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Abstract—With the rapid development of Internet of Things
(IoT) and next-generation communication technologies, resource-
constrained mobile devices fail to meet the demand of resource-
hungry and compute-intensive applications. To cope with this
challenge, with the assistance of Mobile Edge Computing (MEC),
offloading complex tasks from mobile devices to edge cloud
servers or central cloud servers can reduce the computational
burden of devices and improve the efficiency of task processing.
However, it is difficult to obtain optimal offloading decisions
by conventional heuristic optimization methods, because the
decision-making problem is usually NP-hard. In addition, there
are shortcomings in using intelligent decision-making methods,
e.g., lack of training samples and poor ability of migration under
different MEC environments. To this end, we propose a novel
offloading algorithm named MR-DRO, consisting of a Meta-
Reinforcement Learning (meta-RL) model, which improves the
migration ability of the whole model, and a Deep Reinforcement
Learning (DRL) model, which combines multiple parallel Deep
Neural Networks (DNNs) to learn from historical task offloading
scenarios. Simulation results demonstrate that our approach
can effectively and efficiently generate near-optimal offloading
decisions in IoT environments with edge and cloud collaboration,
which further improves the computational performance and has
strong portability when making offloading decisions.

Index Terms—Mobile Edge computing, Internet of Everything,
Task Offloading, Deep Neural Network, Reinforcement Learning

I. INTRODUCTION

ITH the proliferation of various Mobile Devices

(MDs), more and more resource-hungry applications,
e.g., face recognition, autonomous driving and augmented re-
ality, have become an indispensable part of life. However, MDs
such as smartphones, tablet computers and Unmanned Aerial
Vehicles (UAV) usually have limited computing resources and
constrained battery life, and thus the speed of processing
compute-intensive tasks is insufficient to meet the delay and
energy requirements of various IoT applications. In order to
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reduce service delay and save energy consumption, MDs often
closely rely on the central Cloud Server (CS) to compute tasks
in their daily operations. By offloading tasks from a local MD
to the CS, the waiting time can be shortened and the battery
life of the MD can also be extended. Despite the strong and
scalable computing capacities of the cloud, it involves a large
amount of data transmission when offloading computing tasks
from MDs to the CS. In the case of insufficient bandwidth
or network fluctuations, task offloading often brings high time
costs. Meanwhile, with the increase of the number of MDs or
tasks, the computing and communication delays also increase.
Therefore, cloud computing cannot conform to the practical
requirements for delay-sensitive tasks [1].

Benefiting from Internet of Things (IoT) and edge com-
puting technologies, offloading compute-intensive tasks from
MDs to the Edge Server (ES) at the edge of the network
for execution has gradually matured. In this case, the remote
cloud is no longer the only place for task offloading and
application placement [2]. Edge computing can make full
use of the hardware resources of the ES and alleviate the
computing burden of the CS. Compared with the central CS,
ES has relatively low computing and storage capabilities, and
the integration degree of the heat dissipation and transfer
equipment is lower than that of the CS. Resulting from that,
the energy consumption of the ES is higher than that of the CS.
Nonetheless, ESs are much closer to MDs, with low latency
and more stable networks, which can greatly reduce the task
offloading delay caused by the network, and is suitable for
latency-sensitive [oT applications.

In the practical application scenarios of Mobile Edge Com-
puting (MEC) and Mobile Cloud Computing (MCC), on one
hand, always offloading all tasks to the ES for execution is not
advisable due to limited computing capacities of distributed
edge server; on the other hand, due to the high latency and
insufficient bandwidth, offloading all tasks to the CS is not
always beneficial [3], [4]. In addition, considering the hetero-
geneous resources of the MDs, ESs and CSs, it is necessary
for us to dynamically provide the optimal offloading decision
for each task according to different offloading scenarios. We
intend to fully utilize all computing resources as well as
obtain the maximum benefits. Moreover, the overhead time
required for offloading decision-making and the level of energy
consumption also severely affect the real-world application
deployment in edge computing environments. However, the
total number of offloading decisions increases exponentially



with the number of users and the number of tasks. Although
this challenge can be solved well with the conventional
optimization method for small-scale offloading scenarios, it
will involve large amounts of calculation when the offloading
scenario is complicated [5].

In recent few years, with the rapid development of Artificial
Intelligence (AI), intelligent decision-making methods have
become increasingly more popular [6]-[8]. Deep learning
achieves high classifying accuracy when dealing with conven-
tional classification problems. The offloading decision problem
can be treated as a classification problem, in which the final
decision can be regarded as a problem of classifying the tasks
into three parts, namely, the local computing model, edge
computing model and cloud computing model, respectively.
Through training the neural network, Deep Reinforcement
Learning (DRL) algorithms can quickly make offloading de-
cisions in a specific edge/cloud computing environment [9].
However, in real-world IoT application scenarios, the number
of users, the number of tasks and the network conditions
change frequently and dynamically. Thus, it is necessary to
collect new training samples to retrain the neural network and
make it suitable for the new offloading environment, which
means that its migration ability is greatly limited. Instead,
meta-Reinforcement Learning (meta-RL) can take advantage
of the accumulated training experience to guide the new
training process, so as to accelerate the completion of new
training tasks [10]. Through the combination of DRL and
meta-RL, we can both improve the portability of the model
and reduce the total cost of the system.

Inspired by the above facts, this paper designs a novel Meta
Reinforcement-Deep Reinforcement learning based Offloading
(MR-DRO) algorithm, where a meta-RL algorithm is adopted
to give proper initial parameters for fast training and a DRL
algorithm is applied to generate near-optimal offloading deci-
sions. The main contributions of this paper can be summarized
as follows:

o Considering the offloading performance in terms of re-
sponse time and energy consumption during the offload-
ing process, a system model is built in heterogeneous
edge/cloud computing environments with multiple mobile
terminal users, different volumes of data and different
scales of task workloads. To this end, we formalize
the offloading decision-making issue as an optimization
problem and attempt to solve it in an intelligent and
effective way.

o We design a novel offloading framework composed of
a meta-RL model and a DRL model. For the former,
we adopt the Reptile algorithm to train several neural
networks, by which we can avoid the second-order gra-
dient calculation process, thereby reducing the cost of
decision-making. Using the initial parameters generated
by the meta-RL model, we can greatly improve the initial
accuracy of the decision-making model and increase the
algorithm portability. For the latter, we use multiple
parallel DNNs to determine when and where each task
should be offloaded, which is achieved by the cycle of
generating labeled samples and updating the parameters
of DNNS.

e« We conduct comprehensive experiments in real-world
MEC environments to evaluate the proposed MR-DRO
approach, which achieves superior offloading perfor-
mance when compared with other offloading-decision
schemes. Moreover, it can make the DNNs reach a state
of convergence and significantly improves the offloading
accuracy, while being able to adapt fast to new scenarios.

