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Abstract. Spectral clustering is a widely used clustering algorithm based on the
advantages of simple implementation, small computational cost, and good
adaptability to arbitrarily shaped data sets. However, due to the lack of data
protection mechanism in spectral clustering algorithm and the fact that the
processed data often contains a large amount of sensitive user information, thus
an existing risk of privacy leakage. To address this potential risk, a spectral
clustering algorithm based on differential privacy protection is proposed in this
paper, which uses the Laplace mechanism to add noise to the input data
perturbing the original data information, and then perform spectral clustering,
so as to achieve the purpose of privacy protection. Experiments show that the
algorithm has both stability and usability, can correctly complete the clustering
task with a small loss of accuracy, and can prevent reconstruction attacks,
greatly reduce the risk of sensitive information leakage, and effectively protect
the model and the original data.
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1 Introduction

Machine learning clustering algorithms have made disruptive breakthroughs in recent
years and are widely used in computer vision, data mining and remote sensing
mapping. However, most machine learning clustering algorithms are designed without
considering the security and privacy issues of data and models[1]. To protect the
security of private information, many industry scholars have conducted extensive
research.

There are three broad directions of privacy preservation currently combined with
clustering algorithms: data transformation, data anonymization, and data perturbation
represented by differential privacy. Among them, Oliverira et al. [2] proposed a new
spatial data transformation method RT (Rotation-based Transformation) inspired by
the rotational changes of geometry in space, whose advantage lies in being able to
hide the original information while maintaining the validity of the data attributes
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before and after the transformation. However, the computation is complex with higher
dimensionality, and it is difficult to resist consistency attacks. Nayahi [3] proposed an
anonymous data algorithm by distributing anonymous data in Hadoop Distributed File
System (HDFS) based on the principle of clustering and resilient similarity attacks
and probabilistic inference attacks, but it is difficult to resist emerging combinatorial
attacks and foreground knowledge attacks. Current research on differential privacy
combined with clustering algorithms focuses on the k-means algorithm. Blum et al [4]
were the first to combine differential privacy techniques with k-means clustering
algorithm in 2005, proposed the DPk-means algorithm, which pioneered the research
of data perturbation represented by differential privacy. Dwork [5] proposed a method
of privacy budget allocation and sensitivity calculation in view of the DPk-eams
algorithm's shortcomings that the large sensitivity of query function and the privacy
budget allocation method are not given. FU et al [6] improved the usability of
clustering results by dynamically assigning the selection of initial centroids and
iteratively updating the privacy budget during the operation of the algorithm, but they
don’t consider the effect of isolated points in the dataset on the clustering effect. NI et
al [7] proposed the DP-KCCM algorithm to offset the effect of differential privacy
techniques by merging adjacent clusters to join of noise on the clustering results. X.
W et al. [8] proposed a DP-CFMF algorithm based on differential privacy protection,
which guarantees the privacy of DNA data with high recognition accuracy and high
utility. W. Wu et al. [9] proposed a DP-DBS can algorithm that realizes differential
privacy protection by adding laplace noise, which was experimentally shown to be
able to protect privacy while being both usable. In addition, W. Wu et al. [10]
integrated various privacy protection schemes and innovatively designed a
data-sharing platform that can guarantee data security, practicing the previous
research results.

Compared with the traditional k-means algorithm, the spectral clustering algorithm
is applicable to arbitrarily shaped data sets, and does not require prior assumptions
about the probability distribution of the data, it is fast in computation and simple. In
recent years, it has been widely used in computer vision, data mining, image
processing and natural language processing[11-14]. For example, Yang Fan et al. [15]
used the spectral clustering algorithm to mine the data of chemical reagents in stock
of China Institute of Petrochemical Sciences. Guo Lei et al.[16] applied the spectral
clustering algorithm to cognitive diagnostic assessment (CDA), and explored the
possible effects of introducing the spectral clustering algorithm on CDA in terms of
attribute hierarchy, number of attributes, sample size and failure rate, and achieved
good results in specific experiments.

However, the spectral clustering algorithm lacks privacy protection mechanism and
there is a risk of privacy leakage. How to protect the privacy of the spectral clustering
algorithm while ensuring the clustering accuracy becomes an urgent problem. While
the relevant research on spectral clustering algorithms oriented to differential privacy
protection are proposed. Zheng et al. [17] achieved differential privacy protection by
adding laplace noise to perturb the objective function to hide the true weight values
and the clustering results were more accurate compared with the spectral clustering
algorithm without differential privacy protection, but the specific privacy budget
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allocation method was not described. The internal scale parameter and the number of
clusters of the spectral clustering algorithm were optimized to further improve the
accuracy of clustering[18]. The DP-CSC algorithm is proposed based on the
improved spectral clustering algorithm CCL-S, and the noise is added to the
compressed laplacian matrix using Wishart mechanism [19].

