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Abstract—The dependencies across different layers are an
important property in multiplex networks and a few methods
have been proposed to learn the dependencies in various ways.
When capturing the dependencies across different layers, some
of them assumed the structure among layers following consistent
connectivity to force two nodes with a link in one layer tend to
have links in other layers, some introduced a common vector to
model the shared information across all layers. However, the
correlations among layers in multiplex networks are diverse,
which go beyond the connectivity consistency. In this paper, we
propose a novel Modeling Correlations for Multiplex network
Embedding (MCME) framework to learn the robust node repre-
sentations for each layer. It can deal with complex correlations
with a common structure, layer similarity and node heterogeneity
through a unified framework in multiplex networks. To evaluate
our proposed model, we conduct extensive experiments on several
real-world datasets and the results demonstrate that our proposed
model consistently outperforms state-of-the-art methods.

Index Terms—Multiplex Network, Multiplex Network Embed-
ding, Link Prediction, Layer correlations, Node correlations

I. INTRODUCTION

In recent years, with the rapid expansion of network data
volume and access, data representation in the form of multi-
plex networks is becoming an increasingly common practice.
Generally speaking, a multiplex network is composed of a
set of nodes and different types of connections. Each type of
link and its nodes constitute a layer with special functions
and structure for the multiplex network. With their powerful
representation and modeling capabilities, multiplex networks
have a variety of research tasks and applications. Compared
with a single or homogeneous network, certain network tasks
based on this network, e.g., community detection and link
prediction, pose new challenges. One of the most important is
the complex dependencies across the different layers.

To model the dependency in multiplex network, there have
been a few studies on multiplex network embedding, e.g.,
matrix factorization-based [1], [2], random walk-based [3], [4]
and deep neural network-based [5]-[7]. For the ones modeling
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the correlations among layers, [8], [9] think nodes in all layers
tend to have a consistent connectivity structure and force node
embeddings for the same node in different layers closer to
share the consistent structure. [4], [6] model the cross-layer
node pairs which also lead to two nodes linked in one layer
are more likely to link with each other in another layer. [3], [5]
introduce a common vector to model the shared information
across all layers in multiplex networks. [7] require some prior
knowledge to select the most informative layer or the hierarchy
dependencies between the layers while this prior knowledge
is sometimes difficult to obtain.

However, in many real-life multiplex networks, the seman-
tics between the layers are usually different, or even opposite,
and the statistical characteristics of the same node across
layers are significantly different. Then the correlations among
layers are not only the connectivity consistency or the shared
common information of the same nodes in different layers, and
nodes in different layers have specific and diverse structure so
that links in one layer may not exist in another layer, e.g., in a
social network, the structure between the networks constructed
by the types of following and messaging may be more similar
than the structure between the messaging and comment, or
for the networks constructed by the types of following and
blacklist relationships, in which the users to follow and to
blacklist are not completely different. The existing approaches
mentioned above have lost the ability to model the complex
correlations and are not well applicable to these networks with
large structural differences.

For clarity, we take a popular multiplex network from CKM
data [10] as an example. Fig. 1(a) shows the 7th node and its
ego network of all three layers and we take a case to predict the
top-5 links for node 7 in each layer. We can see that the edges
of node 7 existing in the second layer are also likely to exist in
the first layer, while the third layer does not actually have the
same edge as the other two layers. The predicting results of
different models on this dataset are shown in Fig. 1(c). It can
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Fig. 1. (a) shows node 7 and its ego network of all three layers based on CKM dataset. (b) is a simple diagram of Layer Correlation and Node correlation
based on (a). (c) intuitively shows the results of our model and several baseline models on predicting top-5 links for node 7 in each layer.

be seen that in the third layer, MNE [3] and CrossMNA [5]
tend to predict the edges that exist in the other two layers
even if the third layer does not actually have the same edge as
the other two layers. As a single-layered embedding method,
vgae [11] only focuses on the structural information within
the layer. Even if both two links of node 7 in the second
layer exist in the first layer, the prediction of each layer is
independent of other layers. In contrast to the poor results of
these algorithms, our proposed model can model the complex
dependencies across the layers and is completely accurate for
predicting the real edges in each layer.