The remainder of this paper is organized as follows. In
Section II, we discuss the related works. Section III first
develops the system model and then formulates the offloading-
decision problem. Section IV presents the details of the
proposed algorithm. Performance evaluation of MR-DRO is
discussed in Section V. In Section VI, we conclude the paper
and point out several potential directions.

II. RELATED WORK

In recent years, a large number of offloading-decision
schemes have been proposed to maximize the offloading
performance in heterogeneous MEC and MCC environments,
which are mainly based on conventional offloading-decision
approaches and intelligent offloading-decision approaches as
listed in Table I.

A. Conventional Offloading-Decision Approaches

There are several studies dealing with the offloading
problem in the environment with poor network stability.
eTime [11] was a Lyapunov optimization-based method, which
can preload data when the network connection is poor, and
give priority to offloading delay-sensitive tasks in the case of
limited bandwidth. Thus it can be applied to most applications
while saving 25%-30% of energy consumption by simulating
actual offloading scenes. Li et al. [12] adopted the Lyapunov
optimization method to establish a queueing model to simulate
the offloading process and minimize the queue length, so as
to achieve a relatively low overall consumption of offloading
decisions. Haber ef al. [13] transformed the original decision-
making issue into a non-convex programming mathemati-
cal problem by establishing an appropriate task offloading
mathematical model, and then converted it into a series of
convex problems through a continuous convex approximation
programming method. To achieve energy-efficient task assign-
ment when combing MEC offloading and Device-to-Device
(D2D) offloading, Yu et al. [14] proposed TA-MCTS, a Monte
Carlo Tree Search-based approach for solving the optimal
offloading-decision problem.

The computing tasks for specific IoT applications in a
heterogeneous MEC/MCC environment can also be viewed
as a workflow, so that offloading decisions can be made by
using graph theory, game theory, Genetic Algorithm (GA).
Wu et al. [15] transformed the offloading environment into
a weighted graph model, and proposed the MCOP algorithm
based on the graph theory. Using this algorithm, they suc-
cessfully divided the task into the local part and the edge part.
Zhang et al. [16] subdivided the tasks in MDs and transformed
the subdivided tasks into topological models in accordance
with the logical relationship, and provided offloading decisions
respectively for scenes without offloading restrictions and



TABLE I: The Qualitative Comparison of the Current Literature

Categories Offloading Schemes Theories Mode ﬁ/[rélgtectural ﬁégenles E:::)“c); Obilze::;;?s Fast Adaptability
eTime [11] Lyapunov Optimization Full v X X v X
OO0D [12] Lyapunov Optimization Full v X v X X
SCA-based Scheme [13] Successive Convex Approximation Full X 4 X v X
TA-MCTS [14] Monte Carlo Tree Search Optimization Partial X 4 X "4 X
Conventional | MCOP [15] Graph Theory Partial v v v v X
Offloading LARAC-based Scheme [16] Graph Theory Partial v X X v X
Decisions K-LARAC & M-LARAC [17] | Lagrangian Relaxation-based Aggregate Cost | Partial v X v v X
COM [18] Genetic Algorithm Partial 4 4 4 4 X
F-SGA & C-SGA [19] Stalberg Game Theory Partial v X v X X
MDP-based Scheme [20] Markov Decision Process Partial 4 4 v v X
EMOP [21] Markov Decision Process Partial 4 X X 4 X
Wu et al. [22] Queueing Theory Partial 4 X 4 v X
Li er al. [23] Deep Learning Full X v X X X
Neurosurgeon [24] Deep Neural Networks - v v v v X
QL-JTAR [25] Q-Learning Partial X 4 v v X
Intelligent DIOS [26] Deep Imitation Learning Partial X v 4 X X
Offloading DDLO [27] Distributed Deep Learning Partial X v v v X
Decisions DDTO [5] Distributed Deep Learning Partial 4 4 v v X
S DMRO [28] Deep Meta Reinforcement Learning Partial X v 4 v 4
MRLCO [29] Meta Reinforcement Learning Partial X 4 4 X 4
Our MR-DRO Reinforcement Learning & Meta Learning Partial v v v v v

general offloading scenarios. Haghighi et al. [17] took time
delay and energy consumption factors into consideration and
proposed the LARAC algorithm to find the shortest path in
the graph-based model, by which they find the near-optimal
solution of the task offloading decisions. Xu et al. [18]
comprehensively considered the execution time and energy
consumption for IoT devices in the scene combining MEC
and MCC. They represented the overall offloading scheme
through an ordered array and iterate the possible offloading
solutions through Non-dominated Sorting Genetic Algorithm
IIT (NSGA-III), thus obtaining the near-optimal solution. Li et
al. [19] innovated on the basis of the Stalberg game model
and designed F-SGA and C-SGA algorithms specifically for
delay-sensitive and compute-intensive applications, respec-
tively. When the model reaches the game equilibrium point,
the approximate optimal solution of the offloading decision
can be obtained.

Markov Decision Process (MDP) is also a theoretical tool
widely used for offloading decision-making. In the MEC
scenario, Khalid et al. [20] proposed the offloading scheme
by applying the Markov Decision Process (MDP), which
improved the decision-making level by more than 17.47%.
Terefe et al. [21] proposed the EMOP algorithm on the basis
of MDP, and used discrete-time Markov chains to represent
the wireless channel of mobile devices. This algorithm can
solve the offloading decision problem when there are multiple
edge clouds that can be used for offloading. In the MCC
scenario, Wu ef al. [22] established a queueing model for
the decision-making problem. They represented the model
delay by two-dimensional Markov chain, and generated the
offloading decision by an M/G/1-FCFS queue model.

