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Abstract

Vehicular edge computing (VEC) pushes the computational resources to the logical edge of the networks, thus enabling vehicles

to run resource-hungry and time-sensitive applications by outsourcing operations. Many studies revolved around VEC focus on

the optimization of response latency, energy consumption, or both of them, assuming that the computational resources in VEC can

be utilized for free. However, VEC provisions computational resources on a pay-as-you-go basis, which means VEC can obtain

revenues by leasing the computational resources. In this paper, we focus on the real-time computational resource pricing in VEC,

in the hope to reach a win-win situation where both VEC and vehicles can optimize their respective utility values. To reach such a

mutually satisfactory result, we adopt the Stackelberg game to model the computational resource pricing problem in this paper. In

this game, vehicles are followers and the edge server serves as the leader. Furthermore, we have proven that a unique Stackelberg

equilibrium exists in the proposed pricing game. A distributed algorithm is put forward to solve our problem, which considers the

privacy of vehicles. The distributed approach is evaluated by extensive experiments, in terms of convergence rate, running time and

so on. The simulation results demonstrate that the distributed approach can achieve satisfactory results without privacy disclosure

compared to the centralized approach.
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1. Introduction

Vehicular edge computing (VEC) has generated a vast amount

of attention recently for bringing considerable benefits to smart

transportation. As a newly emerging computing paradigm, VEC

pushes the computational resources to the logical edge of the

networks such as road side unit (RSU), thus enabling vehicles

to run resource-hungry and time-sensitive applications by out-

sourcing operations. Compared to vehicle-mounted computers,

VEC has much more computational resources. Hence, vehi-

cles can rent these resources close to them, to support resource-

greedy applications, e.g., in-car interactive gaming and natu-

ral language understanding and processing (Tang et al., 2020a;

Zhou et al., 2020). In contrast to the sensor-to-cloud paradigm

where applications are outsourced and performed in a remote

cloud center, such a cloud-similar computing paradigm can sub-

stantially alleviate traffic congestion in the network core, ow-

ing to the computational resources in close proximity to data

sources (i.e., moving vehicles) (Feng et al., 2019). Accordingly,

VEC has become one of the key enablers for smart transporta-

tion (e.g., unmanned vehicles).

It shall be noted that a remote cloud center is indispensable

in VEC. On one hand, VEC is introduced as an intermediate

layer between vehicles and the cloud center with the purpose
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of extending the computing and storage capabilities at cloud

to the network edge to satisfy vehicular applications with strict

delay requirements. VEC resorts to the cloud center by rent-

ing the computational resources when its own resources are not

sufficient. On the other hand, for those vehicular applications

which are resource hungry but not time sensitive, cloud com-

puting remains the first choice for application outsourcing, due

to the fact that there are unlimited computational and storage

resources in the cloud center.

Against this background, many studies revolved around VEC

have been carried out in both industry and academia fields, such

as (Zhang et al., 2020b; Chen et al., 2020; Dai et al., 2019;

Liu et al., 2020). Currently, most of these works focus on

the optimization of response latency, energy consumption, or

both of them, when vehicular applications are offloaded and

computational resources are scheduled in VEC. An implying

assumption among these works is that the computational re-

sources in VEC or the cloud center can be used for free. As with

cloud computing, VEC provisions computational resources on

a pay-as-you-go basis. Thus, the resources in either VEC or

the cloud center are not for unconditional use in reality. Fur-

thermore, monetary rewards have always been a strong incen-

tive for resource providers in VEC. From the perspective of

resource providers, they attempt to maximize the revenues by

leasing the computational resources in VEC. In contrast, the

vehicles strive to accomplish their application outsourcing at

the least cost, e.g., with regards to (w.r.t.) response time, en-
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ergy consumption and monetary expenditure. The pricing for

computational resources will play an important role in the max-

imization of their respective profits. For instance, a higher price

for computational resources will bring more revenues to service

providers in VEC. In the meanwhile, a lower price for compu-

tational resources will encourage vehicles to outsource more

vehicular applications and thus the quality of service (QoS) can

be improved in terms of response time.

Nevertheless, few existing works have recognized the im-

portance of computational resource pricing for application out-

sourcing in VEC (Zhang et al., 2020c; Wang et al., 2016). In

this paper, we concentrate on the real-time pricing scheme for

computational resources in VEC. In our view, a reasonable pric-

ing scheme is very important, since it not only stimulates more

efforts for computational resources contribution in VEC, but

also avoids dampening the enthusiasm of vehicles for resource

renting. Specifically, the contributions of this paper are sum-

marized as follows.

• We propose an optimal computational resource pricing

scheme in VEC. The proposed pricing scheme can guar-

antee a mutually satisfactory result for vehicles and the

edge server. To this end, both vehicles and VEC can op-

timize respective utility values according to the price per

workload set by VEC.

• We adopt the Stackelberg game for real-time computa-

tional resource pricing in this paper. Vehicles are fol-

lowers and the edge server is the leader in this one-leader

multi-followers game. Vehicles determine their own work-

loads to be undertaken by VEC by observing the leader’s

strategy (i.e., the price per workload). On the other hand,

the edge server adjusts the price per workload based on

the offloaded workloads of the vehicles. Furthermore, we

have proven that a unique Stackelberg equilibrium exists

in this pricing game.

• Considering the fact that vehicles generally refuse to dis-

close their private information to the public, a distributed

algorithm is proposed to solve this optimal computational

resource pricing issue in VEC. Extensive simulation is

conducted to evaluate the performance of our approach,

and the simulation results demonstrate the advantages of

our approach.

The rest of this paper is organized as follows. We review

some related works in Section 2. Section 3 introduces our sys-

tem model. Our optimization problem is mathematically for-

mulated in Section 4, which strives to optimize the utility values

of vehicles and the edge server, respectively. In Section 5, the

centralized and distributed algorithms are put forward to solve

the computational resource pricing in VEC, respectively. Sim-

ulation and result analysis come in Section 6, followed by the

conclusion in Section 7.

2. Related Works

With the advent of VEC, computing capabilities have been

brought to the edge of the network, which brings consider-

able benefits to smart transportation and the corresponding sub-

ecosystems including connected vehicles and RSU. The com-

putational resources are provisioned at the edge to such entities,

enabling vehicles to run resource-hungry and time-sensitive ap-

plications by outsourcing operations. Accordingly, VEC has

been regarded as one of the key enablers to accelerate the pros-

perity of smart transportation. In this section, we will review

some related works in this field.

2.1. Computation Offloading in VEC

In smart transportation and VEC systems, it is pretty diffi-

cult to predict the routes of moving vehicles (Wu et al., 2020a).

