Caching Assisted Correlated Task Offloading for
IoT Devices in Mobile Edge Computing

Chaogang Tang*, Chunsheng Zhu'f, Huaming Wu®, Chunyan Liu¥, Joel J. P. C. Rodrigues/**

*School of Computer Science and Technology, China University of Mining and Technology, 221116, Xuzhou, China

Tnstitute of Future Networks, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
IPCL Research Center of Networks and Communications, Peng Cheng Laboratory, 518055, Shenzhen, Guangdong, China

§ The Center for Applied Mathematics, Tianjin University, 300072, Tianjin, China
T College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106, Nanjing, China
I Federal University of Piaui, Teresina - Pi, Brazil
** Instituto de Telecomunicagdes, Portugal

cgtang@cumt.edu.cn, chunsheng.tom.zhu@ gmail.com, whming@tju.edu.cn, Icy_cs@nuaa.edu.cn, joeljr@ieee.org

Abstract—The fast-growing Internet of Thing (IoT) has gen-
erated a vast number of tasks which need to be performed
efficiently. Owing to the drawback of the sensor-to-cloud com-
puting paradigm in IoT, mobile edge computing (MEC) has
become a hot topic recently. Against this backdrop, we focus
on the offloading of tasks characterized by intrinsic correlations
in this paper, which have not been considered in most of
existing works. For the sequential arrival of such correlated
tasks, the future workload can be efficiently reduced by caching
the current computational result. Specifically, we resort to the
Lyapunov optimization to handle the long-term constraint on
energy consumption. Simulation results reveal that our approach
is superior to other approaches in the optimization of response
latency and energy consumption.

Index Terms—Caching, correlated task offloading, MEC, re-
sponse latency, energy consumption

I. INTRODUCTION

The fast-growing development of Internet of Things (IoT)
has given rise to a ubiquitous network connecting IoT devices
[1], [2]. Considering the restricted computational capabilities
and energy reserve of these IoT devices, generated tasks
can be processed in the sensor-to-cloud computing paradigm,
where tasks are offloaded and executed in a remote cloud
center. Such a computing paradigm exploits the unconstrained
computing resources at the cloud, but it might incur long
response latency because of data transmission in the backbone
network. Therefore, it is not suitable for latency sensitive tasks.
Requirements such as energy reduction and response latency
optimization have stimulated the emergence of compromised
computing paradigms to mitigate the pressure of these IoT
devices [3], [4]. For instance, mobile edge computing (MEC)
has become a hot topic in recently years, for its cloud-similar
computing capabilities with less response latency. Specifically,
MEC strives to deploy computing facilities at the network
edge such as macro base station (MBS), thus enabling the
shift of computational workload from the cloud center to the
network edge. MEC makes task perform in close proximity to
IoT devices where tasks are generated, so the response latency
can be greatly reduced as expected.

On another hand, a huge number of tasks need to be
offloaded, which raises the possibility of repetitive offloading
for the same task. Furthermore, such repetitive task offloading
not only wastes unnecessary energy consumption but also
incurs long response latency. Accordingly, caching strategy
can be introduced for avoiding such concerns [5]. Generally,
caching the most frequently requested tasks for IoT devices
in MEC can dramatically shorten the response latency, for
the reason that the execution results can be directly returned
without repeated execution.

For instance, service caching benefits the resource-limited
edge server when tasks are offloaded. Authors in [6] investi-
gate this issue in depth by optimizing task offloading together
with service caching in MEC, and they propose an efficient
algorithm to tackle service heterogeneity, system dynamics,
and other key challenges in MEC. Authors in [7] aims to
jointly optimize task caching and offloading in MEC, from
the computing and storing resource constrained perspective.
The problem is modeled as a mixed integer programming that
is solved by an alternating iterative algorithm.

