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Cloud computing has been regarded as a successful paradigm for IT industry by providing benefits for
both service providers and customers. In spite of the advantages, cloud computing also suffers from distinct
challenges, and one of them is the inefficient resource provisioning for dynamic workloads. Accurate workload
predictions for cloud computing can support efficient resource provisioning and avoid resource wastage.
However, due to the high-dimensional and high-variable features of cloud workloads, it is difficult to predict
the workloads effectively and accurately. The current dominant work for cloud workload prediction is based on
regression approaches or recurrent neural networks, which fail to capture the long-term variance of workloads.
To address the challenges and overcome the limitations of existing works, we proposed an efficient supervised
learning-based Deep Neural Network (esDNN) approach for cloud workload prediction. Firstly, we utilize a
sliding window to convert the multivariate data into supervised learning time series that allow deep learning
for processing. Then we apply a revised Gated Recurrent Unit (GRU) to achieve accurate prediction. To show
the effectiveness of esDNN, we also conduct comprehensive experiments based on realistic traces derived
from Alibaba and Google cloud data centers. The experimental results demonstrate that esDNN can accurately
and efficiently predict cloud workloads. Compared with the state-of-the-art baselines, esDNN can reduce
the mean square errors significantly, e.g. 15% than the approach using GRU only. We also apply esDNN for
machines auto-scaling, which illustrates that esDNN can reduce the number of active hosts efficiently, thus
the costs of service providers can be optimized.
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1 INTRODUCTION

Today’s organizations and enterprises are becoming more dependent upon information technologies
with cloud services that are deployed in cloud data centers [1, 2]. Cloud services offer significant
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benefits for both customers and service providers [3]. The customers can access the services with
high availability, and the service providers can take advantage of elasticity and low management
costs of infrastructure. The pay-as-you-go pricing model is also a dominant benefit that promotes
the fast development of cloud computing [4]. Due to these benefits, large cloud service providers,
e.g. Amazon, Google and Microsoft have established large-scale data centers to provide resources
for their services and a great number of companies have started to migrate their local services to
the cloud [5].

Although cloud computing is featured with these attractive benefits, some unpredictable sit-
uations, e.g. workload bursts can lead to resources being insufficient. The unmatched resources
for workloads can also waste resources or degrade performance, for instance, more resources
are provisioned than required when workloads are at a low level and only limited resources are
offered when workloads are increasing dramatically [6]. Therefore, to improve the resource usage,
predicting workloads in an accurate manner is required. With the effective prediction of future
workloads, the service provider can plan resources in a more efficient and rational way by allocating
or de-allocating resources in advance [7].

However, it is not an easy job to predict cloud workloads efficiently and accurately due to
their native characteristics. Cloud workloads have high variance and high dimensionality, which
make them difficult to forecast. High variance represents that the number of workloads and their
demanded resources can change dramatically. According to the analysis of Alibaba cloud data
centers, the average resource utilization can range from 5% to 80% [8]. And in Google cloud
data centers, workloads can change randomly during a specific observation period. As for high
dimensionality, it represents that cloud workload traces record a great amount of information and
different specification of machines, which needs to extract the necessary and valuable information
for the training model.

To address the high variance challenge of cloud workloads, the pattern of workloads, as well as
the relationship with time series, should be learned and exploited to design efficient and accurate
prediction algorithms to fit with the variances of workloads. As for the high dimensionality
challenge, the dataset can be further analyzed to extract the necessary data while assuring the
prediction accuracy.

A significant amount of research has been devoted to cloud workload prediction. Traditional
approaches are mostly based on the regression methods, heuristic algorithms and traditional neural
network approaches. Traditional neural networks generally refer to shallow networks that contain
only several layers, such as Multi-layer Perceptron (MLP) and Radial Basis Function (RBF). However,
these approaches can only work effectively for the workloads with obvious patterns, e.g. for small-
scale data centers for ordinary companies or organizations. For the large-scale public cloud data
centers, these approaches can not obtain high prediction accuracy. The main reason is that the
regression methods and simple neural networks cannot capture the complicated correlation of
workloads. Therefore, to achieve higher accuracy, more complicated neural networks can be applied
to take full advantage of the correlations of neurons.

As a representative of neural network-based approaches, the Recurrent Neural Network (RNN)
[9] has been applied to predict cloud workloads as it has the feature to model the changes with time
series. RNN can use its memory to process a set of inputs in sequence. However, it is inefficient for
RNN to learn long-term memory dependencies because of the gradient vanishing. To overcome
this limitation, some revised RNN, including Long Short-Term Memory (LSTM) [10] and Gated
Recurrent Unit (GRU) [11] have been proposed, which have demonstrated a strong capacity to learn
long-term memory dependencies. Compared with LSTM, GRU has demonstrated better prediction
accuracy and learning efficiency in practice. Thus, in this work, we apply a GRU-based approach to
capture the variance of cloud workloads.
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1.1 Motivation and Our Contributions

To address the high dimensionality challenge, extraction of features of the original data is required.
Our main motivations are as follows:

e Some approaches including Principal Component Analysis (PCA) [12] and auto-encoder [13]
have been investigated, which can reduce dimension largely, while the accuracy is degraded
as some features have been ignored.

e Traditional machine learning models can only show the mapping relationship between the
source data and the target data, however, the time relationship cannot be extracted and
exploited.

e When predicting long periods, the dominant time-series data prediction approaches based
on LSTM and RNN have the limitations of gradient disappearance and explosion.

To address the aforementioned challenges for cloud workload prediction, we first extract some
key features from the realistic traces derived from the cloud data center, and then convert the
multivariate time series into supervised learning time series [14] for further training with our
designed training algorithm based on GRU. Our objective is to achieve efficient and accurate
predictions for highly variable and high dimensional cloud workloads to finally optimize the
resource usage in cloud computing environments.

The main contributions of this paper are summarized as follows:

e The sliding window for Multivariate Time series Forecasting (S-MTF) is designed to convert
multivariate time series into supervised learning time series for multivariate workloads and
keep sufficient information. The S-MTF can reorganize the time series to sample X and label
Y and model the correlation between predicted data, which can use algorithms based on Deep
Neural Network (DNN) to achieve predictions.

e An efficient supervised learning-based Deep Neural Network (esDNN) algorithm is pro-
posed for cloud workload prediction to learn and capture the features of historical data
and accurately predict future workloads. The proposed algorithm can adapt to the vari-
ances of workloads by updating the gates of GRU and overcome the limitations of gradient
disappearance and explosion.

e Comprehensive experiments are conducted by using realistic data derived from Alibaba and
Google cloud data centers to evaluate the performance of esDNN. The results demonstrate
that the proposed approach can achieve better prediction accuracy than state-of-the-art
algorithms. Experiments also show that the proposed approach can be applied for auto-
scaling scenarios to improve resource provisioning.

