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ABSTRACT

Deep neural networks have achieved great success in medical image segmentation problems such as
liver, kidney, the accuracy of which already exceeds the human level. However, small organ segmenta-
tion (e.g., pancreas) is still a challenging task. To tackle such problems, extracting and aggregating multi-
scale robust features become essentially important. In this paper, we develop a multi-level structural
loss by integrating the region, boundary, and pixel-wise information to supervise feature fusion and pre-
cise segmentation. The novel pixel-wise term can provide information complementary to the region and
boundary loss, which helps to discover more local information from the image. We further develop a
multi-branch network with a saliency guidance module to better aggregate the three levels of features.
The coarse-to-fine segmentation architecture is adopted to use the prediction on the coarse stage to ob-
tain the bounding box for the fine stage. Comprehensive evaluations are performed on three benchmark
datasets, i.e., the NIH pancreas, ISICDM pancreas, and MSD spleen dataset, showing that our models can
achieve significant increases in segmentation accuracy compared to several state-of-the-art pancreas and
spleen segmentation methods. Furthermore, the ablation study demonstrates the multi-level structural

features help both the training stability and the convergence of the coarse-to-fine approach.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Image segmentation is a central theme in medical image pro-
cessing, which separates image volume into sub-regions according
to biological structure and function. Various methods have been
developed for image segmentation such as region growing[1], clus-
tering [2], graph cuts method [3] and model-based [4,5]. How-
ever, segmenting a small organ from CT scans is still challeng-
ing due to the high variabilities in shape, size, and location. The
pancreas is a typical representative of small organs in the hu-
man body. The traditional multi-atlas registration-based segmenta-
tion [6] can achieve the segmentation accuracy on the liver, kid-
neys, and spleen over 90%, while the segmentation accuracy on
the pancreas is only around 70%. Thanks to the great progress
in deep learning, especially convolutional neural networks (CNN)
such as FCN [7], U-Net [8] and Deeplab [9], the accuracy of medi-
cal image segmentation has been improved significantly during the
last several years. However, it remains difficult to precisely seg-
ment boundaries due to ambiguity in discriminating pixels around
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boundaries. Thus, multi-scale features [10,11] and efficient feature
fusion methods [11-13] are intensively studied to assist precise
segmentation. Xie and Tu [10] developed an end-to-end edge de-
tection system to automatically learn the type of rich hierarchical
features. Chen et al. [14] proposed an efficient deep contour-aware
network for accurate gland segmentation under a unified multi-
task learning framework. Shen et al. [15] proposed a multi-task full
convolutional network architecture to jointly learn to predict tu-
mor regions and tumor boundaries. Xu et al. [16] designed a deep
multichannel framework to automatically exploit and fuse com-
plex information including regional, location, and boundary cues.
Duan et al. [17] estimated the probability maps over the region and
edge locations using a fully convolutional network, which was in-
corporated in a single nested level set optimization framework to
achieve multi-region segmentation. Pang et al. [18] introduced the
boundary attention module to bridge the semantic gap between
multi-level features. Zhang and Pang [19] identified the edge and
saliency information for segmentation and presented the cross-
guidance network. Deep edge priors have also been introduced
into the networks to precisely integrate the edge information for
dealing with image denoising, super-resolution and segmentation
tasks [20-22]. Recently, Zhou et al. [23] developed a novel multi-
label learning network for RGB-thermal urban scene semantic seg-
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mentation, which trained the network in terms of semantic, binary,
and boundary characteristics. Zhou et al. [24] proposed a crossflow
and cross-scale adaptive fusion network, and used the purification
loss to precisely learn the boundaries and details of the objects. Be-
sides, regularization methods have been introduced into CNNs to
make use of prior information of image edges such as total vari-
ation regularization [25] and graph total variation regularization
[26], which was integrated into the architecture of CNNs through
the softmax activation functions. The aforementioned approaches
improve the segmentation accuracy by either adopting multiple
task fashion or introducing extra network structures to optimize
the context feature extraction process. Nevertheless, the design of
the loss function used to measure the similarities between the pre-
dictions and ground truths also plays an important role in precise
segmentation.

Suppose a 2D image U ¢ X, where the intensity at a speci-
fied position is denoted as U(x,y) and the label data V € X shares
the same dimension with U with X being some topological vector
space. Then the feed-forward CNNs trained for image segmentation
tasks can be formally expressed as the following bi-level optimiza-
tion problem

mgin E(Pg, V),
st. Py =argmin F(P;U,0), (1
PcX

where the upper-level minimization is known as the loss function
E : X x X - R mapping real-valued variables into real numbers,
and the lower-level minimization denotes a CNN model F(;; U, 6)
with Py as its output. The loss function is to measure the differ-
ence between Py, which is the minimizer of F(;;U,0), and the
labeled ground truth, which has a similar function as the ob-
jective functional in variational models. The active contour (AC)
model proposed by Chan and Vese [5] has achieved great success
in foreground-background segmentation by deploying efficient pri-
ors on image boundary, to minimize

Eac(cy.C3,T) = - Length(T) + v - Area(inside(T))
Fh [ UGy - afdxdy
inside (T)

+ A / U(x, ) — ca[2dxdy. (2)
outside(T")

where T is a closed curve, ¢, ¢; are the means of image U(x, y)
inside and outside the curve T, the term Length(T) denotes the
length of T, the term Area(I') denotes the area inside T, and wu,
V, A1, Ay are positive parameters. Since then, many variants of
the Chan-Vese model have been studied. For example, Yang et al.
[27] proposed a high-order weighted variational model for im-
age segmentation, the weights of which are automatically esti-
mated based on edge information of the observed images. Wu et al.
[28] introduced an effective regularization term, which combines
an adaptive weighted matrix to enhance the diffusion along the
tangent direction of the edge. Indeed, the AC model minimizes not
only the distance between the solution and the input image, but
also the length and area of the interfaces and foreground region,
which has been used as the loss function for deep neural networks
to discover better boundaries. Hu et al. [29] used the active con-
tour model to help the deep network to learn information about
the salient object. Marcos et al. [30] presented deep structured ac-
tive contours to integrate priors and constraints, e.g., continuous
boundaries, smooth edges and sharp corners, into the segmenta-
tion process. Chen et al. [31] proposed a loss function inspired by
the general idea of the active contour model building in region
and length terms for bop-medical image segmentation. Kim et al.
[32] introduced a novel loss function to utilize spatial correlation
in ground truth based on the level set formulation. Hatamizadeh
et al. [33] introduced a deep active lesion segmentation model by

making use of the precise boundary delineation abilities of the ac-
tive contour model. Zhang et al. [34] integrated the convexified CV
model [35] into the CNN structure to generate a more accurate
segmentation of contours. Kim and Ye [36] proposed a new loss
function based on the active contour model (2) for deep networks
in semi-supervised and unsupervised manners. Ma, He and Yang
[37] proposed a level set function regression network by minimiz-
ing the geodesic active contour energy in an end-to-end manner.
However, the aforementioned losses may lose their effect for small
organ segmentation, because less boundary information is avail-
able. In addition, we summarize the loss functions used for medi-
cal segmentation in Table 1, which can be divided into region loss,
boundary loss, and their combination.