Relying on a variety of conventional optimization methods,
we can generate proper offloading decisions, however, these
methods usually involve a large number of matrix operations
and gradient operations. It is known that the offloading-
decision problem is NP-hard, thereby brute force algorithms
are unsuitable for such problem, especially when the scale of
the problem is large, the time delay and energy consump-
tion caused by decision-making will become unacceptable.
Therefore, we need to design an efficient offloading-decision

algorithm to replace conventional heuristic algorithms. It has
recently become one of the main research directions to propose
an algorithm that can give offloading decisions in an intelligent
manner.

B. Intelligent Offloading-Decision Approaches

Due to the numerous advantages of deep learning, e.g.,
immediacy and portability, it has broad application prospects
in the field of edge computing. Therefore, many studies have
tried to integrate Al methods into MEC and MCC to make
offloading decisions [30].

Li et al. [23] used the deep learning method to tackle
the offloading-decision issue. They trained the Deep Neural
Network (DNN) according to the historical offloading deci-
sion data before making decisions and also verified through
examples that the offloading decisions given by deep learning
are better than conventional optimization methods. Kang et
al. [24] used eight different mobile intelligent applications to
verify the reliability of the deep learning approach, and proved
that this scheme reduces 59.5% of energy consumption. In
addition, Dab et al. [25] proposed the QL-JTAR algorithm
based on Q-learning. This algorithm comprehensively con-
sidered the resource allocation problem and task offloading
decision problem in edge computing, and proved that the
offloading decisions obtained through the algorithm have high
accuracy. Yu et al. [26] trained the neural network through
deep imitation learning and made decisions in MEC and MCC
scenarios, thereby improving the training speed of the model
and accuracy of the decision.

Due to the particularity of task offloading in heteroge-
neous computing environments, the samples used for training
DNNs are always difficult to obtain, especially for large-scale
offloading-decision problems. To tackle this challenge, Huang
et al. [27] proposed a DDLO algorithm based on DRL, through
multiple parallel DNNs to train the model and update the
training dataset. This algorithm can improve the precision of
the dataset and update the parameters of DNNs simultaneously,
thereby reducing the dependence on training samples. Wu et
al. [5] proposed a DDTO algorithm in a heterogeneous MEC
and MCC environment, where ES and CS can collaborate in




computing, and proved that the error of the offloading decision
made by this algorithm can be controlled within 10 percent.

Although DNN can quickly generate offloading decisions,
when the number of users or tasks changes, the number of
nodes in the input layer and output layer of DNNs often
cannot be applied to the new environment, so that DNNs
are required to be retrained. To tackle the aforementioned
challenges, Qu et al. [28] proposed DMRO, a task offloading
algorithm based on deep meta-RL. When faced with a new
offloading environment, DMRO can generate appropriate ini-
tial parameters of DNNs, so as to significantly accelerate the
subsequent training speed and improve the portability of the
model. Wang et al. [29] proposed the MRLCO algorithm on
the basis of meta-RL, which reduces the amount of calculation
caused by the second-order gradient in Model-Agnostic Meta-
Learning (MAML) without significantly reducing the accuracy
of offloading decisions.

Most of the aforementioned work attempted to reduce
the system latency or energy consumption in MEC/MCC
environments, while neglecting the fast adaptability of task
offloading models. In this paper, we concentrate on enhancing
the robustness and portability of the model, enabling edge
computing technology to be better applied in real life. We
design an efficient intelligent decision-making approach to
generate a near-optimal offloading decision with a small
amount of calculation. It serves as an approximation algorithm,
improves the speed of decision-making, as well as reduces
the waiting time of MDs. Moreover, we can quickly and
intelligently provide near-optimal offloading decisions when
facing different MEC scenarios.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first build the system model comprised
of the local computing model, edge computing model and
cloud computing model. Then, we formulate the task of-
floading decision-making problem as an optimization problem.
For convenience, the major notations used in this paper are
summarized in Table II.

A. System Model

As depicted in Fig. 1, we consider a heterogeneous collab-
orative edge/cloud computing environment, which integrates
MDs for local computing, ES for edge computing and CS for
cloud computing. Without loss of generality, we denote the
set of MDs as N/ = {1,2,---, N}, assuming that there are
N mobile users and the set of tasks as M = {1,2,--- , M},
assuming that each MD has M tasks to be offloaded. Each
user may have multiple tasks, and each task can choose to be
executed locally or to be offloaded, either to the ES or the
CS for computing. The data size of the task to be offloaded is
often different, we assume that w,,,,, is the amount of data to
be offloaded for task,,,, i.e., the my;, task of the n;;, MD.

To clearly represent the offloading decision for each task,
we set a pair of indicators, namely, x;lyzl € {0,1}, and
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Fig. 1: System model of task offloading in a heterogeneous
edge/cloud computing environment

xsﬁ)n € {0,1}. For any tasknm, 33%1% is the indicator that

decides whether to offload or not, which is denoted as:

1, if task,, is processed locally on MD,

(1) _—
Tam = {0, if task,,, is offloaded to the ES/CS.
where mg,,ly)nzl if task,., is not offloaded and only executed
locally on the MD, otherwise, x%:O, if task,,,, is offloaded
to the server.

In the same way, xsﬁzl decides where to offload, that is,
either to the ES or the CS, which is denoted as:

(1)

22 _ {1, if task,,, is offloaded to the ES, @

"0, if tasknm is offloaded to the CS.
where z{2)=1 only if task,,, will be offloaded to the ES,
otherwise, xg%zo only if it is offloaded to the CS.

Both response time and energy consumption are taken into
consideration during the offloading process with the combi-
nation of MEC and MCC. When a task is selected either to
run on a MD, offloaded to the ES or offloaded to the CS, the
offloading performance in terms of response time and energy
consumption corresponding to the aforementioned offloading
decisions is different. We will elaborate on the local computing
model, edge computing model and cloud computing model,
respectively.

1) Local Computing Model: Once task,,, is chosen to be
executed locally on the MD, we have x%:l.

