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Abstract—The visuo-haptic surgical simulator providing both
visual feedback and haptic interaction is very important for
various applications such as surgical simulation, training, and
planning. In this paper, we develop a nonlinear mass-spring
model by introducing the elastica springs, which measure the soft
tissue deformation based on both spring length and curvature.
As a result, our model works well on the triangular surface
meshes by producing more realistic simulations with smoother
and plumper surfaces. Numerical experiments are conducted on
both synthetic sphere and human liver models to demonstrate
the superior performance of our method with both position-
based and force-based interaction. Compared to the traditional
and constrained mass-spring models, our model can well balance
the accuracy and efficiency, providing simulation results with
biomechanical properties such as nonlinearity and incompress-
ibility. Furthermore, we implement the proposed model as the
physical engine for a prototype of anatomical virtual reality,
where realistic deformation is rendered at a refresh rate of 33
frames/s on a regular personal computer.

Index Terms—Visuo-haptic surgical simulator, nonlinear mass-
spring model, elastica spring, soft tissue modeling, anatomical
virtual reality

I. INTRODUCTION

HE visuo-haptic surgical simulator [1]-[5] is a kind of
medical instruments, which exploits haptic technology to
simulate the surgical procedure in a virtual way. A typical
surgical simulator includes the force feedback system as input
and output, and a computer to simulate the surgical procedure
on virtual organs. Therefore, the users can see and touch
the soft tissues via the visuo-haptic surgical simulator. As
demonstrated in Fig. 1 (a), the users can operate a virtual
scalpel on a virtual liver through the force feedback device,
and the deformation of the liver as well as the feedback force
on the scalpel are simulated by a mathematical model for
the organ accurately and timely. Such an instrument has been
increasingly used in surgical training [6]—[8], surgical planning
[8]-[10], and rehabilitation [11]-[14].
One key component of such a surgical simulator is to
develop a realistic soft tissue model providing both visual
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feedback and haptic interaction [15]-[17], as shown in Fig.
1 (b). Although numerous efforts have been devoted to the
modeling of soft tissue deformation, it is still challenging to
efficiently simulate the biological behaviors of soft tissues such
as nonlinearity, viscoelasticity, anisotropy, and incompressibil-
ity, etc. A survey of the state-of-the-art deformable models for
surgical simulators can be found in [18] and the references
therein, which can be classified into two main categories: the
continuum mechanical methodologies and discrete modeling
methodologies. The first category employs the constitutive
laws to model the elastic behavior of soft tissues, which
requires to use the finite element method to solve the par-
tial differential equations [17], [19], [20]. The representative
of the second category is the mass-spring models (MSM),
which describe the soft tissue as a network of point masses
connected by the springs [21], [22]. Etzmuss et al. [23]
further established the link between mass-spring systems and
continuum mechanics by deriving a particle system from a
continuum model using the finite difference method, which
can approximate the continuous model with a high resolution.
Besides, the hybrid soft tissue deformable models have been
also proposed [15], [24].

The mass-spring model is a popular physics-based model
for soft tissue simulation due to its simple mathematical
formulation, high friendliness for topological changes, and
low computational costs. When the external force is applied
to the soft tissue, the deformation is characterized by the
length deformation of the springs, which follows Hooke’s
law with a linear relationship between the stress and the
resulting strain. Historically, Miller [25] has used the MSM
to animate the motion dynamics of snakes and worms, which
was further studied for surgical simulation [26], [27]. Later on,
Teschner et al. [28] presented a fast tetrahedral mass-spring
system to calculate soft tissue deformation caused by bone
displacement in a short time interval. However, due to the
use of the linear springs, the aforementioned MSMs failed to
model the mechanical properties of soft tissues. Thus, many
attempts have been made to improve the mass-spring system
by either introducing additional nonlinear springs or artificial
constraints on springs. For example, Nedel and Thalmann [29]
proposed a mass-spring system with angular springs to control
the volume of muscles during the simulation process. Hong
et al. [30] used a volume-preserving constraint to guarantee
the surface MSM can well approximate the linear FEM-based
simulation. Basafa and Farahmand [31] introduced nonlinear
springs and dampers into the mass-spring system to model
the nonlinear and viscoelastic material properties in real-time.
Xu et al. [32] proposed to incorporate viscoelasticity into
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The configuration of our visuo-haptic simulator. (a) The photo of our visuo-haptic surgical simulator, which consists of a force feedback system

