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Abstract. We propose a novel variational method to restore magnitude images corrupted by4
Rician noises in magnetic resonance (MR) imaging via signal-noise splitting. By the link between5
the Gaussian noise removal of complex MR images and the Rician noise removal of magnitude MR6
images, the proposed nonlinear optimization model consists of a total variation regularizer, two7
quadratic terms, and a constraint on the field of spheres. Specifically, this constraint represents8
the forward model of calculating the magnitude MR images from complex MR images degraded by9
Gaussian noises. Namely, the proposed model is completely different from the existing variational10
methods, which were usually derived by maximum a posterior of Rician distribution such that they11
inevitably involved the Bessel function causing high computation cost. We further adopt the alternat-12
ing direction method of multipliers for solving the proposed model efficiently and briefly analyze its13
convergence. Numerical comparisons with existing variational methods show the proposed method14
produces comparable results in terms of image quality but saves about 50% of overall computational15
cost on average.16
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1. Introduction. Magnitude magnetic resonance (MR) images are widely used19

in medical image processing. Compared with the complex-valued MR images, such20

images discard the phase information, thus avoiding phase artifacts [20]. The MR21

images are reconstructed from the MR scan data with inevitable measurable noises.22

One of the major sources of these noises is the thermal noise caused by patients during23

the MR scan [29, 2]. Consequently, the MR images are always noisy. Significantly, the24

noises in the magnitude MR images negatively affect different medical image process-25

ing and analysis tasks, such as visualization, segmentation, registration, classification,26

and diffusion tensor estimation [2]. Therefore, it is a fundamental problem to remove27

noises in magnitude MR images to obtain high-quality ones.28

The noisy magnitude MR data is commonly modeled by the Rician distribution29

[20, 2]. Thus, we usually refer to estimating clean magnitude MR image from a noisy30

one as Rician noise removal. Because of the signal dependence of the Rician noise, it is31

a great challenge to extract the clean magnitude MR image directly. Next, we present32

some previous works devoted to address this challenge problem. We first review some33

statistical-based noise-removal methods. In [20], Henkelman used the first moment34

of the Rician distribution to estimate the MR signal and proposed a lookup table to35

correct the Rician basis. Furthermore, the second moment of the Rician distribution36

was employed in [5, 28]. In [32], Sijbers and den Dekker implemented the maximum37

likelihood method for the estimation of MR signal amplitude. In [1], Aja-Fernández38

et al. derived the linear minimum mean square error (LMMSE) estimator based on39

the local sample statistics. Other statistical-based methods, such as the non-local40

means (NLM) method and the variance-stabilizing transformation (VST) method,41

can be found in [24, 37, 14]. Recently, learning-based methods have become popular42

in image processing and have been applied to Rician noise reduction. In [25], Manjón43
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and Coupe presented a two-stage strategy method that combines convolutional neural44

network and non-local means filter and can automatically deal with both stationary45

and spatially varying noises. In [40], You et al. studied the wider denoising neural46

network for denoising of MR images with Rician noise. In [39], Yang et al. proposed a47

noise adaptive trainable non-linear reaction-diffusion method for Rician noise removal48

that is robust against noise level changes. In [22], by fitting the distribution of pixel-49

level and feature-level intensities, Li et al. developed a RicianNet for MR image50

denoising.51

Besides the abovementioned methods, the variational regularization method is52

also an important mathematical tool for Rician noise removal. The variational method53

is interpretable and stable for various image processing tasks. Thus, it has attracted54

much research during the last several decades. The variational model usually contains55

two terms: regularization term and data fidelity term. One of the most common56

regularizations is the total variation (TV), which is firstly proposed for removing57

Gaussian noise in [31]. Due to its edge preservation properties, TV regularization58

has also been introduced for Rician noise removal. Based on maximum a posterior59

(MAP) estimates, Getreuer et al. [16] and Martin [26] independently proposed the60

variational MAP model using TV regularization with the Rician likelihood fidelity61

term. The existence theory of the MAP model was roughly mentioned by Getreuer et62

al. in [16] and further rigorously analysed by Mart́ın et al. in [27]. Getreuer et al. [16]63

solved the MAP model with the ℓ2 and Sobolev H1 gradient descents. However, those64

algorithms converged slowly and could get stuck in a local minimum without proper65

initialization and numerical discretization. Therefore, Getreuer et al. [16] replaced66

the fidelity term in the MAP model with one of its convex approximations and then67

solved the convexified model with the split Bregman method. In [10], Chen and Zeng68

added a quadratic term based on the statistics property of Rician distribution to the69

MAP model and then obtained a strictly convex model, solved with a primal-dual70

algorithm. One can find some other variants based on the MAP model in [41, 23].71

The existing variational methods were mainly derived from the MAP of the Rician72

noise [16] for the magnitude MR image, and they involved the sophisticated Bessel73

function causing relatively high computational complexities, compared with the purely74

Gaussian noise denoising. This paper will explore an alternative method based on75

the link of the Gaussian denoising of complex images and Rician noise removal of76

magnitude MR images. To this end, we first examine the original variational model77

of the complex image with complex Gaussian noise, consisting of TV regularization78

for the phase and magnitude separately, a ℓ2 fitting term, and a constraint for the79

forward noise model. Separating the magnitude and phase of the complex image80

leads to an equivalent form. Then, a variational model to optimize the magnitude of81

the complex image is obtained by dropping off the regularization term for the phase82

part of the complex image and taking the absolute part of the constraint for the83

complex variable. Further combined with a quadratic correction term, one finally84

deduces a new variational model, essentially a non-convex optimization model with85

the constraint on the field of spheres. Due to the closed-form projection onto spheres,86

an efficient alternating direction method of multipliers (ADMM) can be applied to87

the proposed model. A rigorous convergence guarantee could be further provided88

following the convergence theory for the non-convex ADMM [33].89

The main contributions of this paper are listed below:90

• By exploring the link between the complex denoising model and the Rician91

noise model of magnitude MR image, we propose a novel variational model92

by directly seeking a piecewise-constant solution from a field of spheres, in-93
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stead of using Bessel functions. Namely, completely different with existing94

variational models coping with sophisticated Bessel functions, the proposed95

model consists of the standard TV norm of the underlying image, two qua-96

dratic terms and a constraint on a field of spheres, such that one can solve it97

as efficiently as standard Gaussian denoising.98

• Based on the closed-form expression of the projection onto spheres, we de-99

velop an efficient ADMM algorithm. We further eliminate the redundant100

update for the multiplier to reduce the computation cost. The corresponding101

convergence to the stationary point of the proposed model are proved with a102

sufficiently large stepsize.103

• We conduct numerous experiments to evaluate the performance of the pro-104

posed method. Numerically, the proposed method can produce comparable105

quality results in Peak Signal-to-Noise Ratio (PSNR) and Structural Simi-106

larity Index Measure (SSIM), among all the compared variational methods.107

Namely, it reduces about 50% of overall computational cost on average com-108

pared to the main existing variational methods, since the cost per iteration109

dramatically decreases without calculating the sophisticated Bessel functions.110

