 0. We aim to show

the continuity of RN (·)y0 at time t0. Fix any ε > 0. Write y0 =
∑∞

j=1 y0,jej . Since y0 ∈ Hs, we

can choose jε ∈ N+ large enough so that
∑

j≥jε η
s
jy

2
0,j < ε2. This, along with the definitions of



22

RN (·) (see (1.10)) and RN (see (1.7)), yields that for each t ∈ [0, t0 + 1],

‖RN (t)y0 −RN (t0)y0‖2Hs+2N+2

=‖RN (t,−A)y0 −RN (t0,−A)y0‖2Hs

=
∑
j≥1

∣∣RN (t, ηj)−RN (t0, ηj)
∣∣2y2

0,jη
s
j

≤ max
1≤j≤jε

∣∣RN (t, ηj)−RN (t0, ηj)
∣∣2(∑

j≥1

y2
0,jη

s
j

)
+ 4‖RN‖2C([0,t0+1]×R+)ε

2.

From this and (3.3), one can find some C > 0 (independent of ε) and δ ∈ (0, 1) so that

‖RN (t)y0 −RN (t0)y0‖2Hs+2N+2 ≤ Cε2, when t ∈ (t0 − δ, t0 + δ) ∩ R+.

This leads to the continuity of RN (·)y0 at time t0 and ends the proof of Proposition 4.3.

4.2 Proof of main theorems

We now give the proofs of Theorems 1.1-1.4 one by one.

Proof of Theorem 1.1. First of all, (1.11) (with t > 0) follows from the conclusion (ii) of Theo-

rem 3.1 at once.

The remainder is to show (1.9). Fix s ∈ R and y0 ∈ Hs. Recall that ηj is the jth eigenvalue

of −A and ej is the corresponding normalized eigenfunction in L2(Ω). Then we can write

y0 =
∑
j≥1

y0,jej and y(t; y0) =
∑
j≥1

yj(t)ej , t ≥ 0, (4.8)

where y0,j := 〈y0, ej〉Hs,H−s and yj(·) satisfies

y′j(t) + ηjyj(t) +

∫ t

0
M(t− τ)yj(τ)dτ = 0, t > 0; yj(0) = y0,j . (4.9)

By (4.9) and (3.1), we see that for each j ∈ N+,

yj(t) = y0,jwηj (t), t ≥ 0, (4.10)

where wηj (·) is the solution to (3.1) with η = ηj . Then by (4.8) and (4.10), we have

y(t; y0) =
∑
j≥1

wηj (t)y0,jej , t ≥ 0, (4.11)

From (4.11) and (3.2) (in Theorem 3.1), we see that when t ≥ 0,

y(t; y0) =
∑
j≥1

[
e−ηjt

(
1 +

N−1∑
l=0

pl(t)η
−l−1
j

)
+
N−1∑
l=0

hl(t)η
−l−1
j +RN (t, ηj)η

−N−1
j

]
y0,jej . (4.12)



23

Meanwhile, by functional calculus, we have

RHS of (4.12) =
[(
etA + etA

N−1∑
l=0

pl(t)(−A)−l−1
)

+

N−1∑
l=0

hl(t)(−A)−l−1 +RN (t,−A)(−A)−N−1
]
y0.

(4.13)

Here, RHS of (4.12) denotes the expression on the right-hand side of (4.12).

Since y0 was arbitrarily taken from Hs, we can use (4.12), (4.13), (1.10) and Proposition 7.1

(in Appendix) to get (1.9). This concludes the proof of Theorem 1.1.

Proof of Theorem 1.2. First of all, the conclusions (i)-(ii) in Theorem 1.2 follow from Proposi-

tion 4.1 and Proposition 4.2, respectively. In what follows, the conclusions (iii)-(iv) in Theorem

1.2 will be proved one by one.

Step 1. The proof of the conclusion (iii) in Theorem 1.2

By Proposition 4.3, we only need to show (1.13). For this purpose, we first claim

RN (·,−A)|R+ ∈ C(R+;L(Hs)) for each s ∈ R. (4.14)

To prove (4.14), we arbitrarily fix s ∈ R and t2 ≥ t1 > 0. Set

R̃(−A) := RN (t2,−A)−RN (t1,−A). (4.15)

Then R̃(−A) is the operator obtained by the functional calculus of the function: RN (t2, ·) −
RN (t1, ·). By (1.4) and by the spectral representation of R̃(−A), we see

‖R̃(−A)‖2L(Hs) = sup∑
ηsj z

2
j≤1

∥∥∥∑
j≥1

R̃(ηj)zjej

∥∥∥2

Hs
= sup∑

ηsj z
2
j≤1

+∞∑
j=1

ηsj
∣∣R̃(ηj)

∣∣2z2
j ≤ sup

η>0

∣∣R̃(η)
∣∣2.

