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Abstract—With the rapid development of Internet of Things
(IoT) and next-generation communication technologies, resource-
constrained mobile devices fail to meet the demand of resource-
hungry and compute-intensive applications. To cope with this
challenge, with the assistance of Mobile Edge Computing (MEC),
offloading complex tasks from mobile devices to edge cloud
servers or central cloud servers can reduce the computational
burden of devices and improve the efficiency of task processing.
However, it is difficult to obtain optimal offloading decisions
by conventional heuristic optimization methods, because the
decision-making problem is usually NP-hard. In addition, there
are shortcomings in using intelligent decision-making methods,
e.g., lack of training samples and poor ability of migration under
different MEC environments. To this end, we propose a novel
offloading algorithm named MR-DRO, consisting of a Meta-
Reinforcement Learning (meta-RL) model, which improves the
migration ability of the whole model, and a Deep Reinforcement
Learning (DRL) model, which combines multiple parallel Deep
Neural Networks (DNNs) to learn from historical task offloading
scenarios. Simulation results demonstrate that our approach
can effectively and efficiently generate near-optimal offloading
decisions in IoT environments with edge and cloud collaboration,
which further improves the computational performance and has
strong portability when making offloading decisions.

Index Terms—Mobile Edge computing, Internet of Everything,
Task Offloading, Deep Neural Network, Reinforcement Learning

I. INTRODUCTION

W ITH the proliferation of various Mobile Devices

(MDs), more and more resource-hungry applications,

e.g., face recognition, autonomous driving and augmented re-

ality, have become an indispensable part of life. However, MDs

such as smartphones, tablet computers and Unmanned Aerial

Vehicles (UAV) usually have limited computing resources and

constrained battery life, and thus the speed of processing

compute-intensive tasks is insufficient to meet the delay and

energy requirements of various IoT applications. In order to
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reduce service delay and save energy consumption, MDs often

closely rely on the central Cloud Server (CS) to compute tasks

in their daily operations. By offloading tasks from a local MD

to the CS, the waiting time can be shortened and the battery

life of the MD can also be extended. Despite the strong and

scalable computing capacities of the cloud, it involves a large

amount of data transmission when offloading computing tasks

from MDs to the CS. In the case of insufficient bandwidth

or network fluctuations, task offloading often brings high time

costs. Meanwhile, with the increase of the number of MDs or

tasks, the computing and communication delays also increase.

Therefore, cloud computing cannot conform to the practical

requirements for delay-sensitive tasks [1].

Benefiting from Internet of Things (IoT) and edge com-

puting technologies, offloading compute-intensive tasks from

MDs to the Edge Server (ES) at the edge of the network

for execution has gradually matured. In this case, the remote

cloud is no longer the only place for task offloading and

application placement [2]. Edge computing can make full

use of the hardware resources of the ES and alleviate the

computing burden of the CS. Compared with the central CS,

ES has relatively low computing and storage capabilities, and

the integration degree of the heat dissipation and transfer

equipment is lower than that of the CS. Resulting from that,

the energy consumption of the ES is higher than that of the CS.

Nonetheless, ESs are much closer to MDs, with low latency

and more stable networks, which can greatly reduce the task

offloading delay caused by the network, and is suitable for

latency-sensitive IoT applications.

In the practical application scenarios of Mobile Edge Com-

puting (MEC) and Mobile Cloud Computing (MCC), on one

hand, always offloading all tasks to the ES for execution is not

advisable due to limited computing capacities of distributed

edge server; on the other hand, due to the high latency and

insufficient bandwidth, offloading all tasks to the CS is not

always beneficial [3], [4]. In addition, considering the hetero-

geneous resources of the MDs, ESs and CSs, it is necessary

for us to dynamically provide the optimal offloading decision

for each task according to different offloading scenarios. We

intend to fully utilize all computing resources as well as

obtain the maximum benefits. Moreover, the overhead time

required for offloading decision-making and the level of energy

consumption also severely affect the real-world application

deployment in edge computing environments. However, the

total number of offloading decisions increases exponentially
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with the number of users and the number of tasks. Although

this challenge can be solved well with the conventional

optimization method for small-scale offloading scenarios, it

will involve large amounts of calculation when the offloading

scenario is complicated [5].

In recent few years, with the rapid development of Artificial

Intelligence (AI), intelligent decision-making methods have

become increasingly more popular [6]–[8]. Deep learning

achieves high classifying accuracy when dealing with conven-

tional classification problems. The offloading decision problem

can be treated as a classification problem, in which the final

decision can be regarded as a problem of classifying the tasks

into three parts, namely, the local computing model, edge

computing model and cloud computing model, respectively.

Through training the neural network, Deep Reinforcement

Learning (DRL) algorithms can quickly make offloading de-

cisions in a specific edge/cloud computing environment [9].

However, in real-world IoT application scenarios, the number

of users, the number of tasks and the network conditions

change frequently and dynamically. Thus, it is necessary to

collect new training samples to retrain the neural network and

make it suitable for the new offloading environment, which

means that its migration ability is greatly limited. Instead,

meta-Reinforcement Learning (meta-RL) can take advantage

of the accumulated training experience to guide the new

training process, so as to accelerate the completion of new

training tasks [10]. Through the combination of DRL and

meta-RL, we can both improve the portability of the model

and reduce the total cost of the system.

Inspired by the above facts, this paper designs a novel Meta

Reinforcement-Deep Reinforcement learning based Offloading

(MR-DRO) algorithm, where a meta-RL algorithm is adopted

to give proper initial parameters for fast training and a DRL

algorithm is applied to generate near-optimal offloading deci-

sions. The main contributions of this paper can be summarized

as follows:

• Considering the offloading performance in terms of re-

sponse time and energy consumption during the offload-

ing process, a system model is built in heterogeneous

edge/cloud computing environments with multiple mobile

terminal users, different volumes of data and different

scales of task workloads. To this end, we formalize

the offloading decision-making issue as an optimization

problem and attempt to solve it in an intelligent and

effective way.

• We design a novel offloading framework composed of

a meta-RL model and a DRL model. For the former,

we adopt the Reptile algorithm to train several neural

networks, by which we can avoid the second-order gra-

dient calculation process, thereby reducing the cost of

decision-making. Using the initial parameters generated

by the meta-RL model, we can greatly improve the initial

accuracy of the decision-making model and increase the

algorithm portability. For the latter, we use multiple

parallel DNNs to determine when and where each task

should be offloaded, which is achieved by the cycle of

generating labeled samples and updating the parameters

of DNNs.