The rest of this paper is organized as follows. In Section 2, we give some prelim-111

inaries and review some related works. In Section 3, we present the new Rician noise112

removal model. In Section 4, we present an efficient iterative algorithm for solving the113

proposed model. The numerical experiments for both synthetic and real MR images114

are shown in Section 5. We conclude the paper in Section 6.115

2. Preliminary and related works.116

2.1. Preliminary. The raw MR data is measured through a quadrature detec-117

tor that generates two- or three-dimensional complex arrays in k-space and always118

corrupted by Gaussian-distributed noise. After the inverse Fourier transformation of119

this data, the MR images in x-space are obtained and remain Gaussian distribution.120

The magnitude images are computed from these complex MR images, and mathemat-121

ically, the measured magnitude image f ∈ R
p×q degraded by noises can be expressed122

[2] by123

(2.1) fi,j =
√(

ui,j + (n1)i,j
)2

+
(
n2

)2
i,j
, 1 ≤ i ≤ p, 1 ≤ j ≤ q,124

where u ∈ R
p×q is the true amplitude of noise-free image, and n1 ∈ R

p×q and n2 ∈125

R
p×q are two independent white Gaussian noise variables both with zero mean and126

standard deviation σ. Due to the non-linear transformation used to obtain magnitude127

images, the distribution of overall noises for the measured data defined in (2.1) is no128

longer Gaussian. The probability density function for each pixel of the magnitude129

MR image f is a Rician distribution [20, 2], i.e., for any 1 ≤ i ≤ p, 1 ≤ j ≤ q,130

(2.2) P(fi,j | ui,j , σ) =
fi,j
σ2

exp
(
−

f2
i,j + u2

i,j

2σ2

)
I0

(fi,jui,j

σ2

)
.131

where I0(·) is the zero-order modified Bessel function of the first kind. Series forms132

of modified Bessel function of the first kind with real order ν are given by [35]133

Iν(x) =
∞∑

p=0

(
1
2x

)ν+2p

p!Γ(ν + p + 1)
, ν ∈ R.134

3

This manuscript is for review purposes only.



2.2. Related works of variational approaches. Numerous variational meth-135

ods have been proposed to estimate the noise-free image u from the noisy observed136

image f . We briefly review some of these methods based on the Rician distribution137

(2.2) in the following.138

In the MAP approach [16, 26], the image u is estimated by maximizing a posterior139

given f , that is ũ = arg maxu P(u | f). Applying the Bayes’s rule and using the TV140

prior, the MAP model is given by141

(2.3) min
u

TV(u) + α

(
1

2σ2
‖u‖2 −

∑

i,j

log I0

(fi,jui,j

σ2

))
142

with143

(2.4) TV(u) :=
∑

i,j

‖(∇u)i,j‖ =
∑

i,j

√
(∇xu)2i,j + (∇yu)2i,j .144

Here, ∇u = (∇xu,∇yu) and ∇x and ∇y are first-order finite difference operators with145

proper boundary conditions in x and y directions, respectively. The MAP model (2.3)146

is non-smooth and non-convex, that poses great challenge of fast algorithms designing.147

Alternatively, Getreuer et al. [16] considered a smoothed version of MAP model148

(2.5) min
u

∑

i,j

√
‖(∇u)i,j‖2 + ǫ2 + α

(
1

2σ2
‖u‖2 −

∑

i,j

log I0

(fi,jui,j

σ2

))
149

and coped with this smoothed energy successfully with the ℓ2 gradient descent algo-150

rithm. In [16], Getreuer et al. also proposed an elegant way to avoid the non-convexity,151

where the basic idea was to replace the non-convex fidelity function with one of its152

convex approximations. Hence the convex model [16] was derived as below:153

(2.6) min
u

TV(u) + α
∑

i,j

Gσ(ui,j),154

where155

Gσ(ui,j) =

{
Hσ(ui,j), if ui,j ≥ cσ,

Hσ(cσ) + H ′
σ(cσ)(ui,j − cσ), if ui,j ≤ cσ,

H ′
σ(ui,j) =

ui,j

σ2
− fi,j

σ2
A
(fi,jui,j

σ2

)
, A(t) =

t3 + 0.950037t2 + 2.38944t

t3 + 1.48937t2 + 2.57541t + 4.65314
,

156

with c = 0.8426 and Hσ(·) as the primitive function of H ′
σ(·).157

Following a similar idea for convexification [12] of the variational multiplicative158

noise removal, Chen and Zeng [10] added a quadratic term 1
σ

∑
i,j(

√
ui,j −

√
fi,j)

2 to159

the MAP model (2.3) based on the boundedness of E
(
(
√

ui,j−
√
fi,j)

2
)
/σ (E denoting160

the mathematical expectation), that led to the following model161

(2.7) min
u∈S

TV(u) + α

(
1

2σ2
‖u‖2 −

∑

i,j

log I0

(fi,jui,j

σ2

))
+

α

σ

∑

i,j

(
√
ui,j −

√
fi,j)

2.162

Note that this model is strictly convex [10, 9] in the domain S =
{
w | 0 ≤ wi,j ≤163

255, 1 ≤ i ≤ p, 1 ≤ j ≤ q
}

.164
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3. Proposed model.165

3.1. Complex Gaussian noise removal. First, go back to the original model166

for complex-valued MR images. Let U ∈ C
p×q be the complex image, and F ∈ C

p×q167

be the noisy degraded image after contamination by complex white Gaussian noise168

(N1, N2) ∈ R
p×q × R

p×q as169

(3.1) F = U + N1 + iN2,170

with i2 = −1, and (N1)i,j , (N2)i,j
i.i.d.∼ N (0, σ) ∀1 ≤ i ≤ p, 1 ≤ j ≤ q. To recover171

U from F , directly applying the variational approach to (3.1) can yield the following172

model173

(3.2) min
U,N1,N2

TVC(U) +
α

2
‖N1 + iN2‖2, s.t. F = U + N1 + iN2,174

with the parameter α > 0 to balance the regularization (first term of the minimiza-175

tion problems in (3.2)) and data fitting terms (the second term of the minimization176

problems in (3.2)). The regularization term TVC(U) denotes the summation of TV177

of the magnitude and TV of the phase of U [42], which is given by178

(3.3) TVC(U) := TV(u) + TV(θ),179

with u ∈ R
p×q and θ ∈ R

p×q being the amplitude and phase of the complex-valued180

image U respectively, i.e. U := u ◦ exp(iθ) (◦ denotes the Hadamard product).181

Remark 3.1. By naturally extending the definition of TV for the real-valued im-182

ages to the complex-valued ones, one has183

(3.4) T̂V(U) :=
∑

i,j

‖(∇U)i,j‖ =
∑

i,j

√
‖(∇u)i,j‖2 + u2

i,j‖(∇θ)i,j‖2.184

Readily one sees that the magnitude and the phase are coupled together. That poses185

potential difficulty for further modeling, since one cannot simply discard one of the186

them. Thus, we adopt the definition of TV for complex-valued images as (3.3).187

3.2. Proposed model. Letting the complex variables be expressed in polar188

form F := f ◦ exp(iφ) with the amplitude f ∈ R
p×q and phase φ ∈ R

p×q, the forward189

model (3.1) can be rewritten as190

(3.5) f = exp
(
i(θ − φ)

