
1

DNN Migration in IoTs: Emerging Technologies,

Current Challenges and Open Research Directions
Min Xue, Huaming Wu, Senior Member, IEEE and Ruidong Li, Senior Member, IEEE

Abstract—With the rapid development of the Internet of
Things (IoT) and communication technology, Deep Neural Net-
work (DNN) applications such as medical imaging, speech
transcription, handwritten text recognition have been widely
used in IoT devices. However, due to resource constraints on
these devices, e.g., limited memory capacity, weak computing
capacity, and low battery capacity, IoT devices cannot support
complicated DNN operation effectively and thus fail to fulfill
the requirements of Quality of Service (QoS) of mobile users.
One promising approach is to migrate the DNN model to a
remote cloud server to reduce the computing burden on IoT
devices. Unfortunately, it still suffers from high delay and low
bandwidth when communicating with cloud servers. Although
the transmission delay of the edge server is low, its computing
capacity lacks scalability and elasticity. To make matters worse,
in the real world, the wireless connection between IoT devices
and the cloud is intermittent, which can cause offloading failures
during large-scale DNN data transmission. In this paper, we
describe a DNN model migration framework to overcome the
above challenges, which consists of three parts: DNN model
preprocessing, partition-offloading plan, and partition-uploading
plan. Accordingly, we introduce the operation of the DNN
migration and the available methods for each part. In addition,
we improve the DNN partition-uploading plan in a multi-user
edge-cloud collaborative computing environment. Finally, we
highlight the important challenges of achieving more efficient
DNN migration and point out the unresolved issues of DNN
migration, which may shed light on future research directions.

Index Terms—DNN Partition, Computation Offloading, DNN
Inference, Edge-Cloud Collaborative Computing, Intelligent Ap-
plications.

I. INTRODUCTION

IN recent years, the Internet of Things (IoT) and mobile

Internet have developed rapidly, smart cities, smart homes,

and smart transportation have become an indispensable part of

social life. As the core of artificial intelligence, deep learning

technology, especially Deep Neural Networks (DNN), has

been widely used in a variety of fields, which also brings many

new challenges to mobile terminals with limited resources.

The requirements of emerging intelligent applications on com-

munication systems are mainly reflected in four aspects: low

response time, low energy consumption, low monetary cost,

and balanced computing resource allocation. The most obvious

contradiction is between the limited computing capacity of

IoT devices and running complicated DNN inference. When

DNN models implement inference in a resource-constrained

computing environment, how to optimize objectives such as

delay, energy, and monetary cost is of great significance.

Considering that the limited computing resources of mobile

devices cannot support complex DNN operations, the tradi-

tional approach is to offload partial DNN models to remote

cloud servers to reduce the pressure of local devices. DNN

migration in edge, cloud or fog computing environment, as

well as other computing platforms [1] has attracted great

attention. As we all know, cloud computing has high com-

puting capacity and sufficient storage space. However, the

cloud server is usually far away from the local device, and

the data transmission between the cloud server and the client

is readily affected by various factors such as transmission

delay, data volume, and central computing capacity. These

factors put great pressure on the network bandwidth and

easily cause excessive transmission delay, which cannot meet

user Quality of Service (QoS) requirements. Compared with

cloud servers, edge servers are closer to the client, which

can effectively improve the efficiency of DNN offloading

and reduce the pressure on network bandwidth. However,

edge servers still suffer from limited computing capacity and

insufficient storage.

Generally, it takes a long time to upload and execute the

DNN model, due to the large size of the DNN model such as

YOLO and FaceNet. Accordingly, DNN query, i.e., the process

of DNN inference, will only be implemented on the client until

the DNN model is uploaded. However, the client’s computing

capacity is low, which leads to poor performance of the DNN

query. Thus, we perform the DNN query while uploading the

DNN partition, and then use edge/cloud servers to optimize

query performance. We usually use DNN migration to achieve

two goals: one is to determine the DNN layer distribution on

the edge/cloud server; the other is to determine the upload

order of the DNN layer. Thus, how to obtain the optimal

DNN migration scheme has become an urgent problem to

be solved. In general, the migration of DNN models faces

many challenges: 1) Large-Scale DNN Partition: In order to

determine the upload order of the DNN layer, previous studies

such as [2] have to divide the DNN model, but the DNN

partition is usually very large, so there is no chance to realize

more efficient DNN query performance through more fine-

grained partitions. 2) Poor Search Ability: Most studies use

traditional algorithms, e.g., swarm intelligence algorithms, to

divide DNN models and obtain the DNN layer distribution

under each server. However, these algorithms suffer from poor

global search capabilities and tend to fall into local optimality.