1.2 Article Organization

The rest of the paper is organized as follows: Section 2 discusses the related work for workload
prediction in cloud computing environments. Section 3 depicts the system model of our proposed
approach, followed by system problem statement. The proposed algorithm based on DNN is
introduced in Section 4. Section 5 introduces the details of our experiments that apply dataset
derived from realistic traces to predict workloads, and demonstrate the feasibility of our approach
to improve the resource provisioning of cloud data centers. Finally, conclusions along with the
future directions are given in Section 6.

2 RELATED WORK

Many researchers have conducted research on workload prediction. The main contributions for
cloud workload prediction can be classified as regression-based and learning-based approaches.
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The regression-based approaches mainly include linear regression, auto-regression and other tradi-
tional regression-based approaches. While for the learning-based approaches, both the traditional
approaches based on machine learning and some updated methodologies based on deep learning
have been investigated.

2.1 Regression-based Approaches for Cloud Workload Prediction

Calheiros et al. [15] proposed an approach based on auto-regression to predict future workloads by
using requests of web applications. The proposed approach can achieve high accuracy in resource
utilization and QoS prediction. Yang et al. [16] introduced an approach based on linear regression
for workload prediction to satisfy Service Level Agreement (SLA) and reduce scaling costs. Based
on the prediction data, the auto-scaling mechanism can be further applied to optimize virtualized
resource usage. Centinski et al. [17] combined statistical and machine learning methods together
to improve workload prediction for cloud applications. The training method is utilized to learn the
dominant system parameters of the influence application, and the prediction method is based on the
regression approach. Singh et al. [18] presented a combined algorithm based on linear regression
and support vector machine for workload prediction of web applications. A workload classifier
was also proposed to select the model based on workloads features. Liu et al. [19] introduced
an adaptive workload prediction approach based on workloads classification, in which different
prediction models can be assigned to the different categorized workloads. Bi et al. [20] proposed a
prediction method that integrates Savitzky-Golay filter and wavelet decomposition with stochastic
configuration networks to predict workloads.

These regression-based approaches have proven their effectiveness in workload prediction.
However, most of these approaches are only suitable for workloads with obvious patterns, e.g.
Wikipedia workloads with fixed daily tendencies. The modern cloud workloads with high variance
make these approaches hard to represent correlations between different parameters. Besides, these
approaches were applied to high-performance computing workloads, small-scale data centers or
synthetic workloads, which have lower variance compared with cloud workloads. Therefore, to
efficiently capture the characteristics of cloud workloads, more advanced learning approaches, e.g.
machine learning and deep learning-based methodologies have been investigated.

2.2 Learning-based Approaches for Cloud Workload Prediction

Kumar et al. [21] applied a neural network and self-adaptive differential evolution algorithm to learn
and extract the pattern from workloads. This evolution-based approach can reduce the prediction
error by searching a large solution space, thereby minimizing the effects of initial solution choice.
Zheng et al. [22] presented a deep learning model based on canonical polyadic decomposition to
predict the usage of virtual machines for cloud workloads for industry informatics. Compared with
machine learning-based approaches, deep learning-based approaches can achieve higher accuracy.
Kumar et al. [23] proposed a prediction model based on LSTM and showed good performance in
reducing mean square errors. Qiu et al. [24] introduced a deep learning approach to predict Virtual
Machine (VM) workloads by extracting high-level features of VMs workloads and then predicting
future VM workloads. Zhu et al. [25] presented an approach based on LSTM encoder-decoders
network with an attention mechanism. The features of historical data are extracted via the encoder
network and the attention mechanism is integrated into the decoder network. Amiri et al. [26]
introduced an online learning approach to adapt resources according to workloads variations based
on sequential pattern mining, which can learn new behavioral patterns rapidly. Chen et al. [7]
proposed a deep learning-based approach, which includes a top-sparse auto-encoder to extract
essential features of workloads and GRU to obtain an accurate and adaptive prediction for cloud
workloads. Several different types of workloads have been investigated to validate the effectiveness
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of the proposed approach. Eli et al. [27] presented a resource central system to collect Azure VM
parameters to learn the VM behavior offline with Microsoft learning libraries and then make online
resource usage prediction, which predicts the oversubscription of VM types while ensuring VM
performance.

Bi et al. [28] applied bi-directional LSTM (Bi-LSTM) to predict large-scale workloads and resource
consumption in the cloud computing environment. The performance of the approach has been
validated with Google traces and shown better results than baselines. Karim et al. [29] proposed a
hybrid approach combing RNN and Bi-LSTM to forecast CPU workload of VMs, which can improve
the performance of using a single technique separately. Chen et al. [30] introduced the LSTM-based
approach to predict the useful life of components to indicate system health. A support vector
regression is also combined to enhance the prediction robustness and marginal utility. Results based
on NASA have validated the effectiveness of the proposed approach. Singh et al. [31] proposed
an evolutionary quantum neural network-based approach for cloud workloads prediction, which
leverages the computational efficiency of quantum computing to encode workloads, and utilizes
the neural network to estimate resource demands. The experiments with traces from cloud data
centers and traditional data centers have validated the effectiveness of the proposed approach. Kim
et al. [32] introduced a cloud prediction framework named CloudInsight that combines multiple
predictors based on traditional machine learning techniques to enable accurate predictions for
real cloud workloads. The ensemble supports dynamic and periodical optimization to handle the
variations of workloads. The framework can also reduce the periods of under-provisioning and
over-provisioning, thus improving system efficiency.

The deep learning based approaches have been applied in predictions in many areas, such as
communication, economic market, and pedestrian motion. Sun et al. [33] proposed LSTM-based
approach to predict link quality confidence interval for wireless communication under a smart
grid environment. A wavelet denoising algorithm has been applied to decompose the signal-
to-noise ratio time series into the deterministic and stochastic ones to train two LSTM neural
networks. Li et al. [34] introduced a recurrent attention and interaction model to predict pedestrian
trajectories, which includes several modules to achieve precise prediction collaboratively. The
introduced approach can comprehensively mine the spatio-temporal information to model attention
mechanisms, interactions, and multimodality of pedestrian motion. Barra et al. [35] presented an
approach to forecast market behavior by encoding time series to Gramian angular fields images
based on neural networks. Qiao et al. [36] proposed an approach based on a neural network to
model the uncertain nonlinear systems by utilizing a distance concentration algorithm to increase
prediction accuracy and reduce computation time. However, these approaches are not focusing on
cloud workloads prediction.

To summarize, most of the learning-based approaches are based on machine learning algorithms
or traditional RNN, which either cannot exploit the long-term memory dependencies or address
the gradient vanishing challenge. Thus, it is also difficult for them to predict cloud workloads
accurately. Only limited research has paid attention to GRU, which is an improved version of RNN
and can address the gradient vanishing challenge to achieve better accuracy. For instance, Chen
et al. [7] applied GRU for cloud workload prediction, however, they also apply the auto-encoder
approach to compress the dimensionality of the original data. Although the auto-encoder approach
can address the high dimensionality, the accuracy is also undermined since the full data is not
utilized to capture the whole features of workloads.

