DNN Migration in IoTs:

Emerging Technologies,

Current Challenges and Open Research Directions

Min Xue, Huaming Wu, Senior Member, IEEE and Ruidong Li, Senior Member, IEEE

Abstract—With the rapid development of the Internet of
Things (IoT) and communication technology, Deep Neural Net-
work (DNN) applications such as medical imaging, speech
transcription, handwritten text recognition have been widely
used in IoT devices. However, due to resource constraints on
these devices, e.g., limited memory capacity, weak computing
capacity, and low battery capacity, IoT devices cannot support
complicated DNN operation effectively and thus fail to fulfill
the requirements of Quality of Service (QoS) of mobile users.
One promising approach is to migrate the DNN model to a
remote cloud server to reduce the computing burden on IoT
devices. Unfortunately, it still suffers from high delay and low
bandwidth when communicating with cloud servers. Although
the transmission delay of the edge server is low, its computing
capacity lacks scalability and elasticity. To make matters worse,
in the real world, the wireless connection between IoT devices
and the cloud is intermittent, which can cause offloading failures
during large-scale DNN data transmission. In this paper, we
describe a DNN model migration framework to overcome the
above challenges, which consists of three parts: DNN model
preprocessing, partition-offloading plan, and partition-uploading
plan. Accordingly, we introduce the operation of the DNN
migration and the available methods for each part. In addition,
we improve the DNN partition-uploading plan in a multi-user
edge-cloud collaborative computing environment. Finally, we
highlight the important challenges of achieving more efficient
DNN migration and point out the unresolved issues of DNN
migration, which may shed light on future research directions.

Index Terms—DNN Partition, Computation Offloading, DNN
Inference, Edge-Cloud Collaborative Computing, Intelligent Ap-
plications.

I. INTRODUCTION

N recent years, the Internet of Things (IoT) and mobile

Internet have developed rapidly, smart cities, smart homes,
and smart transportation have become an indispensable part of
social life. As the core of artificial intelligence, deep learning
technology, especially Deep Neural Networks (DNN), has
been widely used in a variety of fields, which also brings many
new challenges to mobile terminals with limited resources.
The requirements of emerging intelligent applications on com-
munication systems are mainly reflected in four aspects: low
response time, low energy consumption, low monetary cost,
and balanced computing resource allocation. The most obvious
contradiction is between the limited computing capacity of
IoT devices and running complicated DNN inference. When
DNN models implement inference in a resource-constrained
computing environment, how to optimize objectives such as
delay, energy, and monetary cost is of great significance.

Considering that the limited computing resources of mobile
devices cannot support complex DNN operations, the tradi-
tional approach is to offload partial DNN models to remote

cloud servers to reduce the pressure of local devices. DNN
migration in edge, cloud or fog computing environment, as
well as other computing platforms [1] has attracted great
attention. As we all know, cloud computing has high com-
puting capacity and sufficient storage space. However, the
cloud server is usually far away from the local device, and
the data transmission between the cloud server and the client
is readily affected by various factors such as transmission
delay, data volume, and central computing capacity. These
factors put great pressure on the network bandwidth and
easily cause excessive transmission delay, which cannot meet
user Quality of Service (QoS) requirements. Compared with
cloud servers, edge servers are closer to the client, which
can effectively improve the efficiency of DNN offloading
and reduce the pressure on network bandwidth. However,
edge servers still suffer from limited computing capacity and
insufficient storage.