Quick mobility of vehicles and different driver preferences fur-

ther contribute to such difficulty. To tackle this challenge, Liu

et al. in (Liu et al., 2020) proposed to use one particular type of

vehicle to serve as moving servers. Such vehicles (e.g., buses)

are usually deployed with a timetable and follow the prescribed

route. In this context, they propose an offloading algorithm

based on learning technology to perceive the fluctuation of ve-

hicles. Base stations, as agents, are responsible for learning

the state of the moving server. Multi-access edge computing is

considered to enhance the performance of vehicles by outsourc-

ing computation-intensive tasks to the edge. Thus, authors in

(Gu & Zhang, 2021) put forward an energy-aware computation

outsourcing for VEC. They strive to seek a tradeoff between

latency and energy consumption.

Parked vehicles usually have unexploited computational re-

sources with idle states in the parking slots. By leveraging

these idle computational resources of parked vehicles, authors

in (Huang et al., 2021) aim to maximize user-centric utility

and optimize the network-wide task scheduling. Owing to the

high dynamics of vehicular networks, it is hard to make time-

varying offloading decisions in vehicular networks. Thus, au-

thors in (Zhang et al., 2020a) utilized the synchronized ran-

dom walk model and proposed a reinforcement learning-based

scheme for processing delay reduction and dynamic scene adapt-

ability. Similarly, authors in (Guo et al., 2020) proposed an in-

telligent task offloading approach using deep Q learning to mit-

igate the pressure on the computational capabilities of vehicle-

mounted computers.

VEC guarantees that computationally intensive workloads

can be offloaded to the computing infrastructure in the vicinity.

Speak of autonomous vehicles, however, it is very hard for them

to efficiently obtain satisfactory performance by leveraging the

VEC systems. In this context, authors in (Sonmez et al., 2021)

proposed a vehicular edge orchestrator based on two-stage ma-

chine learning. This orchestrator considers the success rate of

task performing and the service time. The simulation results

have demonstrated the efficiency and effectiveness of the pro-

posed approach.

Actually, extensive works have focused on computation of-

floading in VEC for multiple purposes, e.g., energy reduction

(Zhao et al., 2021; Wu et al., 2020b), response latency opti-

mization (Li et al., 2020; Batewela et al., 2020; Feng et al.,

2017), trustiness issue (CAI et al., 2020; Wang et al., 2021b)

and the reduction of pressure on the vehicular computational
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resources. Readers who are interested can refer to the afore-

mentioned works, and we do not review them in detail anymore.

2.2. Resource Pricing for Computation Undertaking

We notice that few of the current works have paid attention

to the issue of computational resource pricing in VEC. One pos-

sible reason is that few of them have recognized the importance

of computational resource pricing for application outsourcing

in VEC (Tang et al., 2020b). The IoT devices usually have nu-

merous tasks and thus urgently require computing resources for

undertaking the computation. The computation is usually un-

dertaken based on a pay-as-you-go model. Therefore, the re-

source pricing will become more and more important with the

increasing number of entities that can provide computing re-

sources.

For example, authors in (Chen et al., 2021) strived to maxi-

mize the revenues of the mobile edge computing (MEC) sys-

tem. The edge server deployed at an access point can pro-

vide sufficient computing resources for resource-hungry users.

Thus, the edge server can earn revenues by charging users with

the task offloading requests. A policy gradient-based reinforce-

ment learning algorithm is put forward to solve this revenue

maximization problem. Authors in (Nguyen et al., 2021) put

forward a market-based framework, which can make full use

of the resources of edge nodes for serving the requestors at the

network edge. They can generate a market equilibrium solu-

tion, i.e., the utility of the edge can be maximized and optimal

resources can be allocated to the requestors while considering

multiple constraints.

Authors in (Wang et al., 2021a) proposed an edge-intelligent

hierarchical dynamic pricing mechanism. In this mechanism,

the collaboration among the cloud, edge, and client is mod-

eled as a double-layer Stackelberg game. A pricing prediction

algorithm is put forward to solve the problem. A computing

and networking paradigm based on multi-access edge comput-

ing was proposed in (Su et al., 2021), which tries to cope with

the increasingly complicated requirements of Internet of Things

users. To model price negotiation between the service providers

and the edge nodes, they put forward a distributed algorithm for

negotiating the price.

Tasks are also offloaded in multi-access edge computing.

Authors in (Siew et al., 2020) investigated the task offloading

and resource allocation in this computing paradigm from the

market and economic perspective. They designed an economy-

inspired commercial model to realize the resource quota sharing

among requestors, in the hope to maximize the overall welfare

of requestors. In particular, they designed a distributed pricing

mechanism.

2.3. Performance Optimization with Stackelberg Game for Com-

putation Undertaking

The Stackelberg game provides a well-suited solution to

the multilevel decision-making process, and has been widely

applied to scenarios where two entities pursue their respective

profits or revenues maximization. For instance, authors in (Zhang

et al., 2020c) leverage the parked vehicle to assist VEC in un-

dertaking workloads in vehicular networks. Specifically, they
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Figure 1: Application scenario considered in this paper

studied the assignment of tasks with aid of Stackelberg game,

for minimizing the overall costs. A price-based distributed ap-

proach is put forward in (Liu & Liu, 2018), with the purpose

of managing the tasks offloaded. Specifically, a Stackelberg

game is applied to the situation for realizing the respective prof-

its from the viewpoints of the edge and users.

IoT devices require a dependable environment for perfor-

mance guarantee and the blockchain technology can provide a

promising solution to the requirement. However, the blockchain

tasks are featured by intensive computation while these IoT de-

vices have limited computing resources. Thus, task offloading

is necessary for these IoT devices. Usually, the cloud center

and edge servers are the places to undertake these offloaded

computations. Therefore, authors in (Liang et al., 2021) state

that the costs and profits of computing resources providers can

greatly affect the decisions of the task allocation. Specifically,

they formulate a Stackelberg game where the cloud center and

edge servers are the leader and the followers in the computing

resource management, respectively. Furthermore, they model

resource pricing as a mixed-integer programming problem.

Different from the aforementioned works, in this paper we

focus on pricing per workload which is undertaken by VEC

with strict latency requirements in VEC. Vehicles can deter-

mine the number of their workloads to be offloaded given the

unit price. In the meanwhile, the privacy of vehicles are con-

sidered in this paper.

3. System Model

An application scenario is shown in Fig. 1, which consists

of one RSU, one remote cloud center and multiple vehicles.