and a personal computer; (b) the workflow of our visuo-haptic surgical simulator. The user can send instructions into the computer through the feedback
force device, which is processed by our nonlinear mass-spring model and the computational algorithm. The output of the computer is transferred to the force

feedback system, which is felt by the user.

the tensor-mass model for soft tissue. Gaizka et al. [33]
developed a cubical mass-spring model consisting of edge
springs, face diagonal springs, and internal diagonal springs to
obtain realistic mechanical behavior of soft tissues. Duan et al.
[22] proposed a tetrahedral MSM by introducing constraints on
positions, which can preserve volume for realistic simulation
of the incompressible tissues. Li et al. [34] developed a surface
MSM with new flexion springs and a collision detection
algorithm for achieving real-time performance. Golec et al.
[24] suggested supplementing the spring deformation energy
with volume-dependent energy to simulate any real isotropic
materials.

Considering that the artificial springs and constraints lead
to a significant increase in computational costs, we define
the spring force with the elastica springs modeled by both
spring length and spring curvature. Accordingly, we establish
a nonlinear mass-spring model working as the physical engine
for surgical simulators, which can not only estimate the real-
istic deformation of soft tissue but also provide the real-time
interaction between the user and instrument. In particular, the
distortion mechanism estimated by our MSM is non-linearly
related to the external forces. More importantly, the elastica
springs also promote the spring forces to be transferred from
vertices of large curvatures to vertices of small curvatures to
obtain smoother and plumper surfaces. Numerical experiments
on both synthetic sphere model and real liver model show
that the proposed MSM can well balance the computational
efficiency and simulation accuracy under external loadings.
Moreover, we demonstrate an interactive anatomical virtual
reality equipped with the proposed MSM, which can provide
a relatively high degree of realistic visual feedback at a
refreshment rate of 33 frames/s on a regular PC.

The rest of the paper is organized as follows. In Section II,
we describe our nonlinear mass-spring model and the compu-
tational algorithm in detail. In Section III, the advantageous
performance of our model is validated by comparing with the
traditional MSM and constrained MSM [22] on both synthetic

sphere and human liver models. In Section IV, we further
apply the proposed model to realize an anatomical virtual
reality system. A brief discussion and the concluding remarks
are presented in Section V.

II. THE NONLINEAR MASS-SPRING MODEL
A. Preliminaries

In this section, we introduce basic notations of triangular
meshes and how to estimate normal vectors and curvatures on
the triangular meshes. Without loss of generality, we denote
S € R? as a compact closed triangulation surface of arbitrary
topology with no degenerate triangles. The set of vertices,
edges and triangles of S are denoted as {x; : i = 0,1,..., N—
1}, {e;;:0<i,j <M —1}and {r :4=0,1,...,T — 1},
respectively, where N, M and T are the numbers of vertices,
edges and triangles, respectively. We introduce the symbol <
to represent the composition relation, e.g., © < e denotes =
is an endpoint of an edge e, e < 7 denotes e is an edge of a
triangle 7, and < 7 denotes x is a vertex of a triangle 7.
Let N(x;) be the 1-ring of the vertex x;, that is the set of
triangles containing x;. Similarly, N (e; ;) denotes the set of
triangles containing e; ;. Suppose {n; : i = 0,1,...,N — 1}
represents the number of triangles containing x;, which is also
the total number of adjacent vertices of x;.