Generally, it takes a long time to upload and execute the
DNN model, due to the large size of the DNN model such as
YOLO and FaceNet. Accordingly, DNN query, i.e., the process
of DNN inference, will only be implemented on the client until
the DNN model is uploaded. However, the client’s computing
capacity is low, which leads to poor performance of the DNN
query. Thus, we perform the DNN query while uploading the
DNN partition, and then use edge/cloud servers to optimize
query performance. We usually use DNN migration to achieve
two goals: one is to determine the DNN layer distribution on
the edge/cloud server; the other is to determine the upload
order of the DNN layer. Thus, how to obtain the optimal
DNN migration scheme has become an urgent problem to
be solved. In general, the migration of DNN models faces
many challenges: 1) Large-Scale DNN PFartition: In order to
determine the upload order of the DNN layer, previous studies
such as [2] have to divide the DNN model, but the DNN
partition is usually very large, so there is no chance to realize
more efficient DNN query performance through more fine-
grained partitions. 2) Poor Search Ability: Most studies use
traditional algorithms, e.g., swarm intelligence algorithms, to
divide DNN models and obtain the DNN layer distribution
under each server. However, these algorithms suffer from poor
global search capabilities and tend to fall into local optimality.
3) Simple Computing Environment: DNN migration is only
suitable for very simple environments, not for more realistic
computing environments, such as multi-user multi-edge/cloud
server environments. In addition, it is also difficult to achieve
parallel processing of DNN models. 4) User Requirements:
The requirements of users for QoS are constantly increasing,
especially, obtaining the results of DNN migration with rel-

atively low delay and energy consumption at a lower cost.
However, how to obtain an ideal cost on the premise of
balancing time delay and the energy consumption is an urgent
issue to be solved.

|

DNN Model | SO

Environment

Cuery Result
I:q User Query |

CQuary
Dermand

Query Thread |<T| Upload Thread | i

Operation of Migration Plan 4§
P1 P2

—

Camman algorithms under DNN migration

3
DNN Model
Preprocessing

DNM Partition-
Offloading Plan

DNMN Partition- | |
Uploading Plan :

-

ProgramfProgram: ! file
{Programs filez

Generation of Migration Plan

3) Edge-Cloud Collaborative Computing Environment:
Since IoT devices will generate a large number of DNN
tasks, the edge-cloud collaborative computing environment,
as a novel system architecture, can effectively accelerate the
computational efficiency of DNN models. Fig. 2 shows the
general diagram of the edge-cloud collaborative computing
environment. Compared with the traditional cloud/edge com-
puting environment, the edge-cloud collaborative computing
environment owns the advantages of both the high trans-
mission rate of edge computing and the high computing
capacity of cloud computing, which can meet the migration
requirements of the DNN model.

Fig. 1: The framework of DNN migration.

The framework of DNN migration is as shown in Fig. 1.
Firstly, the edge-cloud collaborative computing environments
can effectively integrate and utilize different types of com-
puting resources, which is more suitable for large-scale DNN
migration. Secondly, we expand the application of the DNN
migration plan under the edge-cloud collaborative computing
environment and realize the efficient partition-offloading plan
and partition-uploading plan after DNN model preprocessing.
Finally, we propose the generation and operation of DNN
migration in a multi-server environment and introduced the
information flow in it in detail.

II. ENVIRONMENTS AND REQUIREMENTS FOR DNN
MIGRATION

A. Computing Environments of DNN Model

The IoT devices will generate a large number of DNN tasks,
but they cannot handle large-scale DNN tasks, so some DNN
tasks are often migrated to edge/cloud servers. We treat each
DNN model as a task, and each layer in the DNN model as
a subtask. Common computing environments usually include
cloud computing environments, edge computing environments,
and edge-cloud collaborative computing environments.

1) Cloud Computing Environment: According to the de-
ployment form, the cloud can be divided into three types:
private cloud, public cloud, and hybrid cloud. The traditional
cloud computing environment has the advantages of strong
computing capacity and sufficient storage space. However,
because the cloud server is too far away from the IoT device,
problems such as high transmission delay, network instability,
and limited bandwidth are prone to occur, and thus it is
difficult to meet the QoS requirements of users.

2) Edge Computing Environment: Any computing and net-
work resource from the data source to the cloud computing
center can be defined as the edge. Since the edge server is
closer to the IoT device, it can respond to requests from the
device in real-time, and the transmission is more secure. In
addition, due to a large number of load flow nodes, the data
transmission speed is fast, which is suitable for migrating DNN
tasks that are highly sensitive to delay. However, the edge
server has some defects such as small computing capacity and
insufficient storage space.

Fig. 2: The diagram of edge-cloud collaborative computing
environments.