The edge server is deployed at RSU to provide computational

resources to the vehicles in the vicinity. The set of vehicles is

denoted by V = {v1, · · · , vn}. Each vehicle in V can communi-

cate with each other and RSU, using Vehicle-to-Vehicle (V2V)

and Vehicle-to-Infrastructure (V2I) communication technolo-

gies, respectively. The maximal communication distance of

RSU is D as shown in Fig. 1. As a result, the dwell time for any

vi in V within the communication range of RSU is limited. In

this context, assume there exists a set of applications denoted
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by A = {a1, · · · , an} with ai(1 ≤ i ≤ n) denoting the applica-

tion that vi wants to outsource to the edge server for execution.

Specifically, ai is a 2-tuple of (di,wi,max), where di represents the

size of task-input data to be offloaded via the wireless channel,

and wi,max is the workload described by the number of CPU cy-

cles required for accomplishing ai when ai is totally outsourced

to the edge.

Let p denote the unit price for processing per workload in

VEC. Usually, the price p is set by the resource provider in

VEC. Considering the effect of p on the computing resource

demands of vehicle vi, we have wi ≤ wi,max, where wi rep-

resents the real workload that is offloaded by vi to the edge

server. wi,max − wi is the residual workload that needs to be ac-

complished with the local vehicular computational resources. It

shall be noted that wi,max−wi actually violates the willingness of

vi, since the residual workloads are supposed to be kept for any

other individual purposes. Thus, to express such unwillingness,

we define a subjective dissatisfaction as δ(wi,max − wi), where

δ is a controlling factor that reflects the level of dissatisfaction

for the vehicles. For simplicity, we assume that δ is the same

for all the vehicles and is also available to RSU. For instance, δ

can be incorporated into the beacon information when vehicles

interact with RSU. Moreover, for easy discussion, hereafter we

use the three words “RSU”, “the edge server ” and “the edge”

exchangeably for the same meaning through the rest of the pa-

per.

The response time for performing ai mainly includes three

parts, i.e., the time taken to perform wi,max −wi locally, the time

taken to offload di to VEC, and the time taken to perform wi at

RSU. Denote the three kinds of time by tloc
i

, t
o f f

i
and te

i
, respec-

tively. tloc
i

can be given as:

tloc
i =

wi,max − wi

fi
, (1)

where fi denotes the computing capability of vi. Denote by gi

and pi the channel gain between vi and RSU, and the transmis-

sion power of vi, respectively. The offloading rate for ai can be

calculated as:

ri = B log2(1 +
pigi

σ2
), (2)

where B is the channel bandwidth and σ2 is the noise power.

Thus, the offloading time t
o f f

i
is:

t
o f f

i
=

di

ri

. (3)

The execution time of ai at the edge can be expressed as:

te
i = tinit +

S i

fe
, (4)

where tinit is the time taken to initialize the virtual environment

and fe denotes the computing capability of RSU. For simplicity,

we assume there are sufficient computational resources at RSU,

since RSU can also rent these resources from the cloud center.

Therefore, there is no extra queuing time for the arrived applica-

tions. On the other hand, following other works such as (Chen

et al., 2016)(Tang et al., 2018), we neglect the return time, i.e.,

the time taken to return the execution result back to vi, based

on the consensus that the size of computational result is much

smaller than that of task-input data in most cases. Therefore,

the response time for ai can be expressed as:

trt
i = max{tloc

i , t
o f f

i
+ te

i }. (5)

On the other hand, the dwell time of vi within the commu-

nication range of RSU can be estimated as:

dti =
2D sin (θ/2)

ri

, (6)

where θ is the angle formed between R and the points where vi

enters and leaves the communication range of R, respectively,

as shown in Fig. 1.

The application ai should be completed before vi leaves the

communication range of R, so the following inequality holds:

trt
i ≤ dti, ∀i ∈ {1, · · · , n}. (7)

Based on the descriptions above, the utility of vi can be de-

fined as:

Ui = αi log(1 + wi) + δ(wi,max − wi) − p · wi, (8)

where αi is the satisfaction level toward the workload offload-

ing. For the right-hand side of this equation, the first term rep-

resents the utility earned by offloading workload wi using a lo-

gistic function, the second term evaluates the unwillingness of

using local computational resources to undertake the residual

workload, and the last term denotes the payments for renting

resources from VEC. Generally, the larger the value of Ui, the

higher the level of satisfaction for vehicles.

On the other hand, the computational resource provider in

VEC is encouraged to pursue their own profits by leasing the

resources to vehicles in the vicinity. It shall be noted that VEC

occasionally turns to the cloud center for help, if the amount of

computational resources in VEC is not sufficient. Accordingly,

there exists a certain cost for VEC to provide computational

resources. Given the unit price p for processing per workload

offloaded from vehicles, the utility of the resource provider in

VEC can be defined as:

Ue = p

n
∑

i=1

wi − η

n
∑

i=1

wi, (9)

where η denotes the cost for undertaking per workload offloaded

from the vehicles, the first term at the right-hand side is the

profits obtained by leasing computing resources and the sec-

ond term denotes the costs when VEC provide computational

resources to vehicles. Generally, the larger the value ofUe, the

more the revenues for VEC.

4. Problem Formulation

4.1. Preliminaries

According to the above descriptions, we hope that 1) vehi-

cles can determine their own workloads to be offloaded based
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on the price per workload that is set by VEC, such that they can

optimize their own utility values; 2) VEC can maximize its own

revenues by pricing the computational resources while consid-

ering the real demands of vehicles in the vicinity for compu-

tational resources. Therefore, it is very important to design an

efficient and reasonable pricing scheme for computational re-

sources in VEC, for the reason that an appropriate price p can

help both vehicles and RSU reach a mutually satisfactory result,

i.e., utility optimization for vehicles and revenues maximization

for VEC, respectively. However, it is very challenging to reach

such a win-win situation in which both vehicles and RSU can

achieve their own goals for the following reasons.

On one hand, vehicles are selfish in the sense that they are

not willing to disclose their true resource demands to other

vehicles except RSU. From the perspective of privacy protec-

tion (Wang et al., 2021c), vehicles are not supposed to reveal

their resource demands to other vehicles either. In this con-

text, vehicles individually adjust their resource demands based

on the price towards their own utility maximization. No in-

formation on resource demands (e.g., the satisfaction level αi

of vi) is shared among these vehicles. Therefore, a centralized

algorithm is inapplicable in this case, which necessitates a dis-

tributed approach for utility optimization.

On the other hand, the high mobility of vehicles poses strict

delay requirements to application outsourcing. For instance, the

response time of an outsourced application should be strictly

less than the corresponding dwell time as denoted by Eq. 7. The

price per workload should be determined before the application

outsourcing actually takes place. As a consequence, the com-

putational resource pricing is supposed to be real-time, which

contributes to the difficulty of interactions between vehicles and

RSU.