The response time required for calculating task,,, locally
on the MD can be described as:

OWnm
i’
where f; is denoted as the computational capacity (i.e., CPU
cycles per second) of user n. It is assumed that CPU needs
to run o instructions to handle per unit of task. Because
the number of instructions that a task needs to process will
not change whether it is in the MD, the ES, or the CS, the
coefficient o also holds for the other two offloading cases.

local __
Tnm -

3)



TABLE II: Important notations used in this paper

Notation  Description

Wnm The amount of data for tasknm

bn, The bandwidth of the n:, MD

x% An indicator determines whether tasknn, is offloaded

zﬁfﬁl An indicator determines whether taskn, is offloaded to ES or CS
o The number of instructions that CPU needs to calculate

et The energy consumed to transmit a unit of data

fi The task processing rate of the MD

fe The task processing rate of the ES

fe The task processing rate of the CS

EL‘L’S,“LI The energy consumed when tasknm, is executed on the MD
Eidr%f The energy consumed when tasknm is offloaded to the ES
Egloud The energy consumed when tasky, is offloaded to the CS
T}L",‘;';‘l The response time taken when taskym, is executed locally
Tff;gf The response time taken when taskym is offloaded to the ES
Tcloud The response time taken when tasksm, is offloaded to the CS
€] The energy consumption by the MD for per unit of workload
€e The energy consumption by the ES for per unit of workload
€c The energy consumption by the CS for per unit of workload

It is easy to know that the energy required for computing
task,, on the MD is calculated by:

4)

where we assume that each MD needs the average energy ¢
to process an instruction.

Besides, the total response time and total energy consump-
tion by the ny, user to perform on the MD can be calculated
as follows, respectively:

local __
B = o6Wpm,

M

Tt = [l T, 5)
M

Bt =3 [zl - End]. 6)

2) Edge Computing Model: Once task,,, is chosen to be
offloaded to the ES, that is, stQFO and 335?72;1. The task
transmission time for task,,, can be expressed as:

wnm
. )
where b,, is the bandwidth between the n;;, MD and the ES.
When the task is offloaded to the ES or the CS, the offloaded
program and data do not need to be returned to the MDs
in the downlink, only the results are required. Thus, the
response time and energy consumption in the downlink are
much smaller than that of the uplink [31]. For simplicity, the
response time and energy consumption in the downlink can
be negligible. Therefore, the response time taken for task,,
mainly includes the data transmission time and task execution
time, which can be calculated by:

tran __
Tnm -

OWnm tran
fe + Tnma
where f. is denoted as the computational capacity (i.e., CPU
cycles per second) of the ES.
The energy consumption when task,,,, is offloaded to the
ES can be expressed as:

edge __
Tnm -

®)

(€))

edge
Em% = O€cWpm + €t Wnom -

where the energy consumed to transmit data of a unit size is
e; and the average energy required by the ES to process an
instruction is €.

As a consequence, the overall response time and energy
consumed by the ny;, user on offloading tasks to the ES can
be expressed as follows, respectively:

M

T = 3 (= al)) 2B Tewn|,  (10)
m=1
M
Bt = 3 (- af) 2 Bl A
m=1

3) Cloud Computing Model: Once task,,, is selected to be
offloaded to the CS, that is ', = 0 and 2. = 0. Similarly,
the response time and energy consumption when task,,, is
offloaded to the CS can be expressed as:

Tcloud — 0Wnm Wnm 12
EO A (2
Efllf,t'd = €. Wnm + € Wnm- (13)

where f. denotes the computational capacity (i.e., CPU cycles
per second) of the CS and e, denotes the average energy
required by the CS to process an instruction.

Generally speaking, due to the elasticity of computing re-
sources, CS has the strongest computational capacity, followed
by ES, and MD is the weakest because of its constrained
size. Therefore, we have f. > f. > f;. In addition, due
to differences in CPU architecture and cooling systems, the
computational costs of EC and CS are much lower than that
of MDs. What’s more, due to the higher integration of central
cloud equipment, its cost is even lower than that of edge cloud.
Thus, we generally have ¢, > €. > e..

Let the total response time and total energy consumption of
nyp, user on offloading tasks to the CS be denoted as T'c,, and
FEc,, respectively, which can be expressed as:

M

T = 37 [ el - (1= al2) T 14
m=1
M

Bt = 3 (- ) (12 - m]as)
m=1

B. Problem Formulation

Since the MDs do not affect the process of data transmission
while computing, and the computing of the ES and the CS can
also be carried out simultaneously, the overall response time
taken by each user is the maximum of each MD, which can
be expressed as:

N
Ttotal _ Z max {T’rlbocal, Tzdge’ T;;loud} . (16)
n=1



In addition, the overall energy consumption of the user is
the sum of the energy consumed to process each task, that is:

N
Etotal _ Z( El;)cal + E;c]‘dge + E;loud)
n=1
N M
=3 > (@ ER + (1 - a2l B
n=1m=1

+ (1 =21 — 2 Edody]. (17)

According to the above definitions, for any task,,,, the
weighted response time and energy consumption during the
offloading process are closely related to the amount of data and
the choice of offloading decisions, which can be formulated
as:

S(W,X) _ aEtotal + (1 _ Oz)T[Otal, (18)
where W =

{wpmln e Nyme M}, X =
{x%,x%n eN;meMz¢, and « € [0,1] is a weighting
coefficient to balance the importance of response time and
energy consumption. For instance, when o > 0.5, it indicates
that energy consumption is more important than response
time. Therefore, the optimal offloading decision-making
problem can be transformed into an optimization problem

Pli

(,Pl) H}}n: S(W7X> _ aEtotal + (1 _ a)Tt(’w‘l’ (19)
st 22 e 01}, (20)

where the optimization problem P; is a high-dimensional
integer programming problem. It is easy to know that the
number of possible offloading decisions is 3V*~. When the
number of MDs and the number of tasks increase, the feasible
offloading decision state space grows exponentially, and as
a result, heuristic decision algorithms will inevitably run
slowly. Although the conventional optimization methods can
theoretically obtain the globally optimal solution for the task
offloading decision problem, it is difficult for them to provide
the optimal offloading decision in a short time. In order to
break the curse of high dimensionality and solve the problem
of P, efficiently, we develop a deep learning-based approach
for finding the optimal offloading decisions.

IV. MR-DRO ALGORITHM

In order to quickly and flexibly find the optimal offloading
decision from a dynamic IoT environment, we design a novel
Meta Reinforcement-Deep Reinforcement learning based Of-
floading (MR-DRO) algorithm, which aggregates the rapid
environment learning ability of meta-RL, and the perception
and decision-making ability of DRL.

A. MR-DRO Framework

Accordingly, the overall framework of the proposed MR-
DRO algorithm can be divided into two parts, namely, the
meta-RL model and the DRL model, as shown in Fig. 2.

