Optimal Computational Resource Pricing in Vehicular Edge Computing:
A Stackelberg Game Approach

Chaogang Tang?®, Huaming Wu®*

“School of Computer Science and Technology, China University of Mining and Technology, 221116, Xuzhou, China
bCenter for Applied Mathematics, Tianjin University, 300072, Tianjin, China

Abstract

Vehicular edge computing (VEC) pushes the computational resources to the logical edge of the networks, thus enabling vehicles
to run resource-hungry and time-sensitive applications by outsourcing operations. Many studies revolved around VEC focus on
the optimization of response latency, energy consumption, or both of them, assuming that the computational resources in VEC can
be utilized for free. However, VEC provisions computational resources on a pay-as-you-go basis, which means VEC can obtain
revenues by leasing the computational resources. In this paper, we focus on the real-time computational resource pricing in VEC,
in the hope to reach a win-win situation where both VEC and vehicles can optimize their respective utility values. To reach such a
mutually satisfactory result, we adopt the Stackelberg game to model the computational resource pricing problem in this paper. In
this game, vehicles are followers and the edge server serves as the leader. Furthermore, we have proven that a unique Stackelberg
equilibrium exists in the proposed pricing game. A distributed algorithm is put forward to solve our problem, which considers the
privacy of vehicles. The distributed approach is evaluated by extensive experiments, in terms of convergence rate, running time and
so on. The simulation results demonstrate that the distributed approach can achieve satisfactory results without privacy disclosure

compared to the centralized approach.

Keywords:

Vehicular edge computing, pricing, Stackelberg game, privacy, computational resources

1. Introduction

Vehicular edge computing (VEC) has generated a vast amount
of attention recently for bringing considerable benefits to smart
transportation. As a newly emerging computing paradigm, VEC
pushes the computational resources to the logical edge of the
networks such as road side unit (RSU), thus enabling vehicles
to run resource-hungry and time-sensitive applications by out-
sourcing operations. Compared to vehicle-mounted computers,
VEC has much more computational resources. Hence, vehi-
cles can rent these resources close to them, to support resource-
greedy applications, e.g., in-car interactive gaming and natu-
ral language understanding and processing (Tang et al., 2020aj
Z/hou et al., [2020). In contrast to the sensor-to-cloud paradigm
where applications are outsourced and performed in a remote
cloud center, such a cloud-similar computing paradigm can sub-
stantially alleviate traffic congestion in the network core, ow-
ing to the computational resources in close proximity to data
sources (i.e., moving vehicles) (Feng et al., 2019). Accordingly,
VEC has become one of the key enablers for smart transporta-
tion (e.g., unmanned vehicles).

It shall be noted that a remote cloud center is indispensable
in VEC. On one hand, VEC is introduced as an intermediate
layer between vehicles and the cloud center with the purpose

*Corresponding author
Email address: whming@tju.edu.cn (Huaming Wu)

Preprint submitted to Elsevier

of extending the computing and storage capabilities at cloud
to the network edge to satisfy vehicular applications with strict
delay requirements. VEC resorts to the cloud center by rent-
ing the computational resources when its own resources are not
sufficient. On the other hand, for those vehicular applications
which are resource hungry but not time sensitive, cloud com-
puting remains the first choice for application outsourcing, due
to the fact that there are unlimited computational and storage
resources in the cloud center.

Against this background, many studies revolved around VEC
have been carried out in both industry and academia fields, such
as (Zhang et al) 2020bj; (Chen et al., 2020; Dai et al. [2019;
Liu et al| 2020). Currently, most of these works focus on
the optimization of response latency, energy consumption, or
both of them, when vehicular applications are offloaded and
computational resources are scheduled in VEC. An implying
assumption among these works is that the computational re-
sources in VEC or the cloud center can be used for free. As with
cloud computing, VEC provisions computational resources on
a pay-as-you-go basis. Thus, the resources in either VEC or
the cloud center are not for unconditional use in reality. Fur-
thermore, monetary rewards have always been a strong incen-
tive for resource providers in VEC. From the perspective of
resource providers, they attempt to maximize the revenues by
leasing the computational resources in VEC. In contrast, the
vehicles strive to accomplish their application outsourcing at
the least cost, e.g., with regards to (w.r.t.) response time, en-

October 28, 2021

ergy consumption and monetary expenditure. The pricing for
computational resources will play an important role in the max-
imization of their respective profits. For instance, a higher price
for computational resources will bring more revenues to service
providers in VEC. In the meanwhile, a lower price for compu-
tational resources will encourage vehicles to outsource more
vehicular applications and thus the quality of service (QoS) can
be improved in terms of response time.

Nevertheless, few existing works have recognized the im-
portance of computational resource pricing for application out-
sourcing in VEC (Zhang et al., 2020c; |Wang et al., 2016). In
this paper, we concentrate on the real-time pricing scheme for
computational resources in VEC. In our view, a reasonable pric-
ing scheme is very important, since it not only stimulates more
efforts for computational resources contribution in VEC, but
also avoids dampening the enthusiasm of vehicles for resource
renting. Specifically, the contributions of this paper are sum-
marized as follows.

e We propose an optimal computational resource pricing
scheme in VEC. The proposed pricing scheme can guar-
antee a mutually satisfactory result for vehicles and the
edge server. To this end, both vehicles and VEC can op-
timize respective utility values according to the price per
workload set by VEC.

e We adopt the Stackelberg game for real-time computa-
tional resource pricing in this paper. Vehicles are fol-
lowers and the edge server is the leader in this one-leader
multi-followers game. Vehicles determine their own work-
loads to be undertaken by VEC by observing the leader’s
strategy (i.e., the price per workload). On the other hand,
the edge server adjusts the price per workload based on
the offloaded workloads of the vehicles. Furthermore, we
have proven that a unique Stackelberg equilibrium exists
in this pricing game.

o Considering the fact that vehicles generally refuse to dis-
close their private information to the public, a distributed
algorithm is proposed to solve this optimal computational
resource pricing issue in VEC. Extensive simulation is
conducted to evaluate the performance of our approach,
and the simulation results demonstrate the advantages of
our approach.

The rest of this paper is organized as follows. We review
some related works in Section[2] Section [3]introduces our sys-
tem model. Our optimization problem is mathematically for-
mulated in Section[d] which strives to optimize the utility values
of vehicles and the edge server, respectively. In Section [5] the
centralized and distributed algorithms are put forward to solve
the computational resource pricing in VEC, respectively. Sim-
ulation and result analysis come in Section [6] followed by the
conclusion in Section [7]

2. Related Works

With the advent of VEC, computing capabilities have been
brought to the edge of the network, which brings consider-

able benefits to smart transportation and the corresponding sub-
ecosystems including connected vehicles and RSU. The com-
putational resources are provisioned at the edge to such entities,
enabling vehicles to run resource-hungry and time-sensitive ap-
plications by outsourcing operations. Accordingly, VEC has
been regarded as one of the key enablers to accelerate the pros-
perity of smart transportation. In this section, we will review
some related works in this field.

2.1. Computation Offloading in VEC

In smart transportation and VEC systems, it is pretty diffi-
cult to predict the routes of moving vehicles (Wu et al., [2020al).
Quick mobility of vehicles and different driver preferences fur-
ther contribute to such difficulty. To tackle this challenge, Liu
et al. in (Liu et al.||2020) proposed to use one particular type of
vehicle to serve as moving servers. Such vehicles (e.g., buses)
are usually deployed with a timetable and follow the prescribed
route. In this context, they propose an offloading algorithm
based on learning technology to perceive the fluctuation of ve-
hicles. Base stations, as agents, are responsible for learning
the state of the moving server. Multi-access edge computing is
considered to enhance the performance of vehicles by outsourc-
ing computation-intensive tasks to the edge. Thus, authors in
(Gu & Zhang| 2021) put forward an energy-aware computation
outsourcing for VEC. They strive to seek a tradeoff between
latency and energy consumption.

