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ABSTRACT

Due to the unbalance between the boundary pixels and re-

gional pixels, the accuracy of boundary prediction is a chal-

lenging issue for learning-based medical segmentation ap-

proaches. In this paper, we propose a two-stage segmentation

method to identify and refine the object boundary accord-

ingly. By modeling the boundary by the signed distance

function, we develop a nonlocal deformable convolutional

network to accurately predict the local geometry of bound-

aries. We also introduce an efficient loss function to enhance

the learning ability in the boundary area. Experiments on two

public spleen datasets can evidence the superior performance

of the proposed model compared to the existing 2D, 3D, and

boundary-based learning methods.

Index Terms— Signed distance function, boundary seg-

mentation, deformable convolution, point cloud, refinement

1. INTRODUCTION

Medical image segmentation is a challenging task, but also

a key component for smart medicine. With the development

of the deep learning method, various Convolutional Neural

Network (CNN) models have been devoted for medical image

segmentation, such as U-Net [1], DeepLab [2], and so on.

Focusing on organ segmentation, a typical 3D segmen-

tation problem, both 2D and 3D CNNs have been success-

fully used in literature. Milletari et al. [3] introduced a 3D

CNN called V-Net to catch the spatial context. Yu et al. [4]

proposed a two-stage segmentation model named recurrent

saliency transformation network (RSTN) for small organ seg-

mentation, which took multi-slices as input to emphasize the

spatial information and updated the bounding box in an itera-

tive way to produce better results. A common point of afore-

mentioned models is that they are all region-based methods,

leading to inaccuracies on boundaries. Fabian et al. [5] de-

veloped the nnU-Net, a self-configuring method that can auto-

matically configures the preprocessing, network architecture,

training and post-processing for any new task. However, a

main limitation of nnU-Net is its high time consuming.
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Fig. 1. An illustration of the relationship between binary seg-

mentation and Signed Distance Function (SDF).

Traditional boundary-based segmentation methods realize

segmentation by tracking the explicit curve or surface for 2D

and 3D problems, which are very efficient and require low

memories. The representative geodesic active contour model

[6] represented the contour implicitly by a level set function

to allow topological changes such as splitting and merging,

which have been widely used for various segmentation tasks

and medical image segmentation. Inspired by that, Peng et

al. [7] introduced a contour-based model with circular convo-

lution to predict the offset of initial octagon points, and then

deformed the points to achieve segmentation. Ni et al. [8]

proposed an elastic boundary projection (EBP) model, which

placed a number of pivot points in 3D space and evolved them

to object boundaries along the predefined directions. Guo et

al. [9] introduced a learned snakes model (LSM) consisting

of surface initialization and evolution, which estimated the

offsets by 2D U-Net. Although deforming the initial points to

match the desirable boundary or surface shows a promising

result with desirable boundaries, they require a series of post-

processing to obtain pixel-wise segmentation results, which

leads to an increase in computation time. As shown in Fig. 1,

the segmentation can also be realized by learning the level set

function rather than offsets. Ma, He and Yang [10] designed

a geodesic active contour loss to learn SDF for naturally em-

bedding the 3D contour as the zero level set. Xue et al. [11]

used a 3D U-Net as the backbone network to learn SDF di-

rectly from medical scans for both large and small organs.

This work introduces a novel boundary learning method

using a cascade architecture to initialize and refine the SDF

accordingly. Unlike the existing EBP and LSM, which used

2D U-Net to estimate the offsets from image intensity, we

use the deformable point convolution to learn the SDF and

introduce a non-local module to leverage global spacial infor-



mation. By modeling the boundary by SDF, small changes of

shapes can be easily identified and treated during the network

training process. Meantime, the deformable kernel point con-

volution (KPConv) [12] is used to meet the geometric changes

of boundaries. We also propose a novel loss function to guide

the network to converge to the true boundary. Compared to

the existing 2D, 3D and boundary-based learning methods,

our model can better incorporate the local and global infor-

mation and possess high efficiency.

2. OUR METHOD

Our method adopts the two-step framework, which can be

regarded as a coarse-to-fine [4] or crop-then-refine strategy

[13]. The first step can be realized by general CNN-based

methods, where DeepLab-v3 is used to obtain coarse bound-

ary location.

