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VARIATIONAL RICIAN NOISE REMOVAL VIA SPLITTING
ON SPHERES

ZHIFANG LIU*, HUIBIN CHANG, AND YUPING DUAN?

Abstract. We propose a novel variational method to restore magnitude images corrupted by
Rician noises in magnetic resonance (MR) imaging via signal-noise splitting. By the link between
the Gaussian noise removal of complex MR images and the Rician noise removal of magnitude MR
images, the proposed nonlinear optimization model consists of a total variation regularizer, two
quadratic terms, and a constraint on the field of spheres. Specifically, this constraint represents
the forward model of calculating the magnitude MR images from complex MR images degraded by
Gaussian noises. Namely, the proposed model is completely different from the existing variational
methods, which were usually derived by maximum a posterior of Rician distribution such that they
inevitably involved the Bessel function causing high computation cost. We further adopt the alternat-
ing direction method of multipliers for solving the proposed model efficiently and briefly analyze its
convergence. Numerical comparisons with existing variational methods show the proposed method
produces comparable results in terms of image quality but saves about 50% of overall computational
cost on average.

Key words. MR image denoising, signal-noise splitting, the field of spheres, Rician noise, total
variation, alternating direction method of multipliers

1. Introduction. Magnitude magnetic resonance (MR) images are widely used
in medical image processing. Compared with the complex-valued MR images, such
images discard the phase information, thus avoiding phase artifacts [20]. The MR
images are reconstructed from the MR scan data with inevitable measurable noises.
One of the major sources of these noises is the thermal noise caused by patients during
the MR scan [29, 2]. Consequently, the MR images are always noisy. Significantly, the
noises in the magnitude MR images negatively affect different medical image process-
ing and analysis tasks, such as visualization, segmentation, registration, classification,
and diffusion tensor estimation [2]. Therefore, it is a fundamental problem to remove
noises in magnitude MR images to obtain high-quality ones.

The noisy magnitude MR data is commonly modeled by the Rician distribution
[20, 2]. Thus, we usually refer to estimating clean magnitude MR image from a noisy
one as Rician noise removal. Because of the signal dependence of the Rician noise, it is
a great challenge to extract the clean magnitude MR image directly. Next, we present
some previous works devoted to address this challenge problem. We first review some
statistical-based noise-removal methods. In [20], Henkelman used the first moment
of the Rician distribution to estimate the MR signal and proposed a lookup table to
correct the Rician basis. Furthermore, the second moment of the Rician distribution
was employed in [5, 28]. In [32], Sijbers and den Dekker implemented the maximum
likelihood method for the estimation of MR signal amplitude. In [1], Aja-Ferndndez
et al. derived the linear minimum mean square error (LMMSE) estimator based on
the local sample statistics. Other statistical-based methods, such as the non-local
means (NLM) method and the variance-stabilizing transformation (VST) method,
can be found in [24, 37, 14]. Recently, learning-based methods have become popular
in image processing and have been applied to Rician noise reduction. In [25], Manjén
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and Coupe presented a two-stage strategy method that combines convolutional neural
network and non-local means filter and can automatically deal with both stationary
and spatially varying noises. In [40], You et al. studied the wider denoising neural
network for denoising of MR images with Rician noise. In [39], Yang et al. proposed a
noise adaptive trainable non-linear reaction-diffusion method for Rician noise removal
that is robust against noise level changes. In [22], by fitting the distribution of pixel-
level and feature-level intensities, Li et al. developed a RicianNet for MR image
denoising.

Besides the abovementioned methods, the variational regularization method is
also an important mathematical tool for Rician noise removal. The variational method
is interpretable and stable for various image processing tasks. Thus, it has attracted
much research during the last several decades. The variational model usually contains
two terms: regularization term and data fidelity term. One of the most common
regularizations is the total variation (TV), which is firstly proposed for removing
Gaussian noise in [31]. Due to its edge preservation properties, TV regularization
has also been introduced for Rician noise removal. Based on maximum a posterior
(MAP) estimates, Getreuer et al. [16] and Martin [26] independently proposed the
variational MAP model using TV regularization with the Rician likelihood fidelity
term. The existence theory of the MAP model was roughly mentioned by Getreuer et
al. in [16] and further rigorously analysed by Martin et al. in [27]. Getreuer et al. [16]
solved the MAP model with the ¢? and Sobolev H' gradient descents. However, those
algorithms converged slowly and could get stuck in a local minimum without proper
initialization and numerical discretization. Therefore, Getreuer et al. [16] replaced
the fidelity term in the MAP model with one of its convex approximations and then
solved the convexified model with the split Bregman method. In [10], Chen and Zeng
added a quadratic term based on the statistics property of Rician distribution to the
MAP model and then obtained a strictly convex model, solved with a primal-dual
algorithm. One can find some other variants based on the MAP model in [41, 23].

The existing variational methods were mainly derived from the MAP of the Rician
noise [16] for the magnitude MR image, and they involved the sophisticated Bessel
function causing relatively high computational complexities, compared with the purely
Gaussian noise denoising. This paper will explore an alternative method based on
the link of the Gaussian denoising of complex images and Rician noise removal of
magnitude MR images. To this end, we first examine the original variational model
of the complex image with complex Gaussian noise, consisting of TV regularization
for the phase and magnitude separately, a ¢? fitting term, and a constraint for the
forward noise model. Separating the magnitude and phase of the complex image
leads to an equivalent form. Then, a variational model to optimize the magnitude of
the complex image is obtained by dropping off the regularization term for the phase
part of the complex image and taking the absolute part of the constraint for the
complex variable. Further combined with a quadratic correction term, one finally
deduces a new variational model, essentially a non-convex optimization model with
the constraint on the field of spheres. Due to the closed-form projection onto spheres,
an efficient alternating direction method of multipliers (ADMM) can be applied to
the proposed model. A rigorous convergence guarantee could be further provided
following the convergence theory for the non-convex ADMM [33].

The main contributions of this paper are listed below:

e By exploring the link between the complex denoising model and the Rician
noise model of magnitude MR, image, we propose a novel variational model
by directly seeking a piecewise-constant solution from a field of spheres, in-
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stead of using Bessel functions. Namely, completely different with existing
variational models coping with sophisticated Bessel functions, the proposed
model consists of the standard TV norm of the underlying image, two qua-
dratic terms and a constraint on a field of spheres, such that one can solve it
as efficiently as standard Gaussian denoising.

e Based on the closed-form expression of the projection onto spheres, we de-
velop an efficient ADMM algorithm. We further eliminate the redundant
update for the multiplier to reduce the computation cost. The corresponding
convergence to the stationary point of the proposed model are proved with a
sufficiently large stepsize.

e We conduct numerous experiments to evaluate the performance of the pro-
posed method. Numerically, the proposed method can produce comparable
quality results in Peak Signal-to-Noise Ratio (PSNR) and Structural Simi-
larity Index Measure (SSIM), among all the compared variational methods.
Namely, it reduces about 50% of overall computational cost on average com-
pared to the main existing variational methods, since the cost per iteration
dramatically decreases without calculating the sophisticated Bessel functions.