)
◦ (u + n1 + in2) ,191

with n1, n2 denoting the real and imaginary parts of (N1+iN2)◦exp(−iθ) respectively.192

The TV based regularization model (3.2) can also be rewritten as193

min
u,θ,n1,n2

TV(u) + TV(θ) +
α

2
‖n1 + in2‖2,

s.t. f = exp
(
i(θ − φ)

)
◦ (u + n1 + in2) .

(3.6)194

Since it is common to consider the magnitude image in practice [1], we focus on195

the recovery of the magnitude of the true image. Further, by the neglect of the phase196

θ and simplifying the constraint for (3.6), one has197

min
u,n1,n2

TV(u) +
α

2

(
‖n1‖2 + ‖n2‖2

)
,

s.t. fi,j =
√(

ui,j + (n1)i,j
)2

+
(
n2

)2
i,j
, 1 ≤ i ≤ p, 1 ≤ j ≤ q,

(3.7)198
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where the constraint is derived by taking the absolute part of both sides of (3.5). Note199

that this constraint is exactly the same as (2.1), referred as the spherical constraint,200

which essentially makes the vector (u+n1, n2) (generated from the image u and noises201

(n1, n2)) onto a field of spheres.202

The current model essentially decomposes the noisy measurement f into three203

variables u, n1, n2. Compared to the model (3.6), it employs one half (only the mag-204

nitude) of the original complex data F while discarding only one unknown variable θ205

among all the four unknown variables u, θ, n1, n2. Hence, the prior containing only the206

TV regularization for the image and the L2 norm penalty for the noises seems insuffi-207

cient to determine this decomposition. Other conditions should be further discussed208

in order to optimize (3.7).209

This candidate could be ‖u − f‖2 by directly using an ℓ2 fitting. However, the210

Rician noise introduces signal-dependent bias to the data that reduces the image211

contrast [29], thus the mean of the true image u is not equal to that of the observed212

image f . Heckelmann [20] and Chen-Zeng [10] showed the mean of each pixel of213

noise-free images could be approximated below:214

E(ui,j) ≈





E

(√
max

{
0, f2

i,j − σ2
})

, if ui,j > 2σ;

E

(√
max

{
0, f2

i,j − 2σ2
})

, otherwise.

215

Hence consider an estimate g as216

(3.8) gi,j :=
√

max(f2
i,j − cσ2, 0), 1 ≤ i ≤ p, 1 ≤ j ≤ q,217

with a tunable scaling factor c ∈ [1, 2]. One may notice that this estimate is adaptive,218

i.e. when fi,j is small (not greater than
√
cσ) the estimate gi,j become zeros, while219

when fi,j gets larger ( greater than
√
cσ), it becomes

√
f2
i,j − cσ2. As a result, we220

consider the more efficient way by adding the quadratic term ‖u− g‖2 to (3.7) based221

on this estimate, in order to restrict the target not far away from a rough guess g.222

Therefore, we propose the following variational model on the field of spheres as223

(3.9)





min
u,n1,n2

TV(u) +
α

2

(
‖n1‖2 + ‖n2‖2

)
+

β

2
‖u− g‖2,

s.t. fi,j =
√(

ui,j + (n1)i,j
)2

+
(
n2

)2
i,j
, 1 ≤ i ≤ p, 1 ≤ j ≤ q,

224

with g as the estimate derived by (3.8).225

We remark that the proposed model is entirely different from the existing vari-226

ational models [16, 26, 10]. It is derived initially from the complex-valued image227

domain and uses the spherical constraint to express the relationship between images228

and noises. The spherical constraint reproduces the imaging process of the magnitude229

MR image. Compared with the sophisticated Bessel function, the spherical constraint230

is easy to handle by the operator splitting method [21], by which we can develop a231

more efficient algorithm for the Rician noise removal.232

4. Proposed algorithm with convergence guarantee. In this section, we233

will propose an efficient operator splitting method for the non-convex model (3.9)234

with the spherical constraint and present its convergence analysis briefly.235

6
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We introduce a new auxiliary variable v := (v1, v2) ∈ R
p×q × R

p×q, with236

v = (u + n1, n2),237

to split the spherical constraint such that the constrained problem (3.9) is equivalent238

to the following optimization problem239

(4.1)





min
u,n1,n2,v

TV(u) +
α

2

(
‖n1‖2 + ‖n2‖2

)
+

β

2
‖u− g‖2,

s.t. v = (u + n1, n2),
√

(v1)2i,j + (v2)2i,j = fi,j , 1 ≤ i ≤ p, 1 ≤ j ≤ q.

240

For simplicity of presentation, we introduce some notations to reformulate the prob-241

lem (4.1). Let K denotes the field of 2D-spheres given by242

(4.2) K :=

{
v = (v1, v2) |

√
(v1)2i,j + (v2)2i,j = fi,j , 1 ≤ i ≤ p, 1 ≤ j ≤ q

}
.243

Then define IK as the indicator function of K by244

IK(v) =

{
0, if v ∈ K,
+∞, if v /∈ K.

245

Let Q : Rp×q → R
p×q × R

p×q denotes the linear operator defined as246

Qu := (u,0).247

Finally, the TV model with spherical constraint (4.1) can be rewritten as248

(4.3)





min
u,n,v

TV(u) +
α

2
‖n‖2 +

β

2
‖u− g‖2 + IK(v),

s.t. Qu + n = v,

249

with n = (n1, n2) ∈ R
p×q × R

p×q. The above problem has the non-smooth TV term250

and the non-convex indicator for the spherical constraint. One of the effective ways to251

cope with this problem is the operator-splitting algorithm, in which we can solve the252

subproblem involving TV term efficiently via many well-designed methods and obtain253

an analytic projection solution of the subproblem related to the field of spheres set254