Parked vehicles usually have unexploited computational re-
sources with idle states in the parking slots. By leveraging
these idle computational resources of parked vehicles, authors
in (Huang et al., [2021) aim to maximize user-centric utility
and optimize the network-wide task scheduling. Owing to the
high dynamics of vehicular networks, it is hard to make time-
varying offloading decisions in vehicular networks. Thus, au-
thors in (Zhang et al., [2020a) utilized the synchronized ran-
dom walk model and proposed a reinforcement learning-based
scheme for processing delay reduction and dynamic scene adapt-
ability. Similarly, authors in (Guo et al.,|2020) proposed an in-
telligent task offloading approach using deep Q learning to mit-
igate the pressure on the computational capabilities of vehicle-
mounted computers.

VEC guarantees that computationally intensive workloads
can be offloaded to the computing infrastructure in the vicinity.
Speak of autonomous vehicles, however, it is very hard for them
to efficiently obtain satisfactory performance by leveraging the
VEC systems. In this context, authors in (Sonmez et al., |2021))
proposed a vehicular edge orchestrator based on two-stage ma-
chine learning. This orchestrator considers the success rate of
task performing and the service time. The simulation results
have demonstrated the efficiency and effectiveness of the pro-
posed approach.

Actually, extensive works have focused on computation of-
floading in VEC for multiple purposes, e.g., energy reduction
(Zhao et al.| 2021} [Wu et al.l |2020b)), response latency opti-
mization (Li et al., 2020; [Batewela et al., |2020; [Feng et al.,
2017), trustiness issue (CAI et al., 2020; [Wang et al., [2021b)
and the reduction of pressure on the vehicular computational

resources. Readers who are interested can refer to the afore-
mentioned works, and we do not review them in detail anymore.

2.2. Resource Pricing for Computation Undertaking

We notice that few of the current works have paid attention
to the issue of computational resource pricing in VEC. One pos-
sible reason is that few of them have recognized the importance
of computational resource pricing for application outsourcing
in VEC (Tang et al.| 2020b). The IoT devices usually have nu-
merous tasks and thus urgently require computing resources for
undertaking the computation. The computation is usually un-
dertaken based on a pay-as-you-go model. Therefore, the re-
source pricing will become more and more important with the
increasing number of entities that can provide computing re-
sources.

For example, authors in (Chen et al., [2021)) strived to maxi-
mize the revenues of the mobile edge computing (MEC) sys-
tem. The edge server deployed at an access point can pro-
vide sufficient computing resources for resource-hungry users.
Thus, the edge server can earn revenues by charging users with
the task offloading requests. A policy gradient-based reinforce-
ment learning algorithm is put forward to solve this revenue
maximization problem. Authors in (Nguyen et al., [2021) put
forward a market-based framework, which can make full use
of the resources of edge nodes for serving the requestors at the
network edge. They can generate a market equilibrium solu-
tion, i.e., the utility of the edge can be maximized and optimal
resources can be allocated to the requestors while considering
multiple constraints.

Authors in (Wang et al.,[2021a) proposed an edge-intelligent
hierarchical dynamic pricing mechanism. In this mechanism,
the collaboration among the cloud, edge, and client is mod-
eled as a double-layer Stackelberg game. A pricing prediction
algorithm is put forward to solve the problem. A computing
and networking paradigm based on multi-access edge comput-
ing was proposed in (Su et al.} [2021), which tries to cope with
the increasingly complicated requirements of Internet of Things
users. To model price negotiation between the service providers
and the edge nodes, they put forward a distributed algorithm for
negotiating the price.

Tasks are also offloaded in multi-access edge computing.
Authors in (Siew et al.l 2020) investigated the task offloading
and resource allocation in this computing paradigm from the
market and economic perspective. They designed an economy-
inspired commercial model to realize the resource quota sharing
among requestors, in the hope to maximize the overall welfare
of requestors. In particular, they designed a distributed pricing
mechanism.

2.3. Performance Optimization with Stackelberg Game for Com-
putation Undertaking

The Stackelberg game provides a well-suited solution to
the multilevel decision-making process, and has been widely
applied to scenarios where two entities pursue their respective
profits or revenues maximization. For instance, authors in (Zhang
et al., 2020c) leverage the parked vehicle to assist VEC in un-
dertaking workloads in vehicular networks. Specifically, they

Remote Cloud

Center
SN
EE I !
N
P /
// \
-

Edge
Server

V2V Link V2ILink Wired Link

Figure 1: Application scenario considered in this paper

studied the assignment of tasks with aid of Stackelberg game,
for minimizing the overall costs. A price-based distributed ap-
proach is put forward in (Liu & Liu, 2018)), with the purpose
of managing the tasks offloaded. Specifically, a Stackelberg
game is applied to the situation for realizing the respective prof-
its from the viewpoints of the edge and users.

IoT devices require a dependable environment for perfor-
mance guarantee and the blockchain technology can provide a
promising solution to the requirement. However, the blockchain
tasks are featured by intensive computation while these IoT de-
vices have limited computing resources. Thus, task offloading
is necessary for these IoT devices. Usually, the cloud center
and edge servers are the places to undertake these offloaded
computations. Therefore, authors in (Liang et al.| [2021)) state
that the costs and profits of computing resources providers can
greatly affect the decisions of the task allocation. Specifically,
they formulate a Stackelberg game where the cloud center and
edge servers are the leader and the followers in the computing
resource management, respectively. Furthermore, they model
resource pricing as a mixed-integer programming problem.

Different from the aforementioned works, in this paper we
focus on pricing per workload which is undertaken by VEC
with strict latency requirements in VEC. Vehicles can deter-
mine the number of their workloads to be offloaded given the
unit price. In the meanwhile, the privacy of vehicles are con-
sidered in this paper.

3. System Model

An application scenario is shown in Fig. [I] which consists
of one RSU, one remote cloud center and multiple vehicles.
The edge server is deployed at RSU to provide computational
resources to the vehicles in the vicinity. The set of vehicles is
denoted by V = {v1,---,v,}. Each vehicle in V can communi-
cate with each other and RSU, using Vehicle-to-Vehicle (V2V)
and Vehicle-to-Infrastructure (V2I) communication technolo-
gies, respectively. The maximal communication distance of
RSU is D as shown in Fig.[T} As a result, the dwell time for any
v; in V within the communication range of RSU is limited. In
this context, assume there exists a set of applications denoted

by A = {ay,---,a,} with ;(1 < i < n) denoting the applica-
tion that v; wants to outsource to the edge server for execution.
Specifically, a; is a 2-tuple of (d;, Wi max), Where d; represents the
size of task-input data to be offloaded via the wireless channel,
and w; ., is the workload described by the number of CPU cy-
cles required for accomplishing a; when g; is totally outsourced
to the edge.

Let p denote the unit price for processing per workload in
VEC. Usually, the price p is set by the resource provider in
VEC. Considering the effect of p on the computing resource
demands of vehicle v;, we have w; < w; .., Where w; rep-
resents the real workload that is offloaded by v; to the edge
Server. wjmqx — w; is the residual workload that needs to be ac-
complished with the local vehicular computational resources. It
shall be noted that w; ,,,x —w; actually violates the willingness of
v;, since the residual workloads are supposed to be kept for any
other individual purposes. Thus, to express such unwillingness,
we define a subjective dissatisfaction as 6(W;,ax — W;), where
¢ is a controlling factor that reflects the level of dissatisfaction
for the vehicles. For simplicity, we assume that § is the same
for all the vehicles and is also available to RSU. For instance, §
can be incorporated into the beacon information when vehicles
interact with RSU. Moreover, for easy discussion, hereafter we
use the three words “RSU”, “the edge server ” and “the edge”
exchangeably for the same meaning through the rest of the pa-
per.