2.3 Critical Analysis

The current paper contributes to the growing body of work in the cloud workload prediction area.
The comparison of our proposed approach and the related work is summarized in Table 1. To solve
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Table 1. Comparison of related work

Technique Data Preprocessing Predicted Resources Workloads Performance Metrics
Approach - ; Deep S o
Regression ]’:’:"::“:Z i{"::’:; Learning Auto-encoder 5‘]::‘(:;‘5 ulil:’zlawﬁon U:ﬁ;‘:;ﬂﬂ QoS Realistic Synthetic | MSE | RMSE | MAPE | CDF
o | e | Lstaa | GRO Cloud Traditional
Data Centers | Data Centers
Calheiros et al. [15] v v v v v
Amiri et al. [26] v v v v v v
Ceninski et al. [17] v v v v
Kumar et al. [21] v v v v v
Kumar et al. [23] v v v v
Qiu et al. [24] v v v v v v
Rodrigo et al. [15] v v v v v
Singh et al. [18] v vV v v v v vV v v
Yang et al. [16] v v v v v
Zhang et al. [22] N N v v v Vv
Zhu et al. [25] v v v v v v v
Bietal. [20] v v v v
Liuetal [19] v v v v
Eli etal [27] v v v v
Sunetal. [33] v v v v
Li et al. [34] v
Barra et al. [35] v
Qiao ct al. [36] v v
Bietal. 28] v v v v v
Singh etal. [31] v v v v v
Kim et al. [32] v v v v v v v
Karim et al. [29] v v v v v v v v
Chen etal. [30] v v v v
esDNN (This Work) v v v v v v v v

the aforementioned challenges, e.g. high-dimensional problems and multivariate problems, we
apply GRU to capture the long-term memory dependencies to address the high variance of cloud
workloads, thereby achieving high accuracy prediction of cloud workloads. We also apply a sliding
window for multivariate time series prediction to convert the original time series into supervised
learning time series to address the high dimensionality and further achieve higher accuracy.
From the technique perspective, our GRU-based approach is advanced in prediction compared
with traditional regression and machine learning based approaches, and aims to overcome the
limitation of gradient disappearance and explosion that exist in approaches like LSTM. From the
data preprocessing perspective, our approach focusing on a sliding window to take advantage of
full data information and the correlation between the predicted data rather than only extracting
part of data like in auto-encoded based approach. We also validated our approach based on realistic
traces of Google and Alibaba and multiple metrics have been evaluated comprehensively.

3 SYSTEM MODEL

In this section, we introduce our system model and optimization objective. In our system model,
we aim to offer an efficient and accurate prediction model that the service providers can apply
to predict future workloads. Thus, the resource usage can be optimized to reduce their costs, e.g.
integrating the model with auto-scaling to reduce the number of active hosts.

It is not easy to predict cloud workloads as they can change dramatically within a short time and
the pattern is also difficult to capture precisely. For example, workloads in every 5 minutes from
the dataset of Alibaba can vary significantly [8]. The cloud workloads are tightly coupled with
time series, and it is inefficient to get accurate prediction results from a simple regression model
or univariate time predictions. Multivariate time series can contain more dynamic information
than univariate time series. For instance, the data in multivariate time series forecasting can have
certain correlations, such as CPU usage and memory usage in workload forecasting. Therefore, we
built a multivariate time series forecasting model to predict highly random workloads and use the
real-world dataset to verify the accuracy of the model. In our prediction model, we use CPU usage
as our standard for measuring the prediction results. Fig. 1 shows the main components and flow
of the system model.

Step 1: Data Preprocessing. This step is equipped with workloads preprocessing component
and data cleaning component, which processes the raw data derived from the realistic cloud traces.
With the raw data of cloud workloads, we first remove the columns that contain empty data.
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Fig. 1. Multivariate time series prediction model for cloud workloads

Because whether it is to use the zero-filling scheme or simply ignore these data, they will have a
negative impact on our forecast data. Afterwards, we classify the dataset by time, then calculate the
average value of each parameter with the same timestamp. Next, we normalized the Alibaba dataset
and Google dataset. Normalization is a dimensionless processing method that makes the absolute
value of the physical system value into a certain relative value relationship. From the perspective of
model optimization, normalization can not only improve the convergence speed of the model but
also improve the accuracy of prediction. The normalization method has two forms, one is to change
the number to a decimal between (0, 1), and the other is to change the dimensional expression
to a non-dimensional expression and become a scalar. In this article, the former is chosen as the
normalization method, and we use MinMaxScaler to achieve this function. The MinMaxScaler
operation is based on the min-max scaling method as follows:

X = Xini

X4 = ————— — Xmin: (1)
Xmax - Xmin

Xscaled = Xstd * (max — min) + min. (2)

We apply the MinMaxScaler to transform features with default configurations and scale each feature
to be a value between min and max. The X represents the set of the data to be processed, and the
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Xmin and Xjay are the minimum and maximum data in the dataset, and the final processed data is
represented by Xcaled. To be noted, in this work, the predicted value is resource utilization, which
ranges from 0.0 to 1.0, and the MinMaxScaler can handle these data well. As for the missing data,
they will be filled with the data in the previous time slot.

Step 2: Supervised Learning Conversion. The difference between supervised learning and
unsupervised learning lies in whether there are labels of samples for training. In supervised learning,
it has labeled training samples. It trains through the existing training samples to obtain an optimized
model and then uses this model to map all inputs to the corresponding outputs, thereby realizing
data prediction and classification. For unsupervised learning, there are no pre-labeled training
samples. In our system model, we use the supervised learning transfer function to convert the
multivariate time series prediction problem into a supervised learning problem based on [14].
More details about the transfer function will be introduced in Section 4. The key motivation is
to use the normalized dataset as the input of the transfer function, and reframe the time series
datasets as supervised learning datasets. To achieve this, we split the dataset into a training set
and a validation set. After that, the dataset is divided into sample X and its corresponding label
Y. With these conversion operations, we can transform the time series forecasting problem into a
supervised learning-based time series problem.

Step 3: Model Construction. In this step, our system model focuses on the construction of
deep learning networks and establishes an optimization model for cloud workload prediction based
on the preprocessed data. The preprocessed data are considered as input and the output is the
optimized parameters of the model as well as the evaluation metrics, e.g. mean square errors. In this
step, the hyperparameters of the deep learning network should also be defined, e.g. the number of
layers, number of neurons, and types of network. Our proposed network model is derived from GRU
and more design details will be given in the following sections. By predicting the cloud workloads,
we aim to obtain future resource usage and thus the optimization of the number of active machines
can be optimized by auto-scaling approaches, which will be coordinately achieved with the next
step.