Aiming to aggregate complementary information from the im-
age, especially pixel-level information, we propose both the multi-
level structural loss function and a multi-level structural network
to encode the multi-scale contextual features from different per-
spectives for realizing better small organ segmentation. To be spe-
cific, our loss function can measure the similarities between the
prediction and ground truth from low-level pixel-wise classifica-
tion to mid-level edge localization and to high-level region seg-
mentation. In what follows, we develop a novel multi-level struc-
tural network, which incorporates three branches used to learn
different features and uses a saliency guidance module to lever-
age the multi-scale information for small organ segmentation. We
adopt the coarse-to-fine segmentation framework for automatic
segmentation. Both coarse and fine models employ ResNet18 as the
backbone and apply atrous spatial pyramid pooling (ASPP) module
to facilitate multi-scale feature extraction and fusion. Our segmen-
tation model is evaluated on two pancreas segmentation datasets,
i.e., the NIH dataset [56] and the ISICDM dataset!, and the spleen
subset of the Medical Segmentation Decathlon (MSD) dataset?, By
comparing with several state-of-the-art 2D and 3D learning-based
segmentation approaches, our model is shown with better accu-
racy and higher efficiency.

The rest of the paper is organized as follows. Section 2 de-
scribes the details of our approach including the problem formu-
lation and network architecture. We develop a multi-heads CNN
to better fuse the multi-level structural features in Section 3.
Section 4 is dedicated to providing the implementation details of
our model. Evaluations and experimental results are presented in
Section 5. Finally, we conclude the paper and discuss possible fu-
ture works in Section 6.

2. Our segmentation framework
2.1. Our minimization problem

Considering that the image function can be measured on the
region, contour and pixel-level, we propose the following multi-
level structural loss to consist of complementary information for
small organ or unbalanced segmentation

mgin Er(Pg. V) + Eg(Py, V) + Ep(Py, V), (3)

where the terms Eg(Py,V), Eg(Py.V), and Ep(Py, V) measure the
differences between the prediction P and the ground truth V in
the region, boundary, and pixel-wise level, respectively. As shown
in Fig. 1, the first term can describe the overall appearance of the
foreground, the other two terms can identify differences on bound-
aries. Unlike most existing loss functions focusing on the regional
and edge information, our novel pixel-wise term penalizes on the

! http://www.imagecomputing.org/2018/challenge_CN.html
2 http://medicaldecathlon.com/
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Table 1
The loss functions used for medical image segmentation.

Category Loss function Mlustration
Region loss DSC [38]
ToU [39]

Tversky loss[40]

Generalized DSC [41]

Focal Tversky loss [42]
Asymmetric similarity loss [43]
Penalty loss [44]

weighted CE [8]

TopK loss [45]

Focal loss [46]

DPCE loss [47]

CE+DSC [48]

Focal loss+DSC [49]

HD loss [50]

Boundary loss [51]

SDF regression[52]

Elastic interaction-based loss[53]
Contour DSC[54]

Geometrically constrained Loss[55]
Level set loss [17]

DSC + SDF regression [37]

CE + CE [15]

Boundary loss

Region loss &
Boundary loss

Training the overlap region

Training the intersection-over-union

Introducing a weight to balance the true negative and false positive cases based on DSC loss
Training the overlap regions of both foreground and background.

Combining the idea of focal loss and Tversky loss.

Introducing a weighting paramerter based on the Tversky loss

Generalized Dice coefficient with a term for penalizing false negative and false positive
Cross entropy with class-balancing weight

Concentrating on the hard samples by dropping out the easy samples

Using a modulating factor to control the importance of easy samples based on cross entropy
Using the distance map as the weights for cross entropy

Combining cross entropy and DSC loss

Combining focal loss and DSC loss

Weighted integrals over the interface between the regions

Signed weighted integrals over the regions

Regressing the signed distance function

The elastic interaction energy between the boundary of the regions

Measuring the distance between the surfaces by contour DSC

A geometrically constrained objective function using prior contour knowledge

Using the nested level set to represent the region and edge locations

Learning the signed distance function and penalizing the overlap region

Using cross entropy to learn the region and boundary predictions

lboundary:

Fig. 1. Illustration of the multi-level structural information from global to local scopes, where the affinity between the prediction (red boundary) and the ground truth (blue
boundary) can be depicted by region, boundary and pixel-wise measurements. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

uncertain points to capture the local features ignored by the re-
gion and boundary terms. By leveraging the three-level features,
our method can ideally identify the structural information during
the learning process and produce more desirable boundaries.

2.1.1. Region loss

The region term is widely used in segmentation tasks, which
measures the overlap between the region predicted by the net-
works and the corresponding ground truth; see the blue region in
Fig. 1 (a). There are various choices of the regional term, where we
focus on binary segmentation for easy illustration. Suppose €2 is a
bounded open subset of R™. Both the binary cross entropy (BCE)

min — Volog(Py) — 1-V)olog(1—-Py), 4
i XQ: g(Py XQ:( g o (4)
and Dice loss [38]

; 2aoVoPb
RS v ®)

are commonly used to train the CNN models for medical image
segmentation tasks, where @ denotes the pixel-wise multiplication.
The cross entropy aims to predict every pixel to find the target
region, while the Dice loss cares about the overlap region. Many
variants of BCE and Dice loss are studied for medical segmenta-
tion. Ronneberge et al. [8] introduced a class-balancing weight for
cross entropy, which used the weight to balance the number of

positive samples and negative samples. Caliva et al. [47] used the
distance map as the weights for cross entropy, which focused on
hard-to-segment boundary regions. The TopK loss [45] also con-
centrates on the hard samples by dropping out the easy samples.
Lin et al. [46] proposed the focal loss for object detection first
and then used in image segmentation, which introduced a mod-
ulating factor to control the importance of easy samples. The loU
loss [39] is designed similarly to Dice loss, where the intersection-
over-union was minimized in deep neural networks. Sudre et al.
[41] proposed the generalized Dice loss by minimizing the overlap
regions of both foreground and background. Yang, Kweon and Kim
[44] introduced a novel loss function by adding a term for penaliz-
ing false negative and false positive to generalized Dice coefficient.
Salehi [40] presented the Tversky loss by introducing a weight to
balance the true negative and false positive cases. Hashemi et al.
[43] proposed the Asymmetric similarity loss based on the Tver-
sky loss to achieve a better tradeoff between precision and recall.
Abraham et al. [42] proposed a focal Tversky loss by combining
the idea of focal loss and Tversky loss. The compound losses have
also been implemented for segmentation such as the combination
of Dice and cross entropy loss for nnU-Net [48], the combination
of Dice and focal loss for anatomyNet [49], etc.