Before making the offloading decision, MDs first provide
information about tasks. At the same time, MDs collect

Task size

M floading

Tnitial paramater decision

oading eavironment

Fig. 2: Framework of the proposed MR-DRO algorithm

offloading environment information to guide the decision-
making process.

Although meta-RL model is not responsible for decision-
making process, it can generate appropriate initial training
parameters in a relatively short time according to the existing
training experience, thereby shortening the time required for
training the DNN. In this framework, the meta-RL model reads
the offloading environment information provided by MDs,
determines the input layer, output layer and other structures of
DNNs, and gives the initial parameters of DNNs in the DRL
model. Once the offloading environment information changes,
e.g., network conditions, edge computing resources, and cloud
computing resources, the meta-RL model can quickly provide
appropriate initial training parameters and accelerate the train-
ing process of DRL model. Therefore, the rationality of using
meta-RL is to improve the generalization ability of the model.

In the case when the training samples are insufficient,
DRL has a good performance in the application of multi-
classification problems. In this framework, the DRL model
reads the task information, initializes several parallel DNNs
with the initial parameters provided by the meta-RL model,
and then transforms the unsupervised learning process into
a supervised learning process through the cyclic process of
training and updating the dataset. By doing this, we can
improve the accuracy of the dataset and update the parameters
of DNNs, and further provide a more accurate offloading
decision. The specific algorithm flow and framework of the
meta-RL model and DRL model will be further elaborated in
the following subsections.

B. Meta-RL Model

Different from the mainstream conventional machine learn-
ing algorithms, e.g., federated learning and reinforcement
learning, the metadata set used by meta-RL is a series of
metadata, which is also known as training tasks. Each training
task contains the training set, test set and training results
during training. By learning a large number of training tasks,
the learning ability of meta reinforcement neural network is
continuously improved, so that when facing new tasks, it can
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Fig. 3: The procedure of meta-RL model

complete the learning process faster and increase the training
speed.

Various types of meta-RL algorithms have been proposed,
e.g., MAML, Reptile and LSTM-based meta-learning algo-
rithms. Although using MAML to train a meta-RL network
can effectively reduce the training steps of a decision model,
it involves the calculation of the second-order gradient. For
large-scale issues, e.g., offloading decisions in heterogeneous
edge/cloud computing environments, it will bring more com-
putational costs, which severely affects the portability of the
overall model and the level of offloading decision-making.
On the contrary, by increasing the training steps, the Reptile
algorithm omits the process of calculating the second-order
gradient and significantly reduces the training cost of the
model. To the best of our knowledge, MR-DRO is the first
work to formally adopt the Reptile algorithm for making
offloading decisions in heterogeneous edge/cloud computing
environments.

The specific process of the meta-RL model is shown in
Fig. 3. Firstly, according to the offloading environmental
information provided by mobile terminal users, the neural
network structure of the input and output layers of the meta-
RL model can be determined. The weight parameters 3, are
randomly initialized and copied to record the starting point of
training (5. Then, we randomly select p pieces of metadata
from the metadata set to form the training set and the new
weight parameters [; are obtained after the training set is
disturbed. And we further calculate the difference 5y — (31
from that. Then, taking the difference value as the descending
direction, the weight of neural network (37 for the learning
rate MlIr can be updated as follows:

B = Bo + Mir(Br — Bo)-

Finally, repeat the above operations until the number of
steps is reached. The parameters 3 obtained from the training
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can be used as the initial parameters ), of the DNN. We
repeat the Reptile process K times according to the number
of parallel DNNs in the DRL model.

Algorithm 1 Meta-RL based Algorithm
Input: Metadata
Output: Initial parameter
1: fort=1,2,3,--- K do
2: Initialize the 7" DNN with random parameter 3}
3 Replicate the parameter as 33
4: for j=1,2,3,--- ,ndo
5
6

Randomly choose a batch of tasks
‘ Train the i*” DNN and update the parameter 63171
as f3;
7: Calculate the meta parameter (7
8: end for
9: Store 3;; as initial parameter ¢}
10: end for
11: return Initial DNNs parameter ¢

The algorithmic process of the proposed meta-RL algorithm
is as described in Algorithm 1. Firstly, we use the offloading
environment information collected by MDs to decide the
structure of each DNN. We randomly initialize the DNN (line
2). The DNN was trained for n steps using metadata, which
is generated by a greedy algorithm (line 6). After training, we
store the parameters of DNN as the initial parameters of the
DRL model (line 9). Then we repeat the whole process for K
times to generate K different initial parameters.

C. DRL Model

Due to the particularity of edge computing and cloud com-
puting, the training samples are generally rare or insufficient,
which makes it difficult to apply the conventional machine



learning algorithms. The DRL model can better solve the
problem of data shortage for training, so it has become a
common method in the field of edge computing. The procedure
of DRL model is demonstrated in Fig. 4.
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Fig. 4: The procedure of DRL model

1) Decision Generation: The DRL model contains K
parallel DNNs as the core, the input of each DNN is the
size information about the tasks and the output is the of-
floading decision of each task. We use a pair of decision
indicators {xﬁ}%,xﬁ%} to represent the offloading scheme
of tasky.,,. When initializing the model, DNN parameters
O = {p1,p2, -, ¢k} are first initialized according to the
initialization parameter set ®* = {©7, 5, -+, ¢k} provided
by the meta-RL model. These ' DNNs have the same number
of layers, nodes and hyperparameter settings. However, due to
the different initialization parameters, the weight parameters of
each DNN are also different. Therefore, when faced with the
same input, the outputs of these K DNNs are also different.

A group of task information W to be offloaded is generated
randomly, and the size of each task should conform to the size
distribution of tasks in real-world IoT environments. The task
information of this group is input into K parallel DNNs for
calculation, so that the ' DNNs give their respective outputs,
that is, K possible offloading schemes {Xi, Xo, -+, Xk}
are obtained. The offloading performance in terms of response
time and energy consumption of each offloading scheme can
be calculated by substituting each offloading scheme X into
the cost function S(W,X). We compare the cost of all
schemes, and choose the offloading scheme X* with the least
total cost as the optimal one corresponding to this group of
tasks.