Step 4 and Step 5: Model Deployment and System Adaption. These two steps focus on
utilizing the models for workload prediction or other system optimization purposes. In the actual
workload prediction, there is a time interval between two consecutive predictions, which means
that the sequence prediction is based on a discrete time series dataset. For the Alibaba dataset, the
prediction interval is usually 10 seconds, while the time prediction interval of Google is 5 minutes.
We apply this time interval as the prediction unit. Based on the trained model in Step 3, in this step,
the system model can obtain the predicted future workloads and adjust the number of machines
by applying auto-scaling. With the predicted data, the realistic system can dynamically adapt the
resource provisioning for the system, e.g. adding or removing machines physically, which requires
the use of Application Programming Interfaces (APIs) provided by hardware.

4 ESDNN: EFFICIENT SUPERVISE LEARNING-BASED DEEP NEURAL NETWORK

This section presents our proposed approach, which is a deep learning-based approach for cloud
workload prediction. To achieve efficient and accurate prediction results, a sliding window-based
approach for multivariate time series prediction is applied to convert the original dataset into
supervised learning-based time series data. Thereafter, a GRU-based deep learning network, named
esDNN is proposed for future workload prediction.

4.1 Sliding Window for Multivariate Time Series Forecasting

Time series forecasting requires the dataset to contain a set of time-dependent data, regardless
of whether the time units of the dataset are seconds, minutes, or hours. This data needs to have
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Table 2. One-step univariate forecasting: raw dataset

Time | CPU utilization percentage
0 16.127
10 21.5878
20 17.3193
30 16.8287
40 18.6518

Table 3. One-step univariate forecasting: supervised learning sequence

X Y
None 16.127
16.127 | 21.5878
21.5878 | 17.3193
17.3193 | 16.8287
16.8287 | 18.6518
18.6518 | None

a minimum time unit, but it does not need to have the same time interval between two adjacent
timestamps. Having clarified this concept, we can say that a time series is a sequence of numbers
sorted by time index. However, only have one time series is not sufficient. In Section 3, we have
introduced the definition of supervised learning. Complete supervised learning requires a sample
group (X) and a label group (Y). There are two major differences compared with the work based
sliding window [37] including 1) we consider the multivariate workloads to construct time series
data rather than single variate; 2) we utilize the relationship between the predicted data by merging
the predicted data and source data into supervised time series data together. To illustrate the
conversion process more vividly, we use a small piece of sample data in the Alibaba cloud workloads
dataset to show the conversion process and results. To simplify the example, we use one-step
univariate forecasting.

Table 2 shows the first five rows of data from the Alibaba dataset, after we convert these time
series data into supervised learning data, it will be presented in the form of Table 3, where each
row data is moved up with data in the group (Y) and the time label has been removed.

For the multivariate time series datasets, we can also convert them into supervised learning
datasets with sliding window approach. Similarly, we also take a small fragment from the Alibaba
dataset. The difference is that in addition to Time and CPU utilization percent, we also take memory
utilization percentage to reflect that this is a multivariate dataset. Here, we choose the memory
utilization percentage as Y, which is considered as the label. In our model, we choose to use the
one-step multivariate forecasting. Table 4 and Table 5 show the original data and the converted
data, respectively.

Fig. 3 shows the typical conversion process by operating the original data. Assuming that we
have the time sequence as R(t — 1), R(¢) and R(t + 1), where R(¢ — 1) is the last one, R(¢) is the
current one and R(t + 1) is the next one. We set elements E(i — 1), E(i) and P(i + 1) as the elements
to be combined as the supervised time sequence S(n). The E(i — 1) is from the data of R(# — 1), E(i)
is assigned by R(t), and P(i + 1) is assigned by R(t + 1). The E(i — 1) and E(i) will be the sample
data and P(i + 1) will be the label. The other supervised time sequence, e.g. S(n — 1) and S(n + 1)
can be obtained in the same way.
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Table 4. One-step multivariate forecasting: raw dataset

Time | CPU util. percentage | Memory util. percentage
0 16.127 87.139
10 21.5878 87.0543
20 17.3193 86.9491
30 16.8287 86.9454
40 18.6518 86.9495
50 20.0232 86.9985
60 17.8671 86.9249

Table 5. One-step multivariate forecasting: supervised learning sequence

X1 X2 X3 Y
None None 16.127 | 87.139
16.127 | 87.139 | 21.5878 | 87.0543

21.5878 | 87.0543 | 17.3193 | 86.9491
17.3193 | 86.9491 | 16.8287 | 86.9454
16.8287 | 86.9454 | 18.6518 | 86.9454
18.6518 | 86.9495 | 20.0232 | 86.9985
20.0232 | 86.9985 | 17.8671 | 86.9249
17.8671 | 86.9249 | None None

By this step, we have completed the application expression of multivariate time series forecasting,
and what we have to do now is to abstract it into an algorithm. First, we define this algorithm as
Sliding window for Multivariate Time series Forecasting (S-MTF) algorithm, which transforms a
multivariate time series forecast into a supervised learning time series. The S-MTF algorithm can
be applied to any time-related dataset, and it is still linearly related to time because it contains all
the data of the previous moment at any time. At this point, the S-MTF is somewhat similar to LSTM,
but the difference is that the forget gate of LSTM will weaken the influence from the previous
moment, while S-MTF retains all the values of the previous moment, and it can be determined if
you need to keep it or not. Besides, S-MTF contains the future label while using the multi-step
forecasting. Furthermore, S-MTF satisfies the definition of supervised learning as it transforms
time-related datasets into the sample and labeled datasets. With a more general form, Fig. 2 depicts
the transformation of the S-MTF algorithm for time series and presents the supervised learning
sequences obtained from the transformation in a tabular form. Algorithm 1 shows the pseudocode
of the S-MTF algorithm. Before the original data are processed as the input of the algorithm, we
have deleted NONE values in the dataset for the convenience of data processing, as they can
influence the accuracy of the proposed algorithm.

Algorithm complexity analysis: Given that there is a set of time series data with size N, the
algorithm processes the data from 1 to N — 1 to construct the matrix S,. To obtain all the data in S,
with 3 sub-data in each time interval, the complexity will be O(3 x (N — 1)), which equals O(N).