3) Simple Computing Environment: DNN migration is only

suitable for very simple environments, not for more realistic

computing environments, such as multi-user multi-edge/cloud

server environments. In addition, it is also difficult to achieve

parallel processing of DNN models. 4) User Requirements:

The requirements of users for QoS are constantly increasing,

especially, obtaining the results of DNN migration with rel-



2

atively low delay and energy consumption at a lower cost.

However, how to obtain an ideal cost on the premise of

balancing time delay and the energy consumption is an urgent

issue to be solved.

Fig. 1: The framework of DNN migration.

The framework of DNN migration is as shown in Fig. 1.

Firstly, the edge-cloud collaborative computing environments

can effectively integrate and utilize different types of com-

puting resources, which is more suitable for large-scale DNN

migration. Secondly, we expand the application of the DNN

migration plan under the edge-cloud collaborative computing

environment and realize the efficient partition-offloading plan

and partition-uploading plan after DNN model preprocessing.

Finally, we propose the generation and operation of DNN

migration in a multi-server environment and introduced the

information flow in it in detail.

II. ENVIRONMENTS AND REQUIREMENTS FOR DNN

MIGRATION

A. Computing Environments of DNN Model

The IoT devices will generate a large number of DNN tasks,

but they cannot handle large-scale DNN tasks, so some DNN

tasks are often migrated to edge/cloud servers. We treat each

DNN model as a task, and each layer in the DNN model as

a subtask. Common computing environments usually include

cloud computing environments, edge computing environments,

and edge-cloud collaborative computing environments.

1) Cloud Computing Environment: According to the de-

ployment form, the cloud can be divided into three types:

private cloud, public cloud, and hybrid cloud. The traditional

cloud computing environment has the advantages of strong

computing capacity and sufficient storage space. However,

because the cloud server is too far away from the IoT device,

problems such as high transmission delay, network instability,

and limited bandwidth are prone to occur, and thus it is

difficult to meet the QoS requirements of users.

2) Edge Computing Environment: Any computing and net-

work resource from the data source to the cloud computing

center can be defined as the edge. Since the edge server is

closer to the IoT device, it can respond to requests from the

device in real-time, and the transmission is more secure. In

addition, due to a large number of load flow nodes, the data

transmission speed is fast, which is suitable for migrating DNN

tasks that are highly sensitive to delay. However, the edge

server has some defects such as small computing capacity and

insufficient storage space.

3) Edge-Cloud Collaborative Computing Environment:

Since IoT devices will generate a large number of DNN

tasks, the edge-cloud collaborative computing environment,

as a novel system architecture, can effectively accelerate the

computational efficiency of DNN models. Fig. 2 shows the

general diagram of the edge-cloud collaborative computing

environment. Compared with the traditional cloud/edge com-

puting environment, the edge-cloud collaborative computing

environment owns the advantages of both the high trans-

mission rate of edge computing and the high computing

capacity of cloud computing, which can meet the migration

requirements of the DNN model.

Fig. 2: The diagram of edge-cloud collaborative computing

environments.

B. Migration Requirements of DNN Model

With the explosive development of IoT technology, the

number of wireless devices has grown exponentially. In the

meantime, a large number of delay-sensitive and computation-

ally intensive applications are being deployed on these devices.

The computing environment is required to provide powerful

computing capabilities and transmission rates to ensure low-

delay service quality. The migration of DNN models usually

considers the effects of low delay, low energy consumption,

and low monetary cost. In addition, the impact of network

resource allocation is also taken into consideration.