This paper will propose a new spectral clustering algorithm based on differential
privacy to achieve privacy preservation, by adding noise conforming to the Laplace
distribution to the input data to hiding the original data.

2 Theoretical foundation

2.1 Differential Privacy

Differential privacy (DP) is a privacy-preserving model with rigorous mathematical
proof, first proposed by Microsoft's DWork team [20].

Definition 1 Differential privacy: assume that there exists a random function �
such that � in any two neighbor data sets �, �'(i.e.| � − �' |1 ≤ 1 ) to obtain any
identical set of outputs � with probability satisfying

 Pr[ ( ) ] PrA Q B e A Q B      (1)

Then the random function is said to � satisfies � − ������������ ������� ,
abbreviated as� − ��. Where the neighbor datasets are the two datasets that differ by
only 1 record and| |1 is the�1 paradigm, �� [ ] is the probability of occurrence of
an event, and � is the privacy budget, the size of its value represents the degree of
privacy protection, the smaller the value means the better the privacy protection.

Differential privacy is achieved mainly by adding noise to the data to perturb the
data so that the output results are randomly different from the real results each time.
The common mechanisms for adding noise are the Laplace mechanism for continuous
data, the Exponential mechanism for discrete data, such as race, education, etc. and
the Gaussian mechanism for image data. Since the data to be processed in this paper
are of continuous type, the Laplace mechanism is adopted.

The Laplacian mechanism is implemented by adding random noise obeying the
Laplacian distribution to the exact query result � − ������������ �������
protection. Let the location parameter be 0 and the scale parameter be � the Laplace
distribution of ���(�), then its probability density function is

| |1( )
2

x
bp x e

b

  
  (2)

where � is the natural logarithm.
Its probability density function, as shown in Fig.1.
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Fig. 1. Laplace probability density function

For the Laplace mechanism, there are the following definitions.
Definition 2 Laplace mechanism: given a data set �, there is a function �：� −>�� , whose sensitivity is �� , then the randomized algorithm �(�) = �(�) + �

provides� − ������������ ������� protection, where �~���(�� /�) is the random
noise, which obeys the scale parameter �� /� of the Laplace distribution, and the
random noise size depends mainly on the sensitivity of the function�� [21].

Definition 3 Sensitivity��: With the function �: � → � �, the input is the dataset
and the output is � dimensional real vector, for two neighbor datasets �, �’ , the
sensitivities are

 1Δ max , ( )f D D f D f D   (3)

Sensitivity measures the maximum change to the results caused by the deletion of
anyone record from the dataset and is an important parameter in determining the
amount of noise introduced into the data.

Spectral clustering algorithm
Compared with the traditional k-means algorithm and EM algorithm, the spectral

clustering algorithm is applicable to data sets of arbitrary shapes that can do without
prior assumptions about the probability distribution of the data, with fast
computational speed and simple algorithmic ideas is simple and easy to implement.

The basic principle of the spectral clustering algorithm is that the sample data is
considered as a vertex in the undirected graph, and then the similarity W�� between
the vertices is calculated based on the similarity function as the weight between the
vertices, and finally the graph is divided according to different partitioning criteria to
maximize the similarity within each subgraph and minimize the similarity between
the subgraphs[22], each subgraph is equivalent to a cluster.

For a graph � to be divided, denote by �, � two subgraphs (where � ∪ � =� , � ∩ � = ∅, � denotes the set of all vertices in the graph � ), �, � denote the
points in the graph �, � respectively, �(�, �) denotes the similarity between the
points �, �, and the division criteria are mainly as follows.
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(1) Minimum cut [23]

,
min{ ( , ) ( , )}

u A v B
Cut A B w u v

 

  (4)

Where ���(�, �) is the cost function when dividing graph � into subgraphs �, � ,
which represents the sum of similarity between points �, � inside graphs �, � . The
minimum cut set criterion divides graph � by minimizing the cost function, which
proves to be effective for some image datasets in practice, but when the number of
subgraphs divided exceeds 2, it is easy to cluster isolated points into a separate class.
To address this situation, Shi and Malik proposed the canonical cut-set criterion and
Hagen and Kahng proposed the proportional cut-set criterion, both of which solve the
problem well.