B. Migration Requirements of DNN Model

With the explosive development of IoT technology, the
number of wireless devices has grown exponentially. In the
meantime, a large number of delay-sensitive and computation-
ally intensive applications are being deployed on these devices.
The computing environment is required to provide powerful
computing capabilities and transmission rates to ensure low-
delay service quality. The migration of DNN models usually
considers the effects of low delay, low energy consumption,
and low monetary cost. In addition, the impact of network
resource allocation is also taken into consideration.

III. ARCHITECTURE OF DNN MIGRATION

The DNN migration plan includes DNN model preprocess-
ing, DNN partition processing, DNN partition-offloading plan,
and DNN partition-uploading plan, as shown in Fig. 3. The
details are as follows:

DNN Model Preprocessing: It refers to compressing or
merging DNN models before the DNN partition-offloading
plan and partition-uploading the plan, thereby improving

AlexNet

Cony
Cony -
Local Respiovm

MaxPocl
Maxpaal |

LelRespharm

i i |

I (2012} (2014 I |

| B Layers 12 Layers | |

| |

| 63 oo | :

| S e— I

| Fr Bealtlancal | -
£t — e

I ManPool | NEGN NN NETE |

: e conv | ca pool |

| o it | -

I Cony Local RespNarm |

| MaxFool Cam |

| LocalResaNar |

| |

| |

| |

| |

| |

| |

| |

DNN Model
Processing

|
Central
Cloud Server

|
1
|
|
|
|
1
|
1
|
I
|
|
1
|
|
|
|
1
|
1
|
|
J

DNN Partition-
Offloading Plan

e

Fig. 3: The framework of DNN model migration. () indicates the DNN model preprocessing, (2) represents the partition-
offloading and partition-uploading operations on the preprocessing results, (3) means that after the corresponding server for
DNN subtask offloading is determined by the partition-offloading plan, the DNN partition-uploading plan obtains the upload
order of DNN partition, @) describes the uploading process of the DNN partition under the computing environment.

the processing efficiency of the DNN model. As shown in
Fig. 3, it mainly includes inception module preprocessing,
convolutional layer preprocessing, and fully connected layer
preprocessing.

DNN Partition-Offloading Plan: As shown in Fig. 3, the
DNN partitioning plan refers to splitting the DNN model,
while DNN partition-offloading plan refers to specifying
the corresponding offloading server for the DNN subtask.
When the offloading location is determined by the partition-
offloading algorithm, the partitioning result of the DNN model
will be obtained naturally. We refer to the above algorithm as
DNN partition-offloading algorithm.

DNN Partition-Uploading Plan: Due to the large size of
the DNN model, if we directly upload the full DNN model
to the cloud/edge server, this will lead to high transmission
delay. Therefore, we consider performing DNN queries while
uploading DNN partitions Ps. The DNN uploading plan refers
to determining the sequence of uploading DNN partition to the
edge/cloud server.

Existing DNN partition-uploading methods are mainly ap-
plied to the situation from a single local device to a single
edge/cloud server. Most of the pioneering methods combine
the shortest path, and after multiple iterations, the partitioning
plan is generated while obtaining the partition-uploading plan.

It should be noted that in the DNN partition generated in the

DNN partition-offloading plan, the DNN subtask deployed to
the edge/cloud server is called P;; the DNN subtask deployed
on the client is called P,. The DNN partition generated in
the DNN partition-uploading plan is a further division of the
DNN partition P; generated in the DNN partition-offloading
plan. In other words, the DNN partition-uploading plan builds
the upload sequence by dividing the DNN partition P; into a
finer-grained DNN partition, namely Ps. Obviously, the DNN
partition P, is composed of the DNN partition Ps.

A. DNN Model Preprocessing:

1) Inception Module Preprocessing: For the inception mod-
ules, it is common to consider splitting each inception module
and executing them together on both local and edge/cloud
servers. To avoid excessive data transmission on the wire-
less network, the inception module is partitioned only once,
which can be considered as a minimum cut problem, where
algorithms such as the Boykov-Kolmogorov maximum flow
algorithm and the topological sorting algorithm can be ap-
plied. Then, the inception module is cut into two disjoint
subgraphs, with the first one processed locally and the sec-
ond one offloaded to the edge/cloud server [3]. In addition,
when the difference between the predecessor’s out-degree and
the successor’s in-degree under the inception module is 1,
two adjacent layers are merged into a new layer. The data

dependency between the predecessor and the successor will
disappear after preprocessing [1]. Some scholars have also
proposed to directly treat the inception module as a whole
[4].