III. ARCHITECTURE OF DNN MIGRATION

The DNN migration plan includes DNN model preprocess-

ing, DNN partition processing, DNN partition-offloading plan,

and DNN partition-uploading plan, as shown in Fig. 3. The

details are as follows:

DNN Model Preprocessing: It refers to compressing or

merging DNN models before the DNN partition-offloading

plan and partition-uploading the plan, thereby improving



3

Fig. 3: The framework of DNN model migration. 1© indicates the DNN model preprocessing, 2© represents the partition-

offloading and partition-uploading operations on the preprocessing results, 3© means that after the corresponding server for

DNN subtask offloading is determined by the partition-offloading plan, the DNN partition-uploading plan obtains the upload

order of DNN partition, 4© describes the uploading process of the DNN partition under the computing environment.

the processing efficiency of the DNN model. As shown in

Fig. 3, it mainly includes inception module preprocessing,

convolutional layer preprocessing, and fully connected layer

preprocessing.

DNN Partition-Offloading Plan: As shown in Fig. 3, the

DNN partitioning plan refers to splitting the DNN model,

while DNN partition-offloading plan refers to specifying

the corresponding offloading server for the DNN subtask.

When the offloading location is determined by the partition-

offloading algorithm, the partitioning result of the DNN model

will be obtained naturally. We refer to the above algorithm as

DNN partition-offloading algorithm.

DNN Partition-Uploading Plan: Due to the large size of

the DNN model, if we directly upload the full DNN model

to the cloud/edge server, this will lead to high transmission

delay. Therefore, we consider performing DNN queries while

uploading DNN partitions P3. The DNN uploading plan refers

to determining the sequence of uploading DNN partition to the

edge/cloud server.

Existing DNN partition-uploading methods are mainly ap-

plied to the situation from a single local device to a single

edge/cloud server. Most of the pioneering methods combine

the shortest path, and after multiple iterations, the partitioning

plan is generated while obtaining the partition-uploading plan.

It should be noted that in the DNN partition generated in the

DNN partition-offloading plan, the DNN subtask deployed to

the edge/cloud server is called P1; the DNN subtask deployed

on the client is called P2. The DNN partition generated in

the DNN partition-uploading plan is a further division of the

DNN partition P1 generated in the DNN partition-offloading

plan. In other words, the DNN partition-uploading plan builds

the upload sequence by dividing the DNN partition P1 into a

finer-grained DNN partition, namely P3. Obviously, the DNN

partition P1 is composed of the DNN partition P3.

A. DNN Model Preprocessing:

1) Inception Module Preprocessing: For the inception mod-

ules, it is common to consider splitting each inception module

and executing them together on both local and edge/cloud

servers. To avoid excessive data transmission on the wire-

less network, the inception module is partitioned only once,

which can be considered as a minimum cut problem, where

algorithms such as the Boykov-Kolmogorov maximum flow

algorithm and the topological sorting algorithm can be ap-

plied. Then, the inception module is cut into two disjoint

subgraphs, with the first one processed locally and the sec-

ond one offloaded to the edge/cloud server [3]. In addition,

when the difference between the predecessor’s out-degree and

the successor’s in-degree under the inception module is 1,

two adjacent layers are merged into a new layer. The data



4

dependency between the predecessor and the successor will

disappear after preprocessing [1]. Some scholars have also

proposed to directly treat the inception module as a whole

[4].

2) Convolutional Layer Preprocessing: In view of the

computationally intensive characteristics of the convolutional

layer, the traditional convolution process is accelerated by

low-rank decomposition schemes, and then the original kernel

set in the convolutional layer is approximated by two low-

rank decomposition kernels. In another way, the feature map

of the convolutional layer is divided into blocks in space,

and a related feature mapping block is assigned to an edge

server, so that the feature map of the convolutional layer

can be independently run on the edge server. In addition,

the introduction of a 1× 1 convolution kernel can effectively

enhance the nonlinear expression ability of the network and

greatly reduce the number of model parameters.