This, along with (4.15), yields

‖RN (t2,−A)−RN (t1,−A)‖L(Hs) = ‖R̃(−A)‖L(Hs) ≤ ‖RN (t2, ·)−RN (t1, ·)‖C(R+). (4.16)

Since RN ∈ C(R+;C(R+)) (see Theorem 3.1), (4.14) follows from (4.16) at once.

We now show (1.13). Indeed, arguing as in the proof of (4.16), we can obtain

‖RN (t,−A)‖L(Hs) ≤ ‖RN (t, ·)‖C(R+), t ≥ 0.

This, along with (3.3) (in Theorem 3.1), leads to (1.13).

Hence, the conclusion (iii) in Theorem 1.2 is true.

Step 2. The proof of the conclusion (iv) in Theorem 1.2

Arbitrarily fix y0 ∈ H−∞, x0 ∈ Ω and t > 0. There is an integer m ≥ 2 so that

y0 ∈ H−2m.
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Then by (1.9) and (1.13) (where N is replaced by m), one can easily check

Φ(·)y0 − Pm(·)y0 −Wm(·)y0 ∈ L∞loc(R+;L2(Ω)). (4.17)

Combine (4.17) and Proposition 4.1 (where N is replaced by m) to get

Φ(·)y0 6∈ L2
loc(t, x0)⇔Wm(·)y0 6∈ L2

loc(t, x0). (4.18)

Meanwhile, for each integer k ≥ 2, it follows by Proposition 4.2 (where N is replaced by k) that

Wk(·)y0 6∈ L2
loc(t, x0)⇔ A−2y0 6∈ L2

loc(x0),

in particular,

Wm(·)y0 6∈ L2
loc(t, x0)⇔WN (·)y0 6∈ L2

loc(t, x0).

This, along with (4.18), yields

Φ(·)y0 6∈ L2
loc(t, x0)⇔WN (·)y0 6∈ L2

loc(t, x0). (4.19)

Thus, the conclusion (iv) follows from (4.19) and Proposition 4.2 at once.

Hence, we complete the proof of Theorem 1.2.

Proof of Theorem 1.3. Arbitrarily fix an integer N ≥ 2. We first show (1.15). Indeed, one can

see from (1.2), (1.10) and (1.7) that for each j ∈ N+,

Φ(0)ej = ej , PN (0)ej =
(

1 +
∑N−1

l=0 pl(0)η−l−1
j

)
ej ,

RN (0)ej = 0, WN (0)ej =
(∑N−1

l=0 hl(0)η−l−1
j

)
ej .

Since lim
j→+∞

ηj = +∞, the above leads to (1.15) at once.

We next prove (1.16). Arbitrarily fix t > 0. On one hand, it follows from (1.8) that h0 ≡ 0

and h1(t) = −M(t), which, along with (1.10), yield

WN (t)ej = −M(t)η−2
j ej +

∑
1<l≤N−1

hl(t)η
−l−1
j ej for all j ≥ 1.

This implies

lim
j→+∞

‖WN (t)ej‖H4 = |M(t)| and lim
j→+∞

‖WN (t)ej‖Hs = 0, ∀ s < 4. (4.20)

On the other hand, from (1.10), it follows that for each j ≥ 1,

PN (t)ej = e−tηj
(

1 +
N−1∑
l=0

pl(t)η
−l−1
j

)
ej and RN (t)ej = η−N−1

j RN (t,−A)ej .



25

Since lim
j→+∞

η−1
j = lim

j→+∞
η
s
2
j e
−tηj = 0 (s ∈ R), the above, together with (1.13), gives

lim
j→+∞

‖PN (t)ej‖Hs1 = lim
j→+∞

‖RN (t)ej‖Hs2 = 0, s1 ∈ R, s2 < 2N + 2. (4.21)

Now, by (4.20) and (4.21), we can use the decomposition (1.9) (with the above N ≥ 2) to

get

lim
j→+∞

‖Φ(t)ej‖H4 = |M(t)| and lim
j→+∞

‖Φ(t)ej‖Hs = 0, ∀ s < 4.