There are many methods available to estimate the normals
and curvatures on the triangular meshes. The straightforward
way to compute the normal vector on each vertex is the
weighted average of the normals of its surrounding triangular
elements. Suppose we use the equal weights for all triangular
as [35], we have the following formula for the normal

N, = i >y (@i — ;) Qi — @)
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where ) denotes the cross product.
We use the mean curvature to describe the degree of
deformation for soft objects. Desbrun et al. [36] presented the
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Fig. 2. Illustration of topological structure of triangular meshes: (a) the 1-ring
neighborhood of vertex «;; (b) the locations of « and /3, where N; denotes
the averaged normal at mass ;.

curvature normal r;IN; used to calculate the mean curvature
for the point cloud data
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ki IN; = (cot v; j + cot B j) (@i — x;), (2)

where A is the total area of all triangular patches in the
neighborhood of mass point x;, «;; and ;; are the two
opposite angles of the edge e;; with x; and x; as the
endpoints, and ~; denotes the curvature at x;. We provide
the 1-ring neighborhood of the vertex x; and explain the the
relation of «; ; and B; ; in Fig. 2 (a) and (b), respectively.

B. Our nonlinear mass-spring model

The MSM discretizes the complex shapes into a set of point
masses and a set of massless springs connecting the point
masses. Suppose our MSM is composed of N point masses
and M massless springs. For each mass point x; € R?, i =
0,1,...,N — 1, the mass-spring model can be described by
Newton’s second law as follows

pia; = fi, 3)

where p; € R denotes the mass at x;, a; € R? denotes the
acceleration of mass point x;, and f; is the total force acting to
the mass x; including both external forces and internal forces.

C. Forces

The force f in the mass-spring system (3) is the total force
acting on the point masses, which is the sum of the external
forces, spring forces, and damping forces.

1) External forces: The external forces of the system
include both the gravity force and man-made forces, where the
man-made forces are applied to selected vertices by the force
feedback device. Another popular way is to use the position-
based approach, which is displacement driven by moving the
selected vertices to target positions in an iterative process.
The gravity force is acting on every point mass in the system
defined by

I = g, )

where g = [0,0, —9.8] N/kg is the gravitational acceleration.

2) Spring forces: Traditionally, the spring force is defined
by Hooke’s Law, where the strain and stress is constitutive
relations of linear elasticity. That is, the force acting on x;
generated by the spring connecting x; and x; is in direct pro-
portion to the extension of the spring. Thus, the deformation
is linearly related to the magnitude of the forces, which causes
the hyper-elasticity effect for large stresses. It appears that the
shape deforms significantly for the vertices under stress, while
other vertices almost remain unchanged.

While the deformation happens not only for spring elonga-
tion and compression but also bending, we introduce Euler’s
elastica [37] to model the spring deformation. It was first
proposed by the mathematician Leonhard Euler for describing
the nonlinear constitutive law of the elastic strings, where the
elastica means the shape of the ideal thin elastic rod on a plane.
The study proclaims the energetic preference of bending over
straining a thin elastic rod, and then makes Euler’s elastica to
be an important concept of continuum mechanics [38]. In light
of its continuum mechanical property, we introduce the elastica
spring in the three dimensional space to model the nonlinear
stress-strain relation. In particular, the elastica spring length is
defined as

055 = (a+0blri )iy, (5)

where x; ; denotes the curvature of the spring between x; and
x;, a and b are two positive constant weights, and p is the
power of the curvature chosen as p = 1 or p = 2. As shown
both spring length and curvature contribute to soft tissue
deformation. And the elastica spring length can degenerate
to the original spring length, when no bending happens, i.e.,
K = 0. Then, it is straightforward to define the spring force
based on the elatica spring length as follows
T; — Iy

I5= kg (05, —00,) - (©6)

|z — x|’
where k; ; is the spring stiffness, and £ ; and (5 ; denote the
rest length and deformed length of the spring, respectively,
and the curvature of the spring x; ; is estimated by averaging
the curvatures of the two endpoints with x; and ; being
calculated by the curvature normal (2). Since the spring force
becomes a nonlinear function of the length |z ; —a;|, the spring
force can reflect the intrinsic nonlinear stress-strain relation of
soft tissues. Another important merit of the elastica springs
is that the deformation can be more easily transferred from
vertices of large curvatures to vertices of small curvatures.
Thus, realistic deformation can be obtained with smoother and
plumper surfaces during simulation, which is also verified by
numerical experiments.