Authors in [8] try to cache the computational result in a
proactive way in fog computing. They model it as a long-
term weighted-sum energy minimization problem, and solve
it by a sliding-window based online algorithm. Authors in [9]
leverage task caching to enhance the computing capabilities
of MEC, by jointly optimizing caching, computation, and
communication resources in MEC. The offloading efficiency
usually has a great effect upon the quality of experience
(QoE) [10], [11], and service caching can help improve
the offloading efficiency. Authors in [12] strive to optimize
both service caching and task offloading in MEC from the
viewpoint of QoE. They design a utility function based on
QoE and formulate the optimization as an integer nonlinear
programming problem. Authors in [13] endeavor to achieve
intelligent task caching in the edge-cloud environment. By
doing this, they can generalize the task caching strategies and
ignore some unrealistic assumptions in existing works such as
knowing the pattern of user task requests. To this end, a multi-

armed bandit algorithm is adopted to help learn the pattern of
tasks and dynamically adjust the caching strategy.

However, we notice that most of the aforementioned works
hardly ever mine the intrinsic correlation of the task arrivals
especially for the same IoT device. The computational result
for the current task can actually benefit the following task if a
certain correlation exists between them. It shall be noted that
the two tasks are not necessarily the same. For instance, take
matrix-vector multiplication for example to motivate our work
as below. Suppose that a task ¢; is offloaded and intended
for calculation of y = Az, where A is a matrix, and x is
a vector as the task-input data. The next task ¢y arrives for
calculation of y = Bz, where B = A+ A, z = = + n,
and A and 1) denote a sparse matrix and vector, respectively.
It is clear that caching the calculation result of #; is very
beneficial to t5, owing to the computational cost reduction.
Such correlated tasks can be easily observed from one IoT
device or functionally similar devices.

In this paper, we pay attention to such tasks which are
characterized by temporarily correlated relationship, and we
aim to cache the current computational result to assist the
computation of future tasks. Specifically, we strive to optimize
the average response latency along an infinite time horizon for
the one-device one-server MEC system. In the meanwhile, a
long-term energy constraint is leveraged to ensure the stability
of MEC system. Specifically, the Lyapunov optimization is
utilized to solve the slot spanned energy constraint such that
a long-term constraint can be converted into per-slot energy
constraints. On this basis, we propose an online algorithm for
the minimization of the average response latency in MEC.

The rest of the paper is organized as below. Section II
presents a one-device one-server system model. In Section
III, we propose a Lyapunov based online algorithm to make
caching decisions for the correlated tasks. Simulation results
are reported and discussed in Section IV, and the conclusion
comes in Section V.

II. SYSTEM MODEL

A system model is considered which consists of one IoT
device and one MBS. The edge server with the caching
capability is deployed at MBS to provision computational
resources to tasks offloaded by this IoT device. Time, which
consists of a set of discrete time slots, can be indexed by
{0,1,...,m — 1} and each time slot is assumed to last 7
seconds. Sequential tasks with certain correlations arrive at
the edge server with one task at each time slot respectively.
Furthermore, suppose that each task should be accomplished
by the end of its corresponding time slot. Denote the task set
by A = {a1,as,...,a,}, where a; is the task arriving at the
ith time slot. a; is a 2-tuple of (d;, s;), where d; represents
the average task-input data that needs to be offloaded via the
wireless channel, and s; is the average workload described by
the number of CPU cycles required for performing a;.

As exemplified above, the computational results at the
current slot can assist the computation of correlated tasks at the
future slots, so caching the computational results can shorten

the response latency at the edge. However, it is impractical
to cache all the computational results at the edge, owing to
caching costs on energy consumption and storage resources
[14]. In addition, we assume that the computational results are
of timeliness. Specifically, any results that have been cached
more than fixed time slots are no longer useful and should be
abandoned. Introduce a variable I; as an indicator to represent
whether the computational result at 7th time slot is cached:

_ {1 if the result at slot ¢ is cached; 0

0 otherwise.

A. Correlated Tasks Model

In the traditional caching enabled MEC, the computational
results cached at the edge can be directly used if the same
tasks are repeatedly offloaded. However, such task oriented
caching in MEC ignores the intrinsic correlation of the task
arrivals, while the offloading for correlated tasks is far more
common than the offloading for the same tasks during a finite
time-slotted horizon. Whereas, it is complicated and difficult
to formally model the intrinsic relationships between two
sequential tasks either from coarse granularity (e.g., function
level) or fine granularity (e.g., source code level), especially
considering a sharp upsurge in the type and the number of
tasks generated by various IoT devices.