K. The spherical constrained problem is a special case of orthogonality constrained255

problems. There exist many first-order operator-splitting algorithms for the spher-256

ical constraint optimization problems, such as the curvilinear search method [36],257

the method of splitting orthogonality constraints [21], the coordinate descent-based258

method [15], and ADMM [18, 17]. Here, we adopt ADMM, which has been success-259

fully applied in various convex and non-convex optimization problems and received260

considerable attention in recent years [6, 38, 33].261

For the constrained optimization problem (4.3), we define the augmented La-262

grangian function as follows263

L(v, u,n;λ) = IK(v) + TV(u) +
β

2
‖u− g‖2 +

α

2
‖n‖2

+〈λ,Qu + n− v〉 +
r

2
‖Qu + n− v‖2,

264

where λ = (λ1, λ2) ∈ R
p×q × R

p×q is a Lagrange multiplier with the penalization265

parameter r > 0. The ADMM is an iterative method to seek a saddle point of this266

7
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Lagrangian function. It minimizes the augmented Lagrangian function with respect267

to the primal variables u,n,v alternately and updates the dual variable λ. Here, we268

employ an ADMM scheme given below:269

vk+1 = arg min
v

IK(v) +
r

2

∥∥v − (Quk + nk + λk/r)
∥∥2;(4.4)270

uk+1 = arg min
u

TV(u) +
β

2
‖u− g‖2 +

r

2

∥∥u− (vk+1
1 − nk

1 − λk
1/r)

∥∥2;(4.5)271

nk+1 = arg min
n

α

2
‖n‖2 +

r

2

∥∥n− (vk+1 −Quk+1 − λk/r)
∥∥2;(4.6)272

λk+1 = λk + r(Quk+1 + nk+1 − vk+1).(4.7)273274

In the following, we show how to solve these subproblems. It is interesting to275

show that we can further eliminate the multiplier updating step (4.7) and finally cope276

with three subproblems. Indeed, from the first-order optimization condition of the277

n-subproblem (4.6), which is a quadratic optimization problem, we have278

(4.8) αnk+1 + λk + r(nk+1 + Quk+1 − vk+1) = 0.279

Combined with (4.7), it follows that280

(4.9) λk+1 = −αnk+1.281

Replace therefore λk by −αnk in (4.4), (4.5) and (4.6). Thus, the solution of the282

n-sub problem is283

(4.10) nk+1 =
αnk + r(vk+1 −Quk+1)

α + r
.284

The v-sub problem (4.4) is equivalent to pq projection problems of the indepen-285

dent component in the form286

min
vi,j∈R2

‖vi,j − v̂i,j‖2 s.t. ‖vi,j‖ = fi,j , 1 ≤ i ≤ p, 1 ≤ j ≤ q,287

with288

v̂i,j = (Quk + nk)i,j + λk
i,j/r = (Quk)i,j + (1 − α/r)nk

i,j ∈ R
2.289

Each of the above problems has a closed form solution290

(4.11) vi,j = fi,j
v̂i,j

‖v̂i,j‖
, 1 ≤ i ≤ p, 1 ≤ j ≤ q.291

The u-sub problem (4.5) is a TV-ℓ2 optimization problem292

(4.12) min
u

{
TV(u) +

β + r

2
‖u− û‖2

}
,293

where294

û =
βg + r

(
vk+1
1 − nk

1

)
− λk

1

β + r
=

βg + rvk+1
1 + (α− r)nk

1

β + r
.295

The problem (4.12) is known as the Rudin-Osher-Fatemi (ROF) model [31] and has296

a unique solution due to the strict convexity of the objective function. It has been297

well-studied during the last three decades and has many efficient solvers nowadays,298
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Algorithm 4.1 Simplified ADMM for solving the model (4.3)

Initialization:

k = 0, g =
√

max(f2 − cσ2, 0), c ∈ [1, 2], u0 = g, n0
1 = 0, n0

2 ∼ N (0, σ), tol = 1e− 4,
K = 500.
Iteration:

1. For given (uk,nk), compute vk+1 through (4.11);
2. For given (nk,vk+1), find uk+1 through solving (4.12) by Chambolle’s pro-

jection method;
3. For given (uk+1,vk+1), compute nk+1 from (4.10);

Until: ‖uk − uk+1‖/‖uk‖ < tol or k ≥ K.

(a) (b) (c) (d) (e)

Fig. 1. Clean magnitude MR images. (a) Brain (181× 217), (b) Liver (304× 214), (c) Spine
(200× 200), (d) Knee (194× 218), (e) Cameraman (256× 256).

such as Chambolle’s projection method [7], the fast iterative shrinkage thresholding299

algorithm (FISTA) [4], the split Bregman method [19], the augmented Lagrangian300

method [38], and primal-dual algorithms [13, 8].301

In summary, we describe a simplified ADMM for solving the model (4.3) in the302

Algorithm 4.1.303

Next, we present a brief convergence analysis of the ADMM algorithm (4.4)-(4.7).304

Our algorithm falls into the algorithmic framework of the non-smooth and non-convex305

ADMM in [33]. The global convergence results have been established in [33], and we306

refer to Appendix A for details. The convergence of the proposed algorithm is given307

as follows.308

Theorem 4.1. For any sufficiently large stepsize r, the ADMM algorithm (4.4)-309

(4.7) generates a sequence (uk,vk,nk,λk) that converges to a stationary point of L.310

Finally, we give some comments on solving the subproblem (4.12). As is known311

to all, a proper approximate solution to the subproblem is sufficient for the numerical312

convergence of ADMM. Please also see the numerical examples in Section 5.2. More-313

over, the overall cost will be significantly reduced by very few iterations of Chambolle’s314

projection. More rigorous analysis for the inexact version algorithm will be explored315

in the future.316

5. Numerical experiments. In this section, we present some numerical exper-317

iments to evaluate the performance of the proposed model for Rician noise removal.318

We conduct the experiments with MATLAB R2020a on a desktop computer with a319

4-cores 3.4GHz Intel Core i7-6700 processor and 16GB RAM. Firstly, we apply our320

method to synthetic MR images to verify its effectiveness. Then, we discuss the choices321

of the inner iteration numbers, the role of the correction term, and the influences of322

parameters in our method. Next, we compare our approach with other methods, in-323

cluding variational and deep learning methods. Finally, we apply our method to some324
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Fig. 2. The denoised results of the proposed method for the synthetic MR “Brain” image. Here,
(a), (e), and (i) are images degraded by Rician noises with standard deviation σ = 15, 25, and 35.
(b), (f) and (j) are restored images, and (c), (g) and (k) are residual images. The parameters are:
(b) α = 0.015 and β = 0.08; (f) α = 0.01 and β = 0.045; and (j) α = 0.005 and β = 0.03. Here, (b)
PSNR: 31.46dB, (f) PSNR: 28.34dB, and (j) PSNR: 26.16dB.

raw MR images.325

We carry out the trials on five images including “Brain” (size of 181×217), “Liver”326

(size of 304×214), “Lumbar spine” (size of 200×200), “Knee” (size of 194×218), and327