3) Damping forces: Considering the imperfect elasticity of
physical bodies, energy dissipation occurs during the defor-
mation. Because the damping force also damps out rotations
quickly, it can be defined with the length of the springs as
follows

(v; — i) - (w5 — i)
zj — i

Tj — &Ly

fl=di; (7

g — il

where d; ; denotes the spring damping constant.
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Fig. 3. The force-displacement curves of our NMSM, where the x-axis represents the magnitude of the external forces and y-axis represents the displacements.

TABLE 1
THE PERFORMANCE COMPARISON WITH RESPECT TO DIFFERENT FORCE, WHERE FORCES ARE TIMED BY X 1E-3N.

External force [100] [110] [111]
Volume change (%) -2.56 -3.61 -5.81
TMSM CPU time (s) 0.416 0.681 0.615
Feedback force [0.99 0.00 0.03] [0.99 1.00 -0.02] [0.99 1.01 0.98]
Volume change (%) -2.00 -3.25 -3.85
CMSM CPU time (s) 4.390 4.902 6.085
Feedback force [0.97 0.00 0.00] [0.97 1.01 0.00] [1.01 1.00 1.05]
Volume change (%) -1.84 -2.72 -3.41
NMSM CPU Time (s) 2.127 2.954 2.486
Feedback force [1.00 0.00 0.00] [1.00 1.00 -0.02] [0.98 1.01 0.98]

D. Our algorithm

Similar to [22], we implement the Verlet integration scheme
to solve the proposed Nonlinear Mass-Spring Model (NMSM)
as summarized in Algorithm 1. Although external forces are
used in the algorithm, the position-based attachment can be
also applied to obtain the stable interaction between the
instrument and virtual organs, which will be demonstrated in
Sect. III.

Algorithm 1 The Verlet integration for the proposed NMSM

1: Initialization: x;, v;, £, f7, i, fori =0,--- /N —1;

2: loop

3:  do

4: Obtain the external forces f{ from the instrument;
5: Compute the gravity f7 from (4);

6: Compute the spring forces f; from (6);

7 Compute the damping forces f¢ from (7);

8: Estimate the resultant forces f; < ff+f7+f5+ i

9: Compute the position p; < x; + v; At + fi A2 /g3
10: Compute the velocity v; < (p; — x;)/At;
11:  end

12: Update the final position for all vertices: x; < p;;
13: endloop

Remark 1: Note that the proposed algorithm is applicable to
integrate with both artificial springs and constraints on point
masses and springs such as the previous works [22], [29]-[31].

IIT. NUMERICAL VALIDATIONS

In the section, we implement the proposed method in C++
and use the OpenGL rendering system on a Dell Desktop with
i7-7700 CPU at 3.6GHz. To evaluate the performance of the
proposed NMSM, we carry out a series of experiments and
compare the results with the traditional mass-spring model
(TMSM) and the constrained mass-spring model (CMSM)
[22]. There are two model parameters in the CMSM used to
control the deformation of the springs, i.e., the stretch ratio
T, and compression ratio 7., where 7, is chosen in between
7s € [0,0.01] and 7, is fixed as 7. = 0.01 as suggested by
[22]. The power of the curvature in (5) is set as p = 2 for the
spherical mesh and p = 1 for the liver meshes. All methods are
terminated when either the iteration number reaches 20,000 or
the sum of all vertex accelerations is smaller than the tolerance
1x 1076,

A. Model Initialization

Firstly, we explain how to set up the parameters for the
triangular mesh models.

1) Point Masses: We assume that the masses are uniformly
distributed over the triangular mesh. According to [39], we
estimate the mass j;, 2 = 0,..., N — 1, by the area-weighted

average as follows
Z :
3A ’

VT]' E/\/‘(:I:I)

i = @®)

where i is the total mass of the soft tissue, A (x;) is the set of
triangular patches containing the vertex x;, A; is the area of
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Fig. 4. The comparison of volume deformation and time consumption with respect to different values of a.

the triangular face 7; and A is the total area of all triangular
faces.