These, along with (4.20)-(4.21), lead to (1.16). This completes the proof of Theorem 1.3.

Proof of Theorem 1.4. Arbitrarily fix s ∈ R. We will prove the conclusions (i)-(iii) one by one.

(i) Arbitrarily fix α ∈ [0, 4] and t > 0. We apply (1.9) (with N = 2), as well as (1.10) and

(1.8), to obtain

Φ(t) =
(
etA − p0(t)A−1etA + p1(t)A−2etA

)
−M(t)A−2 +R2(t,−A)(−A)−3. (4.22)

Meanwhile, notice that

‖A
α
2
−jetA‖L(Hs)

(
= sup

j∈N+

η
α
2
−j

j e−tηj
)
≤ tj−

α
2 and ‖A

α
2
−j−2‖L(Hs) ≤ η

α
2
−j−2

1 , j = 0, 1, 2.

These, along with (4.22), yield

‖Φ(t)‖L(Hs,Hs+α) ≤ t−
α
2

(
1 + t|p0(t)|+ t2|p1(t)|

)
+ η

α
2
−2

1 |M(t)|+ η
α
2
−3

1 ‖R2(t, ·)‖L(Hs+α).

After direct computations, we obtain (1.17) from the above, (1.8) and (1.13) (where N = 2).

(ii) Assume that (1.18) holds for t ∈ (0, δ0). We first claim

+∞ > lim sup
j→+∞

η
α0
2
−2

j , i.e., α0 ≤ 4. (4.23)

Indeed, by the assumption (C), we can choose small t0 ∈ (0, δ0) so that

M(t0) 6= 0. (4.24)

Then from (4.22) and (1.13) (where N = 2), it follows that for each j ≥ 1,

‖Φ(t0)‖L(Hs,Hs+α0 ) ≥ ‖Φ(t0)ej‖Hs+α0/‖ej‖Hs = η
α0
2
−2

j

(
|M(t0)|+O(η−1

j )
)
,

(Here and what follows, by O(η−1
j ) with j ≥ 1, we mean that there is C1 > 0, independent of

j, so that |O(η−1
j )| ≤ C1η

−1
j .) This, along with (1.18) (where t = t0), (4.24) and the fact that

lim
j→+∞

ηj = +∞, leads to (4.23).

We next claim

lim inf
t→0+

t
α0
2 ‖Φ(t)‖L(Hs,Hs+α0 ) > 0. (4.25)
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In fact, from (1.18) (where z = ej), (4.22) and (1.13), we see that when t ∈ (0, δ0) and j ∈ N+,

t
α0
2 ‖Φ(t)‖L(Hs,Hs+α0 ) ≥t

α0
2 ‖Φ(t)ej‖Hs+α0/‖ej‖Hs

≥(tηj)
α0
2

(∣∣1 +O(η−1
j )
∣∣e−tηj −O(η−1

j )
)
. (4.26)

Meanwhile, it follows by Weyl’s asymptotic formula for the eigenvalues (see for instance [16,

XIII.15]) that lim
j→+∞

ηj+1/ηj = 1. Thus, there is j0 ∈ N+ so that

[ηj0 ,+∞) = ∪j≥j0 [ηj , 2ηj).

Therefore, for each t ∈ (0, η−1
j0

], there is an integer jt ≥ j0 so that

t−1 ∈ [ηjt , 2ηjt), i.e.,
1

2
< tηjt ≤ 1.

This, along with (4.26), leads to (4.25).

Finally, the conclusion (ii) follows from (4.23) and (4.25) at once.

(iii) We first claim

Φ(·)y0 ∈ C(R+;Hs+4) for each y0 ∈ Hs. (4.27)

To this end, we arbitrarily fix y0 ∈ Hs, t0 > 0 and ε > 0. Since y0 ∈ Hs, there is jε ∈ N+ so

that

‖y0 − y0,jε‖Hs < ε where y0,jε :=

jε∑
j=1

〈y0, ej〉Hs,H−sej . (4.28)

At the same time, one can easily check Φ(·)y0,jε ∈ C(R+;Hs+4), which implies there is δε ∈
(0, t0/2) so that

sup
t0−δε<t<t0+δε

‖Φ(t)y0,jε − Φ(t0)y0,jε‖Hs+4 < ε.