The rest of this paper is organized as follows. In Section 2, we give some prelim-
inaries and review some related works. In Section 3, we present the new Rician noise
removal model. In Section 4, we present an efficient iterative algorithm for solving the
proposed model. The numerical experiments for both synthetic and real MR images
are shown in Section 5. We conclude the paper in Section 6.

2. Preliminary and related works.

2.1. Preliminary. The raw MR data is measured through a quadrature detec-
tor that generates two- or three-dimensional complex arrays in k-space and always
corrupted by Gaussian-distributed noise. After the inverse Fourier transformation of
this data, the MR images in z-space are obtained and remain Gaussian distribution.
The magnitude images are computed from these complex MR images, and mathemat-
ically, the measured magnitude image f € RP*? degraded by noises can be expressed

2] by

(2.1) fij= \/(u” + (nl)w.)? N (n2)2] 1<i<p,1<j<yq,

where u € RP*Y is the true amplitude of noise-free image, and ny; € RP*? and ny €
RP*? are two independent white Gaussian noise variables both with zero mean and
standard deviation o. Due to the non-linear transformation used to obtain magnitude
images, the distribution of overall noises for the measured data defined in (2.1) is no
longer Gaussian. The probability density function for each pixel of the magnitude
MR image f is a Rician distribution [20, 2], i.e., for any 1 <7 <p, 1 <j <gq,

(2.2) P(fij | uij,0) = {;QJ exp ( _ 2,327;2 ) (fm w)

where Iy(+) is the zero-order modified Bessel function of the first kind. Series forms
of modified Bessel function of the first kind with real order v are given by [35]

L) l )V+2p
2
Z e 1),V€R
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2.2. Related works of variational approaches. Numerous variational meth-
ods have been proposed to estimate the noise-free image u from the noisy observed
image f. We briefly review some of these methods based on the Rician distribution
(2.2) in the following.

In the MAP approach [16, 26], the image  is estimated by maximizing a posterior
given f, that is & = argmax, P(u | f). Applying the Bayes’s rule and using the TV
prior, the MAP model is given by

. 1 2 fijtig
(2.3) rrmeV(u) + a(w 1 2Z]:log IO(T)

with

(2.4) TV (u) := Z |(Vu); ;

| = Z \/(vlu)ij + (Vyu)?g
,J

Here, Vu = (V,u, Vyu) and V, and V,, are first-order finite difference operators with
proper boundary conditions in z and y directions, respectively. The MAP model (2.3)
is non-smooth and non-convex, that poses great challenge of fast algorithms designing.
Alternatively, Getreuer et al. [16] considered a smoothed version of MAP model

1 fi i
(2.5) mlnz [(Vu) Zj||2+62+04<wu||2_210g[0( 2.2 j))
%,

and coped with this smoothed energy successfully with the ¢? gradient descent algo-
rithm. In [16], Getreuer et al. also proposed an elegant way to avoid the non-convexity,
where the basic idea was to replace the non-convex fidelity function with one of its
convex approximations. Hence the convex model [16] was derived as below:

(2.6) mm TV(u) + Z Go(u; ;)
where
H,(u;j), if u; ; > co,
Go(uij) = A L
H,(co) + H] (co)(u;j —co), ifu;; <co,
wij  fig o (fijlig t3 4 0.950037¢2 + 2.38944¢
Hy(ui ) = —5 —%A<7J2 J),A(t)z 3 5 ,
o o o t3 4+ 1.48937t% + 2.57541t + 4.65314

with ¢ = 0.8426 and H,(-) as the primitive function of H/(-).
Following a similar idea for convexification [12] of the variational multiplicative
noise removal, Chen and Zeng [10] added a quadratic term 1 > i ‘/Uw V fij)? to

the MAP model (2.3) based on the boundedness of E((y/u; ;—+/fi,;)?)/c (E denoting
the mathematical expectation), that led to the following model

. 1 fi Ui
(2.7) gggTV@)+a<mﬂmq2—§;bgm(;,ﬁ) }:\ﬂii V5ig)®

Note that this model is strictly convex [10, 9] in the domain S = {w | 0 < w; ; <
255, 1 <i<p,1<j<q}.
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3. Proposed model.

3.1. Complex Gaussian noise removal. First, go back to the original model
for complex-valued MR images. Let U € CP*? be the complex image, and F' € CP*4?
be the noisy degraded image after contamination by complex white Gaussian noise
(N1, N3) € RPX4 x RP*4 ag

(3.1) F=U+Ni+iNa,

with 4% = —1, and (N1);;, (Na)i; S N(0,0) V1 < i < p,1<j<gq. Torecover
U from F, directly applying the variational approach to (3.1) can yield the following
model

(3.2) min TVe(U) + SNy +iNa||2, s, F=U + N; +iNa,
U,N1,No 2

with the parameter a > 0 to balance the regularization (first term of the minimiza-
tion problems in (3.2)) and data fitting terms (the second term of the minimization
problems in (3.2)). The regularization term TV¢(U) denotes the summation of TV
of the magnitude and TV of the phase of U [42], which is given by

(3.3) TVe(U) := TV(u) + TV(6),

with u € RP*? and 6 € RP*Y being the amplitude and phase of the complex-valued
image U respectively, i.e. U := u o exp(if) (o denotes the Hadamard product).

Remark 3.1. By naturally extending the definition of TV for the real-valued im-
ages to the complex-valued ones, one has

(3-4) TV(U) := Z (VUi sl = Z \/H(Vu)i,jII2 +uf (V)i ;.

Readily one sees that the magnitude and the phase are coupled together. That poses
potential difficulty for further modeling, since one cannot simply discard one of the
them. Thus, we adopt the definition of TV for complex-valued images as (3.3).