• We conduct comprehensive experiments in real-world

MEC environments to evaluate the proposed MR-DRO

approach, which achieves superior offloading perfor-

mance when compared with other offloading-decision

schemes. Moreover, it can make the DNNs reach a state

of convergence and significantly improves the offloading

accuracy, while being able to adapt fast to new scenarios.

The remainder of this paper is organized as follows. In

Section II, we discuss the related works. Section III first

develops the system model and then formulates the offloading-

decision problem. Section IV presents the details of the

proposed algorithm. Performance evaluation of MR-DRO is

discussed in Section V. In Section VI, we conclude the paper

and point out several potential directions.

II. RELATED WORK

In recent years, a large number of offloading-decision

schemes have been proposed to maximize the offloading

performance in heterogeneous MEC and MCC environments,

which are mainly based on conventional offloading-decision

approaches and intelligent offloading-decision approaches as

listed in Table I.

A. Conventional Offloading-Decision Approaches

There are several studies dealing with the offloading

problem in the environment with poor network stability.

eTime [11] was a Lyapunov optimization-based method, which

can preload data when the network connection is poor, and

give priority to offloading delay-sensitive tasks in the case of

limited bandwidth. Thus it can be applied to most applications

while saving 25%-30% of energy consumption by simulating

actual offloading scenes. Li et al. [12] adopted the Lyapunov

optimization method to establish a queueing model to simulate

the offloading process and minimize the queue length, so as

to achieve a relatively low overall consumption of offloading

decisions. Haber et al. [13] transformed the original decision-

making issue into a non-convex programming mathemati-

cal problem by establishing an appropriate task offloading

mathematical model, and then converted it into a series of

convex problems through a continuous convex approximation

programming method. To achieve energy-efficient task assign-

ment when combing MEC offloading and Device-to-Device

(D2D) offloading, Yu et al. [14] proposed TA-MCTS, a Monte

Carlo Tree Search-based approach for solving the optimal

offloading-decision problem.

The computing tasks for specific IoT applications in a

heterogeneous MEC/MCC environment can also be viewed

as a workflow, so that offloading decisions can be made by

using graph theory, game theory, Genetic Algorithm (GA).

Wu et al. [15] transformed the offloading environment into

a weighted graph model, and proposed the MCOP algorithm

based on the graph theory. Using this algorithm, they suc-

cessfully divided the task into the local part and the edge part.

Zhang et al. [16] subdivided the tasks in MDs and transformed

the subdivided tasks into topological models in accordance

with the logical relationship, and provided offloading decisions

respectively for scenes without offloading restrictions and
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TABLE I: The Qualitative Comparison of the Current Literature

Categories Offloading Schemes Theories Mode
Architectural Properties Decision Objectives

Fast Adaptability
MCC MEC Latency Energy

Conventional
Offloading
Decisions

eTime [11] Lyapunov Optimization Full ✓ ✗ ✗ ✓ ✗

OOD [12] Lyapunov Optimization Full ✓ ✗ ✓ ✗ ✗

SCA-based Scheme [13] Successive Convex Approximation Full ✗ ✓ ✗ ✓ ✗

TA-MCTS [14] Monte Carlo Tree Search Optimization Partial ✗ ✓ ✗ ✓ ✗

MCOP [15] Graph Theory Partial ✓ ✓ ✓ ✓ ✗

LARAC-based Scheme [16] Graph Theory Partial ✓ ✗ ✗ ✓ ✗

K-LARAC & M-LARAC [17] Lagrangian Relaxation-based Aggregate Cost Partial ✓ ✗ ✓ ✓ ✗

COM [18] Genetic Algorithm Partial ✓ ✓ ✓ ✓ ✗

F-SGA & C-SGA [19] Stalberg Game Theory Partial ✓ ✗ ✓ ✗ ✗

MDP-based Scheme [20] Markov Decision Process Partial ✓ ✓ ✓ ✓ ✗

EMOP [21] Markov Decision Process Partial ✓ ✗ ✗ ✓ ✗

Wu et al. [22] Queueing Theory Partial ✓ ✗ ✓ ✓ ✗

Intelligent
Offloading
Decisions

Li et al. [23] Deep Learning Full ✗ ✓ ✗ ✗ ✗

Neurosurgeon [24] Deep Neural Networks - ✓ ✓ ✓ ✓ ✗

QL-JTAR [25] Q-Learning Partial ✗ ✓ ✓ ✓ ✗

DIOS [26] Deep Imitation Learning Partial ✗ ✓ ✓ ✗ ✗

DDLO [27] Distributed Deep Learning Partial ✗ ✓ ✓ ✓ ✗

DDTO [5] Distributed Deep Learning Partial ✓ ✓ ✓ ✓ ✗

DMRO [28] Deep Meta Reinforcement Learning Partial ✗ ✓ ✓ ✓ ✓

MRLCO [29] Meta Reinforcement Learning Partial ✗ ✓ ✓ ✗ ✓

Our MR-DRO Reinforcement Learning & Meta Learning Partial ✓ ✓ ✓ ✓ ✓

general offloading scenarios. Haghighi et al. [17] took time

delay and energy consumption factors into consideration and

proposed the LARAC algorithm to find the shortest path in

the graph-based model, by which they find the near-optimal

solution of the task offloading decisions. Xu et al. [18]

comprehensively considered the execution time and energy

consumption for IoT devices in the scene combining MEC

and MCC. They represented the overall offloading scheme

through an ordered array and iterate the possible offloading

solutions through Non-dominated Sorting Genetic Algorithm

III (NSGA-III), thus obtaining the near-optimal solution. Li et

al. [19] innovated on the basis of the Stalberg game model

and designed F-SGA and C-SGA algorithms specifically for

delay-sensitive and compute-intensive applications, respec-

tively. When the model reaches the game equilibrium point,

the approximate optimal solution of the offloading decision

can be obtained.

Markov Decision Process (MDP) is also a theoretical tool

widely used for offloading decision-making. In the MEC

scenario, Khalid et al. [20] proposed the offloading scheme

by applying the Markov Decision Process (MDP), which

improved the decision-making level by more than 17.47%.

Terefe et al. [21] proposed the EMOP algorithm on the basis

of MDP, and used discrete-time Markov chains to represent

the wireless channel of mobile devices. This algorithm can

solve the offloading decision problem when there are multiple

edge clouds that can be used for offloading. In the MCC

scenario, Wu et al. [22] established a queueing model for

the decision-making problem. They represented the model

delay by two-dimensional Markov chain, and generated the

offloading decision by an M/G/1-FCFS queue model.