2.1. Our boundary learning framework

Boundary initialization: Suppose P̃ be the coarse segmen-

tation result. We construct the initial boundary as a point set

with bandwidth d defined by

B = {x ∈ Ω | min
y∈∂P̃

∥x− y∥2 ≤ d }, (1)

where ∥x− y∥2 presents the Euclidean distance. The narrow

band strategy can reduce the dependency of the boundary re-

finement to the initialization and improve the robustness.

Boundary refinement: We use the KPConv operation to

construct the boundary refinement network to learn the signed

distance function for points on B. In particular, the inputs

are spheres centered on x ∈ B, defined by N (x) = {zi ∈
Ω | ∥zi − x∥2 ≤ r} with r representing the radius of the

spheres. The kernel point convolution is defined as

(F ∗ g)(x) =
∑

zi∈N (x)

g(zi − x)fi, (2)

and the kernel function g is given as

g(zi − x) =
∑

k<K

max
(
0, 1−

∥(zi − x)− yk∥

σ

)
Wk, (3)

where {yk| ∥yk∥
2 ≤ r, k < K} denotes the kernel points, σ

is the influence distance of kernel points and {Wk| k < K}
are the weight matrices to be trained from the data.

The architecture of our network is displayed in Fig. 2,

where the KP residual blocks are designed similar to the bot-

tleneck ResNet blocks with the image convolution replaced

by the point convolution. There are four scales in the encoder-

decoder process, where the channel numbers are of 64, 128,

256 and 512, respectively. For the decoder, we use the nearest

upsampling operation to upsample the features, and concate-

nate the features of the encoder accordingly. The leaky ReLu

is used as the activate function, and two shared multi-layer
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Fig. 2. An illustration of the network architecture, where the

grey box is the non-local module.

perceptrons (MLP) are used to aggregate features to predict

the signed distance function. Because the kernel point convo-

lution only aggregates local features, we introduce the non-

local module to capture long-range dependencies, where the

multi-head self-attention block is the key part used to fuse the

features similar to [14]. The non-local module can capture

global information without building up a very deep network.

Inference: During inference, the evolved boundary points

together with their neighboring points located in a narrow

band with bandwidth d are assembled based on the coarse

segmentation delivery. Then we use the Heaviside function to

convert the signed distance function into a probability map,

and obtain the binary segmentation by a thresholding. Finally,

we apply the post-processing to remove the isolated points.

2.2. Our loss function

To guarantee the learning accuracy, we explicitly define the

SDF as Φ : Ω ⊂ R
3 → R to describe the boundary position

Φ(x) =





− inf
y∈∂D

∥x− y∥2, if x ∈ D;

0, if x ∈ ∂D;
inf

y∈∂D
∥x− y∥2, if x ∈ Ω\D;

(4)

where D represents the region of interest and ∂D represents

the boundary. The boundary can be well identified by the

signed distance function, i.e., Φ(x) = 0. We further rewrite

the signed distance function by Heaviside function. In or-

der to overcome the non-differentiability, we use the approx-

imated Heaviside function [15] as follows

Hϵ(x) =
1

2
(1 +

2

π
arctan(

x

ϵ
)), (5)

where ϵ is fixed as ϵ = 1
32 in numerical experiments.

Region loss: We adopt the DSC loss together with the

smooth ℓ1 loss as the regional penalty, where DSC is used to



measure the overlap between the prediction and ground truth

LDSC(θ) = 1− 2

∑
Ω
G⊙Hϵ(Φθ)∑

Ω
G+Hϵ(Φθ)

, (6)

with θ being the parameters of the network, and ⊙ repre-

senting the pixel-wise multiplication. The smooth ℓ1 loss

Lδ(θ) = ∥Φθ − ΦG∥1 if ∥Φθ − ΦG∥ ≥ 1, and Lδ(θ) =
∥Φθ − ΦG∥2 otherwise, used to drive the predicted signed

distance function Φ to be as close as possible to the true SDF

ΦG. The DSC loss supervises on the probability map of the

prediction centering on the overlap areas, while the smooth ℓ1
loss takes the segmentation as a regression task, complement-

ing the ignoring areas of the DSC loss.