“Cameraman” (size of 256 × 256), as shown in Fig. 1. The range of gray-scale image328

is [0, 255]. In our experiments, all these images are corrupted with Rician noises with329

standard deviations σ = 15, 25, and 35.330

We use two quantitative metrics to measure the qualities of the restoration results.331

The first metric is the PSNR, which is defined as332

PSNR(u, ũ) = 10 log10

2552 ×m2

∑
i,j(ui,j − ũi,j)2

,333

where u and ũ are the noiseless image and the recovered image, respectively. The334
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second one is the SSIM [34], which is computed via335

SSIM(u, ũ) =
(2µuµũ + C1)(2σuũ + C2)

(µ2
u + µ2

ũ + C1)(σ2
u + σ2

ũ + C2)
,336

with two constants C1 and C2, where µu, µũ, σu, σũ, and σuũ are local means,337

standard deviations and cross-covariance for images u and ũ respectively.338

5.1. Application to synthetic MR images. We conduct the first experiment339

on the synthetic MR “Brain” image; see Fig. 1 (a), which are taken from the BrainWeb340

database1. We apply the proposed method to the degraded images of “Brain” with341

Rician noises at levels σ = 15, 25, and 35. The restored results are showed in Fig. 2,342

in which we have choose α = 0.015 and β = 0.08 for Fig. 2 (b), α = 0.01 and343

β = 0.045 for Fig. 2 (f), and α = 0.01 and β = 0.045 for Fig. 2 (j). Since the344

“Brain” image in the experiment is synthetic, we can easily get the exact region of345

the foreground. In Fig. 2, PSNR values are computed for the foreground. We can see346

that the proposed model can well remove the Rician noises from the degraded images347

and preserve the main features in the restored images. We also record the evolution348

relative errors of the proposed ADMM in Fig. 2 (d), (h), and (l), which verify the349

convergence numerically.350

5.2. Extensive tests with various settings. We conduct the second experi-351

ment to discuss various aspects of the proposed model by Algorithm 4.1, including the352

choices of the inner iteration numbers, the role of the correction term, and influences353

of parameters.354
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Fig. 3. Performance of the proposed ADMM under the same outer iteration number 500 and
different inner iteration numbers, i.e. 2, 10, 50, 100, and 150. This example is performed on
“Brain” image.

According to the analysis in Section 4, the proposed ADMM algorithm (4.4)-355

(4.7) is globally convergent based on the exact solver for the sub-problem (4.5). In356

practice, the sub-problem (4.5) can be solved inexactly for each outer iteration. In357

the sequel, we show how the number of iterations in the inexact ROF solver impacts358

the solution, e.g., setting 2, 10, 50, 100, and 150 iterations for Chambolle’s projection359

method. See Fig. 3 for denoising the degraded “Brain” image (Rician noises with360

1BrainWeb: Simulated Brain Database: https://brainweb.bic.mni.mcgill.ca/brainweb/
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standard deviations σ = 15). From Fig. 3 (a), we see that the objective function361

(energy) of the model (3.9) decreases as the evolution of Algorithm 4.1 and stabilizes362

eventually. It indicates too that the proposed algorithm converges numerically when363

an inexact solver for the ROF problem (4.5) is used. Combined with Fig. 3 (a) and364

(b), we also see that using 2 fixed inner iterations can significantly reduce the overall365

computational cost of the proposed algorithm without affecting the recovery qualities.366

Thus, using 2 fixed inner iterations are enough to reach a proper estimated solution367

for the convergence guarantee. In all the experiments, we use two inner loops for the368

proposed algorithm.369
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Fig. 4. Performance of solving the proposed model by ADMM under different β. This example
is carried out on “Brain” image.

As analyzed in Section 3.2, the correction term in the proposed model (3.9) plays370

an important role in the determination of the variable decomposition. We conduct371

the tests by gradually increasing the balance parameter β from 0 to 0.5 (β = 0 means372

no correction). Please refer to Fig. 4 to see how this term affects the performance. As373

can be seen, when the model (3.9) does not have the correction term (i.e., β = 0), the374

PSNRs of estimated images along the evolution reaches the highest value after few375

numbers of iteration and then quickly decrease to a steady-state with very low value.376

Actually, with β = 0, the final estimate of u loses almost all details, while all of these377

features move to n1 and n2. This coincides with the analysis in Section 3.2, which378

points out that the original model (3.7) cannot generate ideal decomposition. With379

correction term by choosing a proper β, the proposed algorithm can effectively prevent380

the PSNR values of the estimated images from dramatic decrease, as shown in Fig. 4.381

In other words, the correction term can also be interpreted as the stabilization term382

of the model (3.9). Therefore, the correction term is essential for a stable recovery.383

Moreover, the estimate g has a tunable scaling factor c ∈ [1, 2]. To demonstrate the384

influences of the parameter c, we conduct experiments of denoising the noisy images385

of “Brain” with Rician noises at level σ = 15, 25, and 35 with different c in the range386

[1, 3]. The results are put in Fig. 5, which shows that tuning c between 1 and 2 could387

improve the recovery results compared with c = 2, especially when σ = 15. However,388

for practical use, c = 2 seems to be a good choice for the most cases, and therefore,389

set c = 2 as the default for other experiments unless otherwise specified.390
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Fig. 5. The PSNR values under different pairs (β, c) for denoising the noisy images of “Brain”
with Rician noises at level (a) σ = 15, (b) σ = 25, and (c) σ = 35 by using the proposed method.
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Fig. 6. The PSNR values under different pairs (α, β) for denoising the noisy images of “Brain”
with Rician noises at level (a) σ = 15, (b) σ = 25, and (c) σ = 35 by using the proposed method.

Then we discuss the influence of the proposed model (3.9) by the parameters α391

and β. Fig. 6 shows the PSNR values of the denoised “Brain” image by our proposed392

method for different pairs (α, β). The parameter α should be related to the noise393

level. As the standard deviation of the noise increases, the value of α should decrease394

to get good recovery results. We suggest that the parameter α is in [0.001, 0.03]395

for σ = 15, 25, and 35. As discussed before, the parameter β controls the distance396

between the final result and the estimate g. Again, in our experiments, we noticed397

that if β gets too small, the recovered image will be over-smooth; if β gets too large,398

the recovered image will approach the undesirable noise image g. From Fig. 6, we can399

observe that the choice of β has a significant impact on the quality of the denoised400

image. Moreover, we can also see from Fig. 6 that for each noise level, when a good401

value of β is chosen, the image quality is less sensitive to the parameter α.402

The parameter r is the penalty parameter of the augmented Lagrangian function403
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used in the ADMM algorithm (4.4)-(4.7). For the proposed algorithm to converge,404

we need to set r to be large enough. Hence, we empirically choose r ∈ [0.1, 10] with405

r = 1 as default.406

(a) Noisy (σ = 15) (b) sMAP (c) MAP

(d) Getreuer (e) Chen-Zeng (f) Proposed

Fig. 7. Numerical results for the image of “Cameraman”. (a) Noisy image with σ = 15;
The denoised images: (b) sMAP model (PSNR = 30.13), (c) MAP model (PSNR = 30.26), (d)
Getreuer’s model (PSNR = 29.94), (e) Chen-Zeng model (PSNR = 30.15), (f) the proposed model
(PSNR = 30.37).
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Fig. 8. The absolute differences between the denoised images in Fig. 7 and the true “Camera-
man” image. (a) sMAP model, (b) MAP model, (c) Getreuer’s model, (d) Chen-Zeng model, (e)
the proposed model.