Before going further, the dynamic procedure of computa-

tional resource pricing can be briefly described below. In the

beginning, a price per workload p is initialized and then broad-

casted by RSU to the vehicles in the vicinity. Such information

can be incorporated into the beacon information and dissemi-

nated among vehicles. Upon receiving these beacons, vehicles

with the outsourcing need to estimate the number of workloads

to be undertaken by VEC, according to p. Then, the estimated

amount of workloads is respectively sent to RSU by each vehi-

cle during the beacon information exchanging. After receiving

these demands, the edge will evaluate and determine a new p

such that its revenues can gradually increase. The resulting p is

then broadcasted to vehicles again where the amount of work-

loads to be undertaken is recalculated based on p, with an aim

to gradually increase their own utility values. Such a procedure

will not stop until a mutually satisfactory result is achieved, e.g.,

neither the revenues of VEC nor the utility values of vehicles

increase anymore.

4.2. Stackelberg Game

In this paper, we resort to the Stackelberg game for model-

ing this dynamic procedure of computational resource pricing

as described above. As introduced earlier, the Stackelberg game

offers a promising solution to the multilevel decision-making

process consisting of the followers and the leader. At the be-

ginning, the followers observe the leader’s strategy. Then, they

select their own strategies for the sake of their own utility opti-

mization. In the next, they respond to the leader by the chosen

strategies. Finally, the leader redesigns the strategy in response

to the followers. This procedure repeats until a so-called Stack-

elberg equilibrium is achieved if the equilibrium exists. Ac-

cordingly, we utilize this one-leader multi-followers Stackel-

berg game to solve our computational resource pricing scheme

for VEC in this paper. In this noncooperative game, RSU serves

as the leader and vehicles are the followers. To be specific, the

game of the computational resource pricing scheme in VEC is

given as:

G = (V ∪ RS U, (p,wi), (Ue{wi},Ui{p})), (10)

where V ∪ RS U is the set of players, including the followers

(i.e., the set of vehicles ) and the game leader (i.e., RSU), (p,wi)

denotes the set of strategies VEC and vehicles take respectively,

and (Ue{wi},Ui{p}) denotes the set of utility values of VEC and

vehicles, respectively. Generally, the Stackelberg consists of

the set of players, the set of strategies and the utility set in this

paper.

In the next section, we mathematically formulate the op-

timization problem from the viewpoints of vehicles and RSU,

respectively.

4.3. Vehicle Utility Optimization

Given the price per workload p, vehicles with the outsourc-

ing needs strive to optimize their own utility values by adjust-

ing their workloads to be undertaken by VEC. Accordingly, the

optimization problem for each vehicle can be mathematically

given as:

P1 : max
p

Ui (11)

s.t.:

wi ≤ wi,max, ∀i ∈ {1, · · · , n}, (12)

trt
i ≤ dti, ∀i ∈ {1, · · · , n}, (13)

where inequation (11) represents that the assigned workloads

to VEC wi should not exceed wi,max. In the meanwhile, the

response time for the workload wi should not exceed the dwell

time of vi within the communication range of RSU, which can

be guaranteed by the constraint (13).

Suppose that the offloaded workloads wi is continuous. For

the utility function of vehicle vi, i.e., Ui, take the first and sec-

ond derivatives of Ui with respect to wi respectively, we can

obtain:

∂Ui

∂wi

=
αi

(1 + wi) ln 2
− δ − p, (14)

∂2Ui

∂w2
i

=
−αi

(1 + wi)2 ln 2
< 0. (15)

Due to the fact that the second derivative of Ui is always

negative in the feasible domain, the utility function Ui is thus

convex in terms of the workloads wi. As a result, problem P1
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is a convex optimization problem. We can easily infer that the

maximum of Ui exists, and the corresponding maximal value

can be obtained by making ∂Ui/∂wi = 0 hold, given below:

w∗i =
αi

(p + δ) ln 2
− 1. (16)

It shall be noted that αi is private to each vehicle vi, so vi

does not want to disclose it to other vehicles for the sake of pri-

vacy protection. On the other hand, the value of αi should be ap-

propriately set such that wi > 0 holds. It can be easily observed

that the workloads wi to be undertaken by VEC decreases with

the increasing p. Namely, the price p should be set reasonably,

since higher pricing for the computational resources will hold

back the enthusiasm of vehicles with outsourcing needs in the

vicinity.

4.4. Revenue Maximization for VEC

It is costly to deploy the edge server together with RSU in

the traffic dense area, let alone daily maintenance costs. In this

context, resource providers are encouraged to contribute their

resources to VEC. On one hand, this way benefits vehicles in

the vicinity a lot since vehicular applications can be offloaded

and executed in VEC instead of a cloud center, which can dras-

tically reduces the response time of the outsourced applica-

tions. On the other hand, resource provisioning in a pay-as-

you-go model will stimulate providers to lease computational

resources with QoS satisfaction. Therefore, the purpose of VEC

(i.e., RSU) in this paper is to maximize its revenues defined in

Eq. (9). To be more specific, the optimization problem for RSU

is mathematically given as:

P2 : max
w

Ue (17)

s.t.

p > η, (18)

where w = (w1, · · · ,wn) is a vector to denote the workloads

of all the vehicles which are about to be undertaken by VEC.

Constraint (18) guarantees that the revenues of VEC are posi-

tive, i.e., it is profitable for providers to lease the computational

resources in VEC.

Let’s suppose that p is a continuous variable and take the

first derivative ofUe in terms of p, i.e.,

∂Ue

∂p
=
∂(p
∑n

i=1 wi − η
∑n

i=1 wi)

∂p
. (19)

Substitute wi with p as shown in Eq. (16), and we have

∂Ue = ∂

[

p

n
∑

i=1

αi

(p + δ) ln 2
− η

n
∑

i=1

αi

(p + δ) ln 2
− (p − η)n

]

.

(20)

Let ∂Ue/∂p = 0, namely,

∂Ue

∂p
=

n
∑

i=1

αi(δ + η)

(p + δ)2 ln 2
− n = 0. (21)

Thus, the price p∗ can be calculated as:

p∗ =

√

√

δ + η

n ln 2

n
∑

i=1

αi − δ. (22)

Take the second of derivative of Ue with respect to p, we

have:

∂2Ue

∂p2
=

∂(
∑n

i=1
αi(δ+η)

(p+δ)2 ln 2
− n)

∂p
= −

n
∑

i=1

2αi(δ + η)

(p + δ)3 ln 2
< 0. (23)

Due to the fact that the second derivative of Ue is always

negative in the feasible domain, the utility function Ue is thus

convex in terms of the workloads p. Therefore, problem P2 is

a convex optimization problem. We can infer that p∗ is the best

price that can maximize Ue. In the meanwhile, it can also be

easily observed that the optimal price p∗ totally depends upon

the number of vehicles n, the cost for undertaking per workload

η, and the satisfaction level toward the outsourced workload for

each vehicle αi. Accordingly, the optimal price p∗ is actually

independent of the workload vector w.