In view of this, we investigate the correlations among tasks
in a more general way, irrespective of measurement approaches
or metrics. We in this paper focus on the workload reduction
by making full use of previous caching decisions. To be more
specific, the real workload of a; at time slot ¢ because of
previous caching decisions can be modeled as [8]:

Si =si(Limad + (1 —Liz1)Li—o Ao + - -

k—1 p—1
+ [= Lophide + -+ [- L)Ly
Jj=1 j=1
P
+ [-1) 2)
j=1
where A = (Aq,...,Ap) with each \; € (0,1), j =1,2,...,p,

is a vector to represent the gradually reduced influence of the
previously cached results on reducing the current computation-
al workload. From this definition, we can observe that 1) The
current workload S; can only be affected by the last caching
decision in the past, e.g., if I,_; = 1, then S; = s;A1, no
matter what values I;_; for k > 2 take; 2) Any computational
result that has been cached more than p time slots is no longer
useful, which can effectively represent the timeliness of the
caching decisions; 3) The element \; in A should be gradually
increasing with increasing 4, such that the closer the distance
between the current time slot and the slot over which the last
result is cached, the larger the effect of caching result on the
current workload.

B. Communication Model

Task offloading from IoT devices is aimed for energy saving
and response latency reduction, owing to the constrained

computational capabilities and energy supply at the device.
Considering task caching for the latency sensitive tasks, in this
paper we aim for the minimization of the response latency of
the offloaded tasks while satisfying the total energy constraint
at the edge. The communication and computation models are
respectively described as follows.

The response latency for a task offloaded and executed at
the edge usually includes offloading time, execution time, and
return time. The offloading time denotes the time taken to
transmit the task-input data of the task into the edge via the
wireless channel. Denote by g and p the channel gain between
the device and the edge, and the transmission power of the
device, respectively. The offloading rate of task a; can be given
as:

ri = Blogy(1+23) 3)

where B is the channel bandwidth and o2 is the noise power.
Thus, the offloading time is given as:

d:
o) == 4)
T
The energy consumption caused by task offloading can be
given as:
Off — ptoff (5)

The return time means the time taken to send the computa-
tional result back to the device. Owing to the negligible size
of computational result compared to the task-input data, we
ignore the return delay and related energy consumption in this

paper.
C. Computation Model

After tasks are offloaded to the edge successfully, the edge
server will schedule resources for them. For example, the
virtual resources such as virtual machines are created and
computational resources are also provided in sequence. Since
tasks arrive with one in each time slot respectively, and thus we
ignore the queueing time at the edge. It shall be noted that task
execution at the edge not only consumes the computational
resources, but also incurs energy consumption, even if the
caching strategy is enabled in MEC. In the following, we
will respectively investigate the execution latency and energy
consumption at the edge.

Based on the above description, the execution latency for
a; at the edge is defined as:
= tinit + & (6)

Je
where t;,;; and f. are the time for the virtual environment
initialization and the computing capability of the edge server,
respectively. Therefore, the response delay for a; is
= % + tinit + S (N

T fe

The energy consumption for performing a; at the edge can
be calculated as:

t(;me

t;"l — ffff + t?xe

€5 = keS; f? (8)

where k is the effective switched capacitance coefficient and
€ is the number of cycles needed to perform one task-input
bit at R.

The task has to be accomplished by the end of current
time slot and the edge will decide whether to cache the
computational result. Recall that computational results caching
will incur additional overheads on storage and energy [8].
Given the caching decisions, the resulting energy consumption
at the current slot ¢ is expressed as:

3
> L ©)
Jj=i—p

where ~ is the static power consumption caused by result
caching for each time slot, regardless of the workload of tasks
[6]. Due to the timeliness of caching results, only the last p
results and the current caching decision have an effect on the
energy consumption for the current time slot. Hence, the total
energy consumption for a; performing at the caching enabled
MEC can be calculated as:

i
el = e9FF eere o6 = ptoff 4 geS f2 Z I~ (10)
Jj=i—p
D. Problem Formulation

We strive to optimize the response latency of correlated
tasks offloaded to the edge with the help of previously cached
computational results. Owing to the timeliness of caching
results and additional overheads caused by computational
results caching, it is impractical to cache all the results.