3.2. Proposed model. Letting the complex variables be expressed in polar
form F := foexp(i¢) with the amplitude f € RP*? and phase ¢ € RP*4, the forward
model (3.1) can be rewritten as

(3.5) f=exp(i(0 — ¢)) o (u+ns +ins),

with n1, ns denoting the real and imaginary parts of (N1 +4N3)oexp(—1i6) respectively.
The TV based regularization model (3.2) can also be rewritten as

min TV (u) + TV(0) + S|jny + ina?,
(36) u,0,n1,n2 2

s.t. f=exp (¢(6 — ¢)) o (u+ny +ing).

Since it is common to consider the magnitude image in practice [1], we focus on
the recovery of the magnitude of the true image. Further, by the neglect of the phase
0 and simplifying the constraint for (3.6), one has

. [e%
min TV (u) + = ([m]* + [In2]?),
u,ny,n2 2

(3.7)

st fi; = \/(Uz’,j + (nl)i,j)2 + (nz)ij, 1<i<p1<5<g,

5
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where the constraint is derived by taking the absolute part of both sides of (3.5). Note
that this constraint is exactly the same as (2.1), referred as the spherical constraint,
which essentially makes the vector (u+n1,ns) (generated from the image v and noises
(n1,n2)) onto a field of spheres.

The current model essentially decomposes the noisy measurement f into three
variables u,n1,ny. Compared to the model (3.6), it employs one half (only the mag-
nitude) of the original complex data F' while discarding only one unknown variable 6
among all the four unknown variables u, 6, n1, no. Hence, the prior containing only the
TV regularization for the image and the L? norm penalty for the noises seems insuffi-
cient to determine this decomposition. Other conditions should be further discussed
in order to optimize (3.7).

This candidate could be ||u — f||? by directly using an ¢? fitting. However, the
Rician noise introduces signal-dependent bias to the data that reduces the image
contrast [29], thus the mean of the true image u is not equal to that of the observed
image f. Heckelmann [20] and Chen-Zeng [10] showed the mean of each pixel of
noise-free images could be approximated below:

E <\/max {0, 1%, - 02}> , ifu; ;> 203

E <\/max {0, 72, - 20’2}> , otherwise.

Hence consider an estimate g as

]E(Ui,j) =~

(3.8) gij = \Jmax(fZ, —c0?,0), 1<i<pl<j<q,

with a tunable scaling factor ¢ € [1,2]. One may notice that this estimate is adaptive,
i.e. when f;; is small (not greater than /co) the estimate g; ; become zeros, while

when f; ; gets larger ( greater than /co), it becomes ,/fi%j —co?. As a result, we

consider the more efficient way by adding the quadratic term ||u — g||? to (3.7) based
on this estimate, in order to restrict the target not far away from a rough guess g.
Therefore, we propose the following variational model on the field of spheres as

. « B
min TV (u) + §(||m||2 + [In2ll?) + e~ gl1?,
(3.9) 2

st fij = \/(U” + (n1)i,j)2 + (712)34-7 1<i<p,1<j<q

with g as the estimate derived by (3.8).

We remark that the proposed model is entirely different from the existing vari-
ational models [16, 26, 10]. It is derived initially from the complex-valued image
domain and uses the spherical constraint to express the relationship between images
and noises. The spherical constraint reproduces the imaging process of the magnitude
MR image. Compared with the sophisticated Bessel function, the spherical constraint
is easy to handle by the operator splitting method [21], by which we can develop a
more efficient algorithm for the Rician noise removal.

4. Proposed algorithm with convergence guarantee. In this section, we
will propose an efficient operator splitting method for the non-convex model (3.9)
with the spherical constraint and present its convergence analysis briefly.

6
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We introduce a new auxiliary variable v := (v1,vg) € RP*? x RP*?  with
v = (u+ny,na),
to split the spherical constraint such that the constrained problem (3.9) is equivalent

to the following optimization problem

. a B
wmin TV (u) + o ([l |* + [Ina]*) + S llu = gl%,
(4'1) s11,12,

st v = (u+ni,ng),\/(v1)7; +(v2)7,; = fij, 1<i<p1<j<gq

J

For simplicity of presentation, we introduce some notations to reformulate the prob-
lem (4.1). Let K denotes the field of 2D-spheres given by

(4.2) K= {’U = (v1,v2) |/ (v1)7; + (12)7; = fij, 1<i<p,1<j< Q}-
Then define I as the indicator function of K by

T (v) = 0, ifvek,
K7 400, ifvé K.

Let Q : RP*7 — RPX2 x RP*? denotes the linear operator defined as

Qu = (u,0).
Finally, the TV model with spherical constraint (4.1) can be rewritten as
o B
min TV (u) + = ||n|]® + Z|ju — g||* + Lc (v),
(4.3) minTV(w) + Sln|* + Fllu = gl* + Tx(v)

st. Qu+n=w,

with n = (n1,n2) € RP*? x RP*4. The above problem has the non-smooth TV term
and the non-convex indicator for the spherical constraint. One of the effective ways to
cope with this problem is the operator-splitting algorithm, in which we can solve the
subproblem involving TV term efliciently via many well-designed methods and obtain
an analytic projection solution of the subproblem related to the field of spheres set
K. The spherical constrained problem is a special case of orthogonality constrained
problems. There exist many first-order operator-splitting algorithms for the spher-
ical constraint optimization problems, such as the curvilinear search method [36],
the method of splitting orthogonality constraints [21], the coordinate descent-based
method [15], and ADMM [18, 17]. Here, we adopt ADMM, which has been success-
fully applied in various convex and non-convex optimization problems and received
considerable attention in recent years [6, 38, 33].

For the constrained optimization problem (4.3), we define the augmented La-
grangian function as follows

«
£(0,0,m58) = Tic(v) + TV () + 2 Ju— g + &
+(AQu+n—v)+ 7|Qutn—v|?

where A = (A1, \y) € RP¥9 x RP*? ig a Lagrange multiplier with the penalization
parameter r > 0. The ADMM is an iterative method to seek a saddle point of this

7
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Lagrangian function. It minimizes the augmented Lagrangian function with respect
to the primal variables u,n, v alternately and updates the dual variable X. Here, we
employ an ADMM scheme given below:

(4.4) vFTl = arg n%inl[;c(v) + gHv —(Qu* +n" + )\k/r)HQ,
. 153 r 2
(4.5) w1 = arg ml}nTV(u) + §||u —gl*+ §Hu — (v]lngl — n]f — /\’f/r)| ;
.« r 2
(4.6) n*t! = arg min 5““”2 + §Hn - ('karl —QuFtt — )\k/r)H ;
(4.7 AL = AP o (Quitt 4 bt — k),

In the following, we show how to solve these subproblems. It is interesting to
show that we can further eliminate the multiplier updating step (4.7) and finally cope
with three subproblems. Indeed, from the first-order optimization condition of the
n-subproblem (4.6), which is a quadratic optimization problem, we have

(4.8) an™ 4 AF 4okt Quitt — oMy = 0.
Combined with (4.7), it follows that
(4.9) AL — _apktl

Replace therefore A* by —an” in (4.4), (4.5) and (4.6). Thus, the solution of the
n-sub problem is

an® + r(vFt — Quktt)

(4.10) nktl =
a—+r

The v-sub problem (4.4) is equivalent to pg projection problems of the indepen-
dent component in the form

min  [|vi,; — 04° st ol = fij, 1<i<p1<j<q,

Vi, €

with
Vi = (Quk + nk)” + )\ﬁj/r = (Quk)i,j +(1- oz/r)nﬁj € R2.