This, together with (4.28), gives

sup
t0−δε<t<t0+δε

‖Φ(t)y0 − Φ(t0)y0‖Hs+4 < ε+ 2 sup
t0/2≤τ≤2t0

‖Φ(τ)‖L(Hs,Hs+4)ε,

which, along with (1.17), leads to (4.27).

We next claim that for each α > 4,

Φ(·)ŷ0 6∈ C(R+;Hs+α) for some ŷ0 ∈ Hs. (4.29)

For this purpose, we arbitrarily fix α > 4. Since h0(t) ≡ 0 and h1(t) = −M(t) (see (1.8)), we

apply (1.9) (with N = 2), as well as (1.10) and (1.13), to obtain

lim
j→+∞

η2
j 〈Φ(t)ej , ej〉L2(Ω) = −M(t) for each t > 0. (4.30)
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Meanwhile, by the assumption (C), we can choose t̂0 > 0 so that M(t̂0) 6= 0. This, along with

(4.30) and the fact that α > 4, yields

η
α
2
j |〈Φ(t̂0)ej , ej〉L2(Ω)| → +∞ as j → +∞.

Thus we can choose a subsequence {kj}j≥1 of N+ so that

η
α
2
kj
|〈Φ(t̂0)ekj , ekj 〉L2(Ω)| ≥ j2j for each j ≥ 1. (4.31)

We now define ŷ0 ∈ Hs as follows:

ŷ0 :=
∑
j≥1

2−jη
− s

2
kj
ekj . (4.32)

Then, by (4.31) and (4.32), we find

‖Φ(t̂0)ŷ0‖2Hs+α =
∑
j≥1

ηs+αkj

(
〈Φ(t̂0)ekj , ekj 〉L2(Ω)〈ŷ0, ekj 〉Hs,H−s

)2

=
∑
j≥1

(
η
α
2
kj
〈Φ(t̂0)ekj , ekj 〉L2(Ω)2

−j
)2
≥
∑
j≥1

j2 = +∞,

which implies Φ(t̂0)ŷ0 6∈ Hs+α. This leads to (4.29).

In conclusion, we complete the proof of Theorem 1.4.

Remark 4.5. By a very similar way to that used in the proof of (1.17) (in Theorem 1.4), we

can also show what follows: For each t > 0,

Φ(t) ∈ L(Hs,Hs+2k(t)+2) for each s ∈ R, (4.33)

where k(t) := min{l ≥ 1 : hl(t) 6= 0}.
From (4.33) and the fact that h1(t) = −M(t) (which follows from (1.8)), we conclude that

the smoothing effect of the flow Φ(t) at points in the set {t > 0 : M(t) = 0} is better than that

at points in the set {t > 0 : M(t) 6= 0}.

4.3 Other properties of the flow and the components

This subsection presents more properties of the flow and the components. More precisely, first,

we formulate Propositions 4.6 to illustrate how the component PN influences the flow, from

the perspective of the singularities; (In plain language, it tells us that the singularity of PN (0)

determines the singularity of Φ(0).); second, we give Proposition 4.7 to show that both PN (0) and

WN (0) are not projections; last, we present Propositions 4.8-4.9, which might have independent

interest.

Proposition 4.6. Let N ≥ 2 be an integer and let y0 ∈ H−∞ and x0 ∈ Ω. Then (y0 =)Φ(0)y0 6∈
L2
loc(x0) if and only if PN (0)y0 6∈ L2

loc(x0).
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Proof. First of all, since Φ(0)y0 = y0, we have

Φ(0)y0 6∈ L2
loc(x0)⇔ y0 6∈ L2

loc(x0). (4.34)

We claim

PN (0)y0 6∈ L2
loc(x0)⇔ y0 6∈ L2

loc(x0) (4.35)

When this is proved, the conclusion in this proposition follows from (4.34) and (4.35) at once.

We now show (4.35). To prove the necessity, we suppose, by contradiction, that the statement

on the left-hand side of (4.35) is true, but y0 ∈ L2
loc(x0). Then we apply (4.1) to obtain that

A−jy0 ∈ L2
loc(x0) for each j ∈ N.

At the same time, it follows from (1.10) that

PN (0)y0 = y0 +

N−1∑
l=0

pl(0)(−A)−l−1y0.

These imply that PN (0)y0 ∈ L2
loc(x0), which contradicts the statement on the left-hand side of

(4.35). Therefore, we have shown the necessity.