4.2 esDNN Algorithm

In our deep learning networks, the input data in the training phase include the resource utilization
and the corresponding time series data, e.g. at time 08:00:00 am, the CPU utilization is 20%. In
the prediction phase, the input data are the resource utilization in the recent time intervals, e.g.
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Fig. 2. The key procedures of the S-MTF algorithm
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Fig. 3. Data conversion in S-MTF algorithm

the previous 5 minutes (can be configured via parameters in network model). To construct our
network model, we include one layer of Convolutional Neural Network (CNN). The CNN model
is usually built on the feedforward neural network model. It generally consists of Input Layer,
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Algorithm 1: Sliding window for Multivariate Time series Forecasting (S-MTF)

Input :Multivariate time series dataset R, R, contains a time series R(1), R(2), ..., R(t),R(t+1),k
time-related variables, and a dataset P, to be predicted
Output:Supervised learning dataset S, each row of it has 2k + 3 data
1 Initialize an empty matrix S, to record supervised time series data for ¢ from1ton — 1 do

2 E(t) « R(¢)
3 if t = 1 then
4 ‘ Record NONE
5 else
6 ‘ E(t—1) «<R(t-1)
7 end
8 if t =n—1then
9 ‘ Record NONE
10 else
1 ‘ P(t+1) < R(t+1)
12 end
13 Put E(¢ — 1), E(¢) and P(¢ + 1) together into a tuple
14 Set E(¢ — 1), E(¢) as data in supervised time series
15 Set P(t + 1) as label in supervised time series
16 S(t) —{E(t—-1),E(t), P(t+1)}
17 if S(¢) contains NONE then
18 ‘ Delete S(t)
19 Add S(¢) into Sp,
20 end

Convolutional Layer, Pooling Layer, Non-linearity Layer and Fully Connected Layer [38]. Two-
dimensional convolutional neural networks (2D CNN) are widely used in image recognition, and
one-dimensional convolutional neural networks (1D CNN) are generally used in Natural Language
Processing (NLP). Additionally, the one-dimensional convolutional neural networks also have the
capability in processing continuous sequences. For example, when obtaining a certain feature from
a shorter segment in the whole dataset, while the feature is not highly correlated with the position
of the data segment in the overall dataset, in this situation, the 1D CNN can play an important
role. The 1D CNN can extract features from local original time series data, and then model the
short-term correlation between local time series data and subsequent trends [39]. So we will use
the 1D CNN to analyze our data. We built a one-dimensional convolutional layer and added it
to our neural network. We also add padding, which maintains the boundary information of the
time series. If there is no padding, most of the obtained information will only be operated by the
convolution kernel once, but the data in the middle of the sequence are scanned many times, thus
the results obtained will lose the accuracy of the boundary information. To improve accuracy, we
apply a casual strategy for padding, which simply pads the layer’s input with zeros in the front so
that we can also predict the values of early time steps in the frame [40]. Finally, we adopt Rectified
Linear Unit (ReLU) as the activation function of the 1D CNN. After introducing the convolutional
layer, the GRU-based layer can be added.

GRU is a derived version of RNN. RNN uses traditional backpropagation and gradient descent
algorithms to learn the target data. The BackPropagation Through Time (BPTT) algorithm is a
commonly used method of training RNN. The idea of BPTT is the same as the backpropagation
algorithm, which continuously finds better points along the negative gradient direction of the
parameters to be optimized until convergence. However, the application of the BPTT algorithm can
lead to the accumulation of activation function derivatives, which in turn leads to the occurrence
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of gradient disappearance and gradient explosion. In order to solve this problem, we can use two
methods to avoid gradient explosion/disappearance. The first method is to replace the activation
function. In our model, we avoid the disappearance of the gradient to a certain extent by setting
ReLU as the activation function. But the derivative of ReLU in the range greater than 0 is always 1,
which is easy to cause gradient explosion. Therefore, the second method is applied to change the
circulation structure. GRU that combines the forget gate and input gate into a single “update gate”
is exploited in our model. It also merges cell state and hidden state and makes some other changes.

r
hi ¢

Ry B ()

%] Y

7

Y

Fig. 4. GRU structure

We have adopted the GRU-based neural network and made some improvements to optimize its
performance in long sequence prediction. The structure of GRU is demonstrated in Fig. 4. The reset
gate r; and update gate z; are the same as LSTM. But there is no output gate in GRU. Compared
with LSTM, there is one less "gating" inside the GRU, which has fewer parameters than LSTM, but
it can also achieve functions equivalent to LSTM [41].

The sparse processing provided by ReLU can reduce the effective capacity of the model, which
means too much feature masking makes the model unable to learn effective features. Since the
gradient of ReLU is 0 when x < 0, this neuron may never be activated by any data, which is called
neuron necrosis. In addition, one of the similarities between ReLU and Sigmoid is that the result is
a positive value without a negative value. To address this issue, we multiply ReLU and Sigmoid,
and we can get the activation function Swish that is represented as below:

f(x) = x - sigmoid(fx), (3)

where f is either a constant or a trainable parameter [42].

In the choice of activation function, instead of choosing the ReLU activation function that is
commonly used by DNNs, we use Swish, which is a smooth and non-monotonic function. Its design
is inspired by the use of sigmoid function for gating in LSTM. We use the same value for gating to
simplify the gating mechanism, which is called self-gating. The advantage of self-gating is that it
only requires a simple scalar input, while traditional gating requires multiple scalar inputs. This
feature allows Swish to easily replace activation functions that take a single scalar as input without
changing the hidden capacity or number of parameters. The pseudocode of esDNN is shown in
Algorithm 2.

Algorithm complexity analysis: The time complexity of esDNN depends on the number of
networks (N), number of network weight connections (C), number of input node (n), hidden nodes
(h), where h ~ n, dropout value (d). Therefore, the total time complexity for a maximum number of
b iterations is represented as b x O(n? X N x C x d), which equals to O(n?bdNC).
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Algorithm 2: efficient supervise learning-based Deep Neural Network (esDNN)

Input :Multivariate time series dataset Ry,.
1 Hyperparameter:time sequence ¢, training epochs b

)

After processing by the S-MTF algorithm, multivariate time series dataset Ry, is transformed into the supervised
learning dataset S,

3 Divide S, into training set T's and validation set V's

14 esDNN: Conv1D(filters=32, kernel_size=5)

5 for i range from 0 to t do

6 GRU:

7 Update the reset gate r;:

8 re =0 (Wy - [he-1,x¢])

9 Update the update gate z;:

10 zr =0 (W - [h-1,x¢])

1 Calculate the candidate hidden layer y/}:
12 y; =tanh (W - [ry * hyoq, x;])

13 Compute the output gate y;:

14 yr=(1—z¢) # ey + 20 % by

15 end

16 Dense(16, activation="swish”)

17 Dropout(0.2)

18 Dense(1)

19 for j range from 0 to b do

20 ‘ Train T's with esDNN, compare with V's
21 end

5 PERFORMANCE EVALUATION

In this section, we will firstly introduce the details about the dataset we use and the experimental
configurations for workload prediction. Then we compare the performance of esDNN and other
RNN-based approaches. Finally, we demonstrate that our approach can be applied to auto-scaling
for cloud resource provisioning optimization.