Each of the above problems has a closed form solution

Yi,j

(4.11) vij=fi I<i<pl<j<g

il
The u-sub problem (4.5) is a TV-f5 optimization problem

(4.12) min{TV(u)+5—2’_7ﬂ|u—ﬁ|2}’

where

Bg+r (™ —nk) =M} Bg+rofTt 4 (a—r)nk
B+r N B+r ’
The problem (4.12) is known as the Rudin-Osher-Fatemi (ROF) model [31] and has

a unique solution due to the strict convexity of the objective function. It has been
well-studied during the last three decades and has many efficient solvers nowadays,

8
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Algorithm 4.1 Simplified ADMM for solving the model (4.3)
Initialization:
k=0, g=+/max(f2 - co2,0), c€[1,2],u’ =g, nd =0, n ~ N(0,0), tol = le — 4,
K = 500.
Iteration:
1. For given (u*,n*), compute v**! through (4.11);
2. For given (n* v¥*1) find u**! through solving (4.12) by Chambolle’s pro-
jection method;
3. For given (uft1 v*+1), compute n**! from (4.10);
Until: [|[u* — u*H1|/||u*|| < tol or k > K.

F1G. 1. Clean magnitude MR images. (a) Brain (181 x 217), (b) Liver (304 x 214), (c) Spine
(200 x 200), (d) Knee (194 x 218), (e) Cameraman (256 X 256).

such as Chambolle’s projection method [7], the fast iterative shrinkage thresholding
algorithm (FISTA) [4], the split Bregman method [19], the augmented Lagrangian
method [38], and primal-dual algorithms [13, §].

In summary, we describe a simplified ADMM for solving the model (4.3) in the
Algorithm 4.1.

Next, we present a brief convergence analysis of the ADMM algorithm (4.4)-(4.7).
Our algorithm falls into the algorithmic framework of the non-smooth and non-convex
ADMM in [33]. The global convergence results have been established in [33], and we
refer to Appendix A for details. The convergence of the proposed algorithm is given
as follows.

THEOREM 4.1. For any sufficiently large stepsize r, the ADMM algorithm (4.4)-
(4.7) generates a sequence (uF,v* n* X¥) that converges to a stationary point of L.

Finally, we give some comments on solving the subproblem (4.12). As is known
to all, a proper approximate solution to the subproblem is sufficient for the numerical
convergence of ADMM. Please also see the numerical examples in Section 5.2. More-
over, the overall cost will be significantly reduced by very few iterations of Chambolle’s
projection. More rigorous analysis for the inexact version algorithm will be explored
in the future.

5. Numerical experiments. In this section, we present some numerical exper-
iments to evaluate the performance of the proposed model for Rician noise removal.
We conduct the experiments with MATLAB R2020a on a desktop computer with a
4-cores 3.4GHz Intel Core i7-6700 processor and 16GB RAM. Firstly, we apply our
method to synthetic MR images to verify its effectiveness. Then, we discuss the choices
of the inner iteration numbers, the role of the correction term, and the influences of
parameters in our method. Next, we compare our approach with other methods, in-
cluding variational and deep learning methods. Finally, we apply our method to some

9
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Fia. 2. The denoised results of the proposed method for the synthetic MR “Brain” tmage. Here,
(a), (e), and (i) are images degraded by Rician noises with standard deviation o = 15, 25, and 35.
(b), (f) and (j) are restored images, and (c), (g) and (k) are residual images. The parameters are:
(b) o =0.015 and 8 =0.08; (f) « =0.01 and 8 = 0.045; and (j) o = 0.005 and B = 0.03. Here, (b)
PSNR: 31.46dB, (f) PSNR: 28.34dB, and (j) PSNR: 26.16dB.

raw MR images.

We carry out the trials on five images including “Brain” (size of 181x217), “Liver”
(size of 304 x 214), “Lumbar spine” (size of 200 x 200), “Knee” (size of 194 x 218), and
“Cameraman” (size of 256 x 256), as shown in Fig. 1. The range of gray-scale image
is [0,255]. In our experiments, all these images are corrupted with Rician noises with
standard deviations o = 15, 25, and 35.

We use two quantitative metrics to measure the qualities of the restoration results.
The first metric is the PSNR, which is defined as

~ 2552 x m?
PSNR(u, @) = 101ogy, S (s — )2
i, \Uij — Uij

)

where u and @ are the noiseless image and the recovered image, respectively. The
10
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second one is the SSIM [34], which is computed via

(2Nu/~Lﬂ + Cl)(quﬂ + CQ)
(12 4+ pg + C1) (02 + 02 + C)’

SSIM (u, @) =

with two constants C7 and Cy, where p,, pg, 0y, 0z, and o,y are local means,
standard deviations and cross-covariance for images u and @ respectively.

5.1. Application to synthetic MR images. We conduct the first experiment
on the synthetic MR “Brain” image; see Fig. 1 (a), which are taken from the BrainWeb
database'. We apply the proposed method to the degraded images of “Brain” with
Rician noises at levels ¢ = 15, 25, and 35. The restored results are showed in Fig. 2,
in which we have choose @ = 0.015 and S = 0.08 for Fig. 2 (b), « = 0.01 and
B = 0.045 for Fig. 2 (f), and o = 0.01 and 8 = 0.045 for Fig. 2 (j). Since the
“Brain” image in the experiment is synthetic, we can easily get the exact region of
the foreground. In Fig. 2, PSNR values are computed for the foreground. We can see
that the proposed model can well remove the Rician noises from the degraded images
and preserve the main features in the restored images. We also record the evolution
relative errors of the proposed ADMM in Fig. 2 (d), (h), and (1), which verify the
convergence numerically.