To show the sufficiency, we suppose, by contradiction, that the statement on the right-hand

side of (4.35) holds, but PN (0)y0 ∈ L2
loc(x0). Then from (1.10), there is a sequence (ĉl)

N−1
l=0 ⊂ R

so that

y0 +
N−1∑
l=0

ĉlA
−l−1y0 ∈ L2

loc(x0).

Then by the similar way as that used in the proof of “(4.3) ⇒ (4.4)”, one can get that

y0 ∈ L2
loc(x0). This contradicts the statement on the right-hand side of (4.35). Therefore,

the sufficiency is proved. Hence, we finish the proof of Proposition 4.6.

Proposition 4.7. The following conclusions are true:

(i) For each integer N ≥ 2,

RN (0) = 0 and y0 = PN (0)y0 +WN (0)y0 for each y0 ∈ L2(Ω). (4.36)

(ii) For each integer N ≥ 2, PN (0) and WN (0) are projections over L2(Ω) if and only if

M(0) = · · · = M (j)(0) = · · · = M (N−2)(0) = 0. (4.37)

Proof. First, the conclusion (i) follows from (1.10), (1.7) and (1.9) (with t = 0) at once.

We next prove the conclusion (ii). To show the sufficiency, we assume that (4.37) is true.

Then by (4.37), we can apply (2.1) (with t→ 0+) to get

dl

dtl
M ∗ · · · ∗M︸ ︷︷ ︸

j

(0) = 0, j ∈ N+, l ∈ {0, . . . , N − 2}.
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This, along with (1.8), yields

hl(0) = 0, 0 ≤ l ≤ N − 1,

from which and (1.10), it follows WN (0) = 0 and consequently, WN (0) is a projection. Then by

the second equality in (4.36), we see that PN (0) is a projection.

To prove the necessity, we suppose that PN (0) and WN (0) are projections over L2(Ω). Then

we have

WN (0)2y0 =WN (0)y0 for each y0 ∈ L2(Ω).

Taking y0 = ej with j ∈ N+ in the above and using (1.10), we find(N−1∑
l=0

hl(0)η−l−1
j

)2

ej =

(N−1∑
l=0

hl(0)(−A)−l−1

)2

ej =WN (0)2y0

=WN (0)y0 =

(N−1∑
l=0

hl(0)(−A)−l−1

)
ej =

(N−1∑
l=0

hl(0)η−l−1
j

)
ej .

This implies (N−1∑
l=0

hl(0)η−l−1
j

)2

=
N−1∑
l=0

hl(0)η−l−1
j for all j ≥ 1.

Since lim
j→+∞

ηj = +∞, the above, divided by η−1
j , . . . , η−Nj respectively, gives hl(0) = 0, 0 ≤

l ≤ N − 1. Then by direct computations and by (1.8), we get (4.37). This ends the proof of

Proposition 4.7.

Proposition 4.8. Let KM be given by (1.6). Then

Φ(t)∗ = Φ(t) = etA +

∫ t

0
KM (t, τ)eτAdτ, t ≥ 0. (4.38)

Moreover, it holds that

sup
s∈R
‖Φ(t)− etA‖L(Hs) ≤ inf

λ≥−η1
eλt
[

exp
(
t

∫ t

0
e−λτ |M(τ)|dτ

)
− 1

]
, t ≥ 0. (4.39)

(Here, −η1 is the first eigenvalue of A.)

Proof. Arbitrarily fix s ∈ R and y0 ∈ Hs. By (4.8), (4.11) and Lemma 3.3, we find

y(t; y0) =
∑
j≥1

wηj (t)y0,jej =
∑
j≥1

(
e−ηjt +

∫ t

0
KM (t, τ)e−ηjτdτ

)
y0,jej , t ≥ 0. (4.40)

Now the second equality in (4.38) follows from (4.40) and (1.2), while the first equality in (4.38)

follows by the second one in (4.38) and the fact that for each t ≥ 0, etA = etA
∗

in L(Hs).
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Finally, it follows from (4.38) that

‖Φ(t)− etA‖L(Hs) ≤
∫ t

0
‖eτA‖L(Hs)|KM (t, τ)|dτ ≤

∫ t

0
e−η1τ |KM (t, τ)|dτ, t ≥ 0.