(2) Normalized Cut [22]

,

( , ) ( , )min{ ( , ) }
( , ) ( , )

among it, ( , ) it
i A t V

Cut A B Cut A BNCut A B
Vol A V Vol B V

Vol A V W
 

 

 
(5)

The minimization ���� function is called the canonical cut-set criterion. This
criterion measures not only the degree of similarity between samples within a class,
but also the degree of dissimilarity between samples between classes

(3) Ratio Cut [24]

( , )min{ ( , ) }
min(| |,| |)
Cut A BRCut A B

A B
 (6)

where |�|, |�| denote the number of vertices in subgraphs � and �, respectively.
The cut of graph � according to the case when the ���� function of subgraphs�, � is minimized is the proportional cut set criterion, which can minimize the
similarity between subgraphs and reduce the possibility of over-cutting, but the
operation speed is slow.

(4) Average Cut [25]

( , ) ( , )min{ }
| | | |

Cut A B Cut A BAvCut
A B

  (7)

It can be seen that ����� uses the sum of the ratio of the cost function and the
number of data points in the divided region, which can theoretically produce a more
accurate division, but the same drawback is that it is easy to divide smaller subgraphs
that contain only a few vertices. In addition, it is pointed out in the literature [22] that
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the experimental results of using Normalized cut criterion are better than Average cut
criterion when dividing the same image.

(5) Minimum-Max Cut [26]

( , ) ( , )min{ }
( , ) ( , )

Cut A B Cut A BMCut
Vol A A Vol B B

  (8)

The central idea of the minimum-maximum cut-set criterion is to minimize Cut(A,
B) while maximizing ���(�, �) and ���(�, �) . Minimizing this function avoids
dividing a smaller subgraph containing only a few vertices, so it tends to produce
balanced cut sets, but is slower to implement. ���� satisfies the same principle of
small similarity between samples between classes and large similarity between
samples within classes as ���� , and has similar behavior to ���� , but when the
overlap between classes is large, ���� is more efficient than ����.

(6) Multiway Normalized Cut [27]
The objective functions used in the above five partitioning criteria are all 2-way

partitioning functions that partition the graph G into 2 subgraphs, and Meila proposes
a partitioning function that can partition the graph G into k subgraphs k-ways at the
same time,

 
 

 
 

 
 

1 1 2 2

1 2

, ,
, ,

,
,

k k

k

Cut A V A Cut A V A
MNCut

Vol A V Vol A V
Cut A V A
Vol A V

 
  





(9)

The only difference between ���� and ����� is that the used spectral mapping is
different and ����� is equivalent to ���� for � = 2. The multiplexed canonical
cut-set criterion is reasonable and effective in practice, but its optimization problem is
usually difficult to solve.

Although there are various classification criteria and implementations of spectral
clustering algorithms, they can be summarized in the following general flow [28].

1) Calculate the similarity ��� between the vertices, construct the similarity matrix�, and construct the matrix � representing the sample set according to the different
objective functions;

2) Calculate the first � eigenvectors of �, and build the eigenvector space;

3) Clustering the eigenvectors in the eigenvector space by � −����� or other
classical clustering algorithms.

Among them, the similarity function used to calculate the similarity between
vertices ��� often uses the Gaussian kernel function.
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 
2

,

2
i jd s s

ijW e 

 
 
 
  (10)

Where��, �� is the data point in the sample, and� ��, �� is the distance between
index data points, generally referred to as the Euclidean distance. � is the scale
parameter, the � The value taken affects the ��� the computation of the algorithm,
which indirectly affects the clustering results of the algorithm. In addition, the
optimal � values are not the same, so the value in practice needs to be determined
after several experiments based on the specific dataset.

The significance of using Gaussian kernel function for the similarity function is to
map the data points to a high-dimensional space, add more features, highlight the
differences between data points, and thus calculate the similarity between data points
more accurately.

Based on the general process above, the specific steps of a standard spectral
clustering algorithm [29] are given below, the input dataset � is an arbitrarily shaped
dataset consisting of � points �1, �2, ⋯, �� consisting of an arbitrarily shaped dataset,
each point can be an arbitrary object, the similarity function uses a Gaussian kernel
function, the division criterion is based on ����, and the final clustering method uses� −����� is as follows.

Input: sample set � = �1, �2, ⋯, �� , scale parameter � , number of clusters �.
Output: Cluster division result � �1, �2, ⋯, �� .

Step1: Construct the similarity matrix ��×�. Where the element ��� in ��×� is the
similarity between points � and � in the sample, calculated according to formula (10) .