2) Spring Stiffness: The spring stiffness describes the
stress-strain relation of the soft tissues to a certain degree.
Lloyd et al. [40] proposed the calculation formula of the spring
stiffness based on anisotropic elastic material with Young’s
modulus and the triangular mesh model. Accordingly, we use
the following formula to identify the spring stiffness

> ga

ki,j = KBt — s
VTjEN(ei’]) 4 AO

©

where ¢ is the thickness of the plane stress elastic model,
N (e;,;) is the set of triangular faces containing the edge ¢; ;,
and Ag is the area of an equilateral triangle with edge length
e; ;. Note that we set the thickness ¢ = 1073 m for liver
experiments.

3) Spring Damping: According to [41], we define the
damping stiffness to guarantee the best behavior consistency
for different and combined resolutions, which gives

ki (i + 1)
19 '
i,j
4) Behaviors of the elastica springs: There are two impor-
tant parameters a and b for the elastica spring length (5), which
can depict the physical properties of soft tissues. Thus, we
carry out a series of experiments on a dimensionless spherical
mesh with a radius of 1 and point-wise mass of 1. Note that the
mesh is composed of 162 vertices and 320 faces with uniform
springs of spring coefficient £ = 30 and damping coefficient
d = 100. We perform the tensile tests based on the force-
driven method, where the external forces of f¢ = [0,1,1]
to f¢ = [0,10,10] are applied to the same vertices on the
sphere. To identify the influences of a and b, we first fix the
value of b and increase a gradually, and vice versa. The force-
displacement curves using the averaged displacements of all
vertices with different combinations of a and b are displayed
in Fig. 3, where the dashed red line denotes the traditional
mass-spring model. For the fixed b, the nonlinearity becomes
weaker and weaker as the value of a increases. On the other
hand, the nonlinearity becomes stronger and stronger as the
value of b increases.

dij =2 (10)

Our NMSM can also help to preserve the volume during
the simulation process. We apply an external force of f¢ =
[0,4, 4] to the same spherical mesh, where b is chosen from
b € {120,130, 140,150,160} and «a is increased from 10 to
55 with the step size of 5. We track the deformed volumes
and plot them in Fig. 4 (a), where all curves are of the same
trend. When a < 30, the deformed volume is smaller than
the original volume (marked by the dashed red line). As a
keeps increasing, the deformed volume becomes stable, which
is smaller than the deformed volume obtained by the TMSM
(marked by the dashed blue line). On the other hand, we record
the computational time of our NMSM in Fig. 4 (b), where less
time is consumed as a increasing from 10 to 55. Because the
nonlinearity can be controlled by either a or b, we simply set
a =1 and tune b to control the deformation in the following
experiments.

B. Measurement of feedback forces

Realistic anatomical virtual reality needs accurate haptic
feedback to ensure the users can experience the biomechanical
properties of tissues and organs. Thus, we perform a stress-
relaxation test on a human liver model with a size of 170 mm
X 140 mm x 160 mm, which contains 1000 faces and 502
vertices. More specifically, we apply different external forces
on the top surface of the liver model and examine the volume
change, CPU time, and feedback forces obtained by TMSM,
CMSM, and our NMSM. As shown in Table I, our NMSM
can provide more accurate feedback forces than TMSM and
CMSM when the liver model is tensing the same external
forces. Simultaneously, the volume change of our model is also
the smallest, which demonstrates its advantages for modeling
incompressible soft tissues.