4.5. Stackelberg Equilibrium

P1 and P2 are the optimization goals of vehicles and RSU,

respectively. Let’s investigate the optimization in depth from

the game-theoretical perspective. The Stackelberg game pro-

posed for pricing the computational resources in this paper needs

to find the Stackelberg equilibrium (SE), since such a Stack-

elberg equilibrium can guarantee that a mutually satisfactory

result can be reached for both vehicles and VEC, i.e., utility op-

timization for vehicles and revenues maximization for VEC. In

this section, we will prove the existence and uniqueness of the

Stackelberg Equilibrium (SE). By doing this, we can ensure that

RSU can obtain the optimal resource pricing and vehicles can

determine the optimal amount of workloads to be undertaken

by VEC.

Let w = {w1,w2, · · · ,wn} and p denote the strategies of ve-

hicles and RSU, respectively. Then we define the SE of G as

below:

Definition 1. Assume there exists a pair of strategy profiles (w∗, p∗)

for G and w
∗
= {w∗

1
,w∗

2
, · · · ,w∗n}. For an arbitrary vehicle

vi(∈ V), it cannot increase its own utility value anymore by ad-

justing the strategy unilaterally, i.e.,

Ui(w
∗
i ,w

∗
−i, p

∗) ≥ Ui(w
′
i ,w
∗
−i, p

∗), ∀i ∈ {1, 2, · · · , n}, (24)

where w∗
−i
= {w∗

1
, · · · ,w∗

i−1
,w∗

i+1
· · · ,w∗n} denotes the strategies

of other vehicles except vi and w′
i

is an arbitrary strategy of vi

except w∗
i
. In the meanwhile, RSU cannot obtain more revenues

by adjusting the price p either, i.e.,

Ue(w∗i ,w
∗
−i, p

∗) ≥ Ue(w∗i ,w
∗
−i, p

′), ∀i ∈ {1, 2, · · · , n}. (25)

In this case, we call this pair of strategy profiles (w∗, p∗) is the

SE of G.
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It is worthwhile mentioning that equilibrium does not al-

ways exist in a non-cooperative Stackelberg game. As a result,

it is necessary to prove the existence and uniqueness of SE for

G proposed in this paper.

Theorem 1. A unique SE always exists in the proposed Stack-

elberg game G = (V ∪ RS U, (p,wi), (Ue{wi},Ui{p})) for com-

putational resource pricing in VEC.

Proof Existence: In this Stackelberg game, the vehicles (i.e., the

followers in G) are obviously independent of each other. Ac-

cording to Eq. (8), the utility values of them only depend upon

the price per workload p and their own amount of workloads

that are assigned to VEC. We have proven earlier that the utility

functionUi is strictly convex, for the reason that ∂2Ui/∂w
2
i
< 0

always holds, for an arbitrary vehicle vi. As a result, after re-

ceiving a price p broadcasted by VEC, vehicle vi can adjust

the workloads to be undertaken by VEC with an aim to maxi-

mize its utility value based on this price. The workloads wi for

vehicle vi vary between the interval [wi,min,wi,max], with an as-

sumption that wi,min is the minimal workloads for vi to offload.

Therefore, there only exist three candidate workloads that need

to be examined for the sake of the utility function maximization

– wi,min, wi,max, and αi/((p + δ) ln 2) − 1, respectively. Accord-

ing to Definition 1, G can reach SE if and only if an arbitrary

vehicle vi and RSU obtain the maximal utility and revenues, re-

spectively. Therefore, the game G can reach the SE as long as

RSU finds the optimal price p∗ and vi determines an optimal

amount of workloads to offload based on p∗.

As shown in Eq. (23), the second derivative of Ue w.r.t. p

is negative, which makes sure that Ue is strictly convex in the

feasible domain w.r.t. p. Hence, the optimal price per workload

p∗ can be obtained as shown in Eq. (22). Furthermore, this

optimal price is proven to be dependent upon the number of

vehicles n, the cost for undertaking per workload η, and the

satisfaction level of each vehicle. It is thus totally independent

of w. As mentioned above, the optimal workload vector w
∗ can

be calculated based on p∗. Accordingly, there always exists a

unique SE in G.

Uniqueness: It is worthwhile mentioning that the optimal

price p∗ obtained in Eq. (22) is unique, for the reason that the

other value −
√

(δ + η)/(n ln 2)
∑n

i=1 αi − δ(< 0) is not qualified

as the price per workload. Thus, the workload vector w∗ is also

unique. Accordingly, the SE of G is unique in this paper. �

5. Algorithm Design

An efficient algorithm is needed for optimal computational

resource pricing in VEC. First, both vehicles and VEC are sat-

isfied with the computational resource pricing. In other words,

the algorithm must be ensured to converge to the unique equi-

librium of the proposed Stackelberg game in this paper. Only at

this particular time can a win-win situation be reached. Second,

the high mobility of vehicles has posed strict delay require-

ments to the response time when applications are outsourced.

The computational price per workload should be determined in

almost real time in the stage of the beacon information exchang-

ing. That is to say, the remaining time within the communica-

tion range of RSU should be enough for the accomplishment of

application outsourcing. Accordingly, the proposed algorithm

should be of a fast convergence rate. Last but not least, there

is an increasingly urgent need for privacy protection in VEC.

For instance, vehicles may be unwilling to disclose their pri-

vate information (e.g., the satisfaction level and even the utility

function) to the public (e.g., other vehicles and RSU). It is chal-

lenging to design an efficient algorithm while considering the

privacy of each vehicle.

To tackle the above practical considerations, we propose

centralized and distributed algorithms respectively in the fol-

lowing two subsections.

5.1. Centralized Algorithm

A centralized algorithm (CA) is proposed for pricing the

computational resource in VEC as shown in Alg. 1. It shall be

noted that CA does not need the frequent interactions between

vehicles and RSU, and thus can be implemented in real time.

In Alg. 1, CA needs not only the number of vehicles, but also

the satisfaction levels of vehicles. As shown in lines 1–4 in this

algorithm, each vehicle sends its own satisfaction level to RSU

together with the beacon information. After receiving all the

information from the vehicles, RSU can immediately calculate

the optimal price per workload p∗ (line 5) and then sent it to

all the vehicles. Upon receiving the optimal price, each vehicle

vi can calculate its best workloads to be undertaken by VEC

w∗
i

from the three candidate workloads, i.e., wi,min,wi,max, and

αi/((p + δ) ln 2) − 1 (line 7). Furthermore, the optimal utility

value U∗
i

can also be obtained based on Eq. 8. Finally, the

optimal workload profile w
∗ and price p∗ can be returned.