Boundary loss: We also introduce the binary cross-

entropy loss on the boundary, which is defined as

LB(θ) =
∑

x∈B

G(x) log(1−Hϵ(Φθ(x))+(1−G(x)) log(Hϵ(Φθ(x)).

(7)

The boundary loss can drive the points with the signed dis-

tance function of value zero, i.e., the zero level set function,

to match the organ boundary. To sum up, our loss function is

defined as

L(θ) = LDSC(θ) + αLδ(θ) + βLB(θ), (8)

where the three terms are trained as a whole. In our experi-

ments, we set the weights α = 0.1 and β = 1 to balance the

magnitude of each term.

3. IMPLEMENTATION AND EXPERIMENTS

For saving computational cost, we choose the simplest

Deeplab-v3 with Resnet-18 as the backbone network for

coarse segmentation. For the boundary refinement network,

we set the narrow band width as d = 1, radius as r = 20 and

kernel size as K = 15, and train about 90000 iterations with

batch size being 6 and learning rate being 5e-5.

3.1. Dataset

The Medical Segmentation Decathlon (MSD) spleen dataset1

contains 41 CT volumes. The number of 2D slices ranges

between [31,168]. We clip the intensities of all images into

[-125, 275] as EBP [8] suggests, and randomly divide the

dataset into two groups, 20 and 21 volumes, respectively.

We use cross-validation to evaluate the segmentation perfor-

mance.

Another public dataset used for evaluation is TMI spleen

dataset [16], consisting of two sub-datasets with 43 volumes

selected from The Cancer Imaging Archive (TCIA) [17] and

47 volumes from the Beyond The Cranial Vault (BTCV) seg-

mentation challenge [18]. Considering the thickness of the

spleen in TCIA subset ranged in [70,160] is much larger than

1http://medicaldecathlon.com/

Table 1. Comparison results on the MSD spleen dataset.

Methods DSC Max Min HD(mm) B-box

nnU-Net 96.10±2.30 97.89 84.42 1.79 N

RSTN 91.80±9.91 97.26 46.85 7.71 N

V-Net 93.18±5.88 97.32 59.95 4.32 Y

EBP 90.54±6.34 96.75 68.91 6.69 Y

LSM 92.75±2.32 96.29 85.91 3.35 N

Initialization 89.99±2.68 95.86 82.83 3.55 N

Our Model 96.61±1.30 98.20 92.13 1.13 N

Table 2. Comparison of the baseline and our models with

different loss terms combination.

Methods DSC Max Min HD(mm)

KP-FCNN 95.25±3.59 98.00 80.13 7.40

Ours+LDSC 95.55±3.14 98.01 81.46 5.02

Ours+LDSC+Lδ 96.02±2.33 97.95 86.87 2.79

Ours+LDSC+Lδ+LB 96.47±1.56 98.20 90.72 2.41

BTCV subset ranged in [16,38], we normalize the thickness

of all volumes to 80 after the coarse segmentation. We clip the

intensities of all images into [-50, 200], and randomly sepa-

rate the volumes into two groups, one contains 21 volumes

from TCIA and 24 volumes from BTCV, and the other one

contains the rest volumes. The cross-validation is also used

to evaluate the segmentation performance.

3.2. Results on MSD spleen dataset

Results comparison: We compare our model with several

SOTA segmentation methods, including fully automatic nnU-

Net [5], 2D RSTN [4], 3D V-Net [3], boundary-based EBP [8]

and LSM [9]. The comparison methods are re-implemented

by ourselves to obtain the cross-validation results. Specifi-

cally, we use the cascade 3D U-Net architecture for nnU-Net

and train five folds for each cross-validation. The settings

and parameters of nn-UNet are chosen automatically, and the

fastest mode is used for testing. The V-Net is a patch-based

model following the settings suggested in [8]. We first nor-

malize all volumes along the long axis, and randomly crop

128× 128× 64 patches for training. We use the same coarse

segmentation for LSM and our model. As can be seen from

Table 1, our model achieves the best segmentation accuracy in

terms of DSC and HD. The DSC of our model surpasses LSM

by more than 3% with the same coarse segmentation, which

demonstrates the effectiveness of our nonlocal deformable

network. One group of typical visual comparison results are

displayed on the first row of Fig. 3.