Step2: Construct the degree matrix �, The element ��� in � is the sum of the � row in
the ��×� matrix.

Step3: Based on � = � − �−12��−12, construct the normalized Laplacian matrix ���� ,
where � is the unit matrix.

Step4: Calculate the eigenvectors � corresponding to each of the smallest k
eigenvalues before ����.

Step5: Normalize the eigenvectors � to finally form an � ∗ �1 -dimensional
eigenmatrix �.

Step6: for each row in � as a �1-dimensional sample, a total of n samples, clustering
by k-means or other clustering methods, the clustering dimension is �2.

Step7: Get the cluster division result � �1, �2, ⋯, �� .

3 Analysis of Spectral Clustering Algorithm Based on
Differential Privacy Preservation

3.1 Algorithm description

This algorithm can be divided into two stages in the execution process, the first stage
is to add noise conforming to the Laplace distribution to the training data to perturb
the original data set; The second stage is to apply the standard spectral clustering
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algorithm in Table 1 to cluster the noise-added dataset. The specific algorithm is as
follows.

Input: sample set � = �1, �2, ⋯, �� , scale parameter � , number of clusters � , privacy
budget �.

Output: Cluster division result � �1, �2, ⋯, �� .
Add the Laplacian noise under a given privacy budget to the points in the sample set � to

obtain the disturbed sample set X'.
Step1: Construct the similarity matrix ��×�. Where the element ��� in ��×�. is the

similarity between points � and � in the sample, calculated according to formula (10).
Step2: Construct the degree matrix �, The element ��� in � is the sum of the � row in

the ��×� matrix.
Step3: Based on � = � − �−12��−12, construct the normalized Laplacian matrix ���� ,

where � is the unit matrix.
Step4: Calculate the eigenvectors � corresponding to each of the smallest k eigenvalues

before ����.
Step5: Normalize the eigenvectors � to finally form an � ∗ �1-dimensional eigenmatrix�.
Step6: for each row in � as a �1-dimensional sample, a total of n samples, clustering by

k-means or other clustering methods, the clustering dimension is �2.
Step7: Get the cluster division result � �1, �2, ⋯, �� .

3.2 Algorithm Analysis

Scheme for input perturbations
Among several existing machine learning differential privacy protection schemes, the
algorithm proposed in this paper uses an input perturbation scheme to protect privacy
security by adding noise conforming to the Laplace distribution to the original dataset
before clustering. Compared with other schemes, the input perturbation scheme has
the advantages of easy implementation and less loss of clustering accuracy [30],
which enables the algorithm to achieve privacy protection at source under the
condition of guaranteeing clustering accuracy; from the specific implementation of
this scheme in this algorithm, the disturbance of input data will lose dataset
reconstruction on the one hand so that the trained model can resist model inversion
attacks [31]-[32] and model theft attacks[30] [33], greatly reducing the risk of model
information leakage; on the other hand, the datasets contacted by the model are
perturbed, hiding the true intimacy between points in the original dataset, so that this
algorithm can also solve the traditional spectral clustering algorithm concerned in the
literature [16], it is easy to reveal the problem of intimacy between samples..
Sensitivity

Regarding the sensitivity, this algorithm is sensitive in the neighboring data
set �, �' When any record is modified on the neighboring data set, the data sensitivity
is 1 for each dimension, so the global sensitivity is �.
Privacy Budget

This algorithm adds noise that fits the Laplace distribution to each data set before
the model is learned, so the total privacy budget of the algorithm� satisfies the � −������������ ������� the defined measure of the differential privacy model.
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4 Simulation experiments

4.1 Experimental design

The experimental design session includes the selection of evaluation metrics for the
clustering algorithm, the introduction and pre-processing of the data set, and the
hardware and software environment for running the experiments.

we choose to use the Adjusted Rand Index (ARI)[34] as the evaluation index of the
clustering algorithm to measure how well the algorithm clustering results match with
the actual situation.

[ ]
max( ) [ ]
RI E RIARI
RI E RI





(11)

Where �� is the Rand Index (RI, equation 12), �[��] is the mathematical
expectation of the Rand Index, and ���(��) is the maximum value of the Rand
Index. The Rand coefficient is calculated by the following formula:

2
_ pn sam les

a bRI
C


 (12)

where � is the number of correct similar pairs, � is the number of correct
dissimilar pairs, � is the combinatorial number symbol, and �_������� is the total
number of data points. RI takes a range of [0,1] , and a larger value means that the
clustering results match the real situation.