5.2. Extensive tests with various settings. We conduct the second experi-
ment to discuss various aspects of the proposed model by Algorithm 4.1, including the
choices of the inner iteration numbers, the role of the correction term, and influences
of parameters.

5
11 10 ‘ ‘ : ‘ 32
— |nlter 2
105 w— = |nlter 10
""" Inlter 50 31
10 —initer 100| |
w— |0 |ter 150
951
30
9r — |nlter 2
= o == = |nlter 10
g 85 Gt  fgqg iy e Inlter 50
2
w o = [n]ter 100
8f s lter 150
28
7.5
7L
27|
6.5
6 . . . 2 . . .
10° 102 107 10° 10' 102 10° 102 107! 10° 10' 10%
CPU Time (sec) CPU Time (sec)
(a) (b)

Fi1G. 3. Performance of the proposed ADMM under the same outer iteration number 500 and
different inner iteration numbers, i.e. 2, 10, 50, 100, and 150. This example is performed on
“Brain” image.

According to the analysis in Section 4, the proposed ADMM algorithm (4.4)-
(4.7) is globally convergent based on the exact solver for the sub-problem (4.5). In
practice, the sub-problem (4.5) can be solved inexactly for each outer iteration. In
the sequel, we show how the number of iterations in the inexact ROF solver impacts
the solution, e.g., setting 2, 10, 50, 100, and 150 iterations for Chambolle’s projection
method. See Fig. 3 for denoising the degraded “Brain” image (Rician noises with

!BrainWeb: Simulated Brain Database: https://brainweb.bic.mni.mcgill.ca/brainweb/
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standard deviations ¢ = 15). From Fig. 3 (a), we see that the objective function
(energy) of the model (3.9) decreases as the evolution of Algorithm 4.1 and stabilizes
eventually. It indicates too that the proposed algorithm converges numerically when
an inexact solver for the ROF problem (4.5) is used. Combined with Fig. 3 (a) and
(b), we also see that using 2 fixed inner iterations can significantly reduce the overall
computational cost of the proposed algorithm without affecting the recovery qualities.
Thus, using 2 fixed inner iterations are enough to reach a proper estimated solution
for the convergence guarantee. In all the experiments, we use two inner loops for the
proposed algorithm.

32

31

=0 = = =(3="5e3 B=1e-2
B=8e2 = = =(=1e1 1

29 3 =5e-2
........... 8= 5e-1

23 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

Iteration number

F1a. 4. Performance of solving the proposed model by ADMM under different 8. This example
is carried out on “Brain” image.

As analyzed in Section 3.2, the correction term in the proposed model (3.9) plays
an important role in the determination of the variable decomposition. We conduct
the tests by gradually increasing the balance parameter 8 from 0 to 0.5 (8 = 0 means
no correction). Please refer to Fig. 4 to see how this term affects the performance. As
can be seen, when the model (3.9) does not have the correction term (i.e., 8 = 0), the
PSNRs of estimated images along the evolution reaches the highest value after few
numbers of iteration and then quickly decrease to a steady-state with very low value.
Actually, with 8 = 0, the final estimate of u loses almost all details, while all of these
features move to n; and ny. This coincides with the analysis in Section 3.2, which
points out that the original model (3.7) cannot generate ideal decomposition. With
correction term by choosing a proper 3, the proposed algorithm can effectively prevent
the PSNR values of the estimated images from dramatic decrease, as shown in Fig. 4.
In other words, the correction term can also be interpreted as the stabilization term
of the model (3.9). Therefore, the correction term is essential for a stable recovery.
Moreover, the estimate g has a tunable scaling factor ¢ € [1,2]. To demonstrate the
influences of the parameter ¢, we conduct experiments of denoising the noisy images
of “Brain” with Rician noises at level o = 15, 25, and 35 with different ¢ in the range
[1,3]. The results are put in Fig. 5, which shows that tuning ¢ between 1 and 2 could
improve the recovery results compared with ¢ = 2, especially when ¢ = 15. However,
for practical use, ¢ = 2 seems to be a good choice for the most cases, and therefore,
set ¢ = 2 as the default for other experiments unless otherwise specified.

12
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Fi1G. 5. The PSNR values under different pairs (3, c) for denoising the noisy images of “Brain”
with Rician noises at level (a) o =15, (b) o = 25, and (c¢) o = 35 by using the proposed method.
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FiG. 6. The PSNR values under different pairs (o, 8) for denoising the noisy images of “Brain”
with Rician noises at level (a) o0 =15, (b) o = 25, and (c) o = 35 by using the proposed method.

Then we discuss the influence of the proposed model (3.9) by the parameters «
and B. Fig. 6 shows the PSNR values of the denoised “Brain” image by our proposed
method for different pairs (a, ). The parameter a should be related to the noise
level. As the standard deviation of the noise increases, the value of a should decrease
to get good recovery results. We suggest that the parameter « is in [0.001,0.03]
for ¢ = 15, 25, and 35. As discussed before, the parameter 3 controls the distance
between the final result and the estimate g. Again, in our experiments, we noticed
that if 8 gets too small, the recovered image will be over-smooth; if 8 gets too large,
the recovered image will approach the undesirable noise image g. From Fig. 6, we can
observe that the choice of 8 has a significant impact on the quality of the denoised
image. Moreover, we can also see from Fig. 6 that for each noise level, when a good
value of 3 is chosen, the image quality is less sensitive to the parameter a.

The parameter r is the penalty parameter of the augmented Lagrangian function

13

This manuscript is for review purposes only.



404
405
406

107
408
409
410
411
412
413

used in the ADMM algorithm (4.4)-(4.7). For the proposed algorithm to converge,
we need to set r to be large enough. Hence, we empirically choose r € [0.1,10] with
r =1 as default.

(d) Getreuer (e) Chen-Zeng (f) Proposed

Fic. 7. Numerical results for the image of “Cameraman”. (a) Noisy image with o = 15;
The denoised images: (b) sMAP model (PSNR = 80.13), (¢c) MAP model (PSNR = 30.26), (d)

Getreuer’s model (PSNR = 29.94), (e) Chen-Zeng model (PSNR = 30.15), (f) the proposed model
(PSNR = 80.37).

50 50
40 40
30 30
20 20
10 10

(a) sSMAP (b) MAP

50 50
40 40
30 30
20 20
10 10

(c) Getreuer (d) Chen-Zeng (e) Proposed

FiG. 8. The absolute differences between the denoised images in Fig. 7 and the true “Camera-
man” image. (a) SMAP model, (b) MAP model, (c) Getreuer’s model, (d) Chen-Zeng model, (e)
the proposed model.