2.1.2. Boundary loss
For small organ segmentation and unbalanced segmentation,
the region losses, e.g., Dice and CE, treat all the samples and
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classes on an equal footing, which results in unstable training and
predicted boundaries biased towards the majority classes. Kervadec
et al.[51] proposed a boundary loss to use integrals over the inter-
face between the regions instead of over regions, which is formu-
lated as a distance metric on the space of contours (see Fig. 1 (b)
for a visual illustration)

i P [} 6
1Tb1n29:9®, (6)

where @ is the signed distance function defined on the ground
truth

—inf ||x —y|l2. if xeD;
yedD
O(x) = 0, if xedD; (7)
inif lx —yll2, if xe Q\D;
yedD

with D being the object region and 9D being the interface. To re-
duce the Hausdorff distance between the predicted boundary and
the target boundary, Karimi and Septimiu [50] used the following
differentiable Hausdorff distance to train CNNs

mgin %:(PO =V)* © (Viry + Pj prm)- (8)

where Vpry and Ppry, denote the distance transform maps of the
ground truth V and prediction P with the form
— inf ||x — i ;

Vo) = { it lx-ylo.  if xeD:

, otherwise.
Xue et al. [52] proposed to use CNNs to regress the signed distance
function of ground truth. Moltz et al. [54] developed the contour
Dice coefficient to quantify how much a surface of the predicted
segmentation to the reference segmentation. Lan, Xiang and Zhang
[53] proposed an elastic interaction-based loss function by mini-
mizing the elastic energy of the curve for long thin structures. Az-
zopardi et al. [55] introduced geometrically constrained objective
function which is constructed and tuned towards the segmentation
of carotid structures using prior knowledge.

2.1.3. Pixel-wise loss

However, the value of the signed distance function (7) tends
to zero as the pixels approach the boundaries, which results in
inaccurate segmentation near organ boundaries. It is well-known
boundaries depict important high-level details of the target. There-
fore, we introduce the pixel-wise loss term to enhance the regular-
ization effect on the pixel-level predictions. Bansal et al. [57] pro-
posed the efficient PixelNet showing that a small number of pix-
els sampling from per image are sufficient for learning to achieve

satisfactory segmentation performance. The merit of PixelNet is
twofold, sampling only requires on-demand computation and of-
fers the flexibility to allow the network to focus on rare samples.
Kirillov et al. [58] presented the PointRend neural network mod-
ule to perform point-based segmentation predictions at adaptively
selected locations based on an iterative subdivision algorithm,
where image segmentation is viewed as a rendering problem. The
PointRend works as post-processing of CNN models, which can
output high-resolution predictions over a finer grid to obtain sharp
boundaries between objects. Apparently learning pixel-level infor-
mation is important for both segmentation accuracy and model
efficiency, especially when a coarse segmentation is already ob-
tained.

2.2. Our coarse-to-fine model

We aim to employ 2D networks for segmenting 3D medical im-
ages such as the pancreas and spleen, from CT abdominal scans.
For such a small organ segmentation problem, the coarse-to-fine
approach is a good choice, which uses the prediction of the coarse
stage to shrink the input for the fine stage [59,60].

We denote a scanned 3D image as U with the size of W x H x L,
where W, H, and L are the number of slices along with the coro-
nal, sagittal, and axial view, respectively. Then we slice each vol-
ume into 2D slices along each axis, which are denoted as U%W
(w=1,...,W), USh (h=1,2,...,H), and UA! (1=1,2,...,L), re-
spectively. Now, we take the axial view as an example to illustrate
our coarse-to-fine model. The coarse model predicts a coarse seg-
mentation from the input data, which can be formulated as

P‘,j(" = Fc (UM 6c).

The merit of the coarse segmentation is that we can not only es-
timate a bounding box based on the segmentation but also gen-
erate a good initialization for the fine model. Firstly, we obtain
a bounding box based on the binary segmentation 13?*1 = ]I(P;‘él >
0.5), which is a minimal 2D bounding box containing all nonzero
pixels of 132” and a K-pixel wide margin. Then, we define a crop
function C[; f’é‘l] to crop the bounding-box region from a given im-
age with the same size as P’:‘Cl On the other hand, followed [60],
we introduce the saliency transformation module to generate an
image with attention as the initialization to the fine model

I = Fs(P)': 65),

O

where Fs(-; 6s) is the transformation function parameterized by 6s.
We further use the fine model to estimate the final segmentation

Fig. 2. lllustration of the fine segmentation model using the multi-level structural loss, where 1 x 1 stands for the convolution with kernel 1. Although a 3-slice unit is used

in the network, we only display one slice for ease of understanding.
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Fig. 3. A typical visual example of the selection procedure of the uncertain pixel set S on the final logits layer.

such as

Pyl = F el o UM P c[ur; PR 0), (9)
where F(;;60) is our segmentation function parameterized by 6.
Note that we concatenate the original image UA! into the input
of the fine model to enhance the shallow features such as edges,
lines and corners. It is not difficult to find out that the coarse
and fine models are jointly together through the saliency trans-
formation. Our final segmentation is the binary image obtained by
PAL=(PA! > 0.5).

2.3. Network architecture

For the task of small organ segmentation, we build up both
coarse and fine models by carrying forward the cascade blocks and
the ASPP module in DeepLab-v3 to go deeper with atrous convolu-
tion and pyramid pooling. For illustration purposes, we go through
the network architecture of our fine model, which is displayed in
Fig. 2. We employ ResNet-18 as our backbone network, which con-
tains four basic blocks. The input of the fine model contains both
saliency map and original image to provide a good initialization
and more image features. Before entering blockl, we remove the
downsampling operation in the first convolution layer to keep the
information inside the input. We use the atrous convolution with
rate=2 and rate=4 to replace the consecutive striding in block3
and block4, respectively. The motivations behind these operations
are to preserve more local information and enlarge the receptive
field, which are important for the small target. The ASPP module
can effectively capture multi-scale contextual information by in-
tegrating features obtained with different atrous rates. By further
passing the features through two 1 x 1 convolutional layers, we
obtain the final logits Ly, which is used to generate the prediction
by upsampling using the bilinear interpolation. For the coarse net-
work, the only difference is we keep the striding in the first con-
volution layer to reduce computational cost. Lastly, for the saliency
transformation, we simply apply two size-preserved convolutions
with filter size 5 x 5 and 3 x 3, respectively.