3) Fully Connected Layer Preprocessing: For the storage-

intensive fully connected layer, the number of parameters in

the fully connected layer is actually the size of the weight

matrix. One method is to find a low-rank weight matrix to

approximate the original weight matrix, thereby reducing the

number of parameters of each fully connected layer, and then

reducing the required storage space [5]. Another method is to

use network pruning methods to sparse the network, reduce

the over-fitting network, and then improve the generalization

ability of the network [6].

B. DNN Partition-Offloading Plan:

1) One-Step Segmentation: It mainly refers to the process-

ing of dividing the DNN model once and then offloading one

of the partitions to the edge/cloud server. Some work considers

the offload performance of partitioning at each candidate

point, and selects the point with the optimal delay/energy

consumption performance for partitioning [7]. Furthermore,

some scholars have also proposed a binary search method,

and then proved that the optimal partition-offloading decision

follows a one-climb policy. Based on this, the Gibbs Sam-

pling algorithm was proposed to obtain the optimal partition-

offloading decision [8].

2) Swarm Intelligence Optimization: This method only

relies on sampling the objective function, and then realizes

the overall random search through a certain search mechanism,

mainly including Simulated Annealing (SA), Particle Swarm

Optimization (PSO) , and Genetic Algorithm (GA). In the

edge-cloud collaborative computing environment, for each

preprocessed DNN subtask, the optimal allocation of each

subtask is searched as the partition-offloading strategy of the

DNN model [1].

3) Distributed Deep Learning: Deep learning is a branch

of machine learning that emphasizes learning from continuous

layers. The distributed deep learning algorithm [9] closely

combines distributed learning and deep learning, and uses mul-

tiple parallel DNNs to generate partition-offloading decisions,

providing a new way for DNN partition-offloading decisions

in an edge-cloud collaborative computing environment.

4) Deep Reinforcement Learning: Deep Reinforcement

Learning (DRL) [10] reflects human learning by exploring and

exploiting feedback from the environment. In order to achieve

system optimization, previous works usually convert the DNN

offloading process into a Markov Decision Process (MDP),

and then select the appropriate DRL algorithm to achieve

system optimization.

5) Meta Deep Reinforcement Learning: Since the sample

complexity of meta-learning is closely related to DRL, it

is considered to combine meta-learning and DRL in depth

to obtain a meta-Deep Reinforcement Learning (meta-DRL)

algorithm [11]. It can quickly adapt to new tasks and new

computing environments, and then make partition-offloading

decisions for the DNN model faster in an edge-cloud collab-

orative computing environment.

6) Deep Imitation Learning: Deep Imitation Learning

(DIL) [12] is a traditional supervised learning method, which

includes offline training and online decision-making. After

the high-quality demonstration is generated, the model can

be trained offline, and then the online decision can be made

at a fast online inference speed, which can obtain the DNN

partition-offloading plan very efficiently.

C. DNN Partition-Uploading Plan:

1) Direct Uploading Algorithm: This approach typically

estimates the expected query execution time for each pos-

sible partition point and, based on that, finds the optimal

partition point for the DNN model. By partitioning the DNN

model once, we can obtain the DNN partition-uploading

plan(i.e., partition-offloading plan), and then directly upload

the corresponding DNN partition P3(i.e., P1) to the edge/cloud

server [13].

2) IONN Algorithm: The DNN partition-uploading plan

is obtained by using the shortest path method and penalty

factor method. IONN uses up to eight penalty factors to find

partitions P3: 1, 0.5, 0.25, · · · , 0.016, 0.0. However, partitions

P3 are often very large, and there is a lack of opportunities for

fine-grained partitions P3 to provide better performance [14].

3) Efficiency-based Algorithm: The upload efficiency and

the shortest path method are combined to find the next partition

in each iteration, where the upload efficiency acts as a penalty

factor. However, different from the fixed penalty factor, the

upload efficiency has higher flexibility and selectivity. A

greedy algorithm is designed based on the upload efficiency,

and the partition P3 with the highest upload efficiency is re-

peatedly selected to obtain a more fine-grained DNN partition-

uploading plan [15].