The great superiority of this model is mainly because
the link correlations in multiplex networks are not just the
connectivity consistency or shared structure, but also more
complex. Modeling complex link correlations can make our
model more robust and not just applicable to the networks
following the connectivity consistency. We depict them from
two perspectives. From the layered perspective, each layer
in a multiplex network has its own unique semantics. The
semantics of some layers are relatively close to each other,
while the semantics of other layers may be very different
or even opposite. Then, we define a Layer Correlation (LC)
index, which is measured by the intersection of the edge sets
of different layers. As shown in Fig. 1(b), the correlation
between G' and G? is more related than G° and G (or G?).
More subtly, from the node perspective, the correlations of
nodes between layers are also varying. In some layers, the
structure of nodes is similar, while in other layers, it may
be considerably different. Correspondingly, we define a Node
Correlation (NC) index to weigh the difference of degrees
and neighborhoods of nodes in different layers. As shown in
Fig. 1(b), the correlation of node 7 between the first layer
and the second layer is positive, while the correlation between
the third layer and the second layer is negative. With the
constraints of Layer Correlation and Node Correlation, we
enforce the vectors with greater correlations to be closer and
with weaker or negative correlations to be further.

In summary, our major contributions can be listed as fol-
lows:

o We investigate the existing multiplex network embedding
methods and find that when modeling the dependencies

across different layers, some models need necessary
prior knowledge about the relationship between layers,
while some models consider nodes to be consistent in
connectivity or think there is some shared information
between anchor nodes. However, from the datasets in
real life, we find that the correlations are more complex
and multiple aspects, e.g., varying degrees and different
directions (positive and negative).

o« We divide the correlations in multiplex networks into
layer correlation and node correlation. And we define
two indexes to separately formalize their degrees of
correlation.

o We propose a novel Modeling Correlations for Multiplex
network Embedding (MCME) framework, which incor-
porates the complex link correlations in multiplex net-
works into the node representation learning process of
each layer. Extensive experiments on several multiplex
networks prove the effectiveness of our model.

II. PROPOSED METHOD
A. Framework and Overview

In a multiplex network, the different semantic meanings
at each layer will lead to diverse structures. As shown in
Fig. 1(a), the connections of node vy vary in each layer.
However, different types of connectivity relations share the
same set of nodes. Therefore, as the same entity, they display
some common features across the networks. For example, as
shown in Fig. 1(a), the connections of node v7 that exist in
the second layer are very likely to exist in the first layer.
However, the correlation in a multiplex network is not just the
consistency of connectivity between nodes. For instance, the
connections of node v7 in the third layer do not actually have
the same connection as the other two layers. The correlations
are complex and multiple aspects and modeling the complex
link correlations can make the model more generalized and
not just applicable to the networks that follow the connectivity
consistency. Therefore, we propose a model MCME to model
the link correlations in multiplex networks. Fig. 2 shows the
overall framework of MCME.

MCME is mainly composed of three components, namely,
learning the common features among nodes in all layers
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by encoding on the aggregated network regardless of the
relation types, generating the node representations in each
layer by combining common vectors and layer vectors, and
integrating complex correlations, including constraints of layer
correlations and node correlations. The overall objective of our
approach is to minimize the following loss function:

L = 1055495 +1085c) + - 10851c + B - l055pc. (D)

Next, we will introduce the details of each part.

Fig. 2. The proposed MCME framework.

B. Encoder on Aggregated Networks

As the same entity in different layers of a multiplex network,
nodes share some common features across the networks.
To leverage the common information among nodes in the
multiplex network, we define common vectors z € R for
nodes to preserve the common features and it is learned in a
new aggregated network. Firstly, we aggregate a single-layered
network G° = (V,¢°), by merging the edges in all layers
regardless of the type. Then, we get the node representations
in the aggregated network G° by an inference model:

N

o(Z | 1,A°) =[] alz | I,A), ©))
=1

q(zi | I, A%) = N (2 | i, diag(a7)), 3)

where 1; and o, are learning by a two-layer GCN [12]:

p=GON,L(I, A%, 4)
o =GON,(I,A°), (5)
GCN(I,A%) = AOReLU(A°TW,)Wy, (6)

where p and o are the matrices of mean vectors u; and
variance vectors o;, respectively. Wy and W; are weight
matrices, GCN,, and GCN, share the first-layer parameters

. A0 = DO (A0 + I)D°" 2 is the symmetrically
normallzed adjacency matrix, DO is the degree matrix of G°
and I is the identity matrix.