5.3. Comparisons with other variational methods. We conduct the third407

experiment on comparing the proposed method with some existing variational meth-408

ods listed below:409

1) The smoothed MAP (sMAP) model (2.5) solved by the ℓ2 gradient descent410

method in [16]. As recommended in [16], we fix the step size dt = 0.1.411

2) The MAP model (2.3) solved by a proximal point algorithm proposed by412

Mart́ın et al. in [27].413
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(a) Noisy (σ = 25) (b) sMAP (c) MAP

(d) Getreuer (e) Chen-Zeng (f) Proposed

Fig. 9. Numerical results for the image of “Knee”. (a) Noisy image with σ = 25; The denoised
images: (b) sMAP model (PSNR = 28.50), (c) MAP model (PSNR = 28.81), (d) Getreuer’s model
(PSNR = 27.75), (e) Chen-Zeng model (PSNR = 28.19), (f) the proposed model (PSNR = 28.92).
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Fig. 10. The absolute differences between the denoised images in Fig. 9 and the true “Knee”
image. (a) sMAP model, (b) MAP model, (c) Getreuer’s model, (d) Chen-Zeng model, (e) the
proposed model.

3) The Getreuer’s model (2.6) solved by the split Bregman method [16].414

4) The Chen-Zeng model (2.7) solved by a primal-dual algorithm [10].415

The source codes of all the algorithms are implemented in MATLAB. The code for416

the proximal point algorithm is kindly provided by the authors of [27], and the codes417

for the sMAP model, the Getreuer’s model, and the CZ model are kindly provided418

by the authors of [10]. We adopt the following stopping criteria for all the compared419

algorithms.420

‖uk − uk+1‖
‖uk‖ < tol421

with tol = 1e−4. Set the maximum number of iterations as 500 for all the algorithms422
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Table 1

Comparison of the performance of the proposed model with the sMAP model, MAP model,
Getreuer’s model, and Chen-Zeng model in terms of PSNR values and SSIM values.

Image σ sMAP MAP Getreuer Chen-Zeng New
Cameraman 15 PSNR 30.13 30.26 29.94 30.15 30.37

SSIM 0.8590 0.8599 0.8513 0.8503 0.8621

25 PSNR 26.88 26.98 26.29 26.43 27.41

SSIM 0.7900 0.7979 0.6858 0.7846 0.7997

35 PSNR 24.23 25.04 24.68 24.09 25.12

SSIM 0.7260 0.7452 0.6409 0.7261 0.7505

Brain 15 PSNR 31.41 31.40 31.31 31.39 31.46

SSIM 0.9370 0.9355 0.9372 0.9373 0.9372
25 PSNR 28.34 28.30 28.22 28.28 28.34

SSIM 0.8860 0.8877 0.8856 0.8839 0.8867
35 PSNR 26.33 26.38 26.18 26.14 26.16

SSIM 0.8310 0.8355 0.8282 0.8426 0.8431

Liver 15 PSNR 30.82 30.85 30.79 30.75 30.75
SSIM 0.8480 0.8476 0.8456 0.8438 0.8429

25 PSNR 27.93 27.99 27.37 27.80 28.00

SSIM 0.7690 0.7677 0.7071 0.7649 0.7688

35 PSNR 25.84 25.76 25.77 25.32 25.81
SSIM 0.7010 0.6903 0.6387 0.6895 0.6962

Spine 15 PSNR 30.23 30.35 29.65 30.09 30.52

SSIM 0.8320 0.8369 0.7535 0.8232 0.8420

25 PSNR 27.21 27.39 25.71 26.25 27.29
SSIM 0.7370 0.7431 0.5545 0.7084 0.7347

35 PSNR 24.54 25.59 23.82 23.32 25.25
SSIM 0.6410 0.6713 0.4566 0.6136 0.6625

Knee 15 PSNR 31.51 31.60 31.56 31.44 31.62

SSIM 0.8540 0.8563 0.8544 0.8518 0.8565

25 PSNR 28.50 28.81 27.75 28.19 28.92

SSIM 0.7910 0.7979 0.6949 0.7870 0.8051

35 PSNR 26.03 26.81 26.21 25.61 26.51
SSIM 0.7290 0.7478 0.6435 0.7288 0.7555

Average PSNR 28.00 28.23 27.68 27.68 28.24

SSIM 0.7950 0.8014 0.7319 0.7891 0.8029

except for the ℓ2 gradient descent algorithm, whose maximum iteration number is423

set as 2000 to obtain high-quality images. To achieve the best performances of these424

approaches, we manually set σ to the true value. Some noise estimation methods can425

also be found in [1, 11]. For the sake of fairness, we have tuned the parameters of426

these methods to achieve the best balance between PSNR values and visual quality.427

Table 1 shows the experimental results by these approaches for different images in428

terms of PSNR and SSIM. The best values of PSNR and SSIM for each case have been429

highlighted in bold. Some visual results for σ = 15, 25, and 35 are shown in Figs. 7–12.430

We give the denoised images of “Cameraman”, “Knee”, and “Liver” in Figs. 7, 9, and431

11, respectively. We also show the absolute differences between the denoised images432

and the true images in Figs. 8, 10, and 12. Fig. 13 presents the energy evolution via433

iteration numbers for five different methods applying to denoise the “Brain” image434

with σ = 15. Compared with other methods, the proposed method performs better at435

removing noises (the highest average PSNR) and preserving features (highest average436

SSIM). It is interesting to see that these non-convex models, including the sMAP437

model, MAP model, and the proposed model, perform better than Getreuer’s model438

and Chen-Zeng model in most cases. As can be seen from the red boxes in Figs. 8,439

10, and 12, these non-convex models can preserve the contrast better than Getreuer’s440
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Table 2

Comparison of the performance of the proposed method with the sMAP method, MAP method,
Getreuer’s method, and Chen-Zeng method in terms of total CPU time, number of iterations (# of
iter), and time of per iteration (per-iter).