2.4. Loss function

We use the Dice loss and multi-level structural loss (3) for the
coarse and fine model, respectively. As illustrated in Fig. 2, the re-
gion and boundary term in the multi-level loss is chosen as Dice
and boundary loss in [51], which are evaluated to be a powerful
combination for small organ segmentation [61]. Because the spatial
redundancy limits the information learned by convolutional net-
works for general pixel-level prediction problems, the final predic-
tion P, of the networks tends to over smooth the organ region and
under sample organ boundary. Thus, we define the pixel-wise loss
term on the final logits layer Ly (see Fig. 2 for illustration), which is
4x coarser than the image grid. In particular, we define an uncer-
tain pixel set S on the logits layer by involving pixels with the pre-
dicted probabilities closest to 0.5, which locate near the boundaries
and are most difficult to segment. By minimizing the binary cross

entropy on the uncertain set S, we obtain the following pixel-wise
contextual loss

Ep(Ly.V) = — ) Volog(Ly) ©Zs(Ly)
Q

=Y (1-V)yolog(l-Ly) 0 Zs(Ly), (10)
Q

with Zs(Ly) being the indicator function defined as

1. for xeS;

Is(Ly) = {O, for x¢S.
The selection of the uncertain pixel set is realized in a three-step
strategy similar to [58]. To obtain a sharp and accurate boundary,
we first encrypt the pixels of the final logits layer L, by randomly
sampling kN pixels with k = 3 followed a uniform distribution to
generate enough pixels with uncertainty. Next, we estimate the
probabilities on the kN pixels by interpolating the original pre-
diction. Finally, we choose mN pixels with m =0.75 of the high-
est uncertainty and (1 —m)N random pixels to increase the gen-
eralization of the data. Thus, our uncertain points set contains N
points in total. From the example in Fig. 3, we can find out that
the uncertain pixels are also located near the boundaries. Although
the boundary loss can improve accuracy by minimizing the dif-
ferences between the prediction and ground-truth on the bound-
ary, it treats the boundary as a whole by missing the pixel-level
consideration. We introduce the pixel-wise loss on a coarse seg-
mentation and gradually raise the regularization to allow the net-
works to learn more pixel-level information. By allocating the pix-
els on a fine grid, our pixel-wise loss term can not only promote
the segmentation accuracy on uncertain pixels, but also provide
smoother boundaries, which works complementary to the bound-
ary loss. Moreover, our pixel-wise loss term is flexible to combine
with other region and boundary loss terms and implement to any
existing deep network architecture.

Per the previous discussion, we jointly minimize the following
energy functional in the training stage to realize efficient multi-
level feature fusion

Ly (e, 8) = 01Eg(Py, V) + @2[Er (Py, V)
+aEg(Py, V) + BEp(Ly, V)], (11)

where w1, w,, o, B € R are parameters to balance the contributions
of different terms.

3. Multi-level structural network

Inspired by the success of the multi-task models [19,37], we de-
velop a novel network working together with our multi-level struc-
tural loss to learn and fuse image features. As shown in Fig. 4, our
multi-level structural network uses multiple branches to learn fea-
tures from region-level to edge-level and pixel-wise level, respec-
tively, and adopts a transformer structure to capture long-range in-
formation from the carefully chosen points. All three branches are
processed in parallel and fused together by a novel saliency guid-
ance module, which can leverage the multi-level features and out-
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Fig. 4. lllustration of our multi-level structural network. Although a 3-slice unit is used in the network, we only display one slice for ease of understanding.

put the final prediction. In the following, we explain the branches
one by one in details.

3.1. The region branch

The region branch adopts ASPP module as mentioned above,
which can capture image context at multiple scales and outputs
the binary segmentation prediction P{®". During the training, we
use the Dice loss to penalize the regional prediction.

3.2. The boundary branch

We implement another ASPP module as the boundary branch in
favor of its ability in resampling features at different scales. Unlike
most boundary prediction models, which outputs a binary map
with 1 indicating the edges and O otherwise, ours learns a signed
distance map defined by (7). As in the previous step, we define the
boundary loss function as the combination of boundary loss and an
¢> norm of the signed distance map, which gives

1
Eg(l)l(:'oumiary7 V) _ EB (0 (PZoundary)‘ V) n H Z ”Pgoundary _ (—CI)) ”2’
(12)

where the o (-) represents the sigmoid function used to transform
the signed distance map into the segmentation prediction. Note
that the boundary prediction onu”d“ry is positive inside the target
and negative outside the target. Thus, there is a ‘-’ (minus) sign
before .

3.3. The pixel branch

For the pixel branch, we use a non-local transformer module
to learn one-dimensional pixel-wise features, which not only lever-
ages local feature and global context, but also emphasizes the char-
acteristic by the self-attention mechanism. The pixel branch di-
rectly extracts features from the ResBlockl of the backbone to en-
hance the low-level features. We estimate the position of the un-
certain points based on the region prediction, where the uncertain
points selection method is the same as previous except for the en-
cryption. In particular, we choose the uncertain points based on

the regular points rather than encrypted points to facilitate the in-
tegration with the saliency guidance module. PointRend [58] used
the shared MLPs to predict pixel-wise segmentation, which can
only extract local features. Our pixel branch adopts the transformer
architecture to catch the non-local features. As we can see from
the green box in Fig. 4, our pixel branch contains a transformer
and a shared MLP to leverage the local and nonlocal features for
final prediction. The transformer consists of a multi-headed self-
attention block similar to [62] followed by a point-wise MLP layer
(1 x 1 convolution). Then the ReLu activation function is applied
after the point-wise MLP layers. We also incorporate the residual
connections. As discussed, the binary cross entropy is used as the
loss function for the pixel branch to penalize the predictions of the
selected points ij’”“’l.

3.4. The multi-level saliency guidance module

Finally, we employ a multi-level saliency guidance module to
fuse different features together for final predictions. The features
before the prediction outputted by all branches are all of 256 chan-
nels. We then upsample the features of the region and boundary
branch to the original size of the input images. The features of
the uncertain points are one-dimensional data of 256 channels. We
first generate the pixel features with the same size as the region
and boundary level features by filling with zero values, and then
replace the position of the uncertain points by learned features,
which means only the selected uncertain positions are of nonzero
values. In our multi-level saliency guidance module, both bound-
ary features and pixel features are element-wise summarized to-
gether and two depth-wise 1 x 1 convolutions are adopted to ex-
tract the mutual relation between the boundary and pixel features
to generate two weight maps, which are used to multiply with the
boundary and pixel features to obtain the saliency maps, respec-
tively. Afterward, the region features are multiplied with the two
saliency maps individually, which are then concatenated together.
By two 1 x 1 convolutions, we obtain the final prediction Pgusm”.
We use the regional Dice loss to train the multi-level saliency guid-
ance module.