4) Recursive Efficiency Algorithm: This approach recur-

sively splits partitions obtained by the efficient-based al-

gorithm and creates a more fine-grained DNN partition-

uploading plan [15]. Compared with the efficient-based al-

gorithm, it is obvious that this algorithm further improves the

query performance of the DNN model.

IV. GENERATION AND OPERATION OF MIGRATION PLAN

A. Installation Phase: Generate Migration Plan

In this part, we will describe the installation of applications

in an edge-cloud collaborative computing environment, briefly



5

Fig. 4: The framework of information flow.

introduce the role of applications, and discuss the flow of

information between applications.

From Fig. 4, the applications Program1 and Program3

installed on the client and the edge/cloud server, respectively,

are used to obtain the execution time and index of DNN

subtasks. The application Program2 installed on the client

is used to generate the migration plan. The information flow

between the edge/cloud server and the client is as follows:

First, we install Program1 on the client, run each DNN

subtask, and record the execution time and index of the DNN

subtask as file1. Then, the edge/cloud server cannot determine

which DNN subtask will be executed, so the edge/cloud server

cannot collect the execution delay of each DNN subtask

like the client does. Install Program2 on the edge/cloud

server, where Program2 uses regression functions to create

prediction functions for DNN subtasks, which can estimate the

execution delay of each DNN subtask under the edge/cloud

server based on the parameters of the DNN and the server.

Then, record the execution time and index of each DNN

subtask as file2. Finally, when the user enters the computing

environment, Program1 on the client runs and obtains file1.

At the same time, Program2 will send the prediction results

of each DNN subtask file2 to the client. Then, Program3

on the client combines file1 and file2 to create a migration

plan.

B. Running Phase: Operate Migration Plan

Existing DNN partition-uploading methods are mainly ap-

plied to the situation from a single local device to a single

edge/cloud server. We will execute the DNN query while

uploading DNN partitions P3, so two threads are required: (1)

Upload thread: upload DNN model; (2) Query thread: execute

real-time DNN query.

1) Upload Thread: The application Program2 first creates

a partition-offloading plan to obtain the DNN partition P1 and

its distribution on the edge/cloud server, and then creates a

partition-uploading plan to obtain the DNN partition P3 (P3

is divided by the DNN partition P1) and its upload sequence

on the edge/cloud server. Then the upload thread starts to run

the partition-uploading plan. First, the upload thread sends the

first DNN partition P3 in the partition-uploading plan from the

client to the edge/cloud server, and sends the Confirmation

Result (CR) of the DNN partition P3 offloading back to

the client. If the upload thread receives a failed result CR,

it resends the DNN partition P3 to the edge/cloud server.

Conversely, if the upload thread receives a successful result

CR, it sends the next DNN partition P3 to the edge/cloud

server, and then sends CR of the next DNN partition P3 back

to the client. Repeat the uploading process until the last DNN

partition P3 is uploaded to the edge/cloud server.

2) Query Thread: Consider performing DNN queries when

uploading DNN partitions P3. The client will repeatedly

perform DNN queries, and immediately propose a new query

after the previous query is completed. Before the DNN model

is completely uploaded, the query can be executed jointly

through the DNN partition P2 under the client and the DNN

partition P3 under the edge/cloud server.

The query thread is the process of uploading DNN models,

and performs a DNN query on the incomplete uploaded DNN

model under the edge-cloud collaborative computing environ-

ment. The local device obtains which DNN partitions have

been uploaded to the edge/cloud server by checking whether

the CR of each DNN partition P3 has arrived. When a DNN



6

query is triggered, the query thread will execute the DNN

partitions P3 in serial order. The first local DNN partition is

performed, and then the input matrix (i.e., the output matrix of

the first local DNN partition) and the index of the second DNN

partition P3 are sent to the designated client or edge/cloud

server. After the second DNN partitions P3 is executed, the

input matrix and the index of the next DNN partitions P3 will

be sent to the client or the edge/cloud server where the next

DNN partitions P3 is located. In this way, the client and the

edge/cloud server jointly execute the DNN partition P3 until

the whole DNN model is executed.