The response time for performing a; mainly includes three
parts, i.e., the time taken to perform w; . — w; locally, the time
taken to offload d; to VEC, and the time taken to perform w; at
RSU. Denote the three kinds of time by tf.”", t;’f I and £, respec-
tively. 7/ can be given as:

loc Wimax — Wi
t; o ey
where f; denotes the computing capability of v;. Denote by g;
and p; the channel gain between v; and RSU, and the transmis-
sion power of v;, respectively. The offloading rate for a; can be
calculated as: o
ri = Blog,(1 + 281), @
o
where B is the channel bandwidth and o is the noise power.
Thus, the offloading time tff s

thf — é (3)
The execution time of a; at the edge can be expressed as:

&3 @
Je

where t;,;, is the time taken to initialize the virtual environment
and f, denotes the computing capability of RSU. For simplicity,
we assume there are sufficient computational resources at RSU,
since RSU can also rent these resources from the cloud center.
Therefore, there is no extra queuing time for the arrived applica-
tions. On the other hand, following other works such as (Chen
et al.l 2016)(Tang et al.l 2018), we neglect the return time, i.e.,

1 = tinir +

the time taken to return the execution result back to v;, based
on the consensus that the size of computational result is much
smaller than that of task-input data in most cases. Therefore,
the response time for a; can be expressed as:

£ = max{f, (17 + 1¢). 5)

%

On the other hand, the dwell time of v; within the commu-
nication range of RSU can be estimated as:

_ 2Dsin(6/2)

Fi

dt; (6)
where 6 is the angle formed between R and the points where v;
enters and leaves the communication range of R, respectively,
as shown in Fig.

The application a; should be completed before v; leaves the
communication range of R, so the following inequality holds:

i <dy, Yie{l,---,n}. @)

Based on the descriptions above, the utility of v; can be de-

fined as:

U; = a;log(1 +w;) + OWimax — Wi) = D+ Wi, (8)

where «; is the satisfaction level toward the workload offload-
ing. For the right-hand side of this equation, the first term rep-
resents the utility earned by offloading workload w; using a lo-
gistic function, the second term evaluates the unwillingness of
using local computational resources to undertake the residual
workload, and the last term denotes the payments for renting
resources from VEC. Generally, the larger the value of U;, the
higher the level of satisfaction for vehicles.

On the other hand, the computational resource provider in
VEC is encouraged to pursue their own profits by leasing the
resources to vehicles in the vicinity. It shall be noted that VEC
occasionally turns to the cloud center for help, if the amount of
computational resources in VEC is not sufficient. Accordingly,
there exists a certain cost for VEC to provide computational
resources. Given the unit price p for processing per workload
offloaded from vehicles, the utility of the resource provider in
VEC can be defined as:

(Ue=PZn:Wi—77§n:Wi» &)
im1 im1

where 17 denotes the cost for undertaking per workload offloaded
from the vehicles, the first term at the right-hand side is the
profits obtained by leasing computing resources and the sec-
ond term denotes the costs when VEC provide computational
resources to vehicles. Generally, the larger the value of U, the
more the revenues for VEC.

4. Problem Formulation

4.1. Preliminaries

According to the above descriptions, we hope that 1) vehi-
cles can determine their own workloads to be offloaded based

on the price per workload that is set by VEC, such that they can
optimize their own utility values; 2) VEC can maximize its own
revenues by pricing the computational resources while consid-
ering the real demands of vehicles in the vicinity for compu-
tational resources. Therefore, it is very important to design an
efficient and reasonable pricing scheme for computational re-
sources in VEC, for the reason that an appropriate price p can
help both vehicles and RSU reach a mutually satisfactory result,
i.e., utility optimization for vehicles and revenues maximization
for VEC, respectively. However, it is very challenging to reach
such a win-win situation in which both vehicles and RSU can
achieve their own goals for the following reasons.

On one hand, vehicles are selfish in the sense that they are
not willing to disclose their true resource demands to other
vehicles except RSU. From the perspective of privacy protec-
tion (Wang et al., 2021c), vehicles are not supposed to reveal
their resource demands to other vehicles either. In this con-
text, vehicles individually adjust their resource demands based
on the price towards their own utility maximization. No in-
formation on resource demands (e.g., the satisfaction level «;
of v;) is shared among these vehicles. Therefore, a centralized
algorithm is inapplicable in this case, which necessitates a dis-
tributed approach for utility optimization.

On the other hand, the high mobility of vehicles poses strict
delay requirements to application outsourcing. For instance, the
response time of an outsourced application should be strictly
less than the corresponding dwell time as denoted by Eq.[/| The
price per workload should be determined before the application
outsourcing actually takes place. As a consequence, the com-
putational resource pricing is supposed to be real-time, which
contributes to the difficulty of interactions between vehicles and
RSU.

Before going further, the dynamic procedure of computa-
tional resource pricing can be briefly described below. In the
beginning, a price per workload p is initialized and then broad-
casted by RSU to the vehicles in the vicinity. Such information
can be incorporated into the beacon information and dissemi-
nated among vehicles. Upon receiving these beacons, vehicles
with the outsourcing need to estimate the number of workloads
to be undertaken by VEC, according to p. Then, the estimated
amount of workloads is respectively sent to RSU by each vehi-
cle during the beacon information exchanging. After receiving
these demands, the edge will evaluate and determine a new p
such that its revenues can gradually increase. The resulting p is
then broadcasted to vehicles again where the amount of work-
loads to be undertaken is recalculated based on p, with an aim
to gradually increase their own utility values. Such a procedure
will not stop until a mutually satisfactory result is achieved, e.g.,
neither the revenues of VEC nor the utility values of vehicles
increase anymore.

4.2. Stackelberg Game

In this paper, we resort to the Stackelberg game for model-
ing this dynamic procedure of computational resource pricing
as described above. As introduced earlier, the Stackelberg game
offers a promising solution to the multilevel decision-making

process consisting of the followers and the leader. At the be-
ginning, the followers observe the leader’s strategy. Then, they
select their own strategies for the sake of their own utility opti-
mization. In the next, they respond to the leader by the chosen
strategies. Finally, the leader redesigns the strategy in response
to the followers. This procedure repeats until a so-called Stack-
elberg equilibrium is achieved if the equilibrium exists. Ac-
cordingly, we utilize this one-leader multi-followers Stackel-
berg game to solve our computational resource pricing scheme
for VEC in this paper. In this noncooperative game, RSU serves
as the leader and vehicles are the followers. To be specific, the
game of the computational resource pricing scheme in VEC is
given as:

G = (VURSU, (p,wi), (UcAwi}, Ui{p}), (10)

where V U RS U is the set of players, including the followers
(i.e., the set of vehicles) and the game leader (i.e., RSU), (p, w;)
denotes the set of strategies VEC and vehicles take respectively,
and (U {w;}, U{p}) denotes the set of utility values of VEC and
vehicles, respectively. Generally, the Stackelberg consists of
the set of players, the set of strategies and the utility set in this
paper.

In the next section, we mathematically formulate the op-
timization problem from the viewpoints of vehicles and RSU,
respectively.

4.3. Vehicle Utility Optimization

Given the price per workload p, vehicles with the outsourc-
ing needs strive to optimize their own utility values by adjust-
ing their workloads to be undertaken by VEC. Accordingly, the
optimization problem for each vehicle can be mathematically
given as:

Pl: max U; (11
p
s.t.:
Wi < Wi maxs Vie {1’ e ’n}s (12)
' <dy, Yiefl,---,n}, (13)

where inequation (IT)) represents that the assigned workloads
to VEC w; should not exceed w; 4. In the meanwhile, the
response time for the workload w; should not exceed the dwell
time of v; within the communication range of RSU, which can
be guaranteed by the constraint (I3).

Suppose that the offloaded workloads w; is continuous. For
the utility function of vehicle v;, i.e., U;, take the first and sec-
ond derivatives of U; with respect to w; respectively, we can
obtain:

(9(1/1,' _ a;

G (twymz 0P 4
2q/. .
U, il 0. (15)

= <
aw? (1+w;)*In2

Due to the fact that the second derivative of U; is always
negative in the feasible domain, the utility function U; is thus
convex in terms of the workloads w;. As a result, problem P1

is a convex optimization problem. We can easily infer that the
maximum of U; exists, and the corresponding maximal value
can be obtained by making dU;/0w; = 0 hold, given below:

* @i

M= proma (16)

It shall be noted that «; is private to each vehicle v;, so v;
does not want to disclose it to other vehicles for the sake of pri-
vacy protection. On the other hand, the value of «; should be ap-
propriately set such that w; > 0 holds. It can be easily observed
that the workloads w; to be undertaken by VEC decreases with
the increasing p. Namely, the price p should be set reasonably,
since higher pricing for the computational resources will hold
back the enthusiasm of vehicles with outsourcing needs in the
vicinity.