Image σ sMAP MAP Getreuer Chen-Zeng New
Cameraman 15 # of iter 283 53 73 37 47

Time(s) 4.54 9.4 2.19 0.5 0.29

per-iter 0.0160 0.1773 0.0300 0.0135 0.0061

25 # of iter 543 113 49 50 82
Time(s) 9.98 20.36 1.3 0.69 0.37

per-iter 0.0184 0.1801 0.0265 0.0137 0.0045

35 # of iter 722 169 56 56 125
Time(s) 17.88 31.25 1.48 1.02 0.6

per-iter 0.0248 0.1849 0.0265 0.0183 0.0048

Brain 15 # of iter 295 103 41 44 49
Time(s) 2.89 11.99 0.62 0.33 0.14

per-iter 0.0098 0.1164 0.0152 0.0074 0.0029

25 # of iter 529 173 36 49 85
Time(s) 6.1 20.31 0.55 0.42 0.27

per-iter 0.0115 0.1174 0.0154 0.0085 0.0032

35 # of iter 751 237 84 57 124
Time(s) 10.25 28.13 1.27 0.59 0.37

per-iter 0.0136 0.1187 0.0152 0.0103 0.0030

Liver 15 # of iter 282 54 44 49 51
Time(s) 6.5 9.56 1.32 0.81 0.23

per-iter 0.0231 0.1771 0.0299 0.0166 0.0044

25 # of iter 510 121 71 60 98
Time(s) 12.6 22.29 2.07 1.07 0.43

per-iter 0.0247 0.1842 0.0291 0.0178 0.0044

35 # of iter 717 202 110 73 157
Time(s) 16.24 37.34 3.15 1.18 0.66

per-iter 0.0226 0.1849 0.0286 0.0162 0.0042

Spine 15 # of iter 272 81 95 55 59
Time(s) 3.56 9.66 1.51 0.55 0.17

per-iter 0.0131 0.1193 0.0159 0.0099 0.0028

25 # of iter 819 169 93 65 97
Time(s) 9.38 20.23 1.32 0.56 0.27

per-iter 0.0115 0.1197 0.0142 0.0086 0.0028

35 # of iter 709 260 95 77 130
Time(s) 7.6 30.86 1.26 0.61 0.43

per-iter 0.0107 0.1187 0.0133 0.0079 0.0033

Knee 15 # of iter 246 56 54 46 49
Time(s) 2.77 6.64 1.04 0.39 0.14

per-iter 0.0113 0.1186 0.0192 0.0084 0.0029

25 # of iter 505 116 88 59 89
Time(s) 6.9 14.24 1.62 0.59 0.27

per-iter 0.0137 0.1227 0.0184 0.0100 0.0031

35 # of iter 662 176 65 66 139
Time(s) 10.77 22.02 1.19 0.77 0.43

per-iter 0.0163 0.1251 0.0183 0.0117 0.0031

Average # of iter 523 139 70 56 92
Time(s) 8.53 19.62 1.46 0.67 0.34

per-iter 0.0161 0.1443 0.0211 0.0119 0.0037

model and Chen-Zeng model.441

Finally, we discuss the computational costs of all comparable methods. We record442

the CPU costs per iteration and overall algorithms and the number of iterations for443

all the five algorithms and put it in Table 2. As can be seen, the proposed method444

is the fastest among all these algorithms since it saves about 50% of the overall445
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(a) Noisy (σ = 35) (b) sMAP (c) MAP

(d) Getreuer (e) Chen-Zeng (f) Proposed

Fig. 11. Numerical results for the image of “Liver”. (a) Noisy image with σ = 35; The denoised
images: (b) sMAP model (PSNR = 25.84), (c) MAP model (PSNR = 25.76), (d) Getreuer’s model
(PSNR = 25.77), (e) Chen-Zeng model (PSNR = 25.32), (f) the proposed model (PSNR = 25.81).
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Fig. 12. The absolute differences between the denoised images in Fig. 11 and the true “Liver”
image. (a) sMAP model, (b) MAP model, (c) Getreuer’s model, (d) Chen-Zeng model, (e) the
proposed model.

computation cost on average even compared with the convex methods. One may also446

notice that although the Chen-Zeng method requires the fewest iterations on average,447

the proposed method is still the fastest in terms of runtime since the cost per iteration448

is dramatically lower than other methods involving the calculations with the Bessel449

function. In summary, our method can achieve comparable denoising results with the450

lowest computational cost.451

5.4. Comparisons with deep learning methods. We compare the proposed452

method with deep learning methods, including the trainable non-linear reaction diffu-453

sion (TNRD) [39] and the wider denoising neural network (WDNN) [40]. For TNRD,454

we use the trained model provided by the authors of [39]. For WDNN, we implement455

the network, train it in a workstation with one NVIDIA Tesla P100 GPU computing456

processor, and use the trained model for our test. We should mention that compared457

with deep learning methods, the advantage of our method is that it does not require458
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Fig. 13. Energy evolution via iteration numbers for five different methods. This example is
carried out on “Brain” image.

training data and training processing. We also test these two methods for different459

noise levels, i.e, σ = 15, 25, and 35. We find that the average PSNR values rank460

in the descending order as follows: TNRD (29.18dB), WDNN (28.92dB), and New461

(28.24dB). However, our method (0.34s) is the fastest, followed by TNRD (0.48s) and462

WDNN (3.01s).463

(a) Noisy (σ = 13.74) (b) sMAP (c) MAP (d) Getreuer (e) Chen-Zeng (f) Proposed

(g) sMAP (h) MAP (i) Getreuer (j) Chen-Zeng (k) Proposed

Fig. 14. Numerical results for the raw MR image. (a) Noisy image f with the estimated noise
level σ = 13.74; The denoised images ũ: (b) sMAP model, (c) MAP model, (d) Getreuer’s model,
(e) Chen-Zeng model, (f) the proposed model; The residual images f − ũ: (g) sMAP model, (h)
MAP model, (i) Getreuer’s model, (j) Chen-Zeng model, (k) the proposed model.