Because the DNN has not been trained after initialization,
there is still a certain gap between the decision given in
the above way and the globally optimal decision. However,
this decision is the one with the best performance among

the K group decisions generated by the DNN. Thus, it can
be known theoretically that if the sample composed of the
task information and decisions of this group is used to train
the other DNN groups, the updated weights should have a
positive effect on reducing the total cost of the decision.
Therefore, task information W, decision information X * and
their corresponding total cost S* are stored in the dataset.
Then, we set the number of samples in the dataset and repeat
the above process. Multiple groups of samples are randomly
generated and stored in the dataset until the upper limit of the
dataset is reached, which can be used as the training samples
for initial training.

2) Model Training: After the dataset is generated, K par-
allel DNNS are trained. Since all the DNNs share the same
dataset, () samples are randomly selected from the dataset
as the training set during the training process of each neural
network, and the order of the training set is disturbed to train
the DNN.

To determine the reward value of the DRL model, we input
the task information of the training set into K DNNs and
generate offloading decisions for each group of tasks. Then
we can derive the cost of these decisions with the help of
the cost function S(W,X). Then the reward value can be
calculated through the difference between the newly derived
cost and the cost in the training set.

Since the output of DNNs is not always an integer, and
the decision indicator is a parameter with a value of 0 or 1,
Mean Square Error (MSE) is adopted to define the distance
between the output of DNNs and the offloading scheme. The
MSE formula can be expressed as:

N
1 ) 2
MSE = i E [|llogits, — outputs,)||”.

t=1

(22)

For the results output from the output layers of DNNs,
we take the offloading scheme closest to it as the offloading
scheme of its output. Because each decision parameter can
only take a value of 0 or 1, it is easy to know the output
of each output layer node through the definition of MSE. If
outputs® > % then logits™ = 1, if outputs* < % then
logits™ = 0.

We adopt the cross-entropy expression as the loss function
of the neural network. According to the loss function, the gap
between decisions generated by DNNs and decisions given by
the data can be calculated. And we can use it to update the
parameters of DNNs. The cross-entropy is minimized by the
method based on gradient descent, which can be specifically
expressed as:

L(pi) = =X "log f,, (W) = (1 = X)" log(1 — f,,, (W),

(23)
where ¢; is the parameter of the i*” DNN, fop, 1s its parameter
expression. After training the DNNs in this way, the decision-
making level is improved. In addition, the model can generate
new samples according to the sample generation method
described in the previous part, and update part of the old
samples in the original dataset with the new samples to
obtain a more accurate dataset. Using this method, we can



continuously improve the accuracy of the dataset and improve
the decision-making level of the DNNs.

The algorithmic process of the proposed DRL algorithm [5]
is as described in Algorithm 2. Firstly, we initialize X DNNs
with the parameter set generated by meta-RL model (line 1).
We train the model for N steps. During each step, if database
is not full, we store the newly generated sample as train data
(line 10). If database is full, we train each DNN with a batch
of samples randomly selected from database. Then we use
the new sample to replace the oldest sample to increase the
accuracy of the database (line 12). After the model is trained,
we replicate the workload to each DNN and generate several
offloading-decision candidates (line 20). Then we output the
decision with the best performance as the final decision. If the
workload is changed, we do not need to train the whole model
again. It can still solve the problem properly.

Algorithm 2 DRL-based Dynamic Offloading Algorithm

Input: Workloads W
Output: Optimal offloading decisions

1: Initialization: Initialize K DNNs with the parameter set
®; Empty database

2: for y=1,2,3,--- ,N do

3: Randomly generate a group of task information W;

4: for:=1,2,3,--- ,K do

5: Replicate the information W to the i** DNN

6: Generate the i*" offloading decision candidate X;
from the i** DNN

7: end for

8: Select offloading decision X by minimizing
S(Wi, X;)

9: Calculate S(W;, X /) as S*

10: if database is not full then

11 Store (W;, X}, S*) into database

12: else

13: Discard the oldest sample and save the new one

14: Randomly choose K batches of samples from
database

15: Train each DNN using a selected batch

16: end if

17: end for

18: for i =1,2,3,--- | K do

19: Replicate the information W to the i DNN

20: Generate the i*" offloading decision candidate X;
from the 7" DNN

21: end for

22: Select offloading decision X by minimizing S(W, X;)

23: return Optimal offloading decisions X

D. Testing

Firstly, to verify that K parallel DNNs in the DRL model
will converge after finite training steps, we need to prove that
the decision level of each DNN basically remains unchanged.

We define (91 as the convergence rate of the model, which can
be expressed as:

1 < min(S;, S5)
Q= 52 max(S;, S7)’

j=1 J

(24)

where ¢ is the number of samples contained in the dataset
acquired for training each DNN, S7 is the total cost of the
offloading scheme recorded in the j;, sample, and S; is the
new total cost of the optimal offloading decision obtained from
the model. When the decision level of the DRL model is
basically unchanged, the total cost before and after training

should be basically the same. In other words, if %ﬁ?é
is closer to 1, we can say that the model converges much
better. Thus, the convergence performance of the model can
be known by the values of (); during each training.

In addition, the convergence of the model does not guarantee
its decision-making accuracy. The model itself may converge
to a locally optimal solution in the case when the weight
parameters remain unchanged. In order to intuitively measure
the gap between the offloading decision given by the model
and the globally optimal offloading decision, we randomly
generate task groups and calculate the corresponding globally
optimal offloading decision of each task group by means of
traversal. Then, the minimum total cost is calculated, and the
r groups of samples form a new dataset called standard set,
which is used to test the offloading decision level of the model.
We define )5 as the accuracy rate of the model, which is

derived as: )
r Soptlmal

1 t
QQ = ; Z Szest )

t=1

(25)

optimal

where S; and Si' are the total costs of the globally
optimal offloading decision of ¢y, group of tasks, and the
offloading decision given by the model, respectively. It is easy
to know that St > S If the offloading decision given by
the model is closer to the globally optimal offloading decision,
then ()5 is closer to 1. Therefore, when the model is trained
to convergence, the offloading decision accuracy of the model
can be known only by calculating the value of Q.

Moreover, the decision-making is also related to the hyper-
parameters of the model itself, e.g., the number of parallel
DNNs and the learning rate of the model. In addition, the size
of the dataset also affects the convergence of the model.

V. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of the proposed
MR-DRO algorithm through numerical simulations under dif-
ferent edge computing scenarios. Besides, we also specifically
compare the proposed scheme with several different offloading
strategies.