4.4. Revenue Maximization for VEC

It is costly to deploy the edge server together with RSU in
the traffic dense area, let alone daily maintenance costs. In this
context, resource providers are encouraged to contribute their
resources to VEC. On one hand, this way benefits vehicles in
the vicinity a lot since vehicular applications can be offloaded
and executed in VEC instead of a cloud center, which can dras-
tically reduces the response time of the outsourced applica-
tions. On the other hand, resource provisioning in a pay-as-
you-go model will stimulate providers to lease computational
resources with QoS satisfaction. Therefore, the purpose of VEC
(i.e., RSU) in this paper is to maximize its revenues defined in
Eq. (9). To be more specific, the optimization problem for RSU
is mathematically given as:

P2: max U, an

S.t.
P>, (18)

where w = (wy,---,w,) is a vector to denote the workloads
of all the vehicles which are about to be undertaken by VEC.
Constraint (I8) guarantees that the revenues of VEC are posi-
tive, i.e., it is profitable for providers to lease the computational
resources in VEC.

Let’s suppose that p is a continuous variable and take the
first derivative of U, in terms of p, i.e.,

OU, _ Op Xy wi—n X, wi)
op op .

19)

Substitute w; with p as shown in Eq. (I6), and we have

n al n al
U, _a[”; (p+06)In2 _'7; proma P

(20)
Let 0U,/dp = 0, namely,
O(LI a;i(0+1n)
=0. 21
Z(p+5)21n2 n=0 @h

Thus, the price p* can be calculated as:

5+1 <«
r= AN s 22)
nln2 4

i=

Take the second of derivative of U, with respect to p, we
have:

o
02(L{e X, (;+£5)Z]r22 _ Z 206 +1) <0. (23)
ap> ap (p+6ym2

Due to the fact that the second derivative of U, is always
negative in the feasible domain, the utility function U, is thus
convex in terms of the workloads p. Therefore, problem P2 is
a convex optimization problem. We can infer that p* is the best
price that can maximize U,. In the meanwhile, it can also be
easily observed that the optimal price p* totally depends upon
the number of vehicles n, the cost for undertaking per workload
1, and the satisfaction level toward the outsourced workload for
each vehicle a;. Accordingly, the optimal price p* is actually
independent of the workload vector w.

4.5. Stackelberg Equilibrium

P1 and P2 are the optimization goals of vehicles and RSU,
respectively. Let’s investigate the optimization in depth from
the game-theoretical perspective. The Stackelberg game pro-
posed for pricing the computational resources in this paper needs
to find the Stackelberg equilibrium (SE), since such a Stack-
elberg equilibrium can guarantee that a mutually satisfactory
result can be reached for both vehicles and VEC, i.e., utility op-
timization for vehicles and revenues maximization for VEC. In
this section, we will prove the existence and uniqueness of the
Stackelberg Equilibrium (SE). By doing this, we can ensure that
RSU can obtain the optimal resource pricing and vehicles can
determine the optimal amount of workloads to be undertaken
by VEC.

Letw = {w|,wy, -+ ,w,} and p denote the strategies of ve-
hicles and RSU, respectively. Then we define the SE of G as
below:

Definition 1. Assume there exists a pair of strategy profiles (w*, p*)

for G and w* = wi,ws,---,wy,}. For an arbitrary vehicle
vi(e V), it cannot increase its own utility value anymore by ad-
justing the strategy unilaterally, i.e.,

(ui(W;‘kswi[’ p*) = W[(W;,Wii, pk)9 Vie {1’ 2’ e ,n}’ (24)

*

where w*, = {wj, - ,w_,wi,_ - ,w,} denotes the strategies
of other vehicles except v; and w' is an arbitrary strategy of v;
except w}. In the meanwhile, RSU cannot obtain more revenues
by adjusting the price p either; i.e.,
U Wi, wo, p) = Uwi,we, p'), Vie{l,2,---,n}. (25)
In this case, we call this pair of strategy profiles (W*, p*) is the

SE of G.

It is worthwhile mentioning that equilibrium does not al-
ways exist in a non-cooperative Stackelberg game. As a result,
it is necessary to prove the existence and uniqueness of SE for
G proposed in this paper.

Theorem 1. A unique SE always exists in the proposed Stack-
elberg game G = (VU RS U, (p,w;), (U Aw;}, U p})) for com-
putational resource pricing in VEC.

Proof Existence: In this Stackelberg game, the vehicles (i.e., the
followers in G) are obviously independent of each other. Ac-
cording to Eq. (8), the utility values of them only depend upon
the price per workload p and their own amount of workloads
that are assigned to VEC. We have proven earlier that the utility
function U, is strictly convex, for the reason that U,/ [)wf <0
always holds, for an arbitrary vehicle v;. As a result, after re-
ceiving a price p broadcasted by VEC, vehicle v; can adjust
the workloads to be undertaken by VEC with an aim to maxi-
mize its utility value based on this price. The workloads w; for
vehicle v; vary between the interval [W; min, Wimax], With an as-
sumption that w; »;, is the minimal workloads for v; to offload.
Therefore, there only exist three candidate workloads that need
to be examined for the sake of the utility function maximization
= Wi min> Wimax> and @;/((p + 6)In2) — 1, respectively. Accord-
ing to Definition [I] G can reach SE if and only if an arbitrary
vehicle v; and RSU obtain the maximal utility and revenues, re-
spectively. Therefore, the game G can reach the SE as long as
RSU finds the optimal price p* and v; determines an optimal
amount of workloads to offload based on p*.

As shown in Eq. @ the second derivative of U, w.r.t. p
is negative, which makes sure that U, is strictly convex in the
feasible domain w.r.t. p. Hence, the optimal price per workload
p* can be obtained as shown in Eq. (22). Furthermore, this
optimal price is proven to be dependent upon the number of
vehicles n, the cost for undertaking per workload 7, and the
satisfaction level of each vehicle. It is thus totally independent
of w. As mentioned above, the optimal workload vector w* can
be calculated based on p*. Accordingly, there always exists a
unique SE in G.

Uniqueness: It is worthwhile mentioning that the optimal
price p* obtained in Eq. (22) is unique, for the reason that the
other value — \/(6 +n)/(nIn2) 37, a; — (< 0) is not qualified
as the price per workload. Thus, the workload vector w= is also
unique. Accordingly, the SE of G is unique in this paper. U

5. Algorithm Design

An efficient algorithm is needed for optimal computational
resource pricing in VEC. First, both vehicles and VEC are sat-
isfied with the computational resource pricing. In other words,
the algorithm must be ensured to converge to the unique equi-
librium of the proposed Stackelberg game in this paper. Only at
this particular time can a win-win situation be reached. Second,
the high mobility of vehicles has posed strict delay require-
ments to the response time when applications are outsourced.
The computational price per workload should be determined in

almost real time in the stage of the beacon information exchang-
ing. That is to say, the remaining time within the communica-
tion range of RSU should be enough for the accomplishment of
application outsourcing. Accordingly, the proposed algorithm
should be of a fast convergence rate. Last but not least, there
is an increasingly urgent need for privacy protection in VEC.
For instance, vehicles may be unwilling to disclose their pri-
vate information (e.g., the satisfaction level and even the utility
function) to the public (e.g., other vehicles and RSU). It is chal-
lenging to design an efficient algorithm while considering the
privacy of each vehicle.

To tackle the above practical considerations, we propose
centralized and distributed algorithms respectively in the fol-
lowing two subsections.