5.5. Test on raw MR data. To show the effectiveness of our method, we apply464

it to raw MR data. We test on two raw MR images shown in Figs. 14(a) and 15(a),465
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(a) Noisy (σ = 10.05) (b) sMAP (c) MAP (d) Getreuer (e) Chen-Zeng (f) Proposed

(g) sMAP (h) MAP (i) Getreuer (j) Chen-Zeng (k) Proposed

Fig. 15. Numerical results for the raw MR image. (a) Noisy image f with the estimated noise
level σ = 10.05; The denoised images ũ: (b) sMAP model, (c) MAP model, (d) Getreuer’s model,
(e) Chen-Zeng model, (f) the proposed model; The residual images f − ũ: (g) sMAP model, (h)
MAP model, (i) Getreuer’s model, (j) Chen-Zeng model, (k) the proposed model.

whose noise levels are estimated as σ = 13.74 and σ = 10.05. The denoised images466

and the corresponding residual images are presented in Figs. 14 and 15. As can be467

seen, our method can remove the Rician noise quite well and the denoised results of468

our method are comparable to these of other variational methods. Especially from469

the second row of Fig. 15, the residual image of our method seems more uniform than470

those of other methods.471

6. Conclusions. In this paper, we have proposed a novel variational method472

for Rician noise removal for magnitude MRI, which avoids using the Bessel functions.473

It is a nonconvex optimization model with spherical constraints and has been solved474

by the convergent ADMM efficiently. Numerical experiments have demonstrated the475

remarkable performance of the proposed method. In future works, we will extend the476

proposed model to medical image segmentation.477
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Appendix A. Convergence of non-convex ADMM.483

The convergence of non-smooth and non-convex ADMM, including our algorithm484

(4.4)-(4.7) as a special case, has been analyzed in [33]. Here, we apply this convergence485

result to our approach. We will first recall the non-smooth and non-convex optimiza-486

tion problem considered in [33], its ADMM solver, and the five critical assumptions487

on the problem. We will then show that our model (4.3) can be reformulated into488

the optimization problem in [33] and verify that our model satisfies the Assumptions489

A1–A5 in [33], so the convergence of our algorithm will be straightforward.490

In [33], Wang et al. consider the following non-convex and non-smooth optimiza-491
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tion problem492

(A.1)





min
x=(x0,x2,...,xM ),y

φ(x, y) := ξ(x) +
M∑

m=0

ζm(xm) + η(y),

s.t.

M∑

m=0

Amxm + By = 0,

493

where ξ : Rp0 ×· · ·×R
pM → R∪{+∞}, ζm : Rpm → R∪{+∞},m = 0, 1, . . . ,M , and494

η : Rq → R∪ {+∞} are lower semi-continuous functions; Am ∈ R
s×pm and B ∈ R

s×q495

are given matrices.496

The augmented Lagrangian function of optimization problem (A.1) is defined as497

Lr(x, y;λ) = φ(x, y) +

〈
λ,

M∑

m=0

Amxm + By

〉
+

r

2

∥∥∥∥
M∑

m=0

Amxm + By

∥∥∥∥
2

.498

Wang et al. [33] presented the non-convex ADMM for (A.1) as follows:499

(A.2)





xk+1
m = arg min

xm

Lr(xk+1
<m , xm, xk

>m, yk;λk),m = 0, 1, . . . ,M ;

yk+1 = arg min
y

Lr(xk+1, y;λk);

λk+1 = λk + r

( M∑

m=0

Amxk+1
m + Byk+1

)
.

500

Under five critical assumptions on the objective functions and matrices, Wang et501

al. [33] proved that the iterative scheme (A.2) converges. We recall the five assump-502

tions in the following.503

A1 (coercivity) The objective function φ(x, y) is coercive over the feasible set504 {
(x, y) :

∑M
m=0 Amxm + By = 0

}
;505

A2 (feasibility) Denote A = [A0, A1, . . . , AM ]. Im(A) ⊆ Im(B), where Im(·)506

returns the image of a matrix;507

A3 (Lipschitz sub-minimization path)508

(a) For any fixed x, arg miny{φ(x, y) : By = z} has a unique minimizer.509

H : Im(B) → R
q defined by H(z) , arg miny{φ(x, y) : By = z} is a510

Lipschitz continuous map.511

(b) For m = 0, 1, . . . ,M and any x<m, x>m and y,

arg min
xm

{φ(x<m, xm, x>m, y) : Amxm = z}

has unique minimizer and Θm : Im(Am) → R
pm defined by

Θm(z) := arg min
xm

{φ(x<m, xm, x>m, y) : Amxm = z}

is a Lipschitz continuous map.512

Moreover, the above Θm and H have a universal Lipschitz constant L̄ > 0.513

A4 (objective-ζ regularity)514

(a) ξ(x) is Lipschitz differentiable with constant Lξ,515

(b) ζ0 is lower semi-continuous, ζm is restricted prox-regular [33, Definition516

2 and Propostion 1] for m = 1, 2, . . . ,M ;517
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A5 (objective-η regularity) η(y) is Lipschitz differentiable with constant Lη.518

Wang et al. [33] stated that A1 holds when the objective function is coercive and519

A2 and A3 holds when Am and B have full column rank.520

We now give the main convergence theorem in [33] as follows.521

Theorem A.1 ([33], Theorem 1). Suppose A1-A5 hold. Algorithm (A.2) con-522

verges subsequently for any sufficiently large r, that is, starting from any x0
1, . . ., x0

M ,523

y0, λ0, it generates a sequence that is bounded, has at least one limit point, and that524

each limit point (x∗, y∗, λ∗) is a stationary point of Lr.525

In addition, if Lr is a Kurdyka- Lojasiewicz function [3], then (xk, yk, λk) con-526

verges globally to the unique limit point (x∗, y∗, λ∗).527

Next, we apply the above convergence results for our method. We denote528

Ψ0(v) := IK(v), Ψ1(u) := TV(u) +
β

2
‖u− g‖2, Φ(n) :=

α

2
‖n‖2.529

Then the propose model (4.3) can be reformulated as530

(A.3)

{
min
v,u,n

Ψ0(v) + Ψ1(u) + Φ(n),

s.t. Qu− v + n = 0.
531

Thus, the problem (4.3) is a special case of problem (A.1) with the following specifi-532

cations:533

1) x0 := v, x1 := u, and y := n;534

2) ξ(x) := 0, ζ0(x0) := Ψ0(v), ζ1(x1) := Ψ1(u), and η(y) := Φ(n);535

3) A0 := −I, A1 := Q, and B := I.536

It can be verified that the model (A.3) satisfies the Assumptions A1–A5 as follows.537

Note that the set K is closed and bounded, thus Ψ0(v) = IK(v) is coercive and lower538

semi-continuous [30]. The convexity of Ψ1(u) implies it a restricted prox-regular539

function [33, Definition 2 and Propostion 1]. Let us verify Assumptions A1-A5 in540

[33]. Assumption A1 holds because of the coercivity of Ψ0(v), Ψ1(u), and Φ(n).541

Assumptions A2 and A3 hold for Q, −I, and I being full column rank. Assumption542

A4 holds for Ψ0(v) is lower semi-continuous and Ψ1(u) is restricted prox-regular.543

Assumption A5 holds because Φ(n) is Lipschitz differentiable.544

Moreover, one readily sees that IK(v) is an indicator function of the semi-algebraic545

set, TV(u) is semi-algebraic, and β
2 ‖u − g‖2 + α

2 ‖n‖2 + 〈λ,Qu + n − v〉 + r
2‖Qu +546

n− v‖2 is a polynomial function. Therefore, their sum L is semi-algebraic [3]. Since547

semi-algebraic functions satisfy Kurdyka- Lojasiewicz (KL) inequality [3], L is a KL548

function.549
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