With the object of reconstructing the adjacency matrix, the
node distributions with g and o should be similar to the
standard Gaussian, the loss function is defined as:

Z log(p ( Ui ?)+

(v ,v9)eel

> (1= logp(e),v)]

(v 0F)€Eh ey

_KL[ (ZlIvAO) ||p(Z)]7 (7)

lossagg = —

where p(v),v}) denotes the edge probability between v; and
v; in G and &), is all the node pairs that are not in £°.
KLJ[q(+) || p(+)] is the Kullback-Leibler divergence between
a() and p(), p(Z) = [Lp(z) = LNz | 0.1) is a
Gaussian prior.

We use the inner product to denote the edge probability

. between v; and v;, which is defined as follows:

p(v),vY) = o(2] z)), (8)

where o(+) is the logistic sigmoid function.

C. Generate Node Representations in Each Layer

The different semantics at each layer in the multiplex
network will lead to diverse structures. To capture the unique
characteristics of each layer in G, we define layer vectors to
extract the semantics of the network, ie., 7' € R% for the
network of the [ — th layer. Combining the node distribution
with p and o learned in the above section with layer vector,
we can get the node representations in each layer, i.e., node
v; the [ — th layer, as follows:

l_
z, =

N(zi | i, diag(o?)) @ rt, 9)

where z! € R? and @ is the sum operation. Their dimensions
must be equal, i.e., d; = do = d, and then we have zf as

follows:

l

P (10)

= N(zi | i, diag(a?)) +r'.

Through the combination, Z' represents the node embedding
matrix in each layer, which contains not only the commonness
among nodes, but also the unique characteristics of the selected
network.

With the node representations in each layer, we reconstruct
the adjacency matrix of each layer by minimizing the follow-
ing loss function:

108Se] = — Z{ Z log(p

=1 (v]v})eg!

17 j)

> (1 log(p(, §>>] an
(! obyegt,,
where &}, is all the node pairs that are not in &'. p(v}, v})

denotes the edge probability between v; and v; in layer [
calculated by the internal product, the same as the previous
section:

12)

T
p(vi,vj) = o(z; 2j).
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It should be noted that due to the sparsity of network
in real life, the number of negative edges is very large
and can generally be linearly bounded by the number of
nodes. It is computationally expensive to consider all the
pairs in loss functions defined in Eqs.7 and 11. To solve this
problem, we use the negative sampling approach [13]. For
each (v;,v;) € &, we randomly sample k nodes that are not
connected to node v; in layer [. These k samples are put into
the set of negative samples. In this way, the size of negative
samples is only k times as large as that of positive samples.

D. Modeling Correlations

We divide the correlations in the multiplex network into
layer correlation and node correlation and define two indica-
tors to measure the correlation degree, respectively.

1) Modeling Layer Correlations: We use the global overlap
rate between two layers for quantification to formalize layer
correlations.

| 511 N 5!2 |
| ghugl |
where [, and I, are the layers, £ and &2 are their respective
edge sets, and | - | is the size of the set. The range of LC is [0,
1]. The larger the value of L£C, the more similar the network
structure of the two layers. If the network structures of the
two layers are completely different, then £C = 0.

We enforce the layer vectors closer to the larger layer
correlations among layers by the following terms:

L L
Z Z [l rh— gl [l £chtz

I1=1l>=l1+1

£chtz = (13)

loss). = (14)

2) Modeling Node Correlations: For node correlations, we
mainly consider two important properties of nodes: degree and
neighborhoods. For the correlation in the degree of node v;
between layers [y and ls, we have:

NCGE =

) —d(w?)] (15)
where | - | is an absolute value, d(v'') and d(v'?) denote the
degree of node v; in layers /1 and [, respectively. The greater
the difference between the degrees of the nodes in the two
layers, the smaller the correlation.