Generally, a long-term process is required for evaluating
MEC system and networks when caching is enabled for cor-
related tasks. Therefore, we in this paper focuses on the overall
response latency optimization for MEC and the optimization
problem is given as below:

(P1) mln nll_}IEOth” (11)
S.t.
lim lnfeg” <Q (12)
noee =0
t' <1 Vie{l,..n} (13)
edlt <emar e {1,..,n} (14)
L;e{0,1} Vie{i—pi—p+1,..,i—1} (15)

where the constraint (12) means the overall energy consump-
tion across different time slots must satisfy the energy con-
straint). As assumed earlier, each task should be completed
by the end of its time slot, which is specified by (13). Denote
by e"** the maximal energy consumption at time slot i,
and the per-slot energy consumption should not exceed the
corresponding energy constraint as denoted in (14). Constraint
condition (15) guarantees that the last p caching decisions are
binary.

Challenges. Obviously, it takes exponential time for P1 to
obtain the optimal solution, which makes the exhaustive search
prohibitively costly in terms of the execution delay. Moreover,
the task information at the future time slots is required for
optimally solving P1, which can only be accomplished oft-
line. Whereas, it is extraordinarily difficult to make predictions
on the task-input data and workload in advance. Hence, an
online approach is required for addressing such challenges,
which can make caching decisions without the future task
information.

Algorithm 1: Caching-Assisted Correlated Task Offload-
ing Algorithm (CCTO))
Input: \, Q, A, 7, n
Output: Optimum solution to P1
1 5=0;
2 fori=0ton—1do

3 Learn d; and s; from the beacon information;
4 Compute .S; based on Eq.(2);
5 | Compute ¢! based on Eq.(7);
6 Obtain I; by optimizing:
B — Qq(i) + Elg(i)eg" + V7' |q(i)];
7 Compute e based on I;;
8 | if e?!! < e9% then
9 S =8+t
10 q(i + 1) = max[q(i) — Q, 0] + e3!;
11 else
12 I, =0;
13 Recompute e“”
14 S =9+t
15 q(i + 1) = max[q(i) — Q, 0] + e¢!;
16 end
17 end
18 V*=5/n;

19 Return V* and I;

ITI. LYAPUNOV-BASED ONLINE CACHING DECISION FOR
CORRELATED TASKS

A. Preliminaries

In addition to the difficulty in obtaining task information at
future time slots, it is also pretty hard to handle the energy
constraint that crosses different time slots. Therefore, we
apply the Lyapunov optimization technology to tackling these
challenges in this section. A migration queue that indicates
dynamic changes of energy consumption is used for solving
the slot spanned energy constraint. In particular, let ¢(0) = 0,
and the queue is given as:

Q0] + et

where ¢(i) is the queue backlog in time slot i. From this
definition, we can see that ¢(i) can indicate the deviation
of current energy consumption from the energy constraint
Q. Specifically, ¢(i) with a larger value denotes a sharper
deviation. The Lyapunov function can be defined as £(q(7)) =

q(i +1) = max|q(i) — (16)

2q 2(4). The stability of this queue requires that the increment
between two consecutive states should be extremely small. To
efficiently control such an increment, the Lyapunov drift is
given as A(q(i)) 2 E[L(q(i + 1)) — L(q(0))|q(0)]

Lemma 1: Assume X, Y, Z and k are non-negative real
numbers and Z = max{Y — k,0} + X, then Z? < X? +
Y2+ k2 -2Y (k- X).