Relying on a variety of conventional optimization methods,

we can generate proper offloading decisions, however, these

methods usually involve a large number of matrix operations

and gradient operations. It is known that the offloading-

decision problem is NP-hard, thereby brute force algorithms

are unsuitable for such problem, especially when the scale of

the problem is large, the time delay and energy consump-

tion caused by decision-making will become unacceptable.

Therefore, we need to design an efficient offloading-decision

algorithm to replace conventional heuristic algorithms. It has

recently become one of the main research directions to propose

an algorithm that can give offloading decisions in an intelligent

manner.

B. Intelligent Offloading-Decision Approaches

Due to the numerous advantages of deep learning, e.g.,

immediacy and portability, it has broad application prospects

in the field of edge computing. Therefore, many studies have

tried to integrate AI methods into MEC and MCC to make

offloading decisions [30].

Li et al. [23] used the deep learning method to tackle

the offloading-decision issue. They trained the Deep Neural

Network (DNN) according to the historical offloading deci-

sion data before making decisions and also verified through

examples that the offloading decisions given by deep learning

are better than conventional optimization methods. Kang et

al. [24] used eight different mobile intelligent applications to

verify the reliability of the deep learning approach, and proved

that this scheme reduces 59.5% of energy consumption. In

addition, Dab et al. [25] proposed the QL-JTAR algorithm

based on Q-learning. This algorithm comprehensively con-

sidered the resource allocation problem and task offloading

decision problem in edge computing, and proved that the

offloading decisions obtained through the algorithm have high

accuracy. Yu et al. [26] trained the neural network through

deep imitation learning and made decisions in MEC and MCC

scenarios, thereby improving the training speed of the model

and accuracy of the decision.

Due to the particularity of task offloading in heteroge-

neous computing environments, the samples used for training

DNNs are always difficult to obtain, especially for large-scale

offloading-decision problems. To tackle this challenge, Huang

et al. [27] proposed a DDLO algorithm based on DRL, through

multiple parallel DNNs to train the model and update the

training dataset. This algorithm can improve the precision of

the dataset and update the parameters of DNNs simultaneously,

thereby reducing the dependence on training samples. Wu et

al. [5] proposed a DDTO algorithm in a heterogeneous MEC

and MCC environment, where ES and CS can collaborate in
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computing, and proved that the error of the offloading decision

made by this algorithm can be controlled within 10 percent.

Although DNN can quickly generate offloading decisions,

when the number of users or tasks changes, the number of

nodes in the input layer and output layer of DNNs often

cannot be applied to the new environment, so that DNNs

are required to be retrained. To tackle the aforementioned

challenges, Qu et al. [28] proposed DMRO, a task offloading

algorithm based on deep meta-RL. When faced with a new

offloading environment, DMRO can generate appropriate ini-

tial parameters of DNNs, so as to significantly accelerate the

subsequent training speed and improve the portability of the

model. Wang et al. [29] proposed the MRLCO algorithm on

the basis of meta-RL, which reduces the amount of calculation

caused by the second-order gradient in Model-Agnostic Meta-

Learning (MAML) without significantly reducing the accuracy

of offloading decisions.

Most of the aforementioned work attempted to reduce

the system latency or energy consumption in MEC/MCC

environments, while neglecting the fast adaptability of task

offloading models. In this paper, we concentrate on enhancing

the robustness and portability of the model, enabling edge

computing technology to be better applied in real life. We

design an efficient intelligent decision-making approach to

generate a near-optimal offloading decision with a small

amount of calculation. It serves as an approximation algorithm,

improves the speed of decision-making, as well as reduces

the waiting time of MDs. Moreover, we can quickly and

intelligently provide near-optimal offloading decisions when

facing different MEC scenarios.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first build the system model comprised

of the local computing model, edge computing model and

cloud computing model. Then, we formulate the task of-

floading decision-making problem as an optimization problem.

For convenience, the major notations used in this paper are

summarized in Table II.

A. System Model

As depicted in Fig. 1, we consider a heterogeneous collab-

orative edge/cloud computing environment, which integrates

MDs for local computing, ES for edge computing and CS for

cloud computing. Without loss of generality, we denote the

set of MDs as N = {1, 2, · · · , N}, assuming that there are

N mobile users and the set of tasks as M = {1, 2, · · · ,M},

assuming that each MD has M tasks to be offloaded. Each

user may have multiple tasks, and each task can choose to be

executed locally or to be offloaded, either to the ES or the

CS for computing. The data size of the task to be offloaded is

often different, we assume that wnm is the amount of data to

be offloaded for tasknm, i.e., the mth task of the nth MD.

To clearly represent the offloading decision for each task,

we set a pair of indicators, namely, x
(1)
nm ∈ {0, 1}, and

Fig. 1: System model of task offloading in a heterogeneous

edge/cloud computing environment

x
(2)
nm ∈ {0, 1}. For any tasknm, x

(1)
nm is the indicator that

decides whether to offload or not, which is denoted as:

x(1)
nm =

{

1, if tasknm is processed locally on MD,

0, if tasknm is offloaded to the ES/CS.
(1)

where x
(1)
nm=1 if tasknm is not offloaded and only executed

locally on the MD, otherwise, x
(1)
nm=0, if tasknm is offloaded

to the server.

In the same way, x
(2)
nm decides where to offload, that is,

either to the ES or the CS, which is denoted as:

x(2)
nm =

{

1, if tasknm is offloaded to the ES,

0, if tasknm is offloaded to the CS.
(2)

where x
(2)
nm=1 only if tasknm will be offloaded to the ES,

otherwise, x
(2)
nm=0 only if it is offloaded to the CS.

Both response time and energy consumption are taken into

consideration during the offloading process with the combi-

nation of MEC and MCC. When a task is selected either to

run on a MD, offloaded to the ES or offloaded to the CS, the

offloading performance in terms of response time and energy

consumption corresponding to the aforementioned offloading

decisions is different. We will elaborate on the local computing

model, edge computing model and cloud computing model,

respectively.

1) Local Computing Model: Once tasknm is chosen to be

executed locally on the MD, we have x
(1)
nm=1.