For the correlation in neighborhoods of node v; between
layers [ and [, we have:

1

NChl —
" 1+ e~ W@HNN(;2)]

(16)

where A(v!") and A(v!?) denote the neighborhoods of node

v; in layers [; and [o, respectively. The larger the size of the

intersection of node neighborhoods in the two layers, the larger

the correlation. Finally, the node correlation index of node v;

can be expressed as:

_ma if [N NN (@) =0,
aNClz vclilz
Neltz itz

NCHe =

otherwise.
(17)

If the size of the intersection of node neighborhoods in the
two layers equals zero, it indicates that the node structures of
these two layers are not similar. Therefore, we set the correla-
tion to be negative and the greater the difference between node
degrees, the greater the value. Otherwise, if it is not zero, the
value of N/C is the harmonic mean of N'C4 and A'C,,. Through
the node correlation, we enforce the node vectors closer to the
positive larger node correlations among layers and further to
the negative node correlations by the following terms:

L L
108Spe = Z Z || Zzb — Z!2 || Ntz (18)

li=11ls=l1+1

where Z'* and Z'* are the node embedding matrix in G* and
G'2, respectively, and N C"*"2 is the node correlations matrix
between layers [y and ls.

By integrating all objectives, the final objective of the
MCME framework can be summarized below:

L = 1055495 +1085¢; + o0 - 10851 + B - 1055 pc, (19)

where « and [ are parameters used to control the weight of
the regularization terms.

III. EXPERIMENT

In this section, we conduct experiments on several real-
world multiplex networks to evaluate the performance of the
proposed model,. We first introduce the datasets that will be
used in the evaluation. Then, we describe the experimental
settings. Finally, we show the detailed experimental results.

TABLE I
STATISTICS OF THE DATASETS.

Networks ~ Layers  Nodes Edges Type LC NC
CKM 3 246 1,551 Social 0.214 0.062
SacchCere 7 6,570 282,754  Genetic  0.019 -0.488
MUS 7 7,747 1,9842  Genetic  0.010 -0.876
Drosophila 7 8,215 43,366  Genetic  0.005 -0.770
Moscow 3 88,804 210,256  Social ~ 0.040 -0.484

A. Datasets

In our experiments, we work on five public datasets from
social and genetic domains. All datasets are obtained from Co-
MuNe lab’s web site!. We provide detailed information about
each dataset and summarize the dataset statistics in Table I,
where £C and NC denote the average layer correlations and
node correlations among layers of dataset.

B. Baseline Methods

To show the effectiveness of our method, we compare three
types of baseline methods, namely, single-layered embedding
models, heterogeneous and multiplex embedding models.

e vgae [11]: An embedding model for single-layered net-

works. It is an inference model parameterized by a two-
layer GCN.

Uhttps://comunelab.fbk eu/data.php
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node2vec [14]: An embedding model for single-layered
networks. It designs a biased random walk and explores
diverse neighborhoods to learn richer representations.
LINE [15]: An embedding model for single-layered net-
works. It preserves both the first-order and second-order
proximities in a network.

R-GCN [16]: An embedding model for heterogeneous
networks. It develops neural networks to heterogeneous
networks and specifically deals with the highly multi-
relational data characteristic of realistic knowledge bases.
MNE [3]: An embedding model for multiplex networks.
MNE jointly learns a high-dimensional common embed-
ding and a lower-dimensional additional embedding for
each layer through a unified embedding model.

mGCN [6]: An embedding model for multiplex networks.
mGCN is a multi-dimensional graph convolutional net-
work, which captures the interactions within and across
multiple dimensions.

CrossMNA [5]: An embedding model for multiplex net-
works. The final embedding is generated by combining
the layer vector for each layer and the common embed-
ding for each node.

C. Experimental Settings

1) Evaluation Metrics: In our experiments, we perform link
prediction tasks at each layer of multiplex networks to verify
the effectiveness of learned node embeddings. We randomly
split all edges in each layer into two sets for training and
testing, respectively. We vary the training set rate from 10%
to 70% in 10% increments. We also randomly sample the
same number of unconnected node pairs with positive edges
in the test set as negative edges and use both the positive

and negative edges for testing. Moreover, we use areas under
the ROC curve (ROC-AUC) and Average Precision (AP) to
evaluate the performance. Higher values of ROC-AUC and
AP indicate better link prediction performance.

2) Parameter Settings: The basic experiment we conduct
is link prediction in each layer of multiplex networks. So the
single-layer network embedding methods learn separately in
each layer and then used the learned representation to predict
the links in the corresponding network. All models set 128
as the dimension of the final embedding. For LINE, we set
the feature embedding dimensions for first-order proximity
and second-order proximity both to 64 and concatenate them
together as the final node embedding. For CrossMNA, the
dimensions of layer vector d; and inter-vector dy are set as 128
and 100, respectively. For mGCN, we use the representations
learned by node2vec on each dataset as input. For MNE, the
dimension of additional vectors to be 10 following the original
work. Additionally, for node2vec, the best hyper-parameter is
empirically set as p =2 and ¢ = 0.5.