This, along with (2.14) in Proposition 2.6, where λ ≥ −η1, yields

‖Φ(t)− etA‖L(Hs) ≤ eλt
∫ t

0
e−λ(t−τ)|KM (t, τ)|dτ ≤ eλt

[
exp

(
t

∫ t

0
e−λτ |M(τ)|dτ

)
− 1

]
, t ≥ 0,

which leads to (4.39) and completes the proof of Proposition 4.8.

Proposition 4.9. Let s ∈ R. Then Φ(·) is real analytic from R+ to L(Hs).

Proof. According to Proposition 2.3, KM is real analytic over S+. Then by (4.38) and the

analyticity of {etA}t>0, we obtain that Φ(·) is real analytic from R+ to L(Hs). This ends the

proof of Proposition 4.9.

4.4 Less regular memory kernels

The techniques of this paper can also be employed to handle less regular memory kernels. Assume

that:

(C1) The memory kernel M is in CN0(R+) for a fixed integer N0 ≥ 2.

Then, the following holds, and can be proved by the same arguments of the proofs of Theorems

1.1-1.2.

Theorem 4.10. Suppose that (C1) is true. Then for each N ∈ {2, . . . , N0}, all results of

Theorems 1.1-1.2, except for (1.11)-(1.12) and (1.14), are true.

5 An example

In this section we analyze with more details the decomposition (1.9) in the particular case of

the following memory kernel:

M(t) = αeλt, t ≥ 0, where λ, α ∈ R, with α 6= 0.

In what follows, we adopt the conventional notation: 00 := 1 and
∑
∅

· := 0.

In this particular case, we have the following explicit expressions: For each l ∈ N,

hl(t) = eλt(−1)l
∑

m, k ∈ N, j ∈ N+

k −m + 2j = l + 1,
m + k ≤ l− 1

C l−jl αjλk
tm

m!
, t ≥ 0,

pl(t) = (−1)l+1
∑

m, k ∈ N, j ∈ N+

k −m + 2j = l + 1,
m + k ≤ l + 1

C l−j+ml αjλk
(−t)m

m!
, t ≥ 0,

RN (t, τ) = (−1)NN !
∫ t

0 τe
−τseλ(t−s)FN (t, s)ds, t, τ ≥ 0,

(5.1)
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where

FN (t, s) :=
∑

β1, β2, β3 ∈ N, j ∈ N+

β1 + β2 + β3 = N,
β1 ≤ j, β2 ≤ j − 1

(−s)j−β1
(j − β1)!

(t− s)j−1−β2

(j − 1− β2)!
λβ3αj .

For this example, the following holds:

Proposition 5.1. For almost every t ≥ 0 and for each l ∈ N+, it holds that

hl(t) 6= 0 and pl(t) 6= 0. (5.2)

Proof. Fix l ≥ 1 arbitrarily. It follows from (5.1) that the function t 7→ e−λthl(t) (t ≥ 0) is a

polynomial of the order l − 1 and satisfies

e−λthl(t) = (−α)l
tl−1

(l − 1)!
+

l−2∑
m=0

· · · tm, t ≥ 0.

Thus hl(t) 6= 0 for a.e. t ≥ 0, which implies the first inequality in (5.2). The same can be done

for pl by the similar argument. This ends the proof.

Remark 5.2. The following comments on Proposition 5.1 are worth considering.

(R1) As N increases, for almost every t ≥ 0, both PN (t) and WN (t) involve more and more

nontrivial terms.

(R2) For each N ∈ N+ and for a.e. t ≥ 0, the remainder RN (t) inherits a hybrid heat/wave

structure (and thus is not negligible). Indeed, from (1.9)-(1.10), one can directly obtain

the following recursive equality:

Rj(t) = Rj+1(t) + pj(t)e
tA(−A)−j−1 + hj(t)(−A)−j−1, t ≥ 0, j ∈ N+. (5.3)

From this and (5.2), it follows that for each N ∈ N+ and for a.e. t ≥ 0, RN (t) contains

both nontrivial terms in PN+1(t) and WN+1(t), and thus inherits the hybrid structure.