V. IMPROVEMENT AND COMPARISON

A. Improvement of Partition-Uploading Plan

It is known that the existing partition-uploading algorithm is

only suitable for the situation from a single client to a single

edge/cloud server, which is obviously not suitable for DNN

uploads in real scenarios. In this part, we will discuss the

performance of the DNN partition-uploading plan in a multi-

user edge-cloud collaborative computing environment. It is

mainly divided into the following two steps:

• Firstly, we simply apply the PSO algorithm to obtain the

corresponding offloading position of the DNN subtasks

in a multi-user edge-cloud collaborative environment.

• Secondly, according to the existing partition-upload algo-

rithm, combined with the unloading position of the DNN

subtask, the DNN partition P1 is divided to obtain the

DNN partition P3, and the upload order of each DNN

partition P3 can be determined.

B. Experimental Comparison

1) Experimental Setup: We build an edge-cloud collabora-

tive computing environment R = {r1, r2, · · · , r12}, where the

first two belong to the clients, the last five belong to the cloud

servers, and the remaining five belong to the edge servers. We

set the bandwidth between the local and the edge is 10 MB/s,

between the local and the cloud is 0.5 MB/s, between the edge

and the cloud is 0.5 MB/s, between different cloud servers is

5 MB/s and between different edge servers is 10 MB/s. The

CPU processing capacity of the client, the edge server, and

the cloud server are set to 1.1 ∼ 2.3 GHz, 4.2 ∼ 18.3 GHz,

and 40 ∼ 120 GHz, respectively. Moreover, the model size of

Alexnet is 223 MB, and the model size of the VGG model is

548 MB.

2) Performance Comparison and Analysis: We apply the

classic Direct Uploading algorithm, IONN algorithm and

Recursive Efficiency algorithm to the multi-user edge-cloud

collaborative computing environment, so as to illustrate the

feasibility and necessity of the DNN partition-uploading plan

in the multi-server environment.

As shown in Fig. 5, we track the system delay changes

of repeated queries of the Alexnet model and VGG model,

respectively. Among them, the horizontal axis represents the

upload delay of the DNN partition P3, and the vertical axis

represents the change of the system delay with the upload of

the DNN partition P3. We consider performing DNN queries

while uploading DNN partitions. In this process, we assume

that the client will repeatedly put forward DNN queries, and

execute new queries immediately after the previous one is

completed, until the entire model is uploaded. In addition,

During the upload period of the DNN partition P3, the DNN

system delay will not change during the upload period of the

DNN partition P3.

When compared with the Direct Uploading algorithm that

does not adopt the DNN partition-uploading plan, the IONN

algorithm and Recursive Efficiency algorithm using the DNN

partition-uploading plan have a lower total system delay to

complete the DNN model query. This is mainly due to the

DNN partition P1 being too large and the transmission delay

of uploading the whole DNN partition P1 being too high. In

the process of uploading the DNN partition P1, DNN queries

will only be completed by local devices, and the insufficient

computing capacity of local devices leads to the high delay of

DNN queries. In addition, the Recursive Efficiency algorithm

has better query results than that of IONN algorithm, which

is mainly obtained by more fine-grained partitions P3. In

summary, we know that adopting the DNN partition-uploading

plan can obtain more efficient DNN query performance, and

more fine-grained DNN partition P3 helps to obtain more

efficient DNN query results. In short, the above experimental

results demonstrate that the method proposed in this section

can extend different types of DNN partition-uploading plans to

a multi-server environment. Furthermore, the comparison with

the Direct Uploading algorithm also illustrates the necessity of

extending the DNN partition-uploading plan to a multi-server

environment.

VI. CURRENT CHALLENGES AND FUTURE DIRECTIONS OF

DNN MIGRATION

Along with the increasing number of IoT devices, people

have new demands for service quality in daily life. In addition

to the large granularity of DNN partitions and not being suit-

able for multi-server environments, DNN migration also faces

some challenges and opportunities in real-world scenarios.