Based on this Lemma [15], the upper bound of A(¢(7)) can
be determined, as below:

A(q(i)) = E[L(q(i + 1)) — L(q(9))]q(4)]

= %E[[max[(i) = Q, 0] + "> — ¢*(i)|q(4)]

< SEIQ* + () + 2()(e5" — Q)la()]

eq,ll

= o2 B L 0q) + ateati)

= A= Qq(i) +Elg(i)ef" |q(i)] (17)
where A = & + B[00 q()] < & + B[)q(i)] =
¢+Q¥Xé3

Accordingly, we have:
Aq(i)) < B — Qq(i) + Elq(i)ef"|q(4)] (18)

Based on the above descriptions, we strive to convert the
long-term constraint on energy consumption into a per-slot
constraint, and minimize a supremum bound on the drift-plus-
penalty term in each time slot, given as:

A (q(i) + VE[q(0)]

< B~ Qq(i) + Elg(i)ef"|q(i)] + VE[t}'g(i)]
= B — Qq(i) + Elg(i)ef" + V' |q(0)] (19)
where V(> 0) is used to adjust the preference towards opti-
mization between energy consumption and response latency.
A new optimization problem P2 is formed, which tries to
optimize the right hand side of (19), as below:

(20)

(P2) min{g(i)ef" + VE'}

s.t. (13),(14), (15)
Theorem 1: The caching decision I over time slots

{0,...,n — 1} obtained by solving P2 is an approximately

optimal solution to P1.

Proof Assume that t"** is the solution to P1 and I* is the

corresponding caching decision over the time slots. We have:

2L

A (q(i)) + VE[t g (0)]
< B = Qq(i) + Elg(i)ei” + Vt;'|q(i)]
= B+ q(E[(ef" — Q)la(0)] + VE[]'|q(3)]

1
SB 4 Vtrl*

The inequality (1) holds, due to the fact that e —@Q < 0 when
I* is applied. Take the expectation of this inequality and then
sum the expectation over the time slots ¢ € {0, ...,n — 1},

2 E[A(q(i) + VE[t]|(0)]

= nXéE[[ﬁ(q(i +1)) = L(a(0)] + VE[t]]

= E[L(q(n)) — L(q(0))] + nz:é VE[t}]

=E[L(q(n))] + ni VE[t]'] < SE[B + Vi
i=0 i=0

= (B+Vt"™)xn

Owing to E[L(g(n))] > 0, 3272 VE[#}'] < (B+ V™) xn
holds. As a result,

1= B
n ; tT \%4

Therefore, the caching decision for optimizing P2 can also
make the solution of P1 infinitely close to the true value (i.e.,
t"*) as long as the value of V is properly set.]

B. Algorithm Design

Based on the descriptions, a caching-assisted correlated task
offloading algorithm (CCTO) is proposed in Alg. 1 for solving
P1. During each time slot ¢, the information about task a; such
as d; and s; can be obtained by beacon information exchang-
ing. Then we can calculate the current response latency ¢/
based on the past caching decisions (line 5). Furthermore, the
current caching decision can be obtained by minimizing the
term q(i)e?!! + VIl After that, the energy consumption at
time slot % can be calculated based on Eq. (10). In the next,
we update the energy queue after the constraint condition is
checked (line 8-16). Finally, the approximately optimal value
V* can be retrieved.

It shall be noted that the term q(4)e?!! + V1! totally depends
upon e, due to the fact that other variables, such as (i), V'
and 7!, have been determined with the help of past caching
decisions. Obviously, not to cache any computational result
can directly minimize €', since the third term Z;Zi_p Iy
at the right hand of Eq. (10) is zero at any time slot.
However, it defeats the object of caching assisted correlated
task offloading, i.e., response latency reduction by caching
computational results at the past time slots. As shown in
Theorem 1, we can actually approximate the true value of
P1 by adjusting the value of V. Therefore, we can relax the
requirement for e’ minimization. In the meanwhile, we use
V' to approximate the true value of P1, in hope to seek a
tradeoff between energy consumption and response latency.