We use the aforementioned multi-level structural loss to learn
plentiful features, where the boundary loss can alleviate the im-
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Fig. 5. The line chart of the DSC loss during training. When adding our pixel-wise
loss, the DSC loss increase first, but decrease soon in the rest epochs.

balance issue on edge prediction and the pixel loss supervising on
selected points can remedy local information. To be specific, the
loss function used to train our multi-level structural network can
be described as follows:

Lyn (O, 0) = 01 Er(Py,, V) + o[ Eg(PE, V) + oE§ (P4 V)
+ BEp(LE™ V) 1 y Eg(P/*™" V)], (13)

where w1, w,, o, B,y € R are parameters to balance the contribu-
tions of different branches.

4. Implementation details

All our experiments are implemented with Pytorch on NVIDIA
Titan RTX.

4.1. Network training and testing

4.1.1. The training phase

We jointly train the coarse and fine models in the training
stage. Followed [63], we use the three-step optimization strategy,
which can guarantee the convergence of the coarse-to-fine ap-
proach. Firstly, we use the ground truth to generate the bound-
ing box and optimize the coarse and fine model separately. Sec-
ondly, we still use the ground truth bounding box, but jointly opti-
mize the coarse and fine models through the saliency transforma-
tion module. Finally, we directly optimize the coarse-to-fine net-
work without using the ground truth bounding box. The parame-
ters w; and w; in our loss function (13) are selected as w; = 0.3,
w, = 2/3 to balance the contributes of the coarse and fine mod-
els. For the multi-level structural loss model, the parameter « is
initialized as o = 0 and adjusted dynamically such that « is grad-
ually increased by 0.2 each epoch until reaching o = 1. Qur pixel-
wise loss is considered when the predictions are with certain ac-
curacies to guarantee the convergence of the entire network. Thus,
the value of 8 is set to § =0 during the first 12 epochs and then
increased to § =1 for the remaining epochs. The curves of DSC
loss for both coarse and fine models along three axes views are
plotted in Fig. 5. As can be seen, the value of DSC converges as
the number of epochs increases. There are two obvious vibrations
for both coarse and fine models. At the 8th epoch, we start to use
the coarse segmentation to draw the bounding box instead of the
ground truth bounding box, which results in the rise of the val-
ues of DSC for both coarse and fine models. Another one is the
12th epoch, where we introduce the pixel-wise loss into our loss
function. However, after several epochs, the value of DSC decreases
to much lower values, which demonstrates the pixel-wise loss can
help the convergence of the proposed model. In the training, we
adopt an early-stopping scheme by stopping training when there
is no improvement in the performance on the validation set.

On the other hand, the parameter setting for our multi-level
structural network is given in a similar way. The parameter o

is initialized as o =1 since the region branch and the bound-
ary branch are trained separately. The value of 8 and y is set as
=y =0 for the first 12 epochs and then increased to f =y =1
for remaining epochs, which can guarantee the convergence of the
pixel branch and the final prediction.

4.1.2. The testing phase

Different from the training process, our testing stage is imple-
mented in an iterative procedure to progressively refine the output.
The coarse segmentation, denoted as Py, is used to estimate the
bounding box and saliency map, both of which are the input for
the fine model. Then the fine model iteratively updates the bound-
ing box and saliency map until the convergence. We use both the
maximum iteration and the relative DSC to track the convergence,
where the RDSC is defined as

2[P Pl _
[Pe| + [Pea| —

with tol =0.99 in our experiments, and the maximum iteration
number is Tpax = 10. We sketch the algorithm in the testing as
Algorithm 1 .

RDSC(P:. Pyyq) = tol, (14)

Algorithm 1: The testing stage.
Input: CT image U, model F¢(-), Fs(-), F(-), t =0,
RDSC(Py. P) = 1;

Output: Segmentation P;
/* Coarse model */
fori=1,....Ldo

P! Fe(UR: 00);

lj.?*’ <« Fs(PhL: 6s);

Pyl < 1Py! > 0.5];
end
/* Fine model */
6 while RDSC(P;, P,1) < 0.99 or t < Tpay do

L N

7 for[=1,...,Ldo
s PAL — F(eli o UAL BM ] cluA P 6);
9 1;;11 « fs(Pﬂpﬁs) ;
10 Perll eH[P’:;rll >05];
1 end

55 2[P NPy .

sioel ell

12 RDSC(P{,Ppr]) <« |P[|+|Pt+1| N
13 t<—t+1;

14 end
15 return P < P ;.

Besides, for dealing with 3D medical image segmentation, we
usually train three models along with each view and fuse the seg-
mentation results by majority voting first. More details can be
found in [59,60].

4.2. Architecture setting

We first discuss how to modify the architecture of ResNet back-
bone to overcome its disadvantage in dealing with small organ
segmentation. The two down-sampling operations before the first
block can decrease the computational cost by sacrificing sharp de-
tails. Thanks to the coarse-to-fine structure of our model, the in-
puts of the fine model is already with the size less than 1/2 of
their original sizes. Thus, it is better to remove the down-sampling
operations for catching more detail information from the image.
Let out_stride denote the ratio of the input image spatial resolution
to output resolution. By removing either the max-pooling layer or
the striding in the first convolution or their combination, we can
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Table 2
Segmentation accuracy comparison with respect to different values of out_stride, where N/A denotes without the max-pooling layer.
convl max-pool blockl  block2  block3  block4 DSC Time per epoch Parameters FLOPs

atrous 1 1 1 1 2 4 84.51% 492s 9.2x107 1.34x10™
out_stride 2 4 4 8 8 8
atrous 1 N/A 1 1 2 4 85.49% 496s 9.2x107 1.49x10"
out_stride 2 N/A 2 4 4 4
atrous 1 1 1 1 2 4 85.83% 497s 9.2x107 1.49x 10"
out_stride 1 2 2 4 4 4
atrous 1 N/A 1 1 2 4 85.69% 607s 9.2x107 2.07x10™
out_stride 1 N/A 1 2 2 2

obtain different out_stride. We compare the segmentation accuracy,
training time per epoch and FLOPs (multiply-adds) with respect
to the different out_stride in Table 2. As can be seen, the optimal
choice is out_stride = 4 obtained by removing the down-sampling
in the first convolution layer and keeping the max-pooling layer,
for which both FLOPs and training time are close to the baseline
model.

4.3. Datasets and settings

4.3.1. NIH pancreas dataset

The NIH pancreas dataset contains 82 contrast-enhanced ab-
dominal CT volumes, the resolutions of which are W x H x L vol-
ume with W = H =512 and L € [181, 466]. Similar to [60], we di-
vide the dataset into 4 fixed folds, each of which contains almost
the same number of samples. We use cross-validation to evalu-
ate the segmentation performance, i.e., train the network on 3
out of 4 subsets and test it using the remaining one. In the data
pre-processing step, we clip the image intensities within [-100,
240]. For the NIH dataset, we independently train three 2D mod-
els along each axis, i.e, the coronal, sagittal, and axial view, and
then fuse the predictions in each iteration by the majority vot-
ing. The Resnet-18 pre-trained on Imagenet dataset is used to ini-
tialize the backbone and Adam is adopted as the optimizer. We
train about 20 epochs with the learning rate being le-5 for the
first 8 epochs and decreased by the rate of 1/2 in every 2 epochs.
When introducing the pixel-wise loss at the 12th epoch, we reas-
sign the learning rate to le-5 and also decrease it with the rate
of 1/2 every two epochs. The batch size is set to 1 with 3 slices
concatenated together. During the testing, although the segmenta-
tion accuracy keeps increasing in the iterative process, we stop it
to balance the trade-off between the computational efficiency and
segmentation accuracy, where the relative DSC tolerance is set to
tol = 0.99 and the maximal iteration number is fixed as Tmax = 10.
In both training and testing, we crop the pancreas region with a
margin of K = 20.