Algorithm 1: Centralized Algorithm for Per-

workload Pricing (CAPP)

Input: n, η, δ

Output: The optimal price p∗ and w
∗

1 for each vi in V do

2 vi sends the satisfaction level αi to RSU together

with beacon information;

3 RSU receives and records αi for vi;

4 end

5 RSU calculates the optimal p∗ based on Eq. (22):

p∗ =

√

δ+η

n ln 2

∑n
i=1 αi − δ;

6 RSU sends p∗ to n vehicles;

7 vi determines the best workload w∗
i

from the following

candidates: {wi,min,wi,max, αi/((p + δ) ln 2) − 1};

8 Each vehicle vi calculates its own utility value by:

U∗
i
= αi log(1 + w∗

i
) + δ(wi,max − w∗

i
) − p∗ · w∗

i
;

9 vi sends w∗
i

back to RSU;

10 return p∗ and w
∗;

Complexity analysis. As discussed earlier, the time is mainly

spent by CS in collecting the information of vehicles such as the

satisfaction level (lines 1–4), which is of time complexity O(n).
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Then, RSU calculates the optimal p∗ with constant time. Then,

the optimal price p∗ is sent to all the vehicles, which requires

the time complexity O(n) (line 6). After determining the most

suitable workloads to be offloaded, each vehicle sends its re-

spective workloads to RSU, which is of time complexity O(n)

(line 9). To sum up, the total time complexity is O(n) for the

CS strategy.

However, an implicit assumption in CA is made that all the

vehicles are willing to disclose to RSU their private information

such as the satisfaction levels and the utility function. Only in

this way, the optimal price p∗ can be calculated, for the rea-

son that the substitution of wi with p during the calculation of

the first derivative of Ue w.r.t. p requires the utility function

of vi. From the perspective of privacy protection, such private

information is not supposed to be revealed to the public. In

this context, it is very necessary to design a distributed algo-

rithm for computational resource pricing in VEC while taking

into consideration the privacy protection from the perspective

of vehicles.

5.2. Distributed Algorithm

Considering the fact that vehicles may not be willing to

expose private information to RSU, a distributed algorithm is

therefore proposed in this section for obtaining the optimal price.

The purpose of our pricing game G is to reach the SE, which

should be guaranteed in the distributed algorithm. To that end,

frequent interactions between vehicles and RSU are required

for alternating negotiations.

Generally, the procedure of alternating negotiations between

vehicles and RSU can be sketched out as follows. First, a price

per workload is initialized randomly by RSU and then is sent

to each vehicle with the outsourcing needs. Upon receiving the

price p, each vehicle begins to compute its own workloads wi

and forwards it to RSU, respectively. A workload vector w is

constructed at the edge server, i.e., w = (w1,w2, · · · ,wn). Ac-

cording to w, the new revenue can be calculated using Eq. (9) at

RSU. If the revenue is better than in the past, it means that the

price can be further increased strategically, for the purpose of

profit maximization. The updated price is then sent back to the

vehicles where vehicles leverage it to determine new workloads

to be undertaken in VEC.

The above procedure continues until the vehicles and RSU

iteratively reach the SE of G in a distributed way, as defined

in Definition 1. Specifically, the corresponding two algorithms,

one for vehicles side and the other for RSU side, are shown in

Alg. 2 and Alg. 3, respectively. Given the price p, the process

of determining the optimal workload to be undertaken by RSU

is shown in Alg. 2. In the beginning, the best utility for each

vehicle is initially set to zero (lines 1–3). The currently optimal

workload can be obtained according to Eq. (16). Then the dwell

time of the vehicle can be calculated based on this workload.

If the dwell time does not exceed the deadline, then DADW

checks whether the current workload is valid (lines 11–17) and

updates the optimal workload in case of invalidity. The vehicle

then calculates its own utility value. Finally, the current vehicle

reports the currently optimal workload to RSU.

Algorithm 2: Distributed Algorithm for Determining

Workloads at Vehicles (DADW)

Input: p, δ, η

Output: The optimal workload w∗

1 for each vi in V do

// Initialize the best utility value

for each vehicle

2 U∗
i
= 0;

3 end

// Vehicles execute the following codes in

a distributed way

4 for each iterative p received from RSU do

5 for each vi in V do

6 w′
i
= αi/((p + δ) ln 2) − 1;

7 Given w′
i
, compute trt

i
based on Eq. (5);

8 Compute the dwell time dti based on Eq. (6);

9 if trt
i
≤ dti then

10 w∗
i
= w′

i
;

11 if w′
i
< wi,min then

12 w∗
i
= wi,min;

13 else

14 if w′
i
> wi,max then

15 w∗
i
= wi,max;

16 end

17 end

18 end

19 Vehicle vi calculates its utility by:

Ui = αi log(1 + w∗
i
) + δ(wi,max − w∗

i
) − p · w∗

i
;

20 if Ui > U
∗
i

then

21 U∗
i
= Ui;

22 end

23 vi sends w∗
i

back to RSU;

24 return w∗
i
;

25 end

26 end

On the other hand, DAPW is responsible for describing the

actions of RSU after receiving the workloads from all the vehi-

cles (i.e., w). In the beginning, DAPW initializes the globally

best utility value (i.e., the profits) and the per-workload price,

respectively (lines 1–2). After that, RSU updates its best utility

as long as the workload vector w is constructed. It is noticeable

that the utility functionUe is of the monotonic feature w.r.t. p.

Therefore, from the perspective of VEC, the more the pricing,

the greater the benefits. Then, DAPW updates p gradually. For

instance, p is increased with an increment ∆p each time. The

resulting p is then sent back to the vehicles. This procedure

repeats until the best utility value does not change anymore.

Complexity Analysis. To reach a mutually satisfactory re-

sult, frequent interactions for negotiation are required between

vehicles and RSU, which means DADW and DAPW are respec-

tively executed by vehicles and RSU in an alternating fashion.