C. Experiments on the liver model

We also implement our NMSM by the position-based at-
tachment, which is a popular strategy used in virtual reality.
For a more in-depth comparison, we generate two liver mesh
models to represent the liver, one of 1000 faces and the other
one of 2000 faces. Two different displacements are applied
to the same selected face, which is denoted as the small
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TABLE II
THE COMPARISON BETWEEN THE TMSM, CMSM AND OUR NMSM IN TERMS OF VOLUME CHANGE (VC) AND TIME CONSUMPTION ON THE LIVER

DEFORMATION.
Small displacement Large displacement
No. of face 1000 faces 2000 faces 1000 faces 2000 faces
Method TMSM | CMSM | NMSM | TMSM | CMSM | NMSM | TMSM | CMSM | NMSM | TMSM | CMSM | NMSM
VC (%) 0.68 0.37 0.45 0.72 0.66 0.60 1.24 0.91 1.11 1.23 1.3 1.01
Time (s) 0.002 0.01 0.003 0.007 0.019 0.008 0.002 0.011 0.004 0.007 0.019 0.008
TABLE III

THE PERFORMANCE COMPARISON BETWEEN OUR NMSM AND CMSM IN TERMS OF TIME COSTS AND CHANGES OF VOLUME WITH RESPECT TO
DIFFERENT MESH MODELS.

No. of faces 2000

4000

6000 8000 10000

Parameter b 0.2

0.15 0.15 0.15

NMSM volume change (%) 0.73 0.60

0.56 0.49 0.39

CMSM volume change (%) 0.84 0.72

0.66 0.57 0.48

NMSM CPU time (s) 0.009

0.019

0.028 0.037 0.047

CMSM CPU time (s) 0.011

0.023

0.034 0.046 0.056

displacement and large displacement, respectively. The small-
displacement moves the selected triangular face by a distance
of [0,20,20] mm, while the large displacement moves the
same triangular face by a distance of [0,30,30] mm. In the
experiments, we set b = 0.5 and b = 0.2 for the mesh
model with 1000 faces and 2000 faces, respectively, where
a larger b is used for the sparser model to preserve the
volume. For the same purpose, we set 7, = 0 for the CMSM.
Besides, we fix the number of iteration to be 30 for the
TMSM, CMSM, and NMSM for a fair comparison. Table II
exhibits both volume change and computational time of the
three models for different combinations of the mesh models
and deformations. As can be observed, our NMSM performs
the best in balancing the volume preservation and efficiency
among the three mass-spring methods. To be specific, we have
the following conclusions

o The volume change increases when either the displace-
ment becomes larger or the mesh model becomes sparser
for all methods. For the fixed mesh model and displace-
ment, our NMSM always results in a smaller volume
change than the TMSM, which is an important property
for the incompressible soft tissue simulation such as the
liver.

o The time consumption is affected by the size of the mesh
model such that the denser mesh model requires more
CPU time to deform. Because of the low computational
costs of the curvature, our NMSM works almost as
efficiently as the TMSM, both of which are faster than
the CMSM requiring an inner iteration on the spring
constraints.

Moreover, we display the results of the small deformation
and large deformation in Fig. 5, where similar visual results
are obtained by the three mass-spring models.

D. Real-time Interactive Simulation

Our final purpose is to simulate the soft tissue deformation
in a real-time virtual reality environment, for which the update
rate for the visual feedback is required to be at least 30

(a) TMSM (b) CMSM (c) NMSM

Fig. 5. The deformation comparison among the TMSM, CMSM and NMSM
for both small and large displacements, where pink and red color denote
the original and deformed mesh, respectively. The first row and second row
correspond to the small and large deformation, respectively.

Hz to achieve continuous motion of rendered graphics to the
human sensory system. In the following, we conduct a series
of experiments to demonstrate our NMSM can ensure real-
time simulation in virtual reality.

More specifically, we generate five mesh models of different
resolutions to represent the liver, which contain 2000 faces,
4000 faces, 6000 faces, 8000 faces, and 10000 faces, respec-
tively. In our mass-spring system, we fix a = 1 and choose
b in the range b € [0.01,0.5] to control the elastic properties
of liver models. Normally a large value of b is used for the
sparser models to guarantee volume preservation. To obtain the
realistic simulation, we introduce the overstretching compen-
sation on the springs with 7, = 0.01. For a comparative study,
we also evaluate the CMSM with both overstretching com-
pensation and over-compressing compensation, where both the
stretch ratio and compression ratio are set as 7, = 7. = 0.01.
The value of b, the average changes of volume, and the average
CPU time costs are listed in Table III. When increasing the
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Fig. 6. The real-time manipulations of the liver in the virtual reality
environment, where (a), (c) are obtained by CMSM and (b), (d) are obtained
by NMSM.

number of faces, the change of volume for both NMSM and
CMSM becomes smaller and smaller by sacrificing efficiency.
Our NMSM always gives better simulation results than CMSM
in both efficiency and volume preservation.