We use a similar training method for our multi-level struc-
tural network. During the first 12th epochs, we omit both pixel
branch and saliency guidance module. When the backbone of the
fine model converges, we start to train the pixel branch and the
saliency guidance module, which can ensure the uncertain points
being properly chosen. The total number of epochs is set as 25
for the multi-level structural network. The results of nnU-Net
[48] were re-implemented by ourselves, where the cascade 3D ar-
chitecture was chosen for small organ segmentation. We trained
five-fold for each cross-validation, and used the five networks ob-
tained from the training set as an ensemble to estimate the results,
whose pre-processing, post-processing and data augmentation all
follow the suggestion in the original paper.

4.3.2. ISICDM pancreas segmentation challenge dataset

The ISICDM pancreas segmentation challenge contains 36 thin
and 36 thick abdominal CT volumes. The scanning device is Def-
inition AS, Siemens, under standard pancreas scanning protocol.

The number of 2D slices ranges between [205,376] and [31,76] and
the thickness is 1 mm and 3 mm for the thin and thick dataset,
respectively. Following the cross-validation strategy, we split both
datasets into 6 subsets, each subset of which contains 6 volumes.
We use two models to process thin and thick datasets, both of
which are trained on 5 out of 6 subsets and tested on the remain-
ing subset. For the thin dataset, we also fuse the three 2D mod-
els along each axis as our final model. For the thick dataset, we
use the axial view model because too few slices are contained in
coronal and sagittal views resulting in bad predictions. The weights
of both thin and thick models are pre-trained on the NIH dataset.
We re-implemented both RSTN [60] and nnU-Net [48], where RSTN
was trained using the same data pre-processing and pre-trained on
the NIH dataset for better performance. For nnU-Net, we used the
3D cascade architecture and 3D full resolution architecture to pro-
cess ISICDM thin and thick dataset, respectively. We also trained
five nnU-Net models for each cross-validation with the same pre-
processing, post-processing and data augmentation as the original

paper.

4.3.3. Medical segmentation decathlon (MSD) dataset

The third one is the Medical Segmentation Decathlon (MSD)
spleen dataset, which contains 41 CT volumes. The number of 2D
slices ranges between [31,168]. Following the setting suggested in
[64], we first clip the intensities of all images into [-125, 275]
and randomly divide the dataset into two groups, one group con-
taining 21 volumes used for training and the other one with 20
volumes used for testing. Similar to the experiment on the thick
dataset of the ISICDM, we implement the one-dimensional model
trained on the axial view for the prediction. Other settings are the
same as the NIH dataset. For a fair comparison, we re-implemented
the comparative models by ourselves. Following the settings of V-
Net in [64], we normalized the volumes, and used 128 x 128 x 64
patches in both training and testing. We also re-implemented the
3D cascade architecture of nnU-Net on the MSD spleen dataset
with five network models obtained on the training set.

4.4, Evaluation

We use both Dice Similarity Coefficient (DSC) and Hausdorff
distance (HD) to evaluate the performance of our model, which are
defined as
2|PnV]|
DSC= P, V)= ——,

V= v
and

dy (P, V) = max(maxmin ||x — y||?, maxmin || x — y||?),
xedP y oV yeadV xc IP

respectively. Theoretically, high DSC and low HD indicates better
segmentation accuracy.

5. Experimental results

In this section, we evaluate both multi-level structural loss
(MLL) model and multi-level structural network (MLN) model on
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Table 3
Segmentation comparison between our model and the state-of-the-arts on NIH pancreas dataset.
Bounding box ~ Method Year DSC Min Max Model type
with Liu et al.[65] 2018 86.70% = 3.57% 73.61% N/A 2-D
label Li et al.[66] 2020 87.57% + 3.26% 73.68% 93.40% 2-D
MLL model - 88.01%+£2.50% 79.80% 92.71% 2-D
MLN model - 87.87% +2.51% 80.57% 92.62% 2-D
w/o Zeng et al. [67] 2019  83.0%+5.85% 68.39% 90.31%  3-D
label Zhou et al. [68] 2018  84.59% +4.86% 69.62% 91.45%  3-D
nnU-Net [48] 2021 84.98% £ 5.67% 60.66% 91.68% 3-D
Xia et al. [69] 2018 84.63% +5.07% 61.58% 91.57% 2-D&3-D
Chen et al. [70] 2019 85.22% +4.07% 71.40% 91.36% 2-D&3-D
Zhou et al. [59] 2017 82.37% + 5.68% 62.43% 90.85% 2-D
RSTN [60] 2018 84.50% + 4.97% 62.81% 91.02% 2-D
Hu et al. [71] 2021  85.49%+4.77% 67.19%  91.64%  2-D
MLL model - 85.83% +4.37% 65.19% 91.71% 2-D
MLN model - 85.62% + 4.56% 64.20% 91.81% 2-D
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Fig. 6. The first two line charts are the line chart of DSC and relative DSC. The dotted lines are the iteration results of 4 cross validations, and the red line is the average
results. In the first 5 iterations, the DSC and relative DSC grow fast, and in the next 5 iterations, both the DSC and relative DSC continue growing, although the speed is slow
down. The last two line charts are the ablation analysis of the multi-level structural loss on the NIH dataset. (a) the plots of DSCs w.r.t. 4 cross validations; (b) the plots of
relative DSCs w.r.t. 4 cross validations; (c) the plots of DSCs w.r.t. different loss functions; (d) the plots of relative DSCs w.r.t. different loss functions. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

two pancreas segmentation datasets and a spleen dataset by com-
paring with several state-of-the-art segmentation approaches.