It is obvious that both DADW and DAPW have constant-time

complexity in theory. Furthermore, each vehicle independently
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Algorithm 3: Distributed Algorithm for Pricing Per

Workload at RSU (DAPW)

Input: n, η, δ, w

Output: The optimal price per workload p∗

1 U∗e = 0;

2 p∗ = 0;

3 s = 0;

4 for each element wi in w do

5 s+ = wi;

6 end

7 Ue = (p − η) · s;

8 if Ue −U
∗
e > ǫ then

9 U∗e = Ue;

10 p∗ = p;

11 Update p based on given strategy;

12 Send p to each vi;

13 end

14 return p∗;

performs DADW, and DAPW is performed at RSU with rich

computational resources. These factors can guarantee that the

two algorithms can be accomplished in real time. As a result,

the time is mainly spent on the interactions for negotiation, with

the purpose of reaching SE of the game. During this procedure,

the update of step increment (i.e., ∆p) will have a great effect on

the rate of convergence to SE, this is because the convergence

rate can be reduced when ∆p is small, and on the other hand, the

convergence point can be missed when ∆p is large. However,

it is pretty hard to determine the optimal value of ∆p. Accord-

ingly, in this paper the value of ∆p is mainly set empirically and

we will investigate it further in the next section.

6. Numerical Results

The simulation results are reported and analyzed in this sec-

tion. Before going further, we have listed some key parameters

to be used, as denoted in Table 1. For instance, the number

of vehicles in the simulation is set to be 20. The communi-

cation range D and the angle θ is 100 meters and 60 degrees,

respectively. Thus, the dwell time of each vehicle can be es-

timated. The unit cost η and controlling factor δ are set to be

1 and 0.2, respectively. The satisfaction level ranges from 500

to 1000 while δ is 0.2 for all the vehicles. In the meanwhile,

the increment to the price ∆p is set to 0.05 as the default value.

On another hand, all the simulation is run on a notebook with

a 1.8 GHz Intel(R) Core(TM) i5-8250U CPU, 8 GB of RAM,

Microsoft Windows 10 Operating System, Python 3.7. The data

involved in this simulation is generated empirically, following

the previous works such as (Tang et al., 2020b, 2021).

On one hand, we compare the approach with the benchmark

approach in terms of efficiency and effectiveness. In particular,

the centralized approach CAPP is adopted as the benchmark

algorithm in the experiment. Since the benchmark approach

can directly obtain the optimal price for computing resources

and the optimal workloads for vehicles to offload, it avoids the

frequent interactions between vehicles and RSU. On the other

hand, as far as the distributed approach itself is concerned, sev-

eral factors may affect its performance. Such factors include the

step and the number of applications which are offloaded. Ac-

cordingly, we also need to evaluate the effects of these factors

upon the performance of our approach.

In the experiment, the evaluation metrics for efficiency and

effectiveness mainly include the utility value, optimal price,

running time and optimal workloads. By comparing these per-

formance indicators between the benchmark algorithm and the

proposed approach, we can investigate the feasibility of our ap-

proach. The metrics for the involved parameters evaluation in-

clude the running time and utility values. By running time, we

mean the time taken to reach the SE of the game.

Table 1: Parameter Settings

Notations Meanings Default Values

n Number of vehicles 20

D Communication range 100

θ Angle 60

η The unit cost 1

δ The control factor 0.2

wi,min The minimal workloads

undertaken by VEC

0

wi,max The maximal workloads

undertaken by VEC

[40, 600]

αi The satisfaction level [500, 1000]

∆p The increment to price p 0.05

6.1. Performance Evaluation for Vehicle Side

The SE of the real-time pricing game can be reached by

iterative interactions between vehicles and RSU. The vehicles

update the strategies, i.e., report to RSU their new workloads to

be offloaded after observing the new price per workload. The

vehicles seek to find the optimal workloads based on Eq. (16),

such that their own utility values can be optimized. The ex-

periments are thus conducted to investigate the performance of

the proposed approach from the viewpoint of vehicles. The ex-

perimental results are shown in the following. Specifically, the

workloads vary with the increasing number of interactions and

the result is shown in Fig. 2. In this experiment, the number

of vehicles is set to 20, i.e., the number of applications (n) is

also 20. We randomly take four from these vehicles as the ob-

servation subjects. It shall be noted that each iteration corre-

sponds to one unique price per workload. Thus, the figure also

demonstrates workload variations with the increasing number

of prices.

It can be easily observed that each vehicle tends to decrease

its own workloads to be offloaded when the price per workload

increases. However, the decrement in the amount of workloads

will stop when the SE of the pricing game is reached. For exam-

ple, the number of workloads to be offloaded does not change

anymore when the number of iterations comes to 220 in Fig. 2.
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Figure 2: The workload variations with the increasing number of interactions
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Figure 3: The utility variations with the increasing number of interactions

On the other hand, the variation of utility value for each vehi-

cle with the increasing number of iterations is shown in Fig. 3.

Similarly, each iteration also uniquely corresponds to one price

per workload, and this figure also demonstrates the utility vari-

ations with the increasing price per workload.

It is noticeable that the utility values of the four vehicles

decrease with the increasing number of iterations. It is a proce-

dure of gaming between vehicles and RSU. The initial price p is

set to 25 for vehicles empirically. However, from the viewpoint

of RSU, the current p may not be a satisfactory price, since the

revenues obtained by leasing computational resources can still

increase. Thus, RSU as the game leader gradually increases the

price in the game and vehicles follow the strategy by decreasing

their workloads, until the SE of the game arrives. Accordingly,

the utility values of these vehicles also decrease with the in-

creasing number of iterations until the arrival of the SE of the

game.

The resource pricing game between vehicles and RUS usu-

ally takes place at the beacon exchanging stage. After that,

computations are offloaded and undertaken by RSU. Therefore,
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Figure 4: Average running time with the increasing number of iterations

the time taken to reach the SE of game is supposed to be very

soon. The dwell time of vehicles within the coverage of RSU

is limited. The application outsourcing should be accomplished

during the dwell time, not to mention the decision-making for

resource price. A set of experiments has been conducted to in-

vestigate the time that is taken to reach the SE of game. In par-

ticular, the average running time for one vehicle to reach SE of

the game is shown in Fig. 4. Based on the observations shown

in Fig. 2 and Fig. 3, the SE of the game can be reached with

the number of iterations equal to 220. As denoted in Fig. 4, it

takes about 220ms to reach the SE of the game. The time is

almost real time and thus acceptable for us, especially consid-

ering our simulation settings. We believe that it will take much

less time for RSU with more powerful capabilities to reach the

SE of game.

To sum up, from the viewpoints of vehicles, both the amount

of workloads to be undertaken and the utility values decrease

with the increasing number of iterations, until the SE of the

game reaches. Furthermore, the SE of the game can be sought

in almost real time. After reaching the SE of the game, the

utility values for these vehicles do not change anymore, which

means that no vehicle can achieve a higher utility value by ad-

justing its own strategy unilaterally in the SE of the game.