The response time required for calculating tasknm locally

on the MD can be described as:

T local
nm =

σwnm

fl
, (3)

where fl is denoted as the computational capacity (i.e., CPU

cycles per second) of user n. It is assumed that CPU needs

to run σ instructions to handle per unit of task. Because

the number of instructions that a task needs to process will

not change whether it is in the MD, the ES, or the CS, the

coefficient σ also holds for the other two offloading cases.
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TABLE II: Important notations used in this paper

Notation Description

wnm The amount of data for tasknm

bn The bandwidth of the nth MD

x
(1)
nm An indicator determines whether tasknm is offloaded

x
(2)
nm An indicator determines whether tasknm is offloaded to ES or CS

σ The number of instructions that CPU needs to calculate
et The energy consumed to transmit a unit of data
fl The task processing rate of the MD
fe The task processing rate of the ES
fc The task processing rate of the CS

Elocal
nm The energy consumed when tasknm is executed on the MD

E
edge
nm The energy consumed when tasknm is offloaded to the ES

Ecloud
nm The energy consumed when tasknm is offloaded to the CS

T local
nm The response time taken when tasknm is executed locally

T
edge
nm The response time taken when tasknm is offloaded to the ES

T cloud
nm The response time taken when tasknm is offloaded to the CS

ǫl The energy consumption by the MD for per unit of workload
ǫe The energy consumption by the ES for per unit of workload
ǫc The energy consumption by the CS for per unit of workload

It is easy to know that the energy required for computing

tasknm on the MD is calculated by:

Elocal
nm = σǫlwnm, (4)

where we assume that each MD needs the average energy ǫl
to process an instruction.

Besides, the total response time and total energy consump-

tion by the nth user to perform on the MD can be calculated

as follows, respectively:

T local
n =

M
∑

m=1

[

x(1)
nm · T local

nm

]

, (5)

Elocal
n =

M
∑

m=1

[

x(1)
nm · Elocal

nm

]

. (6)

2) Edge Computing Model: Once tasknm is chosen to be

offloaded to the ES, that is, x
(1)
nm=0 and x

(2)
nm=1. The task

transmission time for tasknm can be expressed as:

T tran
nm =

wnm

bn
, (7)

where bn is the bandwidth between the nth MD and the ES.

When the task is offloaded to the ES or the CS, the offloaded

program and data do not need to be returned to the MDs

in the downlink, only the results are required. Thus, the

response time and energy consumption in the downlink are

much smaller than that of the uplink [31]. For simplicity, the

response time and energy consumption in the downlink can

be negligible. Therefore, the response time taken for tasknm
mainly includes the data transmission time and task execution

time, which can be calculated by:

T edge
nm =

σwnm

fe
+ T tran

nm, (8)

where fe is denoted as the computational capacity (i.e., CPU

cycles per second) of the ES.

The energy consumption when tasknm is offloaded to the

ES can be expressed as:

Eedge
nm = σǫewnm + etwnm. (9)

where the energy consumed to transmit data of a unit size is

et and the average energy required by the ES to process an

instruction is ǫe.

As a consequence, the overall response time and energy

consumed by the nth user on offloading tasks to the ES can

be expressed as follows, respectively:

T edge
n =

M
∑

m=1

[

(1− x(1)
nm) · x(2)

nm · Tenm
]

, (10)

Eedge
n =

M
∑

m=1

[

(1− x(1)
nm) · x(2)

nm · Eedge
nm

]

. (11)

3) Cloud Computing Model: Once tasknm is selected to be

offloaded to the CS, that is x
(1)
nm = 0 and x

(2)
nm = 0. Similarly,

the response time and energy consumption when tasknm is

offloaded to the CS can be expressed as:

T cloud
nm =

σwnm

fc
+

wnm

bn
, (12)

Ecloud
nm = σǫcwnm + etwnm. (13)

where fc denotes the computational capacity (i.e., CPU cycles

per second) of the CS and ǫe denotes the average energy

required by the CS to process an instruction.

Generally speaking, due to the elasticity of computing re-

sources, CS has the strongest computational capacity, followed

by ES, and MD is the weakest because of its constrained

size. Therefore, we have fc > fe > fl. In addition, due

to differences in CPU architecture and cooling systems, the

computational costs of EC and CS are much lower than that

of MDs. What’s more, due to the higher integration of central

cloud equipment, its cost is even lower than that of edge cloud.

Thus, we generally have ǫl > ǫe > ǫc.

Let the total response time and total energy consumption of

nth user on offloading tasks to the CS be denoted as Tcn and

Ecn, respectively, which can be expressed as:

T cloud
n =

M
∑

m=1

[

(1− x(1)
nm) · (1− x(2)

nm) · T cloud
nm

]

, (14)

Ecloud
n =

M
∑

m=1

[

(1− x(1)
nm) · (1− x(2)

nm) · Ecloud
nm

]

. (15)

B. Problem Formulation

Since the MDs do not affect the process of data transmission

while computing, and the computing of the ES and the CS can

also be carried out simultaneously, the overall response time

taken by each user is the maximum of each MD, which can

be expressed as:

T total =

N
∑

n=1

max
{

T local
n , T edge

n , T cloud
n

}

. (16)
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In addition, the overall energy consumption of the user is

the sum of the energy consumed to process each task, that is:

Etotal =

N
∑

n=1

(Elocal
n + Eedge

n + Ecloud
n )

=

N
∑

n=1

M
∑

m=1

[

(x(1)
nmElocal

nm + (1− x(1)
nm)x(2)

nmEedge
nm

+ (1− x(1)
nm)(1− x(2)

nm)Ecloud
nm )

]

. (17)

According to the above definitions, for any tasknm, the

weighted response time and energy consumption during the

offloading process are closely related to the amount of data and

the choice of offloading decisions, which can be formulated

as:

S(W ,X) = αEtotal + (1− α)T total, (18)

where W = {wnm|n ∈ N ;m ∈ M}, X =
{

x
(1)
nm, x

(2)
nm|n ∈ N ;m ∈ M

}

, and α ∈ [0, 1] is a weighting

coefficient to balance the importance of response time and

energy consumption. For instance, when α > 0.5, it indicates

that energy consumption is more important than response

time. Therefore, the optimal offloading decision-making

problem can be transformed into an optimization problem

P1:

(P1) min
X

: S(W ,X) = αEtotal + (1− α)T total, (19)

s.t. : x(1)
nm, x(2)

nm ∈ {0, 1} , (20)

where the optimization problem P1 is a high-dimensional

integer programming problem. It is easy to know that the

number of possible offloading decisions is 3N∗N . When the

number of MDs and the number of tasks increase, the feasible

offloading decision state space grows exponentially, and as

a result, heuristic decision algorithms will inevitably run

slowly. Although the conventional optimization methods can

theoretically obtain the globally optimal solution for the task

offloading decision problem, it is difficult for them to provide

the optimal offloading decision in a short time. In order to

break the curse of high dimensionality and solve the problem

of P1 efficiently, we develop a deep learning-based approach

for finding the optimal offloading decisions.