5.1. NIH pancreas dataset

5.1.1. Numerical analysis

A series of deep learning-based methods have been developed
for NIH pancreas segmentation. Some works directly use ground-
truth to generate a bounding box, while others use the multi-
model methods to learn a bounding box. For a fair comparison,
we train two kinds of models with or w/o label data for choos-
ing the bounding box. The numerical results are summarized in
Table 3, where our models surpass the state-of-the-art results for
both situations. In particular, with the same cropping as done in
[65], our method provides a significantly higher DSC value, which
can demonstrate the advantages of the efficiency of the network
structure and multi-level structural loss function. It demonstrates
that our network architecture can catch more information than
the encoder-decoder structure, which is useful for small organ seg-
mentation such as the pancreas. On the other hand, both MLL
and MLN models outperform the multi-model approaches, i.e., the
combined 2D and 3D volumetric fusion models [69], and two re-
cently published multi-model methods [48,71]. Most importantly,
our MLL model surpasses the 3D multi-model method nnU-Net
with an almost 1% higher DSC, which proves the effectiveness of
the multi-level structural loss in small organ segmentation. More-
over, both our multi-level structural loss model and multi-level
structural network gain a significant improvement (> 1%) over the
RSTN proposed by Yu et al. [60], which is also developed based on
the coarse-to-fine and saliency transformation architecture. More
specifically, we observe that our coarse model, without multi-level
structural loss, gives an average segmentation accuracy of 77.96%,
slightly lower than 78.23% in [60], which is built up with the FCN.

However, our fine model provides much better accuracy, which
achieves a DSC of 84.02% after the first iteration, much higher
than 82.73% in [60]. It clearly shows that both multi-level struc-
tural loss and network can help the backbone model to gain better
accuracy.

5.1.2. Convergence analysis

We further analyze the convergence of our multi-level struc-
tural loss model to verify its reliability. In particular, we track both
absolute DSC and relative DSC in the testing stage. As shown in
Fig. 6(a,b), both the absolute error and relative error of the four
cross-validations converge as the number of iteration keeps in-
creasing. Especially, we observe that both absolute and relative DSC
grow fast in the first 5 iterations and almost remain the same in
the last 5 iterations. Thus, it is reasonable to set Tmax = 10 in the
testing stage.

On the other hand, we compare the relative DSC of our model
and the two recurrent saliency transformation networks in Table 4.
As can be observed, our model with multi-level structural loss con-
verges fastest among all the compared methods, including both
the two recurrent saliency transformation networks and our model
with the reduced loss functions. As reported in [60], it requires
5.22 iteration on average to surpass the 0.99 relative DSC, while
our model only needs 4.29 iterations. This means that our model
can not only give predictions with higher DSC but also save certain
computational costs in processing the data. It is worthy to mention
that there are 2 out of 82 cases do not converge after 10 iterations
while all cases converge using our multi-level structural loss. Fur-
thermore, we list both DSC and HD versus iteration of our model
in Table 5 and 6, respectively. We observe that the pixel-wise loss
works well in improving the segmentation accuracy and the con-
vergence of the proposed model.
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Table 4
Convergence comparison between our model and the recurrent saliency transformation networks, which is measured by RDSC (%).
Method 1st iterate  2nd iterate  3rd iterate  5th iterate  10th iterate  Converged cases  Converged
RSTN [60] 0.9037 0.9637 0.9814 0.9908 0.9964 80/82 5.22 iters
Region loss 0.8970 0.9676 0.9826 0.9921 0.9970 80/82 4.85 iters
Region + boundary loss  0.8898 0.9652 0.9819 0.9918 0.9970 81/82 4.83 iters
MLL 0.8891 0.9662 0.9840 0.9939 0.9979 82/82 429 iters
Table 5
DSC (%) comparison of our model with respect to different level loss function versus iterations.
Method 1st iterate  2nd iterate  3rd iterate  5th iterate  10th iterate  Converged
Region loss 83.44% 84.45% 84.82% 85.09% 85.28% 85.20%
Region + boundary loss 83.54% 84.73% 85.16% 85.50% 85.74% 85.63%
MLL 84.02% 85.20% 85.58% 85.82% 85.89% 85.83%
Table 6
95% Hausdorff distance (mm) comparison of our model with respect to different level loss function versus iterations.
Method 1st iterate  2nd iterate  3rd iterate  5th iterate 10th iterate Converged
Region loss 6.678 6.367 6.177 6.003 5.543 5.645
Region + boundary loss  6.405 6.022 5.798 5.538 5.305 5.366
MLL 5.751 5.419 5.240 5.082 5.045 5.069

Fig. 7. A typical visual example of our multi-level structural loss. The selected boundary and pixels are displayed with the blue background. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

5.1.3. Ablation analysis

In what follows, we conduct a series of ablation studies to in-
vestigate the effectiveness of the region, boundary, and pixel-wise
terms. As shown in Fig. 6 (c), each term in our multi-level struc-
tural loss contributes to the final segmentation performance. By in-
troducing the boundary loss, the DSC raises by 0.43%. When intro-
ducing the pixel-wise loss, the DSC is further improved by 0.2%.
Simultaneously, the Hausdorff distance used to measure the accu-
racy of boundaries also decreases by about 0.6 (mm) compared to
the one obtained by the region loss. On the other hand, Fig. 6(d)
confirms that learning multi-level features can help to improve the
convergence of our coarse-to-fine model. Besides, we provide a vi-
sual illustration of the ablation experiment in Fig. 7, where the
pancreas is of a long and narrow structure. As shown, by the region
loss, the pancreas has been segmented into two separated subre-
gions. By introducing the boundary loss, the isolated two subre-
gions become connected, while the pixel-wise loss can further im-
prove the accuracy of the boundary.

5.2. ISICDM pancreas dataset

We further discuss the segmentation performance on the
ISICDM pancreas dataset. We trained two models for thin and thick
data, respectively, Note that the thin model is pre-trained on the
NIH dataset and the thick model is initialized with the thin model.
The specific segmentation results are displayed in Table 7. We re-
implemented the RSTN [60] and nnU-Net [48] for a fair compari-
son. As can be seen, our models not only provide better segmenta-
tion accuracy on both thin and thick datasets, but also save much
computational time, especially compared to nnU-Net. When com-
pared with RSTN, our model converges within 3.92 and 4.42 itera-

10

tions, respectively, while the RSTN consumes 6.11 iterations on av-
erage to reach 0.99 relative DSC on the thin dataset. Consequently,
much computational time is saved by our model. More impor-
tantly, our multi-level structural loss model also provides much
higher DSC values with an average 1.5% improvement compared
to the RSTN model. Selective segmentation examples of thin data
and thick data are provided in Fig. 8. The visual comparison can
demonstrate that our model can identify the small, long, and nar-
row structures more accurately.

Because the 2D slices along with the coronal and sagittal views
are much fewer than the slices on the axial view for the thick
data resulting in the low segmentation accuracy on the two views,
we use the axial view model instead of the fusion model for
both our approach and the RSTN. Although the values of DSC for
the three models significantly decline, our models triumphs over
RSTN and nnU-Net with about a 1.5% advantage. More importantly,
our multi-level structural network gives significantly better perfor-
mance on the thick dataset.