Moreover, we display two scenarios of the deformation
sequence from the virtual reality environment obtained by the
mesh model with 4000 faces in Fig. 6, where the position-
based attachment is used to accurately control the soft tissue
with the selected triangular face marked by red color. Although
the CMSM works well on the tetrahedral mesh models, its
performance on triangular meshes is unsatisfactory, the defor-
mation of which is unrealistic with bumpy surfaces. Thanks
to the elastica springs, our NMSM produces better simulation
results with smoother and plumper surfaces.

IV. ANATOMICAL VIRTUAL REALITY

The virtual reality and 3D visualization system can help
to make the learning process more efficient and enjoyable,
and less time consuming, which works as a good candidate to
replace the traditional pedagogic methods [42], [43]. However,
the current anatomical virtual realities have limited capability
to model the biomechanical properties of organs and tissues.
Thus, cadavers remain a major component of teaching [44].
In this section, we develop an interactive anatomical virtual
reality to provide an immersive environment allied with the
biomechanical properties of soft tissues. As shown in Fig. 7,
our system involves four main steps as listed below

Step 1: We first use the grow-from-seeds method provided
in 3D Slicer image computing platform [45] to realize organ
segmentation, where most organs of the thoracic and abdomi-
nal cavity are involved including heart, lung, liver, gallbladder,
stomach, spleen, kidneys, pancreas and diaphragm.

TABLE IV
THE MESH MODELS USED IN OUR ANATOMICAL VIRTUAL REALITY

ENVIRONMENT.
Mesh models No. of vertices No. of faces
Heart 502 1000
Lung 1502 3000
Artery 752 1500
Diaphragm 502 1000
Liver 2502 5000
Gallbladder 252 500
Stomach 502 1000
Spleen 502 1000
Pancreas 402 800
Left kidney 402 800
Right kidney 402 800
in total 8222 16400

Step 2: We then generate the triangular mesh models for all
organs and tissues in MeshLab to balance the geometric ac-
curacy and computational burden for deformation simulation.
The physiological connection between different organs is also
introduced according to anthropotomy, which can be realized
by enforcing the boundary conditions in between organs and
tissues such as the liver and gallbladder, liver and diaphragm,
etc.

Step 3: We equip the multi-organ system with our NMSM as
the physical engine, which can provide real-time and realistic
simulation subjected to external forces.

Step 4: Lastly, we realize the human-computer interaction
using the haptic device, which can produce true-to-life touch
sensations as the users manipulate on-screen 3D organs.

Note that we segment both heart atrium and ventricles as
illustrated in Fig. 8 (a), but the cardiac vesicle model is used
in our conceptual virtual reality system. In what follows,
the triangular mesh models are generated for each organ,
the numbers of vertices and faces of which are displayed in
Table IV. As illustrated in Fig. 9, the abdominal organs are
supported by the peritoneum in three different ways, including
the extra-peritoneal organs (e.g., kidney, pancreas, etc), inter-
peritoneal organs (e.g., liver, etc), and endo-peritoneal organs
(e.g., stomach, spleen, etc). Thus, we introduce springs in
between the connected organs such as liver and diaphragm,
liver and gallbladder, stomach and diaphragm, and stomach
and spleen in our virtual reality environment. Please refer to
Fig. 8 (b) and (c) for the illustration of the location between
liver and diaphragm, and the connection springs between liver
and gallbladder, respectively.