A. Parameter Settings

Considering a heterogeneous edge/cloud environment con-
sisting of three MDs, one ES, and one CS, where each MD has
three tasks. We assume that the size of each task is randomly
distributed between 10 ~ 30 MB. Additionally, we assume that



the CPU needs to execute 1000 instructions when calculating
each unit of task, the CPUs in MDs, ES and CS consume 3.0
mJ, 1.5 mJ and 1.0 mJ to run each instruction. Also, we set the
energy consumed to transmit a unit of data is 0.1 mJ. Referring
to the computing capacities in the actual situation, we set the
clock frequencies of MDs, ES and CS as f; = 100 MHz,
fe = 600 MHz and f. = 1000 MHz, respectively. Besides,
we set the weighting parameter o = 0.5, which means that the
response time is as important as energy consumption. Through
pre-training and comparison of existing research results, we set
each DNN in the DRL model to include two hidden layers.
The details of our parameter settings are shown in Table III.

TABLE III: Evaluation Parameter

Evaluation Parameters Values

The number of instructions to run per unit of task o =1000

The energy to transmit a unit of data e; = 0.1 mJ
The number of MDs N=3

The number of tasks M =3

The amount of data for each task wynm 10 ~ 30 MB
The network bandwidth of the ns, MD by, = 500 Mbps
The processing rate of the MDs fi =100 MHz
The processing rate of the ES fe = 600 MHz
The processing rate of the CS fe = 1000 MHz
The energy to execute each instruction on the MDs ¢, = 3.0 mJ
The energy to execute each instruction on the ES e =15ml
The energy to execute each instruction on the CS e =10m]

B. Convergence Performance

In this part, the convergence performance of MR-DRO is
first illustrated. We will separately analyze the impact of
different numbers of DNNs, sizes of the database and learning
rates on convergence performance.

1) Impact of Number of DNNs: We adjust the number of
DNNs K from 1 to 10 and train each model for 20,000 steps.
During the training of each neural network, we randomly select
128 samples from the dataset as the training set. As shown in
Fig. 5, it can be seen that when K = 1, the model can not
converge through the training process since its ()1 value does
not converge to 1 as the training steps increases. As the number
of DNNSs increases, the convergence performance of our model
will be improved. Considering the energy consumption and
response time spent during the training model, we choose
N = 8 as a compromise between total consumption and
convergence performance.

2) Impact of Learning Rate: Learning rate is also an es-
sential hyperparameter that affects the decision-making model.
If the learning rate is too large, the neural network will get
more exploration results and it is more difficult to reach the
convergence, so that the optimal solution cannot be accurately
obtained. On the contrary, when the learning rate is too small,
the convergence speed will be slowed down to a certain extent
and the neural network may treat the local optimal solution as
the globally optimal solution, that is, it is easier to fall into
the local optimal. From Fig. 6, we can find that the model
achieves the best performance when the learning rate is 0.01.
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Fig. 6: The impact of the learning rate

3) Impact of Size of Database: The size of the database
also affects the performance of the model. When the size of
database is larger, the old samples in the database cannot be
replaced with newly generated and more accurate samples in
time; on the contrary, when the sale of the database is smaller,
the DNN cannot be trained well. As depicted in Fig. 7, we test
different sizes of database and find out that the model achieves
the best performance when it equals 1,400. In addition, it can
be seen that MR-MRO improves the convergence speed even
when the database is small in scale.

C. Accuracy Performance

Similar to the model convergence rate, the model accuracy
rate is also a critical indicator for measuring the offloading
ability of the algorithm. When the model converges, it can
only indicate that the parameters of the model have reached a
relatively stable state after training. Even if the training step
length is extended, the offloading decision will not change
greatly. However, the decision may not be the globally optimal
solution for the offloading scheme. As a result, we need to
calculate the value of ()5 to accurately represent the specific
decision-making level of the algorithm.

To calculate the value of ()2, we randomly generate 512
groups of tasks and calculate the globally optimal offloading
decision for each sample through the cost function S(W, X).
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Then we get a test dataset, which is known as the standard
set. When the model reaches convergence after 20,000 steps of
training, we input the sample of each group of tasks into our
model, and generate the offloading decision respectively. Using
the optimal offloading decisions and the offloading decisions
generated by our algorithm, we calculate the value of 2. By
comparing the changes of ()2 value under different variables,
the following conclusions can be drawn.

1) Impact of Number of DNNs: As shown in Fig. 8, when
the number of DNNSs increases, the accuracy of the model will
also increase. When K > 7, the accuracy of the model reaches
the highest point, and its ()2 value basically remains at 0.94,
which means that the error between it and the globally optimal
solution is about 5%.
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Fig. 8: The impact of the number of DNNs on Q5.

2) Impact of Learning Rate: It can be seen from Fig. 9 that
when the learning rate is 0.1, the model accuracy is relatively
low, whose Q2 value is less than 0.8. In particular, when the
learning rate is 0.01, the accuracy of the model is significantly
improved. In addition, considering that a low learning rate will
reduce the training speed of DNNS and cause unnecessary
costs, the optimal learning rate is chosen as 0.01.

3) Impact of Size of Database: It can be seen from Fig. 10
that the size of database has a relatively small impact on the
model. When the size of database is between 500 and 4,800,
the accuracy of the model is higher than 0.9. In particular,
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when the number of samples is 1,000 to 1,400, the model has
the best accuracy performance.
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D. The Meta-RL Performance

In this section, we specifically discuss the performance of
meta-RL models. First, we generate a metadata set based on a
greedy algorithm. The metadata set contains 10,000 metadata,
where 50 metadata are randomly selected as the training set
for each step of training. We set the default training step length
to 2,000. Then we use the same method to generate a standard
set, which is composed of 512 groups of samples. After setting
the learning rate of meta-RL to different values, we test the
initial accuracy @5 of the DRL model initialized by meta-RL
without training. As depicted in Fig.11, when the learning rate
is set to 0.01 ~ 0.05, the initial accuracy performance is the
best.
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Fig. 11: The initial accuracy under different learning rates

In the above experiment, we set the learning rate to 0.01,
and only change the number of DNNs in the model. Before



performing the meta-RL algorithm, we first randomly initialize
the neural network parameters, and check the value of Q- as
the initial training accuracy. After that, every 500 steps of
training, we test the value of ) of the model parameters.
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Fig. 12: Impact of the number of DNNs

Since the initialization is random and the training samples
are randomly selected, the accuracy of the model will fluctuate
when the training steps are not enough. Therefore, we take the
average of the accuracy of multiple tests as the final result. As
shown in Fig. 12, when the meta-RL model is not trained, the
accuracy of the randomly initialized model is low, especially
when the number of DNNs is small, the accuracy is even as
low as about 20%. Using a few hundred steps of meta-RL, we
can greatly improve the initial decision accuracy of the model
to more than 50% and speed up the training process of the
DRL model to a large extent.