Ablation Analysis: We further discuss the contribution

of our network architecture and the three loss terms. We

use the KP-FCNN network [12] as the baseline, and train our

network with different combinations of loss functions on the

MSD spleen dataset. To understand the model, we list the

results without the post-processing in Table 2. By compar-

ing the results in the first two rows, our model gives a better

learning ability than KP-FCNN due to the nonlocal module,

which helps the network to incorporate the global features.



(a) nnU-Net (b) RSTN (c) V-Net (d) EBP (e) LSM (f) Our model

Fig. 3. Visual comparison between our model and SOTA methods, where green, red and yellow color represent the prediction,

ground truth and overlapped region, respectively. Here, the 1st and 2nd row are selected from MSD and TMI datasets.

Table 3. Comparison results on the TMI spleen dataset in terms of DSC, mean 95% HD(mm), parameters and run time(m).

Methods
TMI dataset TCIA subset BTCV subset

DSC HD parameters Time(m) DSC HD DSC HD

nnU-Net 94.46±10.83 5.56 6.2e7 31.92 96.07±3.18 2.93 92.99±14.60 7.96

RSTN 93.50±10.93 5.75 8.1e7 1.1 95.79±7.31 4.56 91.41±13.15 6.84

V-Net 90.64±7.51 18.91 1.9e7 0.2 92.10±6.30 21.67 89.31±8.31 16.38

EBP 88.16±11.46 13.20 2.3e6 72.1 90.68±10.12 15.27 85.90±12.20 11.35

LSM 89.79±8.30 11.64 1.6e7 5.7 91.32±5.54 13.50 88.39±10.05 9.94

Initialization 89.19±7.87 13.47 1.5e7 0.1 91.00±4.21 15.02 87.54±12.06 9.89

Our Model 94.54±5.63 3.78 3.4e6 1.1 96.41±2.53 2.98 92.83±7.01 4.52

The last three rows demonstrate the effectiveness of different

loss terms. By adding the smooth ℓ1 term, the performance

increases about 0.5% in terms of DSC, and the HD decreases

from 5.02 to 2.79. After introducing the boundary term LB ,

the DSC increases another 0.4% such that the boundary term

works as supplementary to the region terms. The combined

three term loss function leads to the best segmentation accu-

racy.

3.3. Results on TMI spleen dataset

We also perform the segmentation methods on the TMI spleen

dataset, where DSC, HD, the number of parameters and in-

ference time are shown in Table 3. As can be seen, our model

produces promising segmentation results better than all com-

parative methods. Especially, compared to the other two

boundary-based methods EBP and LSM, our model not only

shows a significant superiority on segmentation accuracy, but

also saves lot of computational time. The established nnU-

Net incorporates the data augmentation techniques, including

cropping data to the region of nonzero value, elastic defor-

mations, mirroring and so on. What is more, the nnU-Net

ensembles the predictions based on five well trained models

to obtain high accuracy. Even so, our model gives the highest

values of DSC and HD among all methods. More importantly,

the proposed model consumes much less inference time than

nnU-Net, saving about 30 minutes, which is also an important

issue for real-world applications. Last but not the least, our

model is shown to be more stable than others, which can be

seen by the standard deviation on the TMI dataset. We also

present a typical visual comparison results on the second row

of Fig. 3.

4. CONCLUSION

In this paper, we promoted a cascade segmentation pipeline

based on a nonlocal deformable convolutional neural network

for realizing 3D organ segmentation. Our model learned the

signed distance function to identify the boundary of the target,

which can be performed as a refinement technique for the ex-

isting segmentation methods. Numerical experiments showed

that our model gives promising segmentation results, much

better than the existing 3D boundary learning approaches. Be-

sides, the ablation study demonstrates the effectiveness of our

nonlocal module and the multi-level structural loss function.

This work only focused on the spleen segmentation. Our fu-

ture work is to investigate its performance on more challeng-

ing segmentation tasks such as pancreas, gallbladder etc.
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