5.1. Centralized Algorithm

A centralized algorithm (CA) is proposed for pricing the
computational resource in VEC as shown in Alg. (1] It shall be
noted that CA does not need the frequent interactions between
vehicles and RSU, and thus can be implemented in real time.
In Alg. [T} CA needs not only the number of vehicles, but also
the satisfaction levels of vehicles. As shown in lines 1—4 in this
algorithm, each vehicle sends its own satisfaction level to RSU
together with the beacon information. After receiving all the
information from the vehicles, RSU can immediately calculate
the optimal price per workload p* (line 5) and then sent it to
all the vehicles. Upon receiving the optimal price, each vehicle
v; can calculate its best workloads to be undertaken by VEC
w} from the three candidate workloads, i.€., Wimin Wimax, and
a;/((p + 6)In2) — 1 (line 7). Furthermore, the optimal utility
value U} can also be obtained based on Eq. @ Finally, the
optimal workload profile w* and price p* can be returned.

Algorithm 1: Centralized Algorithm for Per-

workload Pricing (CAPP)

Input: n,n, 6

Output: The optimal price p* and w*

for each v; in V do

2 v; sends the satisfaction level a; to RSU together
with beacon information;

RSU receives and records «; for v;;

—

w

4 end
5 RSU calculates the optimal p* based on Eq. :

5 o+n n s
P = \nm2 2ie1 @i — 6;

6 RSU sends p* to n vehicles;

7 v; determines the best workload w} from the following
candidates: {W; min, Wimax, @i/((p +6)In2) — 1};

8 Each vehicle v; calculates its own utility value by:
(Ll,* = a;log(1 + W;k) + 0(Wimax — W,*) -p- W;‘k;

9 v; sends w; back to RSU;

10 return p* and w*;

Complexity analysis. As discussed earlier, the time is mainly
spent by CS in collecting the information of vehicles such as the
satisfaction level (lines 1-4), which is of time complexity O(n).

Then, RSU calculates the optimal p* with constant time. Then,
the optimal price p* is sent to all the vehicles, which requires
the time complexity O(n) (line 6). After determining the most
suitable workloads to be offloaded, each vehicle sends its re-
spective workloads to RSU, which is of time complexity O(n)
(line 9). To sum up, the total time complexity is O(n) for the
CS strategy.

However, an implicit assumption in CA is made that all the
vehicles are willing to disclose to RSU their private information
such as the satisfaction levels and the utility function. Only in
this way, the optimal price p* can be calculated, for the rea-
son that the substitution of w; with p during the calculation of
the first derivative of U, w.r.t. p requires the utility function
of v;. From the perspective of privacy protection, such private
information is not supposed to be revealed to the public. In
this context, it is very necessary to design a distributed algo-
rithm for computational resource pricing in VEC while taking
into consideration the privacy protection from the perspective
of vehicles.

5.2. Distributed Algorithm

Considering the fact that vehicles may not be willing to
expose private information to RSU, a distributed algorithm is

therefore proposed in this section for obtaining the optimal price.

The purpose of our pricing game G is to reach the SE, which
should be guaranteed in the distributed algorithm. To that end,
frequent interactions between vehicles and RSU are required
for alternating negotiations.

Generally, the procedure of alternating negotiations between
vehicles and RSU can be sketched out as follows. First, a price
per workload is initialized randomly by RSU and then is sent
to each vehicle with the outsourcing needs. Upon receiving the
price p, each vehicle begins to compute its own workloads w;
and forwards it to RSU, respectively. A workload vector w is
constructed at the edge server, i.e., w = (W, wa, -+ ,w,). Ac-
cording to w, the new revenue can be calculated using Eq. (9 at
RSU. If the revenue is better than in the past, it means that the
price can be further increased strategically, for the purpose of
profit maximization. The updated price is then sent back to the
vehicles where vehicles leverage it to determine new workloads
to be undertaken in VEC.

The above procedure continues until the vehicles and RSU
iteratively reach the SE of G in a distributed way, as defined
in Definition[I} Specifically, the corresponding two algorithms,
one for vehicles side and the other for RSU side, are shown in
Alg. [2]and Alg. [3] respectively. Given the price p, the process
of determining the optimal workload to be undertaken by RSU
is shown in Alg.[2] In the beginning, the best utility for each
vehicle is initially set to zero (lines 1-3). The currently optimal
workload can be obtained according to Eq. (T6). Then the dwell
time of the vehicle can be calculated based on this workload.
If the dwell time does not exceed the deadline, then DADW
checks whether the current workload is valid (lines 11-17) and
updates the optimal workload in case of invalidity. The vehicle
then calculates its own utility value. Finally, the current vehicle
reports the currently optimal workload to RSU.

Algorithm 2: Distributed Algorithm for Determining
Workloads at Vehicles (DADW)

Input: p, 5,
Qutput: The optimal workload w*
1 for each v; in V do
// Initialize the best utility value
for each vehicle
U: =0;
end
// Vehicles execute the following codes in
a distributed way
for each iterative p received from RSU do

w N

4
5 for each v; in V do
6 wi=a;/(p+06)In2)-1;
7 Given w!, compute tlf" based on Eq. ;
8 Compute the dwell time df; based on Eq. @;
9 if I < dt; then
10 wi =wj;
1 if) < wj i, then
12 ‘ W: = Wimins
13 else
14 if W) > W nq, then
15 ‘ W? = Wimax;
16 end
17 end
18 end
19 Vehicle v; calculates its utility by:
U; = a;10g(1 +w)) + 5(Wimar — W) = p - W}
20 if U; > U then
21 | ur=Uu;
22 end
23 v; sends w back to RSU;
24 return w,
25 end
26 end

On the other hand, DAPW is responsible for describing the
actions of RSU after receiving the workloads from all the vehi-
cles (i.e., w). In the beginning, DAPW initializes the globally
best utility value (i.e., the profits) and the per-workload price,
respectively (lines 1-2). After that, RSU updates its best utility
as long as the workload vector w is constructed. It is noticeable
that the utility function U, is of the monotonic feature w.r.t. p.
Therefore, from the perspective of VEC, the more the pricing,
the greater the benefits. Then, DAPW updates p gradually. For
instance, p is increased with an increment Ap each time. The
resulting p is then sent back to the vehicles. This procedure
repeats until the best utility value does not change anymore.

Complexity Analysis. To reach a mutually satisfactory re-
sult, frequent interactions for negotiation are required between
vehicles and RSU, which means DADW and DAPW are respec-
tively executed by vehicles and RSU in an alternating fashion.
It is obvious that both DADW and DAPW have constant-time
complexity in theory. Furthermore, each vehicle independently

Algorithm 3: Distributed Algorithm for Pricing Per
Workload at RSU (DAPW)
Input: n,n, 5, w
Qutput: The optimal price per workload p*
Uu; =0;
p =0
s=0;
for each element w; in w do
‘ s+ =w;
end
U =(p-1-s
if U, — U; > e then
7/1: = q/{eQ
P =rp;
Update p based on given strategy;
Send p to each v;;
end
return p*;

o X NN R W N =

e e
bW N = O

performs DADW, and DAPW is performed at RSU with rich
computational resources. These factors can guarantee that the
two algorithms can be accomplished in real time. As a result,
the time is mainly spent on the interactions for negotiation, with
the purpose of reaching SE of the game. During this procedure,
the update of step increment (i.e., Ap) will have a great effect on
the rate of convergence to SE, this is because the convergence
rate can be reduced when Ap is small, and on the other hand, the
convergence point can be missed when Ap is large. However,
it is pretty hard to determine the optimal value of Ap. Accord-
ingly, in this paper the value of Ap is mainly set empirically and
we will investigate it further in the next section.

6. Numerical Results

The simulation results are reported and analyzed in this sec-
tion. Before going further, we have listed some key parameters
to be used, as denoted in Table For instance, the number
of vehicles in the simulation is set to be 20. The communi-
cation range D and the angle 6 is 100 meters and 60 degrees,
respectively. Thus, the dwell time of each vehicle can be es-
timated. The unit cost 77 and controlling factor ¢ are set to be
1 and 0.2, respectively. The satisfaction level ranges from 500
to 1000 while ¢ is 0.2 for all the vehicles. In the meanwhile,
the increment to the price Ap is set to 0.05 as the default value.
On another hand, all the simulation is run on a notebook with
a 1.8 GHz Intel(R) Core(TM) i5-8250U CPU, 8 GB of RAM,
Microsoft Windows 10 Operating System, Python 3.7. The data
involved in this simulation is generated empirically, following
the previous works such as (Tang et al.,[2020b}, 2021}).