D. Performance Analysis

We evaluate the quality of the learned embedding by taking
link prediction in each layer, and take the average results of all
layers as the final result. We evaluate the ROC-AUC and AP
values of different models with the training ratio from 10% to
70% in 10% increments. We take five times experiments for
each training ratio and take the average as the final result. The
results are shown in Figs. 3 and 4 and Table II, where Fig. 3
shows the ROC-AUC scores on four relatively small datasets,
Fig. 4 shows the AP scores and Table II shows the ROC-AUC
and AP scores on Moscow and the test error (mean absolute
error) on this dataset. Note that due to out of memory, we do
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TABLE I

THE ROC-AUC AND AP SCORES OF LINK PREDICTION ON THE MOSCOW DATASET, WHERE 10%-40% INDICATES THE TRAINING RATE AND THE
STANDARD DEVIATIONS ARE REPORTED IN THE PARENTHESES.(BOLD IS BEST)

Model 10% 20% 30% 0%
ROC-AUC AP ROC-AUC AP ROC-AUC AP ROC-AUC AP
nodeZvec | 0.425(0.000) | 0.472(0.000) | 0.393(0.002) | 0.458(0.001) | 0.376(0.001) | 0.451(0.001) | 0.371(0.001) | 0.451(0.001)
LINE 0.496(0.004) | 0.498(0.002) | 0.490(0.008) | 0.496(0.003) | 0.500(0.001) | 0.500(0.002) | 0.501(0.002) | 0.501(0.002)
R-GCN 0.500(0.000) | 0.500(0.000) | 0.500(0.001) | 0.499(0.000) | 0.375(0.001) | 0.455(0.001) | 0.501(0.000) | 0.500(0.000)
MNE 0.541(0.001) | 0.501(0.000) | 0.575(0.000) | 0.505(0.001) | 0.589(0.001) | 0.501(0.528) | 0.0.627(0.002) | 0.551(0.002)
mGCN 0.5000.001) | 0.523(0.000) | 0.505(0.001) | 0.530(0.001) | 0.510(0.001) | 0.533(0.006) | 0.511(0.002) | 0.537(0.001)
CrossMNA | 0.467(0.001) | 0.484(0.001) | 0.547(0.002) | 0.531(0.001) | 0.616(0.002) | 0.581(0.001) | 0.674(0.002) | 0.629(0.003)
MCNME | 0.624(0.004) | 0.717(0.004) | 0.684(0.001) | 0.756(0.002) | 0.713(0.001) | 0.773(0.001) | 0.721(0.002) | 0.776(0.002)

not experiment with them on Moscow with vgae. From the
experiment results, we can make the following observations:

e Our proposed model MCME almost outperforms the
other baselines on all datasets. Especially, MCME can
yield significant improvement on sparse, small layer
correlation and negative node correlation networks. For
example, on the MUS dataset by the ROC-AUC, MCME
can boost the performance around 5% -11% compared to
the best baseline when the training rate is increased from
10% to 70%.

o As the rate of training data gradually increases, the results
of all models will be improved. That’s because as the
training rate increases, the network structure becomes
more complete and the information becomes more ad-
equate.

e Our model can achieve promising results with a small
rate of the training set. Almost on all the datasets by the
30% of training rate can achieve comparable results with
70% but on the MUS dataset because it is too sparse.

o In general, multiplex embedding models can obtain better
results than single-layered embedding models, especially
on the CKM and Moscow, where network structures
in each layer are relatively similar. This indicates that
modeling the complex dependencies across the different
layers is effective.

IV. CONCLUSION

Multiplex networks are becoming an increasingly common
practice in real life, in which multiple types of connectivity
relations exist among a set of nodes. Most existing studies
work overlooked the complex properties of correlations in
multiplex networks. In this paper, we propose MCME, a novel
embedding method for multiplex networks, which models
the complex correlations in multiplex networks. We test our
method for link prediction tasks using five datasets compared
with some state-of-the-art baseline models. The experimental
results show the generalization ability of our model. It obtains
comparable performance in the aspect of connectivity consis-
tency after multiplexing, and has significant advantages on the
multiplex networks with different structures. In future work,
we will extend our model to weighted and heterogeneous
networks.
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