5.3. Comparisons with other variational methods. We conduct the third
experiment on comparing the proposed method with some existing variational meth-
ods listed below:

1) The smoothed MAP (sMAP) model (2.5) solved by the ¢* gradient descent
method in [16]. As recommended in [16], we fix the step size dt = 0.1.

2) The MAP model (2.3) solved by a proximal point algorithm proposed by
Martin et al. in [27].

14
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(d) Getreuer (e) Chen-Zeng (f) Proposed

Fic. 9. Numerical results for the image of “Knee”. (a) Noisy image with o = 25; The denoised
images: (b) sSMAP model (PSNR = 28.50), (c) MAP model (PSNR = 28.81), (d) Getreuer’s model
(PSNR = 27.75), (e) Chen-Zeng model (PSNR = 28.19), (f) the proposed model (PSNR = 28.92).

60 60
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40 40
30 30
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10 10

(a) SMAP (b) MAP
60 60 %
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40 40 o
30 30 80
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10 10 10
(c¢) Getreuer (d) Chen-Zeng (e) Proposed

Fi1c. 10. The absolute differences between the denoised images in Fig. 9 and the true “Knee”
image. (a) sMAP model, (b) MAP model, (c) Getreuer’s model, (d) Chen-Zeng model, (e) the
proposed model.

3) The Getreuer’s model (2.6) solved by the split Bregman method [16].

4) The Chen-Zeng model (2.7) solved by a primal-dual algorithm [10].
The source codes of all the algorithms are implemented in MATLAB. The code for
the proximal point algorithm is kindly provided by the authors of [27], and the codes
for the SsMAP model, the Getreuer’s model, and the CZ model are kindly provided
by the authors of [10]. We adopt the following stopping criteria for all the compared
algorithms.

”uk — yktt ”
|
with tol = le —4. Set the maximum number of iterations as 500 for all the algorithms
15

< tol
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TABLE 1
Comparison of the performance of the proposed model with the sMAP model, MAP model,
Getreuer’s model, and Chen-Zeng model in terms of PSNR values and SSIM values.

Image | o sMAP MAP Getreuer | Chen-Zeng New

Cameraman | 15 | PSNR 30.13 30.26 29.94 30.15 30.37
SSIM | 0.8590 0.8599 0.8513 0.8503 | 0.8621

25 | PSNR 26.88 26.98 26.29 26.43 27.41

SSIM | 0.7900 0.7979 0.6858 0.7846 | 0.7997

35 | PSNR 24.23 25.04 24.68 24.09 25.12

SSIM 0.7260 0.7452 0.6409 0.7261 | 0.7505

Brain 15 | PSNR 31.41 31.40 31.31 31.39 31.46
SSIM | 0.9370 0.9355 0.9372 0.9373 0.9372

25 | PSNR 28.34 28.30 28.22 28.28 28.34

SSIM | 0.8860 | 0.8877 0.8856 0.8839 0.8867

35 | PSNR 26.33 26.38 26.18 26.14 26.16

SSIM | 0.8310 0.8355 0.8282 0.8426 | 0.8431

Liver 15 | PSNR 30.82 30.85 30.79 30.75 30.75
SSIM | 0.8480 | 0.8476 0.8456 0.8438 0.8429

25 | PSNR 27.93 27.99 27.37 27.80 28.00

SSIM | 0.7690 0.7677 0.7071 0.7649 | 0.7688

35 | PSNR 25.84 25.76 25.77 25.32 25.81

SSIM | 0.7010 0.6903 0.6387 0.6895 | 0.6962

Spine 15 | PSNR 30.23 30.35 29.65 30.09 30.52
SSIM | 0.8320 0.8369 0.7535 0.8232 | 0.8420

25 | PSNR 27.21 27.39 25.71 26.25 27.29

SSIM 0.7370 | 0.7431 0.5545 0.7084 0.7347

35 | PSNR 24.54 25.59 23.82 23.32 25.25

SSIM | 0.6410 | 0.6713 0.4566 0.6136 0.6625

Knee 15 | PSNR 31.51 31.60 31.56 31.44 31.62
SSIM | 0.8540 0.8563 0.8544 0.8518 | 0.8565

25 | PSNR 28.50 28.81 27.75 28.19 28.92

SSIM | 0.7910 0.7979 0.6949 0.7870 | 0.8051

35 | PSNR 26.03 26.81 26.21 25.61 26.51

SSIM | 0.7290 0.7478 0.6435 0.7288 | 0.7555

Average PSNR 28.00 28.23 27.68 27.68 28.24
SSIM | 0.7950 0.8014 0.7319 0.7891 | 0.8029

except for the ¢2 gradient descent algorithm, whose maximum iteration number is
set as 2000 to obtain high-quality images. To achieve the best performances of these
approaches, we manually set o to the true value. Some noise estimation methods can
also be found in [1, 11]. For the sake of fairness, we have tuned the parameters of
these methods to achieve the best balance between PSNR values and visual quality.
Table 1 shows the experimental results by these approaches for different images in
terms of PSNR and SSIM. The best values of PSNR and SSIM for each case have been
highlighted in bold. Some visual results for o = 15, 25, and 35 are shown in Figs. 7-12.
We give the denoised images of “Cameraman”, “Knee”, and “Liver” in Figs. 7, 9, and
11, respectively. We also show the absolute differences between the denoised images
and the true images in Figs. 8, 10, and 12. Fig. 13 presents the energy evolution via
iteration numbers for five different methods applying to denoise the “Brain” image
with 0 = 15. Compared with other methods, the proposed method performs better at
removing noises (the highest average PSNR) and preserving features (highest average
SSIM). It is interesting to see that these non-convex models, including the sMAP
model, MAP model, and the proposed model, perform better than Getreuer’s model
and Chen-Zeng model in most cases. As can be seen from the red boxes in Figs. 8,
10, and 12, these non-convex models can preserve the contrast better than Getreuer’s
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TABLE 2
Comparison of the performance of the proposed method with the sMAP method, MAP method,
Getreuer’s method, and Chen-Zeng method in terms of total CPU time, number of iterations (# of
iter), and time of per iteration (per-iter).