On one hand, we compare the approach with the benchmark
approach in terms of efficiency and effectiveness. In particular,
the centralized approach CAPP is adopted as the benchmark
algorithm in the experiment. Since the benchmark approach
can directly obtain the optimal price for computing resources
and the optimal workloads for vehicles to offioad, it avoids the

frequent interactions between vehicles and RSU. On the other
hand, as far as the distributed approach itself is concerned, sev-
eral factors may affect its performance. Such factors include the
step and the number of applications which are offloaded. Ac-
cordingly, we also need to evaluate the effects of these factors
upon the performance of our approach.

In the experiment, the evaluation metrics for efficiency and
effectiveness mainly include the utility value, optimal price,
running time and optimal workloads. By comparing these per-
formance indicators between the benchmark algorithm and the
proposed approach, we can investigate the feasibility of our ap-
proach. The metrics for the involved parameters evaluation in-
clude the running time and utility values. By running time, we
mean the time taken to reach the SE of the game.

Table 1: Parameter Settings

Notations | Meanings | Default Values
n Number of vehicles 20
D Communication range 100
0 Angle 60
n The unit cost 1
0 The control factor 0.2
Wi min The minimal workloads 0
undertaken by VEC
Wimax The maximal workloads [40, 600]
undertaken by VEC
a; The satisfaction level [500, 1000]
Ap The increment to price p 0.05

6.1. Performance Evaluation for Vehicle Side

The SE of the real-time pricing game can be reached by
iterative interactions between vehicles and RSU. The vehicles
update the strategies, i.e., report to RSU their new workloads to
be offloaded after observing the new price per workload. The
vehicles seek to find the optimal workloads based on Eq. (I6),
such that their own utility values can be optimized. The ex-
periments are thus conducted to investigate the performance of
the proposed approach from the viewpoint of vehicles. The ex-
perimental results are shown in the following. Specifically, the
workloads vary with the increasing number of interactions and
the result is shown in Fig. 2] In this experiment, the number
of vehicles is set to 20, i.e., the number of applications (n) is
also 20. We randomly take four from these vehicles as the ob-
servation subjects. It shall be noted that each iteration corre-
sponds to one unique price per workload. Thus, the figure also
demonstrates workload variations with the increasing number
of prices.

It can be easily observed that each vehicle tends to decrease
its own workloads to be offloaded when the price per workload
increases. However, the decrement in the amount of workloads
will stop when the SE of the pricing game is reached. For exam-
ple, the number of workloads to be offloaded does not change
anymore when the number of iterations comes to 220 in Fig. 2]

vl
v2
v3
v4

w w IS rS
S a =3 >

Amount of Workloads Undertaken by VEC

N
n

120 140 160

Number of Iterations

60 8 100

Figure 2: The workload variations with the increasing number of interactions

4000

3750

9
]
= 3500
@D
>
= e
S 3250 *- vl
,: v2
2 3000 =k V3
=
2 I e
- 2750 Bk T
£ ’_’“"‘""'*——u
= >y
=] *'-*“~*--*_* P-p_y
2500 e e
- -*—_*__,,,__*
it TR Blatinl L E

2250

60 80 100 120 140 160

Number of Iterations

Figure 3: The utility variations with the increasing number of interactions

On the other hand, the variation of utility value for each vehi-
cle with the increasing number of iterations is shown in Fig. 3]
Similarly, each iteration also uniquely corresponds to one price
per workload, and this figure also demonstrates the utility vari-
ations with the increasing price per workload.

It is noticeable that the utility values of the four vehicles
decrease with the increasing number of iterations. It is a proce-
dure of gaming between vehicles and RSU. The initial price p is
set to 25 for vehicles empirically. However, from the viewpoint
of RSU, the current p may not be a satisfactory price, since the
revenues obtained by leasing computational resources can still
increase. Thus, RSU as the game leader gradually increases the
price in the game and vehicles follow the strategy by decreasing
their workloads, until the SE of the game arrives. Accordingly,
the utility values of these vehicles also decrease with the in-
creasing number of iterations until the arrival of the SE of the
game.

The resource pricing game between vehicles and RUS usu-
ally takes place at the beacon exchanging stage. After that,
computations are offloaded and undertaken by RSU. Therefore,

10

2254
=M= Vehicle in the pricing game .,'.
4
= 2001 p > ¢
£ -
=
@ 175 /./
£ el
g -
s 150 4 4
”
= y
S 125 ,I/
£ 4
& ¥
£ 100 g
g 7’
s ..
& 75 oa
| ¢
'
s01 ™

80 100 120 140

Number of Iterations

160 180 200

Figure 4: Average running time with the increasing number of iterations

the time taken to reach the SE of game is supposed to be very
soon. The dwell time of vehicles within the coverage of RSU
is limited. The application outsourcing should be accomplished
during the dwell time, not to mention the decision-making for
resource price. A set of experiments has been conducted to in-
vestigate the time that is taken to reach the SE of game. In par-
ticular, the average running time for one vehicle to reach SE of
the game is shown in Fig.[d] Based on the observations shown
in Fig. 2] and Fig. 3] the SE of the game can be reached with
the number of iterations equal to 220. As denoted in Fig. [] it
takes about 220ms to reach the SE of the game. The time is
almost real time and thus acceptable for us, especially consid-
ering our simulation settings. We believe that it will take much
less time for RSU with more powerful capabilities to reach the
SE of game.

To sum up, from the viewpoints of vehicles, both the amount
of workloads to be undertaken and the utility values decrease
with the increasing number of iterations, until the SE of the
game reaches. Furthermore, the SE of the game can be sought
in almost real time. After reaching the SE of the game, the
utility values for these vehicles do not change anymore, which
means that no vehicle can achieve a higher utility value by ad-
justing its own strategy unilaterally in the SE of the game.

6.2. Performance Evaluation for RSU Side

For the RSU side, the price per workload and the utility
are also investigated. The experimental results are shown in
Fig.[5]and Fig.[f] respectively. The centralized approach serves
as the benchmark algorithm to evaluate the performance of the
distributed algorithm for real-time resource pricing in VEC. As
mentioned earlier, RSU is assumed to know the satisfaction lev-
els of all vehicles and utility functions in the centralized ap-
proach. According to Eq. (22), the optimal price per workload
is determined at the beginning as shown in Fig.[5] Similarly,
the optimal utility value for RSU in the centralized approach
is also determined at the beginning, as shown in Fig. [f] It is
revealed from Fig. [5] and Fig. [f] that both the optimal price and
the optimal utility value increase when the price per workload

36

34 4

32

The Optimal Price for Per Workload

30 ./’ SE of the pricing game G
7’
-
’ 4
,‘ —M - The distributed approach
281 '/. The centralized approach

125 150 175 200 225

Number of Iterations

75 100

Figure 5: Performance comparison w.r.t. price between two different ap-

proaches
e n
20540 o
- -
y 3
20530 'J’
Z [¢
& ’
= 20520 A
< o
Z ’
= 2010 ,‘
E) | SE of the pricing game G
’
20500 l
/
,‘ —M - The distributed approach
20490 ./ The centralized approach

125 150 175 200 225

Number of Iterations

50 75 100

Figure 6: Performance comparison w.r.t. utility between two different ap-

proaches

increases. However, when the SE of the game arrives, the op-
timal utility value for RSU does not increase any more as the
price per workload increases. Similarly, the optimal price per
workload remains the same even if the price per workload in-
creases. For example, a mutually satisfactory result (i.e., the SE
of the game) is reached in this experiment, when the number of
iterations comes to 220.