IV. MR-DRO ALGORITHM

In order to quickly and flexibly find the optimal offloading

decision from a dynamic IoT environment, we design a novel

Meta Reinforcement-Deep Reinforcement learning based Of-

floading (MR-DRO) algorithm, which aggregates the rapid

environment learning ability of meta-RL, and the perception

and decision-making ability of DRL.

A. MR-DRO Framework

Accordingly, the overall framework of the proposed MR-

DRO algorithm can be divided into two parts, namely, the

meta-RL model and the DRL model, as shown in Fig. 2.

Before making the offloading decision, MDs first provide

information about tasks. At the same time, MDs collect

Fig. 2: Framework of the proposed MR-DRO algorithm

offloading environment information to guide the decision-

making process.

Although meta-RL model is not responsible for decision-

making process, it can generate appropriate initial training

parameters in a relatively short time according to the existing

training experience, thereby shortening the time required for

training the DNN. In this framework, the meta-RL model reads

the offloading environment information provided by MDs,

determines the input layer, output layer and other structures of

DNNs, and gives the initial parameters of DNNs in the DRL

model. Once the offloading environment information changes,

e.g., network conditions, edge computing resources, and cloud

computing resources, the meta-RL model can quickly provide

appropriate initial training parameters and accelerate the train-

ing process of DRL model. Therefore, the rationality of using

meta-RL is to improve the generalization ability of the model.

In the case when the training samples are insufficient,

DRL has a good performance in the application of multi-

classification problems. In this framework, the DRL model

reads the task information, initializes several parallel DNNs

with the initial parameters provided by the meta-RL model,

and then transforms the unsupervised learning process into

a supervised learning process through the cyclic process of

training and updating the dataset. By doing this, we can

improve the accuracy of the dataset and update the parameters

of DNNs, and further provide a more accurate offloading

decision. The specific algorithm flow and framework of the

meta-RL model and DRL model will be further elaborated in

the following subsections.

B. Meta-RL Model

Different from the mainstream conventional machine learn-

ing algorithms, e.g., federated learning and reinforcement

learning, the metadata set used by meta-RL is a series of

metadata, which is also known as training tasks. Each training

task contains the training set, test set and training results

during training. By learning a large number of training tasks,

the learning ability of meta reinforcement neural network is

continuously improved, so that when facing new tasks, it can
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Fig. 3: The procedure of meta-RL model

complete the learning process faster and increase the training

speed.

Various types of meta-RL algorithms have been proposed,

e.g., MAML, Reptile and LSTM-based meta-learning algo-

rithms. Although using MAML to train a meta-RL network

can effectively reduce the training steps of a decision model,

it involves the calculation of the second-order gradient. For

large-scale issues, e.g., offloading decisions in heterogeneous

edge/cloud computing environments, it will bring more com-

putational costs, which severely affects the portability of the

overall model and the level of offloading decision-making.

On the contrary, by increasing the training steps, the Reptile

algorithm omits the process of calculating the second-order

gradient and significantly reduces the training cost of the

model. To the best of our knowledge, MR-DRO is the first

work to formally adopt the Reptile algorithm for making

offloading decisions in heterogeneous edge/cloud computing

environments.

The specific process of the meta-RL model is shown in

Fig. 3. Firstly, according to the offloading environmental

information provided by mobile terminal users, the neural

network structure of the input and output layers of the meta-

RL model can be determined. The weight parameters β0 are

randomly initialized and copied to record the starting point of

training β∗

0 . Then, we randomly select p pieces of metadata

from the metadata set to form the training set and the new

weight parameters β1 are obtained after the training set is

disturbed. And we further calculate the difference β0 − β1

from that. Then, taking the difference value as the descending

direction, the weight of neural network β∗

1 for the learning

rate Mlr can be updated as follows:

β∗

1 = β∗

0 +Mlr(β1 − β∗

0). (21)

Finally, repeat the above operations until the number of

steps is reached. The parameters β∗

n obtained from the training

can be used as the initial parameters ϕ∗

n of the DNN. We

repeat the Reptile process K times according to the number

of parallel DNNs in the DRL model.

Algorithm 1 Meta-RL based Algorithm

Input: Metadata

Output: Initial parameter ϕ

1: for i = 1, 2, 3, · · · ,K do

2: Initialize the ith DNN with random parameter βi
0

3: Replicate the parameter as β∗

0

4: for j = 1, 2, 3, · · · , n do

5: Randomly choose a batch of tasks

6: Train the ith DNN and update the parameter βi
j−1

as βi
j

7: Calculate the meta parameter β∗

j

8: end for

9: Store β∗

n as initial parameter ϕ∗

i

10: end for

11: return Initial DNNs parameter ϕ

The algorithmic process of the proposed meta-RL algorithm

is as described in Algorithm 1. Firstly, we use the offloading

environment information collected by MDs to decide the

structure of each DNN. We randomly initialize the DNN (line

2). The DNN was trained for n steps using metadata, which

is generated by a greedy algorithm (line 6). After training, we

store the parameters of DNN as the initial parameters of the

DRL model (line 9). Then we repeat the whole process for K

times to generate K different initial parameters.

C. DRL Model

Due to the particularity of edge computing and cloud com-

puting, the training samples are generally rare or insufficient,

which makes it difficult to apply the conventional machine
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learning algorithms. The DRL model can better solve the

problem of data shortage for training, so it has become a

common method in the field of edge computing. The procedure

of DRL model is demonstrated in Fig. 4.

Fig. 4: The procedure of DRL model

1) Decision Generation: The DRL model contains K

parallel DNNs as the core, the input of each DNN is the

size information about the tasks and the output is the of-

floading decision of each task. We use a pair of decision

indicators
{

x
(1)
nm, x

(2)
nm

}

to represent the offloading scheme

of tasknm. When initializing the model, DNN parameters

Φ = {ϕ1, ϕ2, · · · , ϕk} are first initialized according to the

initialization parameter set Φ∗ = {ϕ∗

1, ϕ
∗

2, · · · , ϕ
∗

n} provided

by the meta-RL model. These K DNNs have the same number

of layers, nodes and hyperparameter settings. However, due to

the different initialization parameters, the weight parameters of

each DNN are also different. Therefore, when faced with the

same input, the outputs of these K DNNs are also different.

A group of task information W to be offloaded is generated

randomly, and the size of each task should conform to the size

distribution of tasks in real-world IoT environments. The task

information of this group is input into K parallel DNNs for

calculation, so that the K DNNs give their respective outputs,

that is, K possible offloading schemes {X1,X2, · · · ,XK}
are obtained. The offloading performance in terms of response

time and energy consumption of each offloading scheme can

be calculated by substituting each offloading scheme Xi into

the cost function S(W ,X). We compare the cost of all

schemes, and choose the offloading scheme X
∗ with the least

total cost as the optimal one corresponding to this group of

tasks.