Image | o sMAP | MAP | Getreuer | Chen-Zeng New

Cameraman | 15 | # of iter 283 53 73 37 47
Time(s) 154 9.4 2.19 05 0.29

per-iter 0.0160 | 0.1773 0.0300 0.0135 | 0.0061

25 | # of iter 543 113 49 50 82

Time(s) 9.98 20.36 1.3 0.69 0.37

per-iter | 0.0184 | 0.1801 0.0265 0.0137 | 0.0045

35 | # of iter 722 169 56 56 125

Time(s) 17.88 31.25 1.48 1.02 0.6

per-iter | 0.0248 | 0.1849 0.0265 0.0183 | 0.0048

Brain 15 | # of iter 295 103 41 44 49
Time(s) 2.89 11.99 0.62 0.33 0.14

per-iter | 0.0098 | 0.1164 0.0152 0.0074 | 0.0029

25 | # of iter 529 173 36 49 85

Time(s) 6.1 20.31 0.55 0.42 0.27

per-iter 0.0115 | 0.1174 0.0154 0.0085 | 0.0032

35 | # of iter 751 237 84 57 124

Time(s) 10.25 28.13 1.27 0.59 0.37

per-iter 0.0136 | 0.1187 0.0152 0.0103 | 0.0030

Liver 15 | # of iter 282 54 44 49 51
Time(s) 6.5 9.56 1.32 0.81 0.23

per-iter 0.0231 | 0.1771 0.0299 0.0166 | 0.0044

25 | # of iter 510 121 71 60 98

Time(s) 12.6 22.29 2.07 1.07 0.43

per-iter | 0.0247 | 0.1842 0.0291 0.0178 | 0.0044

35 | # of iter 717 202 110 73 157

Time(s) 16.24 37.34 3.15 1.18 0.66

per-iter | 0.0226 | 0.1849 0.0286 0.0162 | 0.0042

Spine 15 | # of iter 272 81 95 55 59
Time(s) 3.56 9.66 1.51 0.55 0.17

per-iter | 0.0131 | 0.1193 0.0159 0.0099 | 0.0028

25 | # of iter 819 169 93 65 97

Time(s) 9.38 20.23 1.32 0.56 0.27

per-iter 0.0115 | 0.1197 0.0142 0.0086 | 0.0028

35 | # of iter 709 260 95 77 130

Time(s) 76 | 30.86 1.26 0.61 0.43

per-iter | 0.0107 | 0.1187 0.0133 0.0079 | 0.0033

Knee 15 | # of iter 246 56 54 46 49
Time(s) 2.77 6.64 1.04 0.39 0.14

per-iter | 0.0113 | 0.1186 0.0192 0.0084 | 0.0029

25 | # of iter 505 116 88 59 89

Time(s) 6.9 14.24 1.62 0.59 0.27

per-iter | 0.0137 | 0.1227 0.0184 0.0100 | 0.0031

35 | # of iter 662 176 65 66 139

Time(s) | 10.77 | 22.02 119 0.77 0.43

per-iter 0.0163 | 0.1251 0.0183 0.0117 | 0.0031

Average # of iter 523 139 70 56 92
Time(s) 8.53 19.62 1.46 0.67 0.34

per-iter 0.0161 | 0.1443 0.0211 0.0119 | 0.0037

model and Chen-Zeng model.

Finally, we discuss the computational costs of all comparable methods. We record
the CPU costs per iteration and overall algorithms and the number of iterations for
all the five algorithms and put it in Table 2. As can be seen, the proposed method
is the fastest among all these algorithms since it saves about 50% of the overall
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(a) Noisy (o = 35)

(d) Getreuer (e) Chen-Zeng (f) Proposed

F1G. 11. Numerical results for the image of “Liver”. (a) Noisy image with o = 35; The denoised
images: (b) sSMAP model (PSNR = 25.84), (c) MAP model (PSNR = 25.76), (d) Getreuer’s model
(PSNR = 25.77), (e) Chen-Zeng model (PSNR = 25.82), (f) the proposed model (PSNR = 25.81).
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(a) sSMAP (b) MAP
(c) Getreuer (d) Chen-Zeng (e) Proposed

10 10¢
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FiG. 12. The absolute differences between the denoised images in Fig. 11 and the true “Liver”
itmage. (a) sMAP model, (b) MAP model, (c) Getreuer’s model, (d) Chen-Zeng model, (e) the
proposed model.

146 computation cost on average even compared with the convex methods. One may also
447 notice that although the Chen-Zeng method requires the fewest iterations on average,
448  the proposed method is still the fastest in terms of runtime since the cost per iteration
449 is dramatically lower than other methods involving the calculations with the Bessel
450 function. In summary, our method can achieve comparable denoising results with the
151 lowest computational cost.

52 5.4. Comparisons with deep learning methods. We compare the proposed
53 method with deep learning methods, including the trainable non-linear reaction diffu-
454 sion (TNRD) [39] and the wider denoising neural network (WDNN) [40]. For TNRD,
55 we use the trained model provided by the authors of [39]. For WDNN, we implement
56 the network, train it in a workstation with one NVIDIA Tesla P100 GPU computing
57 processor, and use the trained model for our test. We should mention that compared
458  with deep learning methods, the advantage of our method is that it does not require
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F1c. 13. Energy evolution via iteration numbers for five different methods.

carried out on “Brain” image.

300 400 500

Iteration number
(c) Getreuer

This example is

training data and training processing. We also test these two methods for different
noise levels, i.e, o = 15, 25, and 35. We find that the average PSNR values rank
in the descending order as follows: TNRD (29.18dB), WDNN (28.92dB), and New
(28.24dB). However, our method (0.34s) is the fastest, followed by TNRD (0.48s) and

WDNN (3.01s).

(a) Noisy (o =13.74) (b) sMAP (c) MAP ) Getreuer (e) Chen-Zeng

(g) sSMAP (h) MAP (i) Getreuer (j) Chen-Zeng

(f) Proposed

k) Proposed

Fic. 14. Numerical results for the raw MR image. (a) Noisy image f with the estimated noise
level o = 13.74; The denoised images u: (b) sSMAP model, (¢) MAP model, (d) Getreuer’s model,
(e) Chen-Zeng model, (f) the proposed model; The residual images f — @: (g) sMAP model, (h)

MAP model, (i) Getreuer’s model, (j) Chen-Zeng model, (k) the proposed model.

5.5. Test on raw MR data. To show the effectiveness of our method, we apply
it to raw MR data. We test on two raw MR images shown in Figs. 14(a) and 15(a),
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(a) Noisy (o = 10.05)

(g) SMAP (h) MAP (i) Getreuer (j) Chen-Zeng (k) Proposed

Fia. 15. Numerical results for the raw MR image. (a) Noisy image f with the estimated noise
level o = 10.05; The denoised images u: (b) sSMAP model, (¢) MAP model, (d) Getreuer’s model,
(e) Chen-Zeng model, (f) the proposed model; The residual images f — @: (g) sMAP model, (h)
MAP model, (i) Getreuer’s model, (j) Chen-Zeng model, (k) the proposed model.

whose noise levels are estimated as 0 = 13.74 and ¢ = 10.05. The denoised images
and the corresponding residual images are presented in Figs. 14 and 15. As can be
seen, our method can remove the Rician noise quite well and the denoised results of
our method are comparable to these of other variational methods. Especially from
the second row of Fig. 15, the residual image of our method seems more uniform than
those of other methods.