(R3) Initial data of the form PN (0)y0 (resp., WN (0)y0), under the action of the flow Φ(·), may

lead to three nontrivial components. More precisely, given a fixed integer N ≥ 2, there is

j ∈ N+ so that the following equality

Φ(t)(PN (0)ej) = IN,1(t) + IN,2(t) + IN,3(t)

:= PN (t)
(
PN (0)ej

)
+WN (t)

(
PN (0)ej

)
+ RN (t)

(
PN (0)ej

)
, t ≥ 0

has the property

IN,1(t), IN,2(t), IN,3(t) 6= 0 in L2(Ω) for a.e. t ≥ 0. (5.4)

(This is also true when PN (0)ej is replaced by WN (0)ej in the above statement.)
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Indeed, one can see from (1.10) and (5.3) that for each j ≥ 1 and t ≥ 0,

PN (t)
(
PN (0)ej

)
= e−tηj

(
1 +

∑N−1
l=0 pl(t)η

−l−1
j

)(
1 +

∑N−1
l=0 pl(0)η−l−1

j

)
ej ,

WN (t)
(
PN (0)ej

)
=

(∑N−1
l=0 hl(t)η

−l−1
j

)(
1 +

∑N−1
l=0 pl(0)η−l−1

j

)
ej ,

RN (t)
(
PN (0)ej

)
=

(
hN (t)η−N−1

j + pN (t)e−tηjη−N−1
j +RN+1(t, ηj)η

−N−2
j

)(
1 +

∑N−1
l=0 pl(0)η−l−1

j

)
ej .

Since lim
j→+∞

ηj = +∞, the above, along with the first inequality in (5.2) and the estimate

(3.3), implies

PN (·)ej ,WN (·)ej ,RN (·)ej 6≡ 0 for large j ∈ N+.

At the same time, the three functions on the left hand side above are analytic from R+

to L2(Ω). (For the first two functions, their analyticity follows from (1.10) and (5.1) and

then the analyticity of the last one is derived from Proposition 4.9.) Therefore, they are

non-trivial almost everywhere. This is exactly (5.4). (In a similar way, (5.4) can be verified

in the case that PN (0)ej is replaced by WN (0)ej .)

6 Conclusions and further comments

In this paper we have presented a decomposition for the flow generated by the equation (1.1),

which reveals the hybrid parabolic-hyperbolic behavior of the flow. We have also described the

nature of each of the components in the decomposition; that has been illustrated through an

example.

A number of interesting issues could be considered in connection with the results and methods

developed in this paper. Here, we briefly give some of them.

• Smooth memory kernels. It would be interesting to analyze whether (1.11), (1.12) and

(1.14) hold under the assumption that M ∈ C∞(R+) \ {0}.

• Decomposition with infinite series. It would be interesting to obtain a meaningful de-

composition without the intervention of the third remainder term.

• Space-dependent memory kernels. The extension of the results of this paper to the space-

dependent memory kernels M = M(t, x) is open.

• Memory kernels in the principal part of the model. It would be interesting to extend our

decomposition and analysis to the following two types of heat equations with memory

kernels:

(i) ∂ty −∆y −
∫ t

0 M(t− s)∆y(s)ds = 0;

(ii) ∂ty −
∫ t

0 M(t− s)∆y(s)ds = 0,
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that are more relevant from an applied and modelling viewpoint.

• Other equations with memory. It would be interesting to extend this decomposition to

other models such as wave equations with memory kernels.

7 Appendix

Proposition 7.1. For each t ≥ 0 and s ∈ R, it holds that

Φ(t)y0 = y(t; y0), y0 ∈ Hs (7.1)

and that Φ(t) belongs to L(Hs).

Proof. Arbitrarily fix s ∈ R. Since {etA}t≥0 is a C0 semigroup over Hs, we can use a standard

method (see for instance [18, Theorem 1.2 in Section 6.1, p. 184]) to show that for each y0 ∈
Hs, the solution y(·; y0) belongs to the space C(R+;Hs). This, along with (1.2), yields (7.1).

Moreover, one can directly check that for each t ≥ 0, Φ(t) ∈ L(Hs). This completes the

proof.

The proof of Lemma 2.1 is given as follows.

Proof of Lemma 2.1. By standard density arguments, it suffices to show that for each k ∈ N,

the following property (Ek) is true: For all kernels {Ml}jl=1 ⊂ C
∞(R+),

∣∣∣ dk
dtk

M1 ∗ · · · ∗Mj(t)
∣∣∣ ≤ C(j, k, t) ∏

l≤q(j,k)

‖Ml‖Cp(j,k)([0,t])
∏

l>q(j,k)

‖Ml‖Cp(j,k)−1([0,t]), t > 0. (7.2)

Here and in what follows, we set
∏
∅

· := 1 and let


p(j, k) := max{k − j + 1, 1},
q(j, k) := min{k, j},

C(j, k, t) :=

j−1∑
l=j−1−k

χN(l)
tl

l!
, t > 0.