Because the DNN has not been trained after initialization,

there is still a certain gap between the decision given in

the above way and the globally optimal decision. However,

this decision is the one with the best performance among

the K group decisions generated by the DNN. Thus, it can

be known theoretically that if the sample composed of the

task information and decisions of this group is used to train

the other DNN groups, the updated weights should have a

positive effect on reducing the total cost of the decision.

Therefore, task information W , decision information X
∗ and

their corresponding total cost S∗ are stored in the dataset.

Then, we set the number of samples in the dataset and repeat

the above process. Multiple groups of samples are randomly

generated and stored in the dataset until the upper limit of the

dataset is reached, which can be used as the training samples

for initial training.

2) Model Training: After the dataset is generated, K par-

allel DNNS are trained. Since all the DNNs share the same

dataset, Q samples are randomly selected from the dataset

as the training set during the training process of each neural

network, and the order of the training set is disturbed to train

the DNN.

To determine the reward value of the DRL model, we input

the task information of the training set into K DNNs and

generate offloading decisions for each group of tasks. Then

we can derive the cost of these decisions with the help of

the cost function S(W ,X). Then the reward value can be

calculated through the difference between the newly derived

cost and the cost in the training set.

Since the output of DNNs is not always an integer, and

the decision indicator is a parameter with a value of 0 or 1,

Mean Square Error (MSE) is adopted to define the distance

between the output of DNNs and the offloading scheme. The

MSE formula can be expressed as:

MSE =
1

N

N
∑

t=1

||logitst − outputst)||
2
. (22)

For the results output from the output layers of DNNs,

we take the offloading scheme closest to it as the offloading

scheme of its output. Because each decision parameter can

only take a value of 0 or 1, it is easy to know the output

of each output layer node through the definition of MSE. If

outputs∗ > 1
2 , then logits∗ = 1, if outputs∗ < 1

2 , then

logits∗ = 0.

We adopt the cross-entropy expression as the loss function

of the neural network. According to the loss function, the gap

between decisions generated by DNNs and decisions given by

the data can be calculated. And we can use it to update the

parameters of DNNs. The cross-entropy is minimized by the

method based on gradient descent, which can be specifically

expressed as:

L(ϕi) = −X
T log fϕi

(W )− (1−X)
T
log(1− fϕi

(W )),
(23)

where ϕi is the parameter of the ith DNN, fϕi
is its parameter

expression. After training the DNNs in this way, the decision-

making level is improved. In addition, the model can generate

new samples according to the sample generation method

described in the previous part, and update part of the old

samples in the original dataset with the new samples to

obtain a more accurate dataset. Using this method, we can
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continuously improve the accuracy of the dataset and improve

the decision-making level of the DNNs.

The algorithmic process of the proposed DRL algorithm [5]

is as described in Algorithm 2. Firstly, we initialize K DNNs

with the parameter set generated by meta-RL model (line 1).

We train the model for N steps. During each step, if database

is not full, we store the newly generated sample as train data

(line 10). If database is full, we train each DNN with a batch

of samples randomly selected from database. Then we use

the new sample to replace the oldest sample to increase the

accuracy of the database (line 12). After the model is trained,

we replicate the workload to each DNN and generate several

offloading-decision candidates (line 20). Then we output the

decision with the best performance as the final decision. If the

workload is changed, we do not need to train the whole model

again. It can still solve the problem properly.

Algorithm 2 DRL-based Dynamic Offloading Algorithm

Input: Workloads W

Output: Optimal offloading decisions

1: Initialization: Initialize K DNNs with the parameter set

Φ; Empty database

2: for j = 1, 2, 3, · · · , N do

3: Randomly generate a group of task information Wi

4: for i = 1, 2, 3, · · · ,K do

5: Replicate the information Wi to the ith DNN

6: Generate the ith offloading decision candidate Xi

from the ith DNN

7: end for

8: Select offloading decision X
∗

i by minimizing

S(Wi,Xi)
9: Calculate S(Wi,X

∗

i ) as S∗

10: if database is not full then

11: Store (Wi,X
∗

i , S
∗) into database

12: else

13: Discard the oldest sample and save the new one

14: Randomly choose K batches of samples from

database

15: Train each DNN using a selected batch

16: end if

17: end for

18: for i = 1, 2, 3, · · · ,K do

19: Replicate the information W to the ith DNN

20: Generate the ith offloading decision candidate Xi

from the ith DNN

21: end for

22: Select offloading decision X
∗

i by minimizing S(W ,Xi)
23: return Optimal offloading decisions X

∗

i

D. Testing

Firstly, to verify that K parallel DNNs in the DRL model

will converge after finite training steps, we need to prove that

the decision level of each DNN basically remains unchanged.

We define Q1 as the convergence rate of the model, which can

be expressed as:

Q1 =
1

q

q
∑

j=1

min(Sj , S
∗

j )

max(Sj , S
∗

j )
, (24)

where q is the number of samples contained in the dataset

acquired for training each DNN, S∗

j is the total cost of the

offloading scheme recorded in the jth sample, and Sj is the

new total cost of the optimal offloading decision obtained from

the model. When the decision level of the DRL model is

basically unchanged, the total cost before and after training

should be basically the same. In other words, if
min(Sj ,S

∗

j )

max(Sj ,S
∗

j
)

is closer to 1, we can say that the model converges much

better. Thus, the convergence performance of the model can

be known by the values of Q1 during each training.

In addition, the convergence of the model does not guarantee

its decision-making accuracy. The model itself may converge

to a locally optimal solution in the case when the weight

parameters remain unchanged. In order to intuitively measure

the gap between the offloading decision given by the model

and the globally optimal offloading decision, we randomly

generate task groups and calculate the corresponding globally

optimal offloading decision of each task group by means of

traversal. Then, the minimum total cost is calculated, and the

r groups of samples form a new dataset called standard set,

which is used to test the offloading decision level of the model.

We define Q2 as the accuracy rate of the model, which is

derived as:

Q2 =
1

r

r
∑

t=1

S
optimal
t

Stest
t

, (25)

where S
optimal
t and Stest

t are the total costs of the globally

optimal offloading decision of tth group of tasks, and the

offloading decision given by the model, respectively. It is easy

to know that Stest
t ≥ S

optimal
t . If the offloading decision given by

the model is closer to the globally optimal offloading decision,

then Q2 is closer to 1. Therefore, when the model is trained

to convergence, the offloading decision accuracy of the model

can be known only by calculating the value of Q2.