2) Convolutional Layer Preprocessing: In view of the
computationally intensive characteristics of the convolutional
layer, the traditional convolution process is accelerated by
low-rank decomposition schemes, and then the original kernel
set in the convolutional layer is approximated by two low-
rank decomposition kernels. In another way, the feature map
of the convolutional layer is divided into blocks in space,
and a related feature mapping block is assigned to an edge
server, so that the feature map of the convolutional layer
can be independently run on the edge server. In addition,
the introduction of a 1 x 1 convolution kernel can effectively
enhance the nonlinear expression ability of the network and
greatly reduce the number of model parameters.

3) Fully Connected Layer Preprocessing: For the storage-
intensive fully connected layer, the number of parameters in
the fully connected layer is actually the size of the weight
matrix. One method is to find a low-rank weight matrix to
approximate the original weight matrix, thereby reducing the
number of parameters of each fully connected layer, and then
reducing the required storage space [5]. Another method is to
use network pruning methods to sparse the network, reduce
the over-fitting network, and then improve the generalization
ability of the network [6].

B. DNN Fartition-Offloading Plan:

1) One-Step Segmentation: It mainly refers to the process-
ing of dividing the DNN model once and then offloading one
of the partitions to the edge/cloud server. Some work considers
the offload performance of partitioning at each candidate
point, and selects the point with the optimal delay/energy
consumption performance for partitioning [7]. Furthermore,
some scholars have also proposed a binary search method,
and then proved that the optimal partition-offloading decision
follows a one-climb policy. Based on this, the Gibbs Sam-
pling algorithm was proposed to obtain the optimal partition-
offloading decision [8].

2) Swarm Intelligence Optimization: This method only
relies on sampling the objective function, and then realizes
the overall random search through a certain search mechanism,
mainly including Simulated Annealing (SA), Particle Swarm
Optimization (PSO) , and Genetic Algorithm (GA). In the
edge-cloud collaborative computing environment, for each
preprocessed DNN subtask, the optimal allocation of each
subtask is searched as the partition-offloading strategy of the
DNN model [1].

3) Distributed Deep Learning: Deep learning is a branch
of machine learning that emphasizes learning from continuous
layers. The distributed deep learning algorithm [9] closely
combines distributed learning and deep learning, and uses mul-
tiple parallel DNNs to generate partition-offloading decisions,
providing a new way for DNN partition-offloading decisions
in an edge-cloud collaborative computing environment.

4) Deep Reinforcement Learning: Deep Reinforcement
Learning (DRL) [10] reflects human learning by exploring and
exploiting feedback from the environment. In order to achieve
system optimization, previous works usually convert the DNN
offloading process into a Markov Decision Process (MDP),
and then select the appropriate DRL algorithm to achieve
system optimization.

5) Meta Deep Reinforcement Learning: Since the sample
complexity of meta-learning is closely related to DRL, it
is considered to combine meta-learning and DRL in depth
to obtain a meta-Deep Reinforcement Learning (meta-DRL)
algorithm [11]. It can quickly adapt to new tasks and new
computing environments, and then make partition-offloading
decisions for the DNN model faster in an edge-cloud collab-
orative computing environment.

6) Deep Imitation Learning: Deep Imitation Learning
(DIL) [12] is a traditional supervised learning method, which
includes offline training and online decision-making. After
the high-quality demonstration is generated, the model can
be trained offline, and then the online decision can be made
at a fast online inference speed, which can obtain the DNN
partition-offloading plan very efficiently.