6. Conclusions. In this paper, we have proposed a novel variational method
for Rician noise removal for magnitude MRI, which avoids using the Bessel functions.
It is a nonconvex optimization model with spherical constraints and has been solved
by the convergent ADMM efficiently. Numerical experiments have demonstrated the
remarkable performance of the proposed method. In future works, we will extend the
proposed model to medical image segmentation.
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Appendix A. Convergence of non-convex ADMDM.

The convergence of non-smooth and non-convex ADMM, including our algorithm
(4.4)-(4.7) as a special case, has been analyzed in [33]. Here, we apply this convergence
result to our approach. We will first recall the non-smooth and non-convex optimiza-
tion problem considered in [33], its ADMM solver, and the five critical assumptions
on the problem. We will then show that our model (4.3) can be reformulated into
the optimization problem in [33] and verify that our model satisfies the Assumptions
A1-A5 in [33], so the convergence of our algorithm will be straightforward.

In [33], Wang et al. consider the following non-convex and non-smooth optimiza-
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192 tion problem
M
min ¢>(:c,y) = f(w) + Z Cm(xm) + 77(3/),
z=(20,T2,...,TM ),y o
493 (A1) o
s.t. Z Az, + By =0,

m=0

494 where £ : RPO x -« x RPM — RU{+00}, (p : RP™ — RU{400},m =0,1,..., M, and
195 1 :RY — RU{+o0} are lower semi-continuous functions; A,, € R**Pm and B € R**¢
496  are given matrices.

497 The augmented Lagrangian function of optimization problem (A.1) is defined as
M T 2
198 Loz, y;\) = ¢z, y) + <)\, Z_OAmzm + By> + 2” mZ_OAmzm + By
499 Wang et al. [33] presented the non-convex ADMM for (A.1) as follows:
okl = argrzrclin Er(mg‘,},xm,x’;m, Yy N, m=0,1,..., M;
Y"1 = argmin £, (211, y; AF);
500 (A.2) v

M
AR = Nk 7"( > Apakt 4+ Byk“).

m=0

—

Under five critical assumptions on the objective functions and matrices, Wang et
al. [33] proved that the iterative scheme (A.2) converges. We recall the five assump-
03 tions in the following.

)

v Or Ot

504 A1 (coercivity) The objective function ¢(x,y) is coercive over the feasible set
505 {(z,y): Z%:o Apam + By =0};
506 A2 (feasibility) Denote A = [Ag, A1,...,Apn]. Im(A) C Im(B), where Im(-)
507 returns the image of a matrix;
508 A3 (Lipschitz sub-minimization path)
509 (a) For any fixed x, argmin,{¢(x,y) : By = z} has a unique minimizer.
510 H : Im(B) — RY defined by H(z) £ argmin,{¢(z,y) : By = z} is a
511 Lipschitz continuous map.
(b) For m=0,1,..., M and any <., Tsm, and y,
arg Igin{¢(x<m7 T, $>ma y) : Ammm - Z}
has unique minimizer and ©,, : Im(A,,) — RP™ defined by
O, (2) := arg Igin{¢(x<m7xm,x>m,y) A, = 2}
512 is a Lipschitz continuous map. B
513 Moreover, the above ©,,, and H have a universal Lipschitz constant L > 0.
514 A4 (objective-( regularity)
515 (a) &(x) is Lipschitz differentiable with constant Lg,
516 (b) (o is lower semi-continuous, ¢, is restricted prox-regular [33, Definition
517 2 and Propostion 1] for m =1,2,..., M;
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A5 (objective-n regularity) n(y) is Lipschitz differentiable with constant L,,.

Wang et al. [33] stated that Al holds when the objective function is coercive and
A2 and A3 holds when A,, and B have full column rank.

We now give the main convergence theorem in [33] as follows.

THEOREM A.1 ([33], Theorem 1). Suppose A1-A5 hold. Algorithm (A.2) con-
verges subsequently for any sufficiently large v, that is, starting from any 29, ..., 29,
Yy, A9, it generates a sequence that is bounded, has at least one limit point, and that
each limit point (x*,y*, \*) is a stationary point of L,.

In addition, if L, is a Kurdyka-Lojasiewicz function [3], then (¥, y*, \F) con-
verges globally to the unique limit point (x*,y*, A*).

Next, we apply the above convergence results for our method. We denote
o ._ B 2 ¢ 2
Wo(v) =Te(v), Wr(w) = TV() + 5 lu— gl @(n) =5 |n|*

Then the propose model (4.3) can be reformulated as

{ﬂil}b%(v) + Ui (u) + ®(n),

(A.3)
st. Qu—v+mn=0.

Thus, the problem (4.3) is a special case of problem (A.1) with the following specifi-
cations:

1) zp :=v, 1 :=u, and y := n;

2) &(x) := 0, Go(wo) := Yo (v), G1(z1) := ¥1(u), and n(y) := ®(n);

3) Ag:=—-I, Ay :=Q, and B :=1.

It can be verified that the model (A.3) satisfies the Assumptions A1-A5 as follows.
Note that the set IC is closed and bounded, thus ¥g(v) = Ix(v) is coercive and lower
semi-continuous [30]. The convexity of ¥y(u) implies it a restricted prox-regular
function [33, Definition 2 and Propostion 1]. Let us verify Assumptions A1-A5 in
[33]. Assumption Al holds because of the coercivity of ¥g(v), ¥y(u), and ®(n).
Assumptions A2 and A3 hold for @, —1, and I being full column rank. Assumption
A4 holds for ¥y(v) is lower semi-continuous and Wi (u) is restricted prox-regular.
Assumption A5 holds because ®(n) is Lipschitz differentiable.

Moreover, one readily sees that I (v) is an indicator function of the semi-algebraic
set, TV(u) is semi-algebraic, and £|ju — g||?> + §[In|®> + (X, Qu+ n — v) + 5||Qu +
n — v||? is a polynomial function. Therefore, their sum £ is semi-algebraic [3]. Since
semi-algebraic functions satisfy Kurdyka-Lojasiewicz (KL) inequality [3], £ is a KL
function.
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