After that, we initialize the DRL model through the meta-
RL model and random initialization, respectively. Then we do
the subsequent training steps, and after each step of training,
we test the value of Q2. It can be observed from Fig. 13
that when the decision-making model does not go through the
meta-RL model, random initialization will lead to low initial
accuracy, thereby more rounds of training are required. After
meta-RL, the initial parameters provided by it are used to
initialize the DRL model, and its initial accuracy is greatly
improved. Therefore, the steps of subsequent training can
be greatly reduced and the portability of the model can be
improved. At the same time, by separately calculating the
time used by the meta-RL model and the DRL model, it can
be seen that the training process of the meta-RL model is
extremely short. Therefore, the meta-RL model will not bring
high training costs to the whole system.

E. Performance Comparison

e Local-only no offloading scheme: In this method, each
mobile user chooses to execute its task locally on the
MD.

o ES-only full offloading scheme: In this method, all com-
puting tasks are fully offloaded to the ES for execution.

e CS-only full offloading scheme: In this method, all com-
puting tasks are fully offloaded to the CS for execution.
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Fig. 13: Comparison with different initialization methods.

e Local & ES partial offloading scheme: In this method,
some tasks are processed locally on the MDs, while some
of them are offloaded to the ES for execution.

e Local & CS partial offloading scheme: In this method,
some tasks are processed locally on the MDs, while some
of them are offloaded to the CS for execution.

e Genetic partial offloading scheme [32]: In this method,
a Genetic Algorithm (GA) is adopted for finding near-
optimal offloading decisions over the MDs, the ES and
the CS.

e MR-DRO partial offloading scheme: In this method, we
apply the proposed MR-DRO algorithm to generate near-
optimal offloading decisions over the MDs, the ES and
the CS.

o Exhaustive search scheme: We exhaustively search the
optimal one among all feasible offloading decisions over
the MDs, the ES and the CS.

Based on the above discussion, we set the number of DNNs
as 8, the size of database as 1,400 and the learning rate as 0.01.
In the meanwhile, in order to intuitively express the practical
significance of this method, we calculate the globally optimal
offloading decision for each group of samples under several
offloading schemes. Then we calculate the total consumption
caused by each offloading scheme, by which we can derive
the value of Q5.

TABLE IV: Comparison of different schemes

Offloading schemes  Total energy consumption Q2 value
Local-only 2900 J 0.14
ES-only 564 J 0.68
CS-only 580 J 0.70
Local & ES 550 J 0.74
Local & CS 520J 0.78
Genetic 468 J 0.87
MR-DRO 4321 0.94
Exhaustive search 408 J 1.00

As depicted in Table IV, the proposed MR-DRO scheme out-
performs other offloading-decision approaches significantly.
For example, the )2 value of the Local-only scheme is
only about 0.14 since it has to process a large number of
compute-intensive tasks locally on MDs, while the 5 value



of MR-DRO scheme approaches one. This is because unlike
the Local-only, ES-only and CS-only schemes, the MR-DRO
scheme dynamically offloads tasks according to the heteroge-
neous edge/cloud computing environment. Compared to the
exhaustive search scheme, the designed MR-DRO scheme
is able to obtain sufficiently accurate for maximizing the
offloading performance, without a huge computation cost.
Compared to the Local-only scheme, our scheme reduces the
total consumption by 85.1%. Also, this method can reduce the
total consumption by 22% on average compared with other
methods.
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Fig. 14: Comparison with several offloading schemes under
different weighting parameters

Furthermore, in order to verify the performance of the
proposed MR-DRO algorithm, we use a genetic algorithm to
generate offloading decisions in the same offloading scenario.
The GA algorithm generally involves multiple steps such
as encoding, fitness functions, initialization and selection,
crossover and mutation, and local search, which will affect
the efficiency of problem solving [33]. From Table IV and
Fig. 14, the simulation results demonstrate that our MR-DRO
algorithm is more reliable and achieves superior performance
under different weighting parameters. In addition, the com-
putational complexity of GA varies with model complexity,
which is not suitable for large-scale edge/cloud computing
scenarios.

In order to further ensure the decision-making level of our
algorithm, we adjust the weighting parameter o. As shown
in Fig. 14, regardless of the different importance of response
time and energy consumption that mobile users are concerned
about, the MR-DRO scheme can always achieve the best
offloading performance in terms of response time and energy
consumption. Therefore, it can achieve near-optimal offloading
decisions in edge and cloud computing heterogeneous environ-
ments.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the MR-DRO algorithm to
obtain near-optimal offloading decisions in a heterogeneous
edge/cloud computing environment. The MR-DRO framework
includes a parameter-initialing model based on meta-RL, and a
decision-making model based on DRL. The former generates
the initial parameters for training, improves the accuracy of the

decision-making model and greatly increases the portability of
the model. And it improves the performance of the algorithm
when handling sophisticated offloading scenarios by adopting
the Reptile algorithm. The latter one applies multiple parallel
DNNs to determine when and where each task should be
offloaded, and the offloading performance in terms of response
time and energy consumption is significantly improved com-
pared with many baseline methods.

Even though this study only considered a simple offloading
scenario with only one edge server and one cloud server,
MR-DRO can be easily expanded and generates offloading
decisions for complicated real-world scenarios with multiple
edge servers or multiple clouds. In the meantime, when the
total bandwidth is fixed and allocatable, the optimal bandwidth
allocation problem can also be treated as a convex problem and
solved easily [34]. In the future work, we intend to conduct
preliminary meta-reinforcement on the network parameters of
DNNss in a variety of ways under various constraints, and feed
the meta-RL model directly into the decision generation model
to further improve the portability of the model.
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