C. DNN Partition-Uploading Plan:

1) Direct Uploading Algorithm: This approach typically
estimates the expected query execution time for each pos-
sible partition point and, based on that, finds the optimal
partition point for the DNN model. By partitioning the DNN
model once, we can obtain the DNN partition-uploading
plan(i.e., partition-offloading plan), and then directly upload
the corresponding DNN partition Ps(i.e., P;) to the edge/cloud
server [13].

2) IONN Algorithm: The DNN partition-uploading plan
is obtained by using the shortest path method and penalty
factor method. IONN uses up to eight penalty factors to find
partitions Ps: 1,0.5,0.25,---,0.016,0.0. However, partitions
P35 are often very large, and there is a lack of opportunities for
fine-grained partitions Ps to provide better performance [14].

3) Efficiency-based Algorithm: The upload efficiency and
the shortest path method are combined to find the next partition
in each iteration, where the upload efficiency acts as a penalty
factor. However, different from the fixed penalty factor, the
upload efficiency has higher flexibility and selectivity. A
greedy algorithm is designed based on the upload efficiency,
and the partition P53 with the highest upload efficiency is re-
peatedly selected to obtain a more fine-grained DNN partition-
uploading plan [15].

4) Recursive Efficiency Algorithm: This approach recur-
sively splits partitions obtained by the efficient-based al-
gorithm and creates a more fine-grained DNN partition-
uploading plan [15]. Compared with the efficient-based al-
gorithm, it is obvious that this algorithm further improves the
query performance of the DNN model.

IV. GENERATION AND OPERATION OF MIGRATION PLAN
A. Installation Phase: Generate Migration Plan

In this part, we will describe the installation of applications
in an edge-cloud collaborative computing environment, briefly

Input of uploaded DNN Partition

Central
Cloud Server

. DNN Partition- |
| Uploading Plan
{" DNN Partition- |
| Offloading Plan
| DNNModel |
| Preprocessing

Vehicular networks

Result of uploaded DNN Partition

| DNN Partition-
Offloading Plan '

| DNN Model
Preprocessing

Smart home

Fig. 4: The framework of information flow.

introduce the role of applications, and discuss the flow of
information between applications.

From Fig. 4, the applications Program; and Programs
installed on the client and the edge/cloud server, respectively,
are used to obtain the execution time and index of DNN
subtasks. The application Programs installed on the client
is used to generate the migration plan. The information flow
between the edge/cloud server and the client is as follows:
First, we install Program, on the client, run each DNN
subtask, and record the execution time and index of the DNN
subtask as file;. Then, the edge/cloud server cannot determine
which DNN subtask will be executed, so the edge/cloud server
cannot collect the execution delay of each DNN subtask
like the client does. Install Programs on the edge/cloud
server, where Programs uses regression functions to create
prediction functions for DNN subtasks, which can estimate the
execution delay of each DNN subtask under the edge/cloud
server based on the parameters of the DNN and the server.
Then, record the execution time and index of each DNN
subtask as files. Finally, when the user enters the computing
environment, Programs on the client runs and obtains file;.
At the same time, Programsy will send the prediction results
of each DNN subtask files to the client. Then, Programs
on the client combines file; and files to create a migration
plan.

B. Running Phase: Operate Migration Plan

Existing DNN partition-uploading methods are mainly ap-
plied to the situation from a single local device to a single
edge/cloud server. We will execute the DNN query while
uploading DNN partitions Ps, so two threads are required: (1)

Upload thread: upload DNN model; (2) Query thread: execute
real-time DNN query.

1) Upload Thread: The application Programs first creates
a partition-offloading plan to obtain the DNN partition P; and
its distribution on the edge/cloud server, and then creates a
partition-uploading plan to obtain the DNN partition Ps (Ps
is divided by the DNN partition P;) and its upload sequence
on the edge/cloud server. Then the upload thread starts to run
the partition-uploading plan. First, the upload thread sends the
first DNN partition Pj in the partition-uploading plan from the
client to the edge/cloud server, and sends the Confirmation
Result (CR) of the DNN partition P; offloading back to
the client. If the upload thread receives a failed result CR,
it resends the DNN partition Ps; to the edge/cloud server.
Conversely, if the upload thread receives a successful result
CR, it sends the next DNN partition Ps to the edge/cloud
server, and then sends CR of the next DNN partition P5 back
to the client. Repeat the uploading process until the last DNN
partition P35 is uploaded to the edge/cloud server.