5.1 Datasets and Environment Configuration

We implement the multivariate time series forecasting based on TensorFlow 2.2.0 [43], and the
Python version is 3.7. We used two real-world datasets in the experiments for performance evalua-
tion of our proposed approach.

o Alibaba dataset [8]: It is cluster-trace-v2018 of Alibaba that recording the traces in 2018.
Cluster-trace-v2018 includes about 4,000 machines in a period of 8 days, which we use all
the data to make predictions. The data can be found from Github!.

e Google dataset [44]: It is derived from Google’s cluster data-2011-2 recorded in 2011. The
cluster data-2011-2 trace includes 29 days of data that contains 37,747 machines, including
three different machine types. The data can also be fetched from Github?.

Both of these datasets can represent random features of cloud workloads. We use CPU usage as a
key performance measurement of the accuracy of our prediction model. To show the effectiveness
of prediction and remove the redundancy information, we configure the prediction time interval as
5 minutes. For the metadata for prediction, there are some differences between the two datasets
because of the different types of data collected. For the Alibaba dataset, in addition to the time series

!https://github.com/alibaba/clusterdata
Zhttps://github.com/google/cluster-data
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Fig. 6. Google (a) per-day workload (b) per-minute workload fluctuations

and CPU usage data, we also select memory usage, incoming network traffic, outgoing network
traffic, and disk I/O usage as the source data for prediction. As for Google dataset, in addition to the
time series and CPU usage data, we also select canonical memory usage, assigned memory usage,
total page cache memory usage as the source data for prediction. When processing the dataset
from Google, we select 5 minutes as the time interval. Then we group the tasks according to the
Machine ID and finally normalize the dataset.

Figs. 5 and 6 demonstrate the CPU usage in the datasets of Alibaba and Google cloud data
centers, respectively. We have divided them into per-day and per-minute workloads fluctuations of
machines so that we can see the fluctuations of CPU usage more clearly over time. We can notice
that both the datasets show high variance and random features. For the Alibaba dataset, we divide
the dataset into the first 40,000 rows of data (59.5%) and the rest, which are used to train and test
the model. Similarly, we have divided the Google dataset in this way. We selected about 72 hours of
data from Google’s dataset, and we used the first 49 hours (68.4%) as the training set and the rest as
the validation set. For these two datasets, the number of training epoch is 200, the batch size is 72,
the loss function is Huber, the optimizer is Adam, and the metric we use is mean square errors.

5.2 Comparison with Unsupervised Learning-based Approach

In contrast to the supervised learning approach used by esDNN, the unsupervised learning approach
can also be applied to high-dimensional problems such as multivariate time series forecasting,
therefore, in this section, we evaluate our approach with unsupervised learning-based approach.
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Among the unsupervised learning approaches, Autoencoder is a representative one for efficient
feature extraction and feature representation of high-dimensional data [45]. Currently, Autoencoder
as well as Stacked Autoencoder, Sparse Autoencoder [46], and Denoising Autoencoder [47] are
widely used in the research field. Autoencoder maps the input sample x to the hidden layer by the
encoder (g) and then maps it back to the original space by the decoder (f) to obtain the reconstructed
sample. For the neural network-based autoencoder model, the encoder part compresses the data
by reducing the number of neurons layer by layer, while the decoder part improves the number
of neurons layer by layer based on the abstract representation of the data, and finally realizes the
reconstruction of the input samples. The optimization objective is to optimize both the encoder
and decoder by minimizing the Loss function. The optimization equation is shown as below:

f.g =ming, Loss(x, f(g(x))). 4)

The prediction results of esDNN and Autoencoder within 10 minutes are shown in Fig. 7, which
demonstrates that Autoencoder has a good prediction result only at the beginning of the observed
period, and it is significantly less accurate than esDNN. The reason can be that Autoencoder does
not need to use the label of the sample in prediction, and it uses the input of the sample as both
the input and output of the neural network. Although this can greatly improve the generality of
the model, autoencoder is prone to be overfitting when the parameters of the neural network are
complicated. Based on the results compared with unsupervised learning, supervised learning based
approach has demonstrated better performance. In the following experiments, we evaluate the
performance with other neural network-based approaches.
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Fig. 7. Comparison of the prediction results of esDNN and Autoencoder

5.3 Comparison with Neural Network-based Approaches

We first start the evaluation with the Alibaba dataset. To compare with our algorithm, we have
selected several RNN-based deep learning algorithms, which have been applied for time series
prediction, including RNN, Bi-LSTM [28] and GRU. We compare the prediction accuracy of these
four algorithms and measure them by Mean Square Errors (MSE), which is represented as:

m

1
MSE = a Z (yactual - ypredict)2 > (5)

i=1
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where m represents the timestamp, ygcsual is the actual value and ypreqic: is the predictive value.
The higher the MSE of the algorithm, the greater the gap between the predicted value and the
actual value. In order to capture the changing trend of MSE in each period, we set four different
time scales: second, minute, hour and day.

Fig. 8 shows the MSE fluctuation of these four RNN-based methods based on the Alibaba dataset
with various prediction lengths. In general, all the MSE curves follow the same trend, which shows
that the MSE value first increases until it reaches a peak, after that, the curves will remain at a
relatively stable value. For the second-level prediction, apart from keeping RNN at a relatively high
value, there are just subtle differences between Bi-LSTM, GRU and esDNN. With the increase of the
prediction length, all these curves are maintained at relatively stable values. But for the day-level
prediction, there is no significant difference in MSE value between Bi-LSTM, GRU and esDNN.
The main reason is that the RNN and Bi-LSTM models are designed to process time-series data
and can perform well in representing the nonlinear relationship between data and time. However,
the drawback of RNN and Bi-LSTM is that their gradient can disappear or explode, especially for
the long time-series data during the data training process. The GRU can alleviate the side effects
of gradient disappearance that usually happens in Bi-LSTM and RNN. Therefore, the results of
GRU-based approach can maintain relatively more stable values compared with RNN and Bi-LSTM.

In order to brighten the differences between them, we choose to use the Cumulative Distribution
Function (CDF) method to measure them, which is the integral of the probability density function.
For discrete variables, it can represent the sum of the probability of occurrence of all values less
than or equal to x, which is formulated as:
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different prediction lengths
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Fig. 10. Prediction accuracy (MSE) of four different RNN methods based on the Google dataset

Fig. 9 shows the CDF of MSE based on these four RNN-based methods, these almost overlapping
curves in Fig. 8 can be distinguished more apparently by the difference in CDF values. Since RNN
is quite different from the other three methods, and its effect is the worst one, therefore, we focus
on the discussions on the other three algorithms. Except for the RNN method, we can clearly see
that when the value of MSE is between 0.006 and 0.008, the value of CDF rises very quickly, which
shows that the MSE values of these three methods are concentrated. Meanwhile, esDNN rises
significantly faster than Bi-LSTM and GRU, we can see that for any MSE in this time period, the
CDF value of esDNN always remains at the highest value. Although the curves are very close, the
difference in value between them can still be easily identified. It means that the overall MSE value
of esDNN is smaller than the values of Bi-LSTM and GRU.