To sum up, the benchmark algorithm knows the satisfaction
levels of all vehicles and utility functions all the time, while the
distributed approach knows neither of them for the purpose of
privacy protection. Therefore, it needs to take a certain amount
of time to converge to the SE of the game. However, the time
is acceptable as investigated in Fig. [d] On another hand, the
convergence rate of the distributed approach is also restricted
by other factors, such as the way p is updated and the number
of vehicles. For instance, Ap should be determined carefully,
since small values of Ap slow down the convergence rate while
large values of Ap could miss the convergence point. Further-

11

19180 |
i
/
19170 1 4
1
1
Z2160{ |
: ¥
1
<€ 191501 14
o [
= 1
S 19140 H
- 1
= 1]
= 19130 1 i
n
191201 M1,
I x
/
19110 i"/
0 200 400 600 800

Number of Iterations

Figure 7: Performance comparison w.r.t. step increment

step = 0.05
step = 0.075
step = 0.1

—
& =N 3 =
=3 = =3 =3

Running Time for Reaching SE (ms)

I3
=3

60 80 100

Number of Vehicles

20 40

Figure 8: Performance comparison w.r.t. the number of vehicles

more, the number of vehicles (i.e., applications) may affect the
performance of the distributed approach in terms of the conver-
gence rate. We will investigate the effects of these parameters
upon the convergence rate in the next subsection.

6.3. The Effects of Other Parameters on Pricing Game

Two sets of experiments have been carried out to evaluate
the effects of the step and the number of applications upon the
performance of the distributed approach. To be more specific,
the experimental results are shown in Fig. [7]and Fig. [§] respec-
tively. Fig.[/|shows the influence of the way how p is updated,
while Fig. [8| shows the influence of the number of applications
upon the distributed approach.

In the first set of experiments, the price is increased by a
step of 0.01, 0.02, 0.05 and 0.1 respectively. It is obvious that a
larger value indeed helps reach the SE of the game at a higher
rate. For instance, when the step is 0.1, the SE of the game can
be reached with the number of iterations equal to 100. Com-
pared to the step of 0.1, the step of 0.01 helps reach the SE
of the game with the number of iterations equal to about 930.

20400
I Proposed game
EEE TSA

20200 1 RND

20000 A

19800 1

Utility Values of RSU

19600

19400 -
14 16

Number of Iterations

Figure 9: Performance comparison w.r.t. utility values at RSU

By contrast, the former is about nine times faster than the lat-
ter. Nevertheless, it does not mean that the larger the step, the
better the performance of the distributed approach. Despite a
faster convergence rate, the approach may miss the convergence
point. We cannot determine the optimal value for the step, but
the value can be carefully set empirically. As far as our exper-
iment is concerned, the step equal to 0.1 is currently the best
one.

In the second set of experiments, we investigate the number
of vehicles (i.e., the applications) that could affect the perfor-
mance of the distributed approach in terms of running time. The
experimental result is shown in Fig.[§] In this experiment, the
number of vehicles ranges from 10 to 100. For each application,
three update strategies are applied to the distributed approach,
i.e., the steps are 0.05, 0.075, and 0.1, respectively. From this
figure, we can observe that 1) The average running time in-
creases roughly when the number of applications increases, no
matter which value the step is; 2) As far as the update strate-
gies are concerned, the step of 0.1 is undoubtedly the best, no
matter how many vehicles are considered; 3) The response is
almost real-time even if the number of vehicles is very large.
For instance, when the number of vehicles is 100, the running
time is 88, 75 and 46, respectively.

To sum up, both the way the price is updated and the number
of applications can affect our approach in terms of the conver-
gence rate and the running time. Generally, the SE of the game
can be reached in almost real time as anticipated. Furthermore,
compared to the centralized approach, the distributed approach
can efficiently solve the real-time computational resource pric-
ing issue while considering the privacy of vehicles.

6.4. Approach Comparison

We have investigated the advantage of the distributed ap-
proach over the centralized approach, as well as the effects of
involved parameters upon the distributed approach. Actually,
there are other approaches for seeking the SE in the proposed
game. In the following, we investigate the performance of our
approach such as the optimal values at the edge, compared to

12

other approach. In particular, two approaches are used as the
contrast, i.e., a ternary search based approach (TSA) (Wang
et al [2016) and a random approach (RND). TSA sets four
points, i.e., the lower and upper bounds, two other values be-
tween them, so as to speed up the searching process. However,
there is no upper bound of the price in our problem. To adjust
TSA to our optimization, we in the simulation assume that the
value of the upper bound is twice that of the lower bound, and
the lower bound of the price is the same as that in DADW and
DAPW. For the random approach, the increment in the price
per workload is generated in a random way, while the price is
increased by a step of 0.1 in DAPW. The number of vehicles is
20 in the simulation.

The simulation result on performance comparison is shown
in Fig[9] where the x-coordinate denotes the number of itera-
tions and y-coordinate denotes the utility values of RSU. As far
as the capability to find the optimal utility values is concerned,
our approach is slightly better than TSA in general, while the
random approach has the worst performance among the three
approaches. However, due to the randomness, the random ap-
proach sometimes demonstrates better performance. For exam-
ple, it is slightly better than TSA when the number of vehicles
is 14. To sum up, our approach has shown better performance
w.r.t. the capability to obtain the optimal values at the edge
server.

7. Conclusion

The monetary reward has always been one of the most im-
portant goals for computational resource providers in VEC. The
revenues can actually stimulate the providers to provide highly
qualified services for the offloaded vehicular applications. In
this paper, we have proposed an optimal computational resource
pricing in VEC and aim to optimize the utility values of both ve-
hicles and the edge. To achieve this goal, a Stackelberg game
is applied for modeling the interactions between vehicles and
the edge. Furthermore, a distributed algorithm is put forward to
solve the real-time pricing game, which guarantees that the pri-
vate information of vehicles can be protected. We have proven
the existence of the Stackelberg equilibrium in our resource
pricing game theoretically and experimentally. For the future
work, we plan to design more efficient and scalable pricing
schemes revolving around VEC when tasks are offloaded and
computation is undertaken at the edge server.

Acknowledgment

This work was partly supported by the National Natural Sci-
ence Foundation of China under Grant 61801325 and 62071327.

References

Batewela, S., Liu, C., Bennis, M., Suraweera, H. A., & Hong, C. S. (2020).
Risk-sensitive task fetching and offloading for vehicular edge computing.
IEEE Commun. Lett., 24, 617-621.

CAIL T., Li, J., Mian, A. S., li, R, Sellis, T., & Yu, J. X. (2020). Target-aware
holistic influence maximization in spatial social networks. IEEE Transac-
tions on Knowledge and Data Engineering, (pp. 1-1). doiz10.1109/TKDE.
2020.3003047.

Chen, C., Chen, L., Liu, L., He, S., Yuan, X., Lan, D., & Chen, Z. (2020).
Delay-optimized v2v-based computation offloading in urban vehicular edge
computing and networks. /IEEE Access, 8, 18863—18873.

Chen, S., Li, L., Chen, Z., & Li, S. (2021). Dynamic pricing for smart mobile
edge computing: A reinforcement learning approach. IEEE Wirel. Commun.
Lett., 10, 700-704.

Chen, X., Jiao, L., Li, W., & Fu, X. (2016). Efficient multi-user computation
offloading for mobile-edge cloud computing. IEEE/ACM Transactions on
Networking, 24, 2795-2808.

Dai, Y., Xu, D., Maharjan, S., & Zhang, Y. (2019). Joint load balancing and of-
floading in vehicular edge computing and networks. IEEE Internet of Things
Journal, 6, 4377-4387.

Feng, J., Liu, Z., Wu, C., & Ji, Y. (2017). AVE: autonomous vehicular edge
computing framework with aco-based scheduling. IEEE Trans. Veh. Tech-
nol., 66, 10660-10675.

Feng, J., Liu, Z., Wu, C., & Ji, Y. (2019). Mobile edge computing for the
internet of vehicles: Offloading framework and job scheduling. IEEE Veh.
Technol. Mag., 14, 28-36.