2) Query Thread: Consider performing DNN queries when
uploading DNN partitions P;. The client will repeatedly
perform DNN queries, and immediately propose a new query
after the previous query is completed. Before the DNN model
is completely uploaded, the query can be executed jointly
through the DNN partition P, under the client and the DNN
partition P5 under the edge/cloud server.

The query thread is the process of uploading DNN models,
and performs a DNN query on the incomplete uploaded DNN
model under the edge-cloud collaborative computing environ-
ment. The local device obtains which DNN partitions have
been uploaded to the edge/cloud server by checking whether
the CR of each DNN partition P; has arrived. When a DNN

query is triggered, the query thread will execute the DNN
partitions Ps in serial order. The first local DNN partition is
performed, and then the input matrix (i.e., the output matrix of
the first local DNN partition) and the index of the second DNN
partition P5 are sent to the designated client or edge/cloud
server. After the second DNN partitions P5 is executed, the
input matrix and the index of the next DNN partitions Ps will
be sent to the client or the edge/cloud server where the next
DNN partitions Ps is located. In this way, the client and the
edge/cloud server jointly execute the DNN partition P; until
the whole DNN model is executed.

V. IMPROVEMENT AND COMPARISON
A. Improvement of Partition-Uploading Plan

It is known that the existing partition-uploading algorithm is
only suitable for the situation from a single client to a single
edge/cloud server, which is obviously not suitable for DNN
uploads in real scenarios. In this part, we will discuss the
performance of the DNN partition-uploading plan in a multi-
user edge-cloud collaborative computing environment. It is
mainly divided into the following two steps:

« Firstly, we simply apply the PSO algorithm to obtain the
corresponding offloading position of the DNN subtasks
in a multi-user edge-cloud collaborative environment.

¢ Secondly, according to the existing partition-upload algo-
rithm, combined with the unloading position of the DNN
subtask, the DNN partition P; is divided to obtain the
DNN partition P5, and the upload order of each DNN
partition Ps can be determined.

B. Experimental Comparison

1) Experimental Setup: We build an edge-cloud collabora-
tive computing environment R = {ry,ry,--- , 712}, where the
first two belong to the clients, the last five belong to the cloud
servers, and the remaining five belong to the edge servers. We
set the bandwidth between the local and the edge is 10 MB/s,
between the local and the cloud is 0.5 MB/s, between the edge
and the cloud is 0.5 MB/s, between different cloud servers is
5 MB/s and between different edge servers is 10 MB/s. The
CPU processing capacity of the client, the edge server, and
the cloud server are set to 1.1 ~ 2.3 GHz, 4.2 ~ 18.3 GHz,
and 40 ~ 120 GHz, respectively. Moreover, the model size of
Alexnet is 223 MB, and the model size of the VGG model is
548 MB.

2) Performance Comparison and Analysis: We apply the
classic Direct Uploading algorithm, IONN algorithm and
Recursive Efficiency algorithm to the multi-user edge-cloud
collaborative computing environment, so as to illustrate the
feasibility and necessity of the DNN partition-uploading plan
in the multi-server environment.

As shown in Fig. 5, we track the system delay changes
of repeated queries of the Alexnet model and VGG model,
respectively. Among them, the horizontal axis represents the
upload delay of the DNN partition P5, and the vertical axis
represents the change of the system delay with the upload of
the DNN partition P3. We consider performing DNN queries

while uploading DNN partitions. In this process, we assume
that the client will repeatedly put forward DNN queries, and
execute new queries immediately after the previous one is
completed, until the entire model is uploaded. In addition,
During the upload period of the DNN partition P5, the DNN
system delay will not change during the upload period of the
DNN partition Ps.