For Google’s dataset, we also use the RNN-based methods as baselines for esDNN. Compared with
the Alibaba dataset, we utilize less data from Google’s dataset, therefore, we show the prediction
length with minute-level and hour-level. Fig. 10 shows the MSE fluctuation of the four methods
based on the Google dataset. For the minute-level prediction, all these methods have little difference
between each other except RNN. When we focus on the hour-level prediction, the trend of these
methods is stable after a short growth, which is consistent with the results of the Alibaba dataset.
We can also notice that RNN always maintains at a high level. Compared with GRU and esDNN,
Bi-LSTM has a higher MSE. For esDNN and GRU, the MSE of these two are quite close, where the
esDNN can achieve a more stable trend, while GRU fluctuates more dynamically. To conclude, we
can notice that the prediction result of esDNN is better than GRU, since the MSE value of esDNN is

smaller than GRU.

1, 1, 1., March 2022.



esDNN: Deep Neural Network based Multivariate Workload Prediction Approach in Cloud Environments 1:19

12 . —— 1% .
- - 1.7 cxDN™
1.0 e -..S_DI\.N . . ¢ il S8
) Bi-LSTM g —
oy L 1 [P0 R b 1
= 1.4 Bg I = . IPIL II ot b
ol i = af || by | Y
= wm g 2 2 IL .r'L_.'qll ., T .
= T
::1 . g 1.1 |-|£{| ¢ \ W\U,I ) Jﬂ,w\z\ 1
= 1oz -y = —~
= 14H) g ~= [']2’|N|d '\‘,.\\M__/*U‘ \,\\ 1
. ij,:_\\lx*f\__/\ 573 = | ]
5| ]
[Ty - = T [
' 07+ LJ —
o 1] STHE OO0 | SO0 240060 2200 20000 35000 S0 35000 S000 o.é il I{Hy 3[']['1 kTild] 4('10 :|fI)f\ GO0 '?(I]ﬂ Wiy GO0
Minute Minutc
(a) Ratio of MSE with Alibaba Trace (b) Ratio of MSE with Google Trace

Fig. 11. The ratio of MSE compared with GRU for Alibaba and Google Traces

We notice that esDNN is very close to GRU’s results over a long sequence of time while the
trend of RNN is much worse than the other three approaches. Thus we choose to compare the MSE
values without RNN. We analyze the MSE values from Alibaba and Google dataset separately, as
shown in Fig. 11, where the GRU is set as the baseline, and the MSE values of esDNN and Bi-LSTM
are divided by the MSE values of GRU. The value less than 1.0 represents better performance than
GRU, and vice versa. Although GRU performs better prediction results than esDNN in a short
period of time, esDNN can maintain better accuracy and stability in the long run.

Next, we evaluate the difference between the predicted value and the actual value of esDNN.
Figs. 12 and 13 show the CPU usage curves, so that we can see the difference between the predicted
value and the actual value. For the analysis of the Alibaba dataset, we can observe that for the minute
level prediction, though there are some large differences between consecutive values, esDNN can
still give relatively accurate prediction results. For the hour-level prediction, on the whole, the
predicted value is very close to the actual value because their curves are almost fit, and only a small
part of the predicted curve is different from the actual value. For hour-level prediction based on
Google cluster data, esDNN can still accurately predict the trend of CPU usage.

In order to identify the difference between them more intuitively, we summarize the performance
of these algorithms as listed in Table 6 and Table 7. Apart from MSE, we also compare Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) that have been widely used
to evaluate prediction performance. The esDNN approach can achieve the lowest MSE values
compared with other baselines when the prediction length is longer, which is more difficult to be
predicted. For the Google dataset, our approach can also achieve the lowest RMSE with a longer
prediction length. The reason is that our proposed prediction approach based on revised GRU and
CNN not only captures the periodical features inherent in the data, but also significantly reduces
the impact of resource variations on prediction results.

To compare the performance of different approaches in terms of training and predicting cost, we
compare the training time and prediction time as shown in Table 8. The training time is the average
time consumed for training one epoch, and the prediction time is the mean value of predicting
1000 lines of data by repeating 10 times. Based on the results, we can observe that the esDNN
consumes the longest training time with about 10% more time than Bi-LSTM and GRU, which is
an acceptable cost considering the performance improvement in prediction accuracy. The longer
training time can result from the more complicated model of esDNN with application of CNN. And
for the prediction time, esDNN can perform slightly better than Bi-LSTM and GRU, the reason can
be the Swish activation function that we use can slightly improve the prediction time [48].
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Table 6. MSE, RMSE and MAPE comparison with Alibaba dataset
Prediction RNN GRU Bi-LSTM esDNN
length MSE RMSE | MAPE MSE RMSE | MAPE | MSE RMSE | MAPE MSE RMSE | MAPE
10s 1.25E-04 | 0.0112 | 0.2175 | 4.27E-06 | 0.0021 | 0.0401 | 9.33E-06 | 0.0031 | 0.1596 | 1.59E-07 | 0.0004 | 0.0077
30s 7.50E-05 | 0.0087 | 0.1396 | 1.75E-05 | 0.0042 | 0.0541 | 5.77E-05 | 0.0076 | 0.1086 | 3.13E-05 | 0.0056 | 0.0681
Imin | 9.02E-05 | 0.0095 | 0.1568 | 9.02E-06 | 0.0030 | 0.0325 | 3.80E-05 | 0.0062 | 0.0891 | 1.71E-05 | 0.0041 | 0.0480
30 min | 2.93E-04 | 0.0170 | 0.2024 | 1.71E-04 | 0.0125 | 0.0772 | 2.00E-04 | 0.0142 | 0.0978 | 1.84E-04 | 0.0128 | 0.0766
1h 4.61E-04 | 0.0215 | 0.2343 | 3.13E-04 | 0.0177 | 0.0936 | 3.31E-04 | 0.0182 | 0.1053 | 3.20E-04 | 0.0179 | 0.0891
6h 5.07E-04 [ 0.0225 | 0.2237 | 3.88E-04 | 0.0197 | 0.1050 | 4.03E-04 | 0.0200 | 0.0891 | 3.96E-04 | 0.0199 | 0.0990
1day | 8.91E-04 | 0.0293 | 0.2387 | 7.34E-04 | 0.0271 | 0.1260 | 7.32E-04 | 0.0271 | 0.0898 | 7.25E-04 | 0.0269 | 0.1080
2days | 8.68E-04 | 0.0295 | 0.2058 | 6.74E-04 | 0.0260 | 0.1050 | 6.66E-04 | 0.0258 | 0.0872 | 6.62E-04 | 0.0257 | 0.0901
3days | 8.83E-04 | 0.0297 | 0.1973 | 6.54E-04 | 0.0256 | 0.0978 | 6.50E-04 | 0.0255 | 0.0857 | 6.43E-04 | 0.0254 | 0.0842
Table 7. MSE, RMSE and MAPE comparison with Google dataset
Prediction RNN GRU Bi-LSTM esDNN
length MSE | RMSE [MAPE| MSE | RMSE |[MAPE| MSE |RMSE|MAPE | MSE RMSE | MAPE
30min | 0.00153232 | 0.0391 | 0.1651 | 6.53E-05 | 0.0081 | 0.0228 | 7.22E-05 | 0.0085 | 0.0209 | 0.00031276 | 0.0177 | 0.0439
1h 0.0011334 | 0.0337 | 0.1201 | 0.00030235 | 0.0174 | 0.0506 | 0.00032074 | 0.0179 | 0.0567 | 0.0003576 | 0.0189 | 0.0507
2h 0.00113796 | 0.0337 | 0.1173 | 0.00056542 | 0.0238 | 0.0737 | 0.00082948 | 0.0288 | 0.0847 | 0.00052629 | 0.0229 | 0.0691
4h 0.00113856 | 0.0337 | 0.1246 | 0.00071719 | 0.0268 | 0.0942 | 0.0011012 | 0.0332 | 0.1143 | 0.00079793 | 0.0282 | 0.0884
6h 0.00113166 | 0.0336 | 0.1087 | 0.00079771 | 0.0282 | 0.0886 | 0.00094857 | 0.0308 | 0.1010 | 0.0007228 | 0.0269 | 0.0787
8h 0.00156561 | 0.0396 | 0.1350 | 0.00074263 | 0.0273 | 0.0880 | 0.00086032 | 0.0298 | 0.0960 | 0.00073787 | 0.0272 | 0.0833
12h 0.00164631 | 0.0406 | 0.1368 | 0.00065455 | 0.0256 | 0.0819 | 0.00095340 | 0.0309 | 0.0954 | 0.00070197 | 0.0265 | 0.0814
15h 0.00170941 | 0.0413 | 0.1368 | 0.00086864 | 0.0295 | 0.0876 | 0.0010403 | 0.0325 | 0.1017 | 0.00073697 | 0.0271 | 0.0822