5.3. MSD spleen dataset

5.3.1. Numerical analysis

Our models also work well on other organ segmentation tasks
such as spleen segmentation. We implement the proposed model
and RSTN along with the axial view without three-dimensional fu-
sion because the dataset is small and varies significantly in the
other two dimensions. We evaluate our approaches by compar-
ing with two boundary-based methods and two 3D approaches,
i.e.,, EBP model [64], LSM model [72], V-net [38] and nnU-Net[48],
which are all re-implemented by ourselves for a fair comparison.
Note that the ground truths are used to generate the 3-D bounding
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Table 7

Segmentation accuracy comparison between our model and the other two methods on ISICDM
datasets, where the results of RSTN [60] and nnU-Net [48] were re-implemented by ourselves.

Dataset Method Averaged DSC Min Max Iteration  Time (s)

Thin  RSTN [60] 86.18% + 5.26% 70.81%  92.35%  6.11 110.16
nnU-Net [48]  86.71% +5.03% 74.09% 94.79% - 1021.3
MLL model 87.63%+4.73%  74.53% 93.70%  3.92 81.21
MLN model 87.33% +£4.91% 74.35% 93.12%  4.42 99.50

Thick RSTN [60] 79.93%+7.29%  55.28%  89.95%  7.78 11.09
nnU-Net [48]  80.75% =8.83%  47.00%  91.19% - 136.4
MLL model 82.23%+6.41%  65.04% 90.02% 6.64 10.62
MLN model 82.66% +6.82% 62.13%  91.36%  5.81 11.07

A , E R V3 P

@ RSTN () mU-Net () MIL {d) MLN

box for both EBP and V-net. The DSC of RSTN reported in [64] is
89.5%, which is much lower than our re-implementation due to the
major voting by three axes. As shown in Table 8, our model pro-
vides the highest DSC and lowest variance, which is much better
than other approaches. In addition, our models take less computa-
tional time than others except for V-Net, which used the label to
crop a bounding box. Since both our models take fewer iterations
to satisfy the stopping criteria, the inference time is saved. As can
be seen, our multi-level structural network can further improve the
averaged DSC by another 0.6%. Since the boundary of the spleen is
much smoother than the boundaries of the pancreas, the boundary
branch and pixel branch can help to well approximate the ground-
truth, and play a strong guidance role for the regional features. We
also display the selective 2D segmentation results in Fig. 9, where
our model outperforms other models visually.

1

Fig. 8. Selective visual comparison between our models and the recurrent saliency transformation network [60] on ISICDM dataset, where red, green and yellow indicate

the ground truth, prediction and overlapped region, respectively. The left part is the thin sub-dataset, while the right part is the thick sub-dataset. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

5.3.2. Ablation analysis of modules in MLN model

In this subsection, we explore the ablation study to evaluate
the individual contribution of the pixel module and multi-level
saliency guidance module. To be specific, we use three baseline
models in comparison, the first one obtained by replacing the pixel
module with four shared MLPs, the second one obtained by replac-
ing the multi-level saliency guidance module by four 3 x 3 con-
volutional layers, and the last one obtained by replacing both the
pixel module and the multi-level saliency guidance module. As we
can see from Table 9, with similar numbers of parameters, FLOPs,
and inference times, our multi-level saliency guidance module can
improve DSC by 0.3% with fewer iterations. Our pixel module per-
forms as a non-local module by extracting features from uncertain
pixels, while the four shared MLPs used in PointRend [58] only
catch local features. By our local features, the DSC is improved
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Table 8

Segmentation accuracy (DSC %) comparison between our model and the state-of-the-arts on the MSD spleen
dataset, where the results were re-implemented by ourselves.

Method DSC Min Max Iterations  Time (m) Parameters Flops

EBP [64] 92.79% +3.76%  84.81%  96.75% 10 60.26 0.2x107 0.5x101°
LSM [72] 93.03% +2.20%  89.22%  96.29% 3 4.81 4.1x107 10.6x10'0
V-Net [38] 92.11% +7.93% 59.95%  96.53% - 0.10 1.9%107 68.4x101
RSTN [60] 95.26%+1.31%  92.61% 97.29%  3.55 0.21 26.9x107 44.1x10"
nnU-Net [48]  95.77%+1.55%  91.33%  97.75% - 45 6.2x107 293.5%10'°
MLL model 95.96% +1.14% 94.18%  97.85%  2.55 0.18 3.1x107 14.9% 1010
MLN model 96.58% +0.97% 94.87% 98.13% 2.55 0.19 3.6x107 16.9x 10

Fig. 9. Selective visual comparison between our model and the recurrent saliency transformation network on MSD spleen dataset, where red, green and yellow indicate the
ground truth, prediction and overlapped region, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

Table 9

Ablation study for the modules of our proposed multi-level structural net, where the pixel module and multi-level
saliency guidance module (MLSG module) are replaced by four shared MLPs and four 3 x 3 convolutional layers, re-

spectively.
Method DSC Min Max Iterations ~ Time Parameters Flops
w/o Pixel&MLSG module 96.02% + 1.30% 93.56% 98.26% 3.90 13.3s 4.0x107 2.5x101
w/o MLSG module 96.28% +1.20%  93.43%  98.18%  2.65 11.8s  4.0x107 2.5x10™
w/o Pixel module 96.35% + 1.37% 92.12% 98.16% 2.55 10.9s 3.6x107 1.7x 101
MLN model 96.58% + 0.97% 94.87% 98.13% 2.55 11.4s 3.6x107 1.7x10"

by another 0.2%. Thus, both the pixel module and the multi-level
saliency guidance module contribute to the segmentation accuracy.

6. Conclusions

In this work, we promoted a novel loss function by penal-
izing the multi-level structural information to better aggregate
multi-scale features for small organ segmentation. We adopted the
coarse-to-fine atrous convolution model and took full considera-
tion of the small size of the target by designing a proper reception
field to preserve more low-level features. Comprehensive experi-
ments on the public pancreas and spleen datasets demonstrated
the superiority of the proposed method in dealing with small or-
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gan segmentation problems. Our multi-level structural loss not
only consistently improved the segmentation accuracy, but also en-
hanced the training stability and the convergence of the fine model
in the testing stage. The numerical experiments also demonstrated
our multi-level structural network outperformed the single head
model on the NIH pancreas dataset and the thin subset of the
ISICDM dataset.

Although the proposed MLL model and MLN model exhibited
advantages on both pancreas and spleen segmentation problems,
the performance of the two models did not always coincide. Thus,
the theoretical mechanism of multi-level structural information fu-
sion is still an open question to be studied. One more limitation
of our models is that the three-dimensional information is still
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inadequate for our 2D approaches. Although we fuse three net-
works along the three views to provide more spatial details, the
three models along different directions are independently trained
without spatial correlation, which also increases the computational
costs. Our future works include to develop more efficient loss func-
tions and network structures to investigate multi-level structural
information for realizing precise medical segmentation.
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