When compared with the Direct Uploading algorithm that
does not adopt the DNN partition-uploading plan, the JONN
algorithm and Recursive Efficiency algorithm using the DNN
partition-uploading plan have a lower total system delay to
complete the DNN model query. This is mainly due to the
DNN partition P; being too large and the transmission delay
of uploading the whole DNN partition P; being too high. In
the process of uploading the DNN partition P;, DNN queries
will only be completed by local devices, and the insufficient
computing capacity of local devices leads to the high delay of
DNN queries. In addition, the Recursive Efficiency algorithm
has better query results than that of IONN algorithm, which
is mainly obtained by more fine-grained partitions Ps;. In
summary, we know that adopting the DNN partition-uploading
plan can obtain more efficient DNN query performance, and
more fine-grained DNN partition Ps; helps to obtain more
efficient DNN query results. In short, the above experimental
results demonstrate that the method proposed in this section
can extend different types of DNN partition-uploading plans to
a multi-server environment. Furthermore, the comparison with
the Direct Uploading algorithm also illustrates the necessity of
extending the DNN partition-uploading plan to a multi-server
environment.

VI. CURRENT CHALLENGES AND FUTURE DIRECTIONS OF
DNN MIGRATION

Along with the increasing number of IoT devices, people
have new demands for service quality in daily life. In addition
to the large granularity of DNN partitions and not being suit-
able for multi-server environments, DNN migration also faces
some challenges and opportunities in real-world scenarios.

On the one hand, applications such as Unmanned driving,
Virtual Reality (AR) and Augmented Reality (AR) all put
forward strict requirements for the delay. However, processing
massive amounts of data on the IoT devices puts a heavy bur-
den on battery consumption, and the high data transmission de-
lay of the cloud computing center also brings greater transmis-
sion energy consumption pressure on the client. Furthermore,
The requirements of users for QoS are constantly increasing,
and they hope to obtain the results of DNN migration at a
lower cost. In summary, when DNN migration is performed
in a resource-limited environment, how to achieve the overall
system optimization of latency, energy consumption, and cost
and how to specifically adjust the optimization degree of each
optimization objective according to user requirements is an
urgent issue to be solved.

On the other hand, we consider practical issues that are
ignored in the process of DNN model migration. These issues
are caused by the greedy occupation of resources by users and
the unbalanced metric optimization. It is known that the users

4500

4000

3500

3000

2500

2000

System Delay ims)

1500

1000

500

0 5000
DNN Partition Uploading Time (ms)

10000 15000 20000 25000

= Direct Uploading

IONN

Recursive Efficiency

(a)

1800

1600

1400

1200

1000

800

System Delay [ms)

600

400

200

o 10000 20000 30000 40000
DNHN Partition Uploading Time(ms)

50000 60000

Direct Uploading

(b)

IONN

Recursive Efficiency

Fig. 5: Comparison of various DNN partition-uploading methods. (a) Alexnet model. (b) VGG model.

entering the computing environment are constantly changing,
so when the users entering the environment first occupy all
the computing resources of some edge/cloud servers, the users
entering the environment later will not be able to use the above
servers, resulting in an unreasonable allocation of computing
resources. It can be seen that the unreasonable allocation of
computing resources caused by the dynamic changes of the
computing environment is also a problem worth studying in
the DNN migration in reality.

Most importantly, it is necessary to consider a more prac-
tical circumstance of migrating large-scale DNN subtasks
in a more complex and resource-limited computing envi-
ronment with multiple users in future work. Among oth-
ers, researchers should consider whether the proposed DNN
partition-offloading plan and DNN partition-offloading plan
are suitable for DNN models with different types, sizes, and
structures, which is an issue that researchers need to focus on.

VII. CONCLUSION

In this paper, we have given our vision and explored numer-
ous new trends for DNN migration in IoTs. To fulfill the re-
quirements of intelligent applications for communication sys-
tems in a computing environment with limited resources, we
have designed a DNN model migration framework, where the
DNN migration plan consists of three parts, including DNN
model preprocessing, partition-offloading plan, and partition-
uploading plan. We first describe the computing environment
and migration requirements for the DNN model. Then, we
comb the generation and operation of DNN migration and
summarize the common algorithms of DNN migration. Fur-
thermore, we propose a DNN partition-uploading plan in a
multi-user edge-cloud collaborative computing environment
and compare the performance of different partition-uploading
plans. Finally, we consider the prospects and challenges of
DNN migration under the existing technical conditions.