It is noticeable that the response latency for the correlated
task offloading is mainly affected by two factors. One is the
information of the task itself such as d; and s;; and the

071 P pe e —— PP == P === =P
0.6 1
£
E il i Gk Sl
% 0.5 PR
g A
= /
3 K\\ / \ ,ﬂ\
& ~ / \ / Y
"_ 7 \ / \
041 - Proposed \\ / AN
P XY Y e
Random N
03l —-+= Greedy \\ ,,*
=» - Without Caching (Wi

4000 6000
Number of Time Slots

2000
Fig. 1. The average response time with different number of time slots

other is the caching decisions in the past p time slots, which
may reduce the workload required for task accomplishment.
In view of this, we determine the caching decision at the
current time slot (i.e., line 6 in Alg. 1) as follows. Given
the task a;, assume that the edge server has a well mem-
ory capability about the past tasks, and the average energy
consumption of these tasks plus a; can be easily calculated,
given as " = 1/n>7_, es!l. For the task a;, if its energy
consumption e/ satisfies (ef " —Q)/Q < p and et < emaz,
the computational result can be cached at the edge. p (€ (0, 1))
is used to control the energy queue deviation from (), which
is necessary since we have relaxed the requirements for per-
slot energy optimization. An arbitrarily small p is helpful for
narrowing down the optimality gap between the approximate
optimal value and true optimal value.

IV. NUMERIC RESULTS

We have conducted experiments to evaluate our approach in
this section. Two assumptions have been made in the evalua-
tion as follows. First, both d; and s; (0 < i < n—1) are evenly
distributed over the interval [dmin, dmaz] a0d [Smins Smaz)s
respectively. Second, each task can be completed by the end
of its own time slot, so there is no queuing time for any task
arriving at the edge server. Note that there are other ways to
optimize the per-slot term q(i)e¢!! 4+ V7!, such as the random
approach and the greedy approach. The former is to randomly
cache the computational result while the latter is to cache
the result of task which has the minimal energy consumption
compared to the last p tasks.

Figure 1 shows the experimental result with regards to the
average response time under different time slots. In addition
to the aforementioned approaches, i.e., the random approach,
denoted by “Random” and the greedy approach, denoted by
“Greedy”, we also compare our approach with the approach
that has not applied any caching strategies, denoted by “With-
out caching”. From this figure, we can easily observe that
our approach can averagely achieve the best performance on

1.6
6 I?\ —%= Proposed
\
‘m\ Random
»_—-R AN
\ II \\ =+= Greedy
J \ : s
14 \ / \ »—-~»= Without Caching
g \ II A “~
-
£ S/ f\\ > >
2 x a ~
g - ¥ I \\\ N
E 1.24 “\ \\ Ui \\\\ P——p
\
5 N\, \\ /9 v\ -——*—"K\\
> X N 4y * .
8 \ Ny \ *<
z \\ ull \ *\ S
5 1.0 \ i VoA N) R
\ Wy }p’ S\ /&
N N \
NS \
¥ \
0.8 1 \ X*
. AR
\ .
*

4000 6000 8000

Number of Time Slots

2000

Fig. 2. The average energy consumptions with different number of time slots

optimizing the average response latency. The approach without
any caching strategies achieves the worst performance. In the
meanwhile, the random approach has a great fluctuation owing
to its random caching at each time slot. In addition, the greedy
approach does not fluctuate a lot with the increasing number
of time slots. Therefore, our approach outstands other three
approaches on the response latency optimization.

Figure 2 shows the experimental result with regards to
the average energy consumptions under different time slots.
Still, our approach achieves the best performance among the
four approaches while the approach without caching strate-
gies achieves the worst performance. Similar to the result
shown in Fig. 1, the random approach and the greedy ap-
proach have shown similar features, respectively. Intuitively,
to cache more computational results seems to bring in more
energy consumption, which contradicts our simulation result.
However, although caching computational results incurs more
energy consumption as shown in Eq. 9, the reduced energy
consumption on workload can efficiently offset this kind of
energy consumption.

V. CONCLUSION

Caching enabled task offloading for IoT devices in MEC
has attracted extensive attention recently. Nevertheless, few
of existing works have paid attention to those tasks featured
by intrinsic correlations. Indeed, it is difficult to model the
intrinsic relationships between two sequential tasks either from
coarse granularity or fine granularity. Accordingly, in this
paper we develop a general model to depict the correlation
relationships between two sequential tasks. The computational
result cached at the current time slot can efficiently assist the
task performing at future time slots. We evaluate our approach
by extensive experiments and the results have shown that the
approach indeed outstands other approaches in both response
time optimization and energy consumption reduction.