Moreover, the decision-making is also related to the hyper-

parameters of the model itself, e.g., the number of parallel

DNNs and the learning rate of the model. In addition, the size

of the dataset also affects the convergence of the model.

V. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of the proposed

MR-DRO algorithm through numerical simulations under dif-

ferent edge computing scenarios. Besides, we also specifically

compare the proposed scheme with several different offloading

strategies.

A. Parameter Settings

Considering a heterogeneous edge/cloud environment con-

sisting of three MDs, one ES, and one CS, where each MD has

three tasks. We assume that the size of each task is randomly

distributed between 10 ∼ 30 MB. Additionally, we assume that
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the CPU needs to execute 1000 instructions when calculating

each unit of task, the CPUs in MDs, ES and CS consume 3.0
mJ, 1.5 mJ and 1.0 mJ to run each instruction. Also, we set the

energy consumed to transmit a unit of data is 0.1 mJ. Referring

to the computing capacities in the actual situation, we set the

clock frequencies of MDs, ES and CS as fl = 100 MHz,

fe = 600 MHz and fc = 1000 MHz, respectively. Besides,

we set the weighting parameter α = 0.5, which means that the

response time is as important as energy consumption. Through

pre-training and comparison of existing research results, we set

each DNN in the DRL model to include two hidden layers.

The details of our parameter settings are shown in Table III.

TABLE III: Evaluation Parameter

Evaluation Parameters Values

The number of instructions to run per unit of task σ =1000
The energy to transmit a unit of data et = 0.1 mJ
The number of MDs N = 3

The number of tasks M = 3

The amount of data for each task ωnm 10 ∼ 30 MB
The network bandwidth of the nth MD bn = 500 Mbps
The processing rate of the MDs fl = 100 MHz
The processing rate of the ES fe = 600 MHz
The processing rate of the CS fc = 1000 MHz
The energy to execute each instruction on the MDs ǫl = 3.0 mJ
The energy to execute each instruction on the ES ǫl = 1.5 mJ
The energy to execute each instruction on the CS ǫl = 1.0 mJ

B. Convergence Performance

In this part, the convergence performance of MR-DRO is

first illustrated. We will separately analyze the impact of

different numbers of DNNs, sizes of the database and learning

rates on convergence performance.

1) Impact of Number of DNNs: We adjust the number of

DNNs K from 1 to 10 and train each model for 20,000 steps.

During the training of each neural network, we randomly select

128 samples from the dataset as the training set. As shown in

Fig. 5, it can be seen that when K = 1, the model can not

converge through the training process since its Q1 value does

not converge to 1 as the training steps increases. As the number

of DNNs increases, the convergence performance of our model

will be improved. Considering the energy consumption and

response time spent during the training model, we choose

N = 8 as a compromise between total consumption and

convergence performance.

2) Impact of Learning Rate: Learning rate is also an es-

sential hyperparameter that affects the decision-making model.

If the learning rate is too large, the neural network will get

more exploration results and it is more difficult to reach the

convergence, so that the optimal solution cannot be accurately

obtained. On the contrary, when the learning rate is too small,

the convergence speed will be slowed down to a certain extent

and the neural network may treat the local optimal solution as

the globally optimal solution, that is, it is easier to fall into

the local optimal. From Fig. 6, we can find that the model

achieves the best performance when the learning rate is 0.01.

Fig. 5: The impact of the number of DNNs

Fig. 6: The impact of the learning rate

3) Impact of Size of Database: The size of the database

also affects the performance of the model. When the size of

database is larger, the old samples in the database cannot be

replaced with newly generated and more accurate samples in

time; on the contrary, when the sale of the database is smaller,

the DNN cannot be trained well. As depicted in Fig. 7, we test

different sizes of database and find out that the model achieves

the best performance when it equals 1,400. In addition, it can

be seen that MR-MRO improves the convergence speed even

when the database is small in scale.

C. Accuracy Performance

Similar to the model convergence rate, the model accuracy

rate is also a critical indicator for measuring the offloading

ability of the algorithm. When the model converges, it can

only indicate that the parameters of the model have reached a

relatively stable state after training. Even if the training step

length is extended, the offloading decision will not change

greatly. However, the decision may not be the globally optimal

solution for the offloading scheme. As a result, we need to

calculate the value of Q2 to accurately represent the specific

decision-making level of the algorithm.

To calculate the value of Q2, we randomly generate 512

groups of tasks and calculate the globally optimal offloading

decision for each sample through the cost function S(W ,X).
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Fig. 7: The impact of the size of database

Then we get a test dataset, which is known as the standard

set. When the model reaches convergence after 20,000 steps of

training, we input the sample of each group of tasks into our

model, and generate the offloading decision respectively. Using

the optimal offloading decisions and the offloading decisions

generated by our algorithm, we calculate the value of Q2. By

comparing the changes of Q2 value under different variables,

the following conclusions can be drawn.

1) Impact of Number of DNNs: As shown in Fig. 8, when

the number of DNNs increases, the accuracy of the model will

also increase. When K > 7, the accuracy of the model reaches

the highest point, and its Q2 value basically remains at 0.94,

which means that the error between it and the globally optimal

solution is about 5%.

Fig. 8: The impact of the number of DNNs on Q2.

2) Impact of Learning Rate: It can be seen from Fig. 9 that

when the learning rate is 0.1, the model accuracy is relatively

low, whose Q2 value is less than 0.8. In particular, when the

learning rate is 0.01, the accuracy of the model is significantly

improved. In addition, considering that a low learning rate will

reduce the training speed of DNNS and cause unnecessary

costs, the optimal learning rate is chosen as 0.01.

3) Impact of Size of Database: It can be seen from Fig. 10

that the size of database has a relatively small impact on the

model. When the size of database is between 500 and 4,800,

the accuracy of the model is higher than 0.9. In particular,

Fig. 9: The impact of the learning rate on Q2.

when the number of samples is 1,000 to 1,400, the model has

the best accuracy performance.

Fig. 10: The impact of the size of database on Q2.

D. The Meta-RL Performance

In this section, we specifically discuss the performance of

meta-RL models. First, we generate a metadata set based on a

greedy algorithm. The metadata set contains 10,000 metadata,

where 50 metadata are randomly selected as the training set

for each step of training. We set the default training step length

to 2,000. Then we use the same method to generate a standard

set, which is composed of 512 groups of samples. After setting

the learning rate of meta-RL to different values, we test the

initial accuracy Q2 of the DRL model initialized by meta-RL

without training. As depicted in Fig.11, when the learning rate

is set to 0.01 ∼ 0.05, the initial accuracy performance is the

best.