Edge computing provides low-latency, high-availability and
privacy protection for local computing services, and solves the
problems of high latency of cloud computing and constraints
by network environment. Accordingly, the DNN migration or
placement technology will vigorously mitigate the contradic-
tion between the limited computing capacity of IoT devices
and complex DNN inference. We expect that this visionary

research will be helpful to practitioners and researchers who
are interested in doing research on the DNN migration tech-
nology to promote intelligent applications, smart cities, and
other industrial upgrades.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant No. 62071327 and JSPS
KAKENHI under Grant No. 19H04105.

REFERENCES

[1]1 B. Lin, Y. Huang, J. Zhang, J. Hu, X. Chen, and J. Li, “Cost-driven off-
loading for DNN-based applications over cloud, edge, and end devices,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5456—
5466, 2020.

[2] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint dnn partition
deployment and resource allocation for delay-sensitive deep learning
inference in iot,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
9241-9254, 2020.

[3] X. Tian, J. Zhu, T. Xu, and Y. Li, “Mobility-included dnn partition
offloading from mobile devices to edge clouds,” Sensors, vol. 21, no. 1,
p- 229, 2021.

[4] L. Lockhart, P. Harvey, P. Imai, P. Willis, and B. Varghese, “Scission:
Performance-driven and context-aware cloud-edge distribution of deep
neural networks,” in 2020 IEEE/ACM 13th International Conference on
Utility and Cloud Computing (UCC). 1EEE, dec 2020.

[5]1 A.Ss, B. Dg, C. Rk, and D. Fa, “Sparse low rank factorization for deep
neural network compression,” Neurocomputing, vol. 398, pp. 185-196,
2020.

[6] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren,
“PatDNN: Achieving real-time DNN execution on mobile devices
with pattern-based weight pruning,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, Mar. 2020.

[7]1 C. Ding, A. Zhou, Y. Liu, R. Chang, and S. Wang, “A cloud-edge
collaboration framework for cognitive service,” IEEE Transactions on
Cloud Computing, vol. PP, no. 99, pp. 1-1, 2020.

[8] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, “Optimal task offloading
and resource allocation in mobile-edge computing with inter-user task
dependency,” IEEE Transactions on Wireless Communications, vol. 19,
no. 1, pp. 235-250, 2020.

[9] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed

deep learning-based offloading for mobile edge computing networks,”

Mobile Networks and Applications, 2018.

H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of lightweight

task offloading strategy for mobile edge computing based on deep

reinforcement learning,” Future Generation Computer Systems, vol. 102,

pp. 847-861, 2020.

J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast

adaptive task offloading in edge computing based on meta reinforcement

learning,” IEEE Transactions on Parallel and Distributed Systems,

vol. 32, no. 1, pp. 242-253, 2020.

[10]

[11]

[12]

[13]

[14]

[15]

S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computation
offloading,” IEEE Wireless Communications, vol. 27, no. 1, pp. 92-99,
2020.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” SIGPLAN Not., vol. 52, no. 4, p. 615-629, Apr. 2017.
H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “IONN: Incremental
offloading of neural network computations from mobile devices to edge
servers,” in Proceedings of the ACM Symposium on Cloud Computing.
ACM, Oct. 2018.

K. Y. Shin, H.-J. Jeong, and S.-M. Moon, “Enhanced partitioning of
DNN layers for uploading from mobile devices to edge servers,” in The
3rd International Workshop on Deep Learning for Mobile Systems and
Applications - EMDL '19. ACM Press, 2019.

Min Xue is currently working towards a Master’s degree
at the Center for Applied Mathematics, Tianjin University,
China. Contact her at xm_17@edu.cn.

Huaming Wu is currently an associate professor at the
Center for Applied Mathematics, Tianjin University, China.
Contact him at whming @tju.edu.cn.

Ruidong Li is currently an Associate Professor in Institute
of Science and Engineering, Kanazawa University, Japan.
Contact him at liruidong @ieee.org.