ACKNOWLEDGEMENT

This work is partially supported by the National Key
R&D Program of China (2020YFB2104301), the Project
“Network Communication Intelligent Core Chip Design and
Core Software (PCL2021-A08)”, and the Project “Beihang
Beidou Technological Achievements Transformation and In-
dustrialization Funds (BARI2005)”. This work is also par-
tially supported by FCT/MCTES through national funds and
when applicable co-funded EU funds under the Project UID-
B/50008/2020, and by Brazilian National Council for Re-
search and Development (CNPq) via Grant No. 313036/2020-
9. Chunsheng Zhu is the corresponding author.

REFERENCES

[1] C. Tang, X. Wei, C. Zhu, Y. Wang, and W. Jia, “Mobile vehicles as fog
nodes for latency optimization in smart cities,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 9, pp. 9364-9375, 2020.

[2] C. Zhu, J. J. P. C. Rodrigues, V. C. M. Leung, L. Shu, L. T. Yang,
“Trust-Based Communication for the Industrial Internet of Things,”
IEEE Communications Magazine, vol. 56, no. 2, pp. 16-22, 2018.

[3] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Archi-
tecture and Computation Offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628-1656, 2017.

[4] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, “Traffic and
computation co-offloading with reinforcement learning in fog computing
for industrial applications”, IEEE Transactions on Industrial Informatics,
vol.15, no.2, pp.976-986, 2019.

[5] L. Yang, J. Cao, G. Liang and X. Han, “Cost Aware Service Placement
and Load Dispatching in Mobile Cloud Systems,” IEEE Transactions on
Computers, vol. 65, no. 5, pp. 1440-1452, 2016.

[6] J. Xu, L. Chen and P. Zhou, “Joint Service Caching and Task Offloading
for Mobile Edge Computing in Dense Networks,” IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, Honolulu, HI,
2018, pp. 207-215.

[71 Y. Hao, M. Chen, L. Hu, M. S. Hossain and A. Ghoneim, “Energy
Efficient Task Caching and Offloading for Mobile Edge Computing,”
IEEE Access, vol. 6, pp. 11365-11373, 2018.

[8] H. Xing, J. Cui, Y. Deng and A. Nallanathan, “Energy-Efficient Proactive
Caching for Fog Computing with Correlated Task Arrivals,” IEEE 20th
International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Cannes, France, 2019, pp. 1-5.

[9] P. Liu, G. Xu, K. Yang, K. Wang and X. Meng, “Jointly Optimized
Energy-Minimal Resource Allocation in Cache-Enhanced Mobile Edge
Computing Systems,” IEEE Access, vol. 7, pp. 3336-3347, 2019.

[10] X. He, K. Wang, and W. Xu, “QoE-driven content-centric caching with
deep reinforcement learning in edge-enabled IoT”, IEEE Computational
Intelligence Magazine, vol.4, no.4, pp.12-20, 2019.

H. Lu, X. He, M. Du, X. Ruan, Y. Sun, and K. Wang, “Edge QoE:
computation offloading with deep reinforcement learning for the Internet
of things”, IEEE Internet of Things Journal, vol.7, no.10, pp.9255-9265,
2020.

X. -Q. Pham, T. -D. Nguyen, V. Nguyen and E. -N. Huh, “Joint Service
Caching and Task Offloading in Multi-Access Edge Computing: A QoE-
Based Utility Optimization Approach,” IEEE Communications Letters,
vol. 25, no. 3, pp. 965-969, March 2021.

Y. Miao, Y. Hao, M. Chen, H. Gharavi and K. Hwang, “Intelligent Task
Caching in Edge Cloud via Bandit Learning,” IEEE Transactions on
Network Science and Engineering, vol. 8, no. 1, pp. 625-637, 2021.
G. Avino, M. Malinverno, F. Malandrino, C. Casetti, and C. F. Chi-
asserini, “Characterizing Docker Overhead in Mobile Edge Computing
Scenarios,” In Proceedings of the Workshop on Hot Topics in Container
Networking and Networked Systems (HotConNet 17), New York, 2017,
pp. 30-35.

L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Foundations & Trends in
Networking, vol. 1, no. 1, pp. 1-144, 2006.

[11]

[12]

[13]

[14]

[15]