The Adjusted Rand Index is an improvement of the Rand Index (RI), which
overcomes the shortcomings of the original Rand index for "random clustering does
not guarantee that the score is close to zero", it also has a higher degree of
discrimination.

(1) Experimental data set and pre-processing
The datasets used in this paper include two artificially synthetic-sized

two-dimension datasets, Moon and R2, and two datasets wine and iris from the UCI
Machine Learning Repository [34]. Detailed information is shown in Table 1.

Table 1. Data set

Dataset Number of
samples

Number of
attributes

Number of
categories

moon 600 2 2
R2 358 2 4
wine 178 13 3
iris 150 4 3
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In the preprocessing step, this article first normalizes all the data sets so that their
attribute values all fall within the interval [0,1]. In addition, considering that this
algorithm uses a Gaussian kernel function for the calculation of the similarity between
samples (Equation 4), the selection of the scale parameter ∂ affects the final clustering
result. In order to eliminate this influence, the value of ∂g in the following experiment
of the differential privacy spectral clustering algorithm is the value of ∂ that makes the
spectral clustering effect of the four data sets optimal. The process of determining the
specific value of ∂g is as follows: adjust the value of ∂, such as 0.1, 0.2, 0.5, 2, 6, 9,
11 and 12, perform multiple spectral clustering on the normalized data set, and cluster
Calculate the ARI coefficient from the class result, and select the ∂ value
corresponding to the largest coefficient as the value of ∂g . It can be seen from Fig. 2
that for the data set moon and R2, the optimal ∂ value of the clustering effect should
be selected 12. For the data set iris and wine, the optimal ∂ value of the clustering
effect is maintained at about 8.

4.2 Experimental results and analysis

Experiment 1 compared the clustering results of spectral clustering algorithm and
differential privacy spectral clustering algorithm.

Fig. 2. Relationship between parameter ∂ and clustering effect

Fig. 3 and 4 show the clustering effects on the two datasets R2 and moon,
respectively. The ARI index are marked in the lower right corner of each image.
Among them, Fig. 3(a) and Fig. 4(a) depict the clustering effect without the effect of
differential privacy protection, while Fig. 3(b) and Fig. 4(b) correspond to the
clustering effect of the differential privacy spectrum clustering. From the
experimental results, the differential privacy spectral clustering algorithm proposed in
this paper is able to identify the correct clustering classes with less loss of accuracy.
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(a) Effect of spectral clustering algorithm (b) Effect of differential privacy spectral
clustering algorithm

Fig. 3. Clustering effect on R2 dataset

(a) Effect of spectral clustering algorithm (b) Effect of differential privacy spectral
clustering algorithm

Fig. 4. Clustering effect on moon dataset

The spectral clustering algorithm and the differential privacy spectral clustering
algorithm were run several times on two datasets from UCI, wine and iris, and draw a
trend graph, where the x-axis is the number of runs of the algorithm was run n (each
run of the algorithm was based on the original dataset), and the y-axis is the average
of the n ARI index for n runs of the algorithm (for distinction, it is denoted as
"Average ARI"). The aim is to observe the usability and stability of the algorithm by
the trend of the average ARI with the number of runs.

As can be seen from Fig.5 and 6, the Average ARI coefficient of the differential
privacy spectral clustering algorithm is slightly lower than that of the spectral
clustering algorithm, because a certain amount of perturbation is generated after
adding noise to the original dataset, which causes the original dataset to lose a portion
of its accuracy. From the average ARI coefficient, the scale of the reduction of the
value is not large, indicating that the clustering results do not produce a large change,
so the differential privacy spectrum is clustered class algorithms are still available. In
addition, the average ARI index of the differential privacy spectrum clustering
algorithm gradually stabilizes with the increase of the number of runs, which also
reflects the stability of the algorithm.
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Fig. 5. Wine Data Clustering Classes Fig. 6. iris dataset clustering

5 Conclusion

In order to solve the problem of privacy leakage in traditional clustering algorithms,
we design a spectral clustering algorithm with differential privacy mechanism. By
adding noise that conforms to the laplacian distribution to the original data, to reduce
the risk of sensitive information leakage and prevent reconstruction attacks against the
model to achieve the purpose of protecting privacy and security. The experimental
results show that the spectral clustering algorithm based on differential privacy
protection proposed in this paper can not only achieve privacy protection, but also has
stability and usability. Since the perturbed data can affect the clustering accuracy, the
next step will be to investigate how to guarantee the differential privacy
implementation while improving the accuracy of the algorithm clustering as much as
possible and increasing the algorithm usability.
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