To summarize, esDNN can achieve good accuracy based on MSE results. Compared with the
MSE results evaluated in the same datasets derived from Google and Alibaba in [7], esDNN has
reduced the MSE with one order of magnitude from around 7 X 1072 to 7 X 1073,
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Table 8. Training time and prediction time comparison

RNN | Bi-LSTM | GRU | esDNN
Traing time (s) 5.11 6.47 6.53 7.14
Prediction time (s) | 0.048 0.070 0.071 | 0.065
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Fig. 14. Optimization ratio comparison in minutes with different traces

5.4 Applying esDNN for Machines Auto-scaling with Simulations

The auto-scaling technique can dynamically adjust the number of active machines in the system
based on the system status, e.g. removing machines when the system is at a low utilization level or
adding more machines when the system is overutilized. By taking advantage of auto-scaling, the
system performance, e.g. energy consumption, can be optimized. However, without sufficiently
accurate prediction for workloads, the popular threshold-based auto-scaling approaches, like static
threshold, are undesirable for workloads with high variance.

To further demonstrate the capability of the proposed approach, we integrate esDNN into the
auto-scaling scenario for physical machines in Alibaba and Google cloud data centers by simulating
the number of machines and resource usage. The specifications of machines are derived from the
corresponding original datasets, and the scheduling period is configured as 5 minutes.

Our objective is to improve resource utilization and reduce the number of active machines with
sufficient accurate predictions. Therefore, the use of CPU utilization as an input to the auto-scaling
method is highly desired. And the output is the number of active machines. As an auto-scaling
baseline, we use the average number of active machines based on the previous time slots [49],
which can be calculated as:

M(t) = #(t_i), (7)

where M(t) represents the number of active machines at time interval t, and m is the number of
previous time slots used for the prediction that we set m as 5 for our experiments. The number
of active machines calculated by Eq. 7 is normalized as 1.0. We normalize the number of active
machines of the auto-scaling approach based on esDNN and calculate the ratio between the esDNN-
based approach and baseline, and we configure the upper CPU utilization threshold as 80%. If the
ratio of machines is less than 1.0, it means that the esDNN-based approach can reduce the number
of active machines. Fig. 14a shows the prediction of the number of active machines based on the
Alibaba dataset. As expected, the ratio fluctuates in the range of 0.3 to 0.6, indicating that our
prediction algorithm has achieved a good effect that only 40% to 80% of the number of machines will
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be active compared with the original number of machines from the dataset, which can significantly
reduce the number of active machines.

As for the Google dataset, we analyze the capacity distribution of about 37,678 machines, where
the machines with 0.5 capacity are about 92.8%, the machines with 0.25 capacity are about 1.4%,
and the machines with capacity 1.0 are about 5.9%. This is different from the distribution of the
homogeneous machines in the Alibaba dataset. After normalizing the CPU usage in the Google
dataset, we also utilize the algorithm previously applied to the Alibaba dataset, and Fig. 14b shows
the ratio ranges from 0.25 to 1. For example, at the 400th minute, the baseline needs 18,371 machines,
while our approach only uses 5,161 machines. The results of these experiments are close to those
based on the Alibaba dataset. It can be concluded that the proposed approach can efficiently improve
resource usage by reducing the number of active machines, and it is promising to reduce the energy
consumption of cloud data centers by providing an accurate prediction method.

6 CONCLUSIONS AND FUTURE WORK

Our deep learning-based approach for cloud workload prediction brings opportunities to optimize
resource provisioning in the cloud computing environment. In this paper, we apply sliding window
for multivariate time series to convert the high dimension data into supervised learning time series
to address the high dimensionality challenge. Based on the converted data, we proposed a revised
GRU-based approach to train the prediction model to achieve high prediction accuracy for high
variance cloud workloads. Comprehensive experiments based on the realistic traces derived from
Google and Alibaba have demonstrated that our proposed approach can achieve better performance
in terms of accuracy compared with state-of-the-art approaches. To further show the effectiveness
of optimizing resource provisioning, we applied our approach for auto-scaling based on realistic
traces, and results illustrate that our approach can significantly optimize the resource usage of
cloud data centers, thus saving operational costs.

In future, our approach can be integrated into a container-based prototype system, e.g. Kubernetes,
to optimize resource provisioning. We would like to investigate the proposed approach to be
extended for Edge Computing to reduce response time using offloading techniques, and consider
the location-aware and mobility-aware scenarios (e.g. predicting the loads allocating to different
devices generated by mobile users). We would also like to make automatic esDNN by using Monitor,
Analyze, Plan, and Execute (MAPE) model.
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