6.2. Performance Evaluation for RSU Side

For the RSU side, the price per workload and the utility

are also investigated. The experimental results are shown in

Fig. 5 and Fig. 6, respectively. The centralized approach serves

as the benchmark algorithm to evaluate the performance of the

distributed algorithm for real-time resource pricing in VEC. As

mentioned earlier, RSU is assumed to know the satisfaction lev-

els of all vehicles and utility functions in the centralized ap-

proach. According to Eq. (22), the optimal price per workload

is determined at the beginning as shown in Fig. 5. Similarly,

the optimal utility value for RSU in the centralized approach

is also determined at the beginning, as shown in Fig. 6. It is

revealed from Fig. 5 and Fig. 6 that both the optimal price and

the optimal utility value increase when the price per workload
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Figure 5: Performance comparison w.r.t. price between two different ap-

proaches
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Figure 6: Performance comparison w.r.t. utility between two different ap-

proaches

increases. However, when the SE of the game arrives, the op-

timal utility value for RSU does not increase any more as the

price per workload increases. Similarly, the optimal price per

workload remains the same even if the price per workload in-

creases. For example, a mutually satisfactory result (i.e., the SE

of the game) is reached in this experiment, when the number of

iterations comes to 220.

To sum up, the benchmark algorithm knows the satisfaction

levels of all vehicles and utility functions all the time, while the

distributed approach knows neither of them for the purpose of

privacy protection. Therefore, it needs to take a certain amount

of time to converge to the SE of the game. However, the time

is acceptable as investigated in Fig. 4. On another hand, the

convergence rate of the distributed approach is also restricted

by other factors, such as the way p is updated and the number

of vehicles. For instance, ∆p should be determined carefully,

since small values of ∆p slow down the convergence rate while

large values of ∆p could miss the convergence point. Further-
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Figure 7: Performance comparison w.r.t. step increment
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Figure 8: Performance comparison w.r.t. the number of vehicles

more, the number of vehicles (i.e., applications) may affect the

performance of the distributed approach in terms of the conver-

gence rate. We will investigate the effects of these parameters

upon the convergence rate in the next subsection.

6.3. The Effects of Other Parameters on Pricing Game

Two sets of experiments have been carried out to evaluate

the effects of the step and the number of applications upon the

performance of the distributed approach. To be more specific,

the experimental results are shown in Fig. 7 and Fig. 8, respec-

tively. Fig. 7 shows the influence of the way how p is updated,

while Fig. 8 shows the influence of the number of applications

upon the distributed approach.

In the first set of experiments, the price is increased by a

step of 0.01, 0.02, 0.05 and 0.1 respectively. It is obvious that a

larger value indeed helps reach the SE of the game at a higher

rate. For instance, when the step is 0.1, the SE of the game can

be reached with the number of iterations equal to 100. Com-

pared to the step of 0.1, the step of 0.01 helps reach the SE

of the game with the number of iterations equal to about 930.
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Figure 9: Performance comparison w.r.t. utility values at RSU

By contrast, the former is about nine times faster than the lat-

ter. Nevertheless, it does not mean that the larger the step, the

better the performance of the distributed approach. Despite a

faster convergence rate, the approach may miss the convergence

point. We cannot determine the optimal value for the step, but

the value can be carefully set empirically. As far as our exper-

iment is concerned, the step equal to 0.1 is currently the best

one.

In the second set of experiments, we investigate the number

of vehicles (i.e., the applications) that could affect the perfor-

mance of the distributed approach in terms of running time. The

experimental result is shown in Fig. 8. In this experiment, the

number of vehicles ranges from 10 to 100. For each application,

three update strategies are applied to the distributed approach,

i.e., the steps are 0.05, 0.075, and 0.1, respectively. From this

figure, we can observe that 1) The average running time in-

creases roughly when the number of applications increases, no

matter which value the step is; 2) As far as the update strate-

gies are concerned, the step of 0.1 is undoubtedly the best, no

matter how many vehicles are considered; 3) The response is

almost real-time even if the number of vehicles is very large.

For instance, when the number of vehicles is 100, the running

time is 88, 75 and 46, respectively.

To sum up, both the way the price is updated and the number

of applications can affect our approach in terms of the conver-

gence rate and the running time. Generally, the SE of the game

can be reached in almost real time as anticipated. Furthermore,

compared to the centralized approach, the distributed approach

can efficiently solve the real-time computational resource pric-

ing issue while considering the privacy of vehicles.

6.4. Approach Comparison

We have investigated the advantage of the distributed ap-

proach over the centralized approach, as well as the effects of

involved parameters upon the distributed approach. Actually,

there are other approaches for seeking the SE in the proposed

game. In the following, we investigate the performance of our

approach such as the optimal values at the edge, compared to

other approach. In particular, two approaches are used as the

contrast, i.e., a ternary search based approach (TSA) (Wang

et al., 2016) and a random approach (RND). TSA sets four

points, i.e., the lower and upper bounds, two other values be-

tween them, so as to speed up the searching process. However,

there is no upper bound of the price in our problem. To adjust

TSA to our optimization, we in the simulation assume that the

value of the upper bound is twice that of the lower bound, and

the lower bound of the price is the same as that in DADW and

DAPW. For the random approach, the increment in the price

per workload is generated in a random way, while the price is

increased by a step of 0.1 in DAPW. The number of vehicles is

20 in the simulation.

The simulation result on performance comparison is shown

in Fig 9, where the x-coordinate denotes the number of itera-

tions and y-coordinate denotes the utility values of RSU. As far

as the capability to find the optimal utility values is concerned,

our approach is slightly better than TSA in general, while the

random approach has the worst performance among the three

approaches. However, due to the randomness, the random ap-

proach sometimes demonstrates better performance. For exam-

ple, it is slightly better than TSA when the number of vehicles

is 14. To sum up, our approach has shown better performance

w.r.t. the capability to obtain the optimal values at the edge

server.

7. Conclusion

The monetary reward has always been one of the most im-

portant goals for computational resource providers in VEC. The

revenues can actually stimulate the providers to provide highly

qualified services for the offloaded vehicular applications. In

this paper, we have proposed an optimal computational resource

pricing in VEC and aim to optimize the utility values of both ve-

hicles and the edge. To achieve this goal, a Stackelberg game

is applied for modeling the interactions between vehicles and

the edge. Furthermore, a distributed algorithm is put forward to

solve the real-time pricing game, which guarantees that the pri-

vate information of vehicles can be protected. We have proven

the existence of the Stackelberg equilibrium in our resource

pricing game theoretically and experimentally. For the future

work, we plan to design more efficient and scalable pricing

schemes revolving around VEC when tasks are offloaded and

computation is undertaken at the edge server.
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