Gu, X., & Zhang, G. (2021). Energy-efficient computation offloading for ve-
hicular edge computing networks. Comput. Commun., 166, 244-253.

Guo, H., Liu, J., Ren, J., & Zhang, Y. (2020). Intelligent task offloading in
vehicular edge computing networks. [EEE Wireless Communications, 27,
126-132.

Huang, X., Yu, R., Ye, D., Shu, L., & Xie, S. (2021). Efficient workload alloca-
tion and user-centric utility maximization for task scheduling in collabora-
tive vehicular edge computing. IEEE Transactions on Vehicular Technology,
70, 3773-3787.

Li, G., Zhang, Y., Wang, M., Wu, J., Lin, Q., & Sheng, X. (2020). Resource
management framework based on the stackelberg game in vehicular edge
computing. Complex., 2020, 8936064:1-8936064:11.

Liang, B., Fan, R., Hu, H., Zhang, Y., Zhang, N., & Anpalagan, A. (2021).
Nonlinear pricing based distributed offloading in multi-user mobile edge
computing. IEEE Trans. Veh. Technol., 70, 1077-1082.

Liu, M., & Liu, Y. (2018). Price-based distributed offloading for mobile-edge
computing with computation capacity constraints. IEEE Wireless Commu-
nications Letters, 7, 420-423.

Liu, Z., Zhang, X., Zhang, J., Tang, D., & Tao, X. (2020). Learning based
fluctuation-aware computation offloading for vehicular edge computing sys-
tem. In 2020 IEEE Wireless Communications and Networking Conference
(WCNC) (pp. 1-7).

Nguyen, D. T., Le, L. B., & Bhargava, V. (2021). Price-based resource alloca-
tion for edge computing: A market equilibrium approach. IEEE Transac-
tions on Cloud Computing, 9, 302-317.

Siew, M., Cai, D. W. H., Li, L., & Quek, T. Q. S. (2020). A sharing-economy in-
spired pricing mechanism for multi-access edge computing. In I[EEE Global
Communications Conference, GLOBECOM 2020, Virtual Event, Taiwan,
December 7-11, 2020 (pp. 1-6). IEEE.

Sonmez, C., Tunca, C., Ozgovde, A., & Ersoy, C. (2021). Machine learning-
based workload orchestrator for vehicular edge computing. IEEE Trans.
Intell. Transp. Syst., 22, 2239-2251.

Su, C, Ye, F, Zha, Y., Liu, T., Zhang, Y., & Han, Z. (2021). Matching with
contracts-based resource trading and price negotiation in multi-access edge
computing. /[EEE Wireless Communications Letters, 10, 892-896.

Tang, C., Hao, M., Wei, X., & Chen, W. (2018). Energy-aware task scheduling
in mobile cloud computing. Distributed Parallel Databases, 36, 529-553.

Tang, C., Zhu, C., Wei, X., Wu, H., Li, Q., & Rodrigues, J. J. P. C. (2020a).
Intelligent resource allocation for utility optimization in rsu-empowered ve-
hicular network. IEEE Access, 8, 94453-94462.

Tang, C., Zhu, C., Wu, H., Li, Q., & Rodrigues, J. J. P. C. (2021). Towards
response time minimization considering energy consumption in caching as-
sisted vehicular edge computing. IEEE Internet of Things Journal, (pp. 1-1).
doii10.1109/JI0T.2021.3108902,

Tang, C., Zhu, C., Wu, H., Wei, X,, Li, Q., & Rodrigues, J. J. P. C. (2020b). A
game theoretical pricing scheme for vehicles in vehicular edge computing.
In 2020 16th International Conference on Mobility, Sensing and Networking
(MSN) (pp. 17-22).

Wang, T., Lu, Y., Wang, J., Dai, H., Zheng, X., & Jia, W. (2021a). EIHDP:

13

edge-intelligent hierarchical dynamic pricing based on cloud-edge-client
collaboration for iot systems. IEEE Trans. Computers, 70, 1285-1298.

Wang, T., Mei, Y., Liu, X., Wang, J., Dai, H., & Wang, Z. (2021b). Edge-based
auditing method for data security in resource-constrained internet of things.
J. Syst. Archit., 114, 101971.

Wang, T., Wang, P, Cai, S., Zheng, X., Ma, Y., Jia, W., & Wang, G. (2021c).
Mobile edge-enabled trust evaluation for the internet of things. Information
Fusion, 75, 90-100.

Wang, X., Chen, X., Wu, W., An, N., & Wang, L. (2016). Cooperative appli-
cation execution in mobile cloud computing: A stackelberg game approach.
IEEE Commun. Lett., 20, 946-949.

Wu, C,, Liu, Z., Liu, F, Yoshinaga, T., Ji, Y., & Li, J. (2020a). Collaborative
learning of communication routes in edge-enabled multi-access vehicular
environment. [EEE Trans. Cogn. Commun. Netw., 6, 1155-1165.

Wu, Y., Wu, J., Chen, L., Yan, J., & Luo, Y. (2020b). Efficient task schedul-
ing for servers with dynamic states in vehicular edge computing. Comput.
Commun., 150, 245-253.

Zhang, J., Guo, H., & Liu, J. (2020a). Adaptive task offloading in vehicular
edge computing networks: a reinforcement learning based scheme. Mob.
Networks Appl., 25, 1736-1745.

Zhang, J., Guo, H., Liu, J., & Zhang, Y. (2020b). Task offloading in vehicular
edge computing networks: A load-balancing solution. IEEE Transactions
on Vehicular Technology, 69, 2092-2104.

Zhang, J., Huang, X., & Yu, R. (2020c). Optimal task assignment with delay
constraint for parked vehicle assisted edge computing: A stackelberg game
approach. IEEE Communications Letters, 24, 598—602.

Zhao, L., Yang, K., Tan, Z., Li, X., Sharma, S., & Liu, Z. (2021). A novel
cost optimization strategy for sdn-enabled uav-assisted vehicular computa-
tion offloading. IEEE Trans. Intell. Transp. Syst., 22, 3664-3674.

Zhou, P., Braud, T., Zavodovski, A., Liu, Z., Chen, X., Hui, P., & Kangasharju,
J. (2020). Edge-facilitated augmented vision in vehicle-to-everything net-
works. IEEE Trans. Veh. Technol., 69, 12187-12201.

Chaogang Tang received his B.S. degree from
the Nanjing University of Aeronautics and As-
tronautics, Nanjing, China, and Ph.D. degree
from the School of Information Science and
Technology, University of Science and Tech-
nology of China, Hefei, China, and the Depart-
ment of Computer Science, City University of
Hong Kong, under a joint Ph.D. Program, in
2012. He is now with the China University of
Mining and Technology. His research interests include mobile
cloud computing, fog computing, Internet of Things, big data.

Huaming Wu received the B.E. and M.S. de-
grees from Harbin Institute of Technology,
China in 2009 and 2011, respectively, both in
electrical engineering. He received the Ph.D.
degree with the highest honor in computer sci-
ence at Freie Universitit Berlin, Germany in
2015. He is currently an associate professor
in the Center for Applied Mathematics, Tian-
jin University. His research interests include
model-based evaluation, wireless and mobile network systems,
mobile cloud computing and deep learning.

http://dx.doi.org/10.1109/TKDE.2020.3003047
http://dx.doi.org/10.1109/TKDE.2020.3003047
http://dx.doi.org/10.1109/JIOT.2021.3108902

	Introduction
	Related Works
	Computation Offloading in VEC
	 Resource Pricing for Computation Undertaking
	Performance Optimization with Stackelberg Game for Computation Undertaking

	System Model
	Problem Formulation
	Preliminaries
	 Stackelberg Game
	Vehicle Utility Optimization
	Revenue Maximization for VEC
	Stackelberg Equilibrium

	Algorithm Design
	Centralized Algorithm
	Distributed Algorithm

	Numerical Results
	Performance Evaluation for Vehicle Side
	Performance Evaluation for RSU Side
	The Effects of Other Parameters on Pricing Game
	Approach Comparison

	Conclusion