Fig. 11: The initial accuracy under different learning rates

In the above experiment, we set the learning rate to 0.01,

and only change the number of DNNs in the model. Before
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performing the meta-RL algorithm, we first randomly initialize

the neural network parameters, and check the value of Q2 as

the initial training accuracy. After that, every 500 steps of

training, we test the value of Q2 of the model parameters.

Fig. 12: Impact of the number of DNNs

Since the initialization is random and the training samples

are randomly selected, the accuracy of the model will fluctuate

when the training steps are not enough. Therefore, we take the

average of the accuracy of multiple tests as the final result. As

shown in Fig. 12, when the meta-RL model is not trained, the

accuracy of the randomly initialized model is low, especially

when the number of DNNs is small, the accuracy is even as

low as about 20%. Using a few hundred steps of meta-RL, we

can greatly improve the initial decision accuracy of the model

to more than 50% and speed up the training process of the

DRL model to a large extent.

After that, we initialize the DRL model through the meta-

RL model and random initialization, respectively. Then we do

the subsequent training steps, and after each step of training,

we test the value of Q2. It can be observed from Fig. 13

that when the decision-making model does not go through the

meta-RL model, random initialization will lead to low initial

accuracy, thereby more rounds of training are required. After

meta-RL, the initial parameters provided by it are used to

initialize the DRL model, and its initial accuracy is greatly

improved. Therefore, the steps of subsequent training can

be greatly reduced and the portability of the model can be

improved. At the same time, by separately calculating the

time used by the meta-RL model and the DRL model, it can

be seen that the training process of the meta-RL model is

extremely short. Therefore, the meta-RL model will not bring

high training costs to the whole system.

E. Performance Comparison

• Local-only no offloading scheme: In this method, each

mobile user chooses to execute its task locally on the

MD.

• ES-only full offloading scheme: In this method, all com-

puting tasks are fully offloaded to the ES for execution.

• CS-only full offloading scheme: In this method, all com-

puting tasks are fully offloaded to the CS for execution.

Fig. 13: Comparison with different initialization methods.

• Local & ES partial offloading scheme: In this method,

some tasks are processed locally on the MDs, while some

of them are offloaded to the ES for execution.

• Local & CS partial offloading scheme: In this method,

some tasks are processed locally on the MDs, while some

of them are offloaded to the CS for execution.

• Genetic partial offloading scheme [32]: In this method,

a Genetic Algorithm (GA) is adopted for finding near-

optimal offloading decisions over the MDs, the ES and

the CS.

• MR-DRO partial offloading scheme: In this method, we

apply the proposed MR-DRO algorithm to generate near-

optimal offloading decisions over the MDs, the ES and

the CS.

• Exhaustive search scheme: We exhaustively search the

optimal one among all feasible offloading decisions over

the MDs, the ES and the CS.

Based on the above discussion, we set the number of DNNs

as 8, the size of database as 1,400 and the learning rate as 0.01.

In the meanwhile, in order to intuitively express the practical

significance of this method, we calculate the globally optimal

offloading decision for each group of samples under several

offloading schemes. Then we calculate the total consumption

caused by each offloading scheme, by which we can derive

the value of Q2.

TABLE IV: Comparison of different schemes

Offloading schemes Total energy consumption Q2 value

Local-only 2900 J 0.14
ES-only 564 J 0.68
CS-only 580 J 0.70
Local & ES 550 J 0.74
Local & CS 520 J 0.78
Genetic 468 J 0.87
MR-DRO 432 J 0.94
Exhaustive search 408 J 1.00

As depicted in Table IV, the proposed MR-DRO scheme out-

performs other offloading-decision approaches significantly.

For example, the Q2 value of the Local-only scheme is

only about 0.14 since it has to process a large number of

compute-intensive tasks locally on MDs, while the Q2 value
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of MR-DRO scheme approaches one. This is because unlike

the Local-only, ES-only and CS-only schemes, the MR-DRO

scheme dynamically offloads tasks according to the heteroge-

neous edge/cloud computing environment. Compared to the

exhaustive search scheme, the designed MR-DRO scheme

is able to obtain sufficiently accurate for maximizing the

offloading performance, without a huge computation cost.

Compared to the Local-only scheme, our scheme reduces the

total consumption by 85.1%. Also, this method can reduce the

total consumption by 22% on average compared with other

methods.

Fig. 14: Comparison with several offloading schemes under

different weighting parameters

Furthermore, in order to verify the performance of the

proposed MR-DRO algorithm, we use a genetic algorithm to

generate offloading decisions in the same offloading scenario.

The GA algorithm generally involves multiple steps such

as encoding, fitness functions, initialization and selection,

crossover and mutation, and local search, which will affect

the efficiency of problem solving [33]. From Table IV and

Fig. 14, the simulation results demonstrate that our MR-DRO

algorithm is more reliable and achieves superior performance

under different weighting parameters. In addition, the com-

putational complexity of GA varies with model complexity,

which is not suitable for large-scale edge/cloud computing

scenarios.

In order to further ensure the decision-making level of our

algorithm, we adjust the weighting parameter α. As shown

in Fig. 14, regardless of the different importance of response

time and energy consumption that mobile users are concerned

about, the MR-DRO scheme can always achieve the best

offloading performance in terms of response time and energy

consumption. Therefore, it can achieve near-optimal offloading

decisions in edge and cloud computing heterogeneous environ-

ments.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the MR-DRO algorithm to

obtain near-optimal offloading decisions in a heterogeneous

edge/cloud computing environment. The MR-DRO framework

includes a parameter-initialing model based on meta-RL, and a

decision-making model based on DRL. The former generates

the initial parameters for training, improves the accuracy of the

decision-making model and greatly increases the portability of

the model. And it improves the performance of the algorithm

when handling sophisticated offloading scenarios by adopting

the Reptile algorithm. The latter one applies multiple parallel

DNNs to determine when and where each task should be

offloaded, and the offloading performance in terms of response

time and energy consumption is significantly improved com-

pared with many baseline methods.

Even though this study only considered a simple offloading

scenario with only one edge server and one cloud server,

MR-DRO can be easily expanded and generates offloading

decisions for complicated real-world scenarios with multiple

edge servers or multiple clouds. In the meantime, when the

total bandwidth is fixed and allocatable, the optimal bandwidth

allocation problem can also be treated as a convex problem and

solved easily [34]. In the future work, we intend to conduct

preliminary meta-reinforcement on the network parameters of

DNNs in a variety of ways under various constraints, and feed

the meta-RL model directly into the decision generation model

to further improve the portability of the model.
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