(7.3)

Now we will use the induction to prove the above (Ek) for each k ∈ N. To this end, we first

check (E0). Indeed, for each j ∈ N+ and each {Ml}jl=1 ⊂ C
∞(R+), we have that

|M1 ∗ · · · ∗Mj(t)| ≤
( j∏
l=1

‖Ml‖C([0,t])

)∫ t

0

∫ t1

0
· · ·
∫ tj−1

0
dtj · · · dt1 =

tj−1

(j − 1)!

j∏
l=1

‖Ml‖C([0,t]).

This, along with (7.3), leads to (7.2) with k = 0. Therefore (E0) is true.

Next, we will show (Ek0+1) for any k0 ∈ N, under the assumption that (Ek) holds for all

k ≤ k0. For this purpose, we arbitrarily fix k0 ∈ N, j ∈ N+ and {Ml}jl=1 ⊂ C∞(R+). Since
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(7.2), with j = 1, holds clearly, we only need to focus on the situation that j ≥ 2. There are

only two possibilities for j: either k0 ≤ j − 1 or k0 ≥ j.
In the case when k0 ≤ j − 1, we have three observations: First, by direct computations, we

find

dk0+1

dtk0+1
M1 ∗ · · · ∗Mj =

dk0

dtk0

( d
dt
M1 ∗ · · · ∗Mj

)
=
dk0

dtk0

(
M1(0)M2 ∗ · · · ∗Mj +M ′1 ∗M2 ∗ · · · ∗Mj

)
=M1(0)

dk0

dtk0
M2 ∗ · · · ∗Mj +

dk0

dtk0
M2 ∗ · · · ∗Mj ∗M ′1. (7.4)

Second, we apply (Ek0) twice to find that for each t > 0,∣∣∣ dk0
dtk0

M2 ∗ · · · ∗Mj(t)
∣∣∣ ≤ C(j − 1, k0, t)

( ∏
2≤l≤k0+1

‖Ml‖C1([0,t])

)( ∏
l>k0+1

‖Ml‖C([0,t])

)
; (7.5)

∣∣∣ dk0
dtk0

M2 ∗ · · · ∗Mj ∗M ′1(t)
∣∣∣ ≤ C(j, k0, t)

( ∏
2≤l≤k0+1

‖Ml‖C1([0,t])

)( ∏
l>k0+1

‖Ml‖C([0,t])

)
‖M ′1‖C([0,t]).

(7.6)

Third, from the third definition in (7.3), we see

max
{
C(j − 1, k0, t), C(j, k0, t)

}
≤ C(j, k0 + 1, t), t > 0. (7.7)

Now, from (7.4), (7.5), (7.6) and (7.7), it follows that for each t > 0,∣∣∣ dk0+1

dtk0+1
M1 ∗ · · · ∗Mj(t)

∣∣∣ ≤C(j, k0 + 1, t)
(
‖M1‖C([0,t]) + ‖M ′1‖C([0,t])

)
×
( ∏

2≤l≤k0+1

‖Ml‖C1([0,t])

)( ∏
l>k0+1

‖Ml‖C([0,t])

)
.

This, along with (7.3), leads to (7.2) (with k = k0 + 1 ≤ j). Therefore, (Ek0+1) is true when

k0 ≤ j − 1.

In the case that k0 ≥ j, we see from (7.3) that{
p(j, k0 + 1) = p(j − 1, k0) = p(j, k0) + 1 = k0 − j + 2;

q(j, k0 + 1) = q(j, k0) = q(j − 1, k0) + 1 = j.

Then by the similar arguments as those in (7.4)-(7.7), one can get that for each t > 0,∣∣∣ dk0+1

dtk0+1
M1 ∗ · · · ∗Mj(t)

∣∣∣ ≤C(j, k0 + 1, t)
(
‖M1‖C([0,t]) + ‖M ′1‖Cp(j,k0)([0,t])

)
×

j∏
l=2

‖Ml‖Cp(j−1,k0)([0,t])

=C(j, k0 + 1, t)

j∏
l=1

‖Ml‖Cp(j,k0+1)([0,t]).
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This, together with (7.3), leads to (7.2) (with k = k0 + 1 > j). Therefore, (Ek0+1) holds in the

case that k0 ≥ j.
Hence, we complete the proof of Lemma 2.1.
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