In the simulation, the parameters of our model are set as
a =1 and b = 0.1 for all organ models and the over-stretching
constraint is applied to springs with 7, = 0.01. We select
four typical interactive scenarios and display them in Fig. 10
including pulling the left lung, right lung, and liver. Note that
the diaphragm, which performs as the boundary condition for
the liver and stomach, is rendered to be transparent for better
visual effect. More importantly, our multi-organ deformable
system takes around 33 ms during the interaction, which
offers a real-time 3D representation of human coelom in an
interactive virtual reality environment.



Image Acquisition

Image Segmentation

3D Model Reconstruction

Solve mass-spring model to

simmlate defoamation

Interactive Anatomy
Education

Physical Modeling

Mesh Generation

Fig. 7. Schematic drawings for the procedures of an interactive virtual reality system for anatomy education, including 1) acquisition of CT images; 2)
segmentation of the organs and tissues; 3) reconstruction of 3D models; 4) mesh generation to discretize the 3D models; 5) solve Newton’s second law to

simulate the deformation; 6) presentation of simulations.

v

(c) liver and gallbladder

(a) heart

(b) liver and diaphragm

Fig. 8. Illustration of the heart segmentation, the location of the diaphragm,
and the connection springs in between liver and gallbladder. In the figure, red
lines denote the connected springs and black lines denote the body springs.
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Fig. 9. The connection relationships between the abdominal organs and
peritoneum.

V. DISCUSSION AND CONCLUDING REMARKS

To equip the organs in an anatomical virtual reality with
mechanical properties, it requires an efficient simulator to
well balance deformation accuracy and real-time computation.

Compared to the traditional MSM and constrained MSM
for soft tissue deformation, the proposed NMSM is more
suitable for triangular mesh models, significantly improving
the computational efficiency and the simulation accuracy. In
particular, it has the following characteristics and advantages:
(1) The elastica springs are introduced to model the nonlinear
stress-strain relation of soft tissues, where both length de-
formation and bending deformation are naturally combined
and used to measure the spring forces. (2) The computational
burden resulting from the elastica spring length is very low,
only requiring a few simple algebraic operations over the
point masses, which is also verified by the time compared
with the TMSM and CMSM. (3) The elastica springs can
be applied to most existing mass-spring models to provide
realistic simulation.

On the other hand, the proposed NMSM and anatomical
virtual reality also have some limitations that should be inves-
tigated in our future works. (1) The parameters involved in our
NMSM are also important to the performance. Currently, we
use empirical formula (8), (9) and (10) to estimate the point
masses, spring stiffness and spring damping for soft tissues.
The link between these parameters to the material parameters
such as Young’s modulus and Poisson’s ratio should be es-
tablished to guarantee accurate simulation. Although the two
parameters a and b in the elastica spring length (5) can be
chosen manually based on performance, it is better to construct
a law to compute them according to the mechanical behavior
of soft tissues. (2) The proposed anatomical virtual reality is
a prototype missing necessary functional components such as
the collision detection between organs, virtual tool model, etc.



e

(a) pull the left lung (b) pull the right lung

X

(c) rotate and pull the lung

(d) rotate and pull the liver

Fig. 10. Selective scenarios obtained in our anatomical virtual reality system,
where lung, heart, diaphragm, liver, gallbladder, stomach, spleen, pancreas,
and kidney are exhibited in the system.

(3) Considering the future application of the proposed NMSM
on complicated mesh models, the GPU-based implementation
of the proposed model is necessary to further improve the
computational efficiency.

In conclusion, we have developed an accurate and efficient
nonlinear mass-spring model for a visuo-haptic surgical sim-
ulator, where the elastica springs were introduced to mimic
the biomechanical properties of soft tissues. Our model is an
ideal choice for the triangular surface meshes, which can not
only simulate the soft tissue with smoother surfaces but also
measure the nonlinear behaviors such as viscoelasticity and
incompressibility. Taking the human liver as an example, both
position-based and force-based interactions were implemented
in our model making it easy to be integrated with the haptic
instrument. We further developed a visuo-haptic simulator for
anatomical education with the proposed model as the physical
engine, which shows its high computational efficiency. We
believe the proposed nonlinear mass-spring model can have
broad applications for various visuo-haptic scenarios such as
surgical simulation, training, and planning, etc.
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