On the one hand, applications such as Unmanned driving,

Virtual Reality (AR) and Augmented Reality (AR) all put

forward strict requirements for the delay. However, processing

massive amounts of data on the IoT devices puts a heavy bur-

den on battery consumption, and the high data transmission de-

lay of the cloud computing center also brings greater transmis-

sion energy consumption pressure on the client. Furthermore,

The requirements of users for QoS are constantly increasing,

and they hope to obtain the results of DNN migration at a

lower cost. In summary, when DNN migration is performed

in a resource-limited environment, how to achieve the overall

system optimization of latency, energy consumption, and cost

and how to specifically adjust the optimization degree of each

optimization objective according to user requirements is an

urgent issue to be solved.

On the other hand, we consider practical issues that are

ignored in the process of DNN model migration. These issues

are caused by the greedy occupation of resources by users and

the unbalanced metric optimization. It is known that the users



7

(a) (b)

Fig. 5: Comparison of various DNN partition-uploading methods. (a) Alexnet model. (b) VGG model.

entering the computing environment are constantly changing,

so when the users entering the environment first occupy all

the computing resources of some edge/cloud servers, the users

entering the environment later will not be able to use the above

servers, resulting in an unreasonable allocation of computing

resources. It can be seen that the unreasonable allocation of

computing resources caused by the dynamic changes of the

computing environment is also a problem worth studying in

the DNN migration in reality.

Most importantly, it is necessary to consider a more prac-

tical circumstance of migrating large-scale DNN subtasks

in a more complex and resource-limited computing envi-

ronment with multiple users in future work. Among oth-

ers, researchers should consider whether the proposed DNN

partition-offloading plan and DNN partition-offloading plan

are suitable for DNN models with different types, sizes, and

structures, which is an issue that researchers need to focus on.

VII. CONCLUSION

In this paper, we have given our vision and explored numer-

ous new trends for DNN migration in IoTs. To fulfill the re-

quirements of intelligent applications for communication sys-

tems in a computing environment with limited resources, we

have designed a DNN model migration framework, where the

DNN migration plan consists of three parts, including DNN

model preprocessing, partition-offloading plan, and partition-

uploading plan. We first describe the computing environment

and migration requirements for the DNN model. Then, we

comb the generation and operation of DNN migration and

summarize the common algorithms of DNN migration. Fur-

thermore, we propose a DNN partition-uploading plan in a

multi-user edge-cloud collaborative computing environment

and compare the performance of different partition-uploading

plans. Finally, we consider the prospects and challenges of

DNN migration under the existing technical conditions.

Edge computing provides low-latency, high-availability and

privacy protection for local computing services, and solves the

problems of high latency of cloud computing and constraints

by network environment. Accordingly, the DNN migration or

placement technology will vigorously mitigate the contradic-

tion between the limited computing capacity of IoT devices

and complex DNN inference. We expect that this visionary

research will be helpful to practitioners and researchers who

are interested in doing research on the DNN migration tech-

nology to promote intelligent applications, smart cities, and

other industrial upgrades.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China under Grant No. 62071327 and JSPS

KAKENHI under Grant No. 19H04105.

REFERENCES

[1] B. Lin, Y. Huang, J. Zhang, J. Hu, X. Chen, and J. Li, “Cost-driven off-
loading for DNN-based applications over cloud, edge, and end devices,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5456–
5466, 2020.

[2] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint dnn partition
deployment and resource allocation for delay-sensitive deep learning
inference in iot,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
9241–9254, 2020.

[3] X. Tian, J. Zhu, T. Xu, and Y. Li, “Mobility-included dnn partition
offloading from mobile devices to edge clouds,” Sensors, vol. 21, no. 1,
p. 229, 2021.

[4] L. Lockhart, P. Harvey, P. Imai, P. Willis, and B. Varghese, “Scission:
Performance-driven and context-aware cloud-edge distribution of deep
neural networks,” in 2020 IEEE/ACM 13th International Conference on

Utility and Cloud Computing (UCC). IEEE, dec 2020.
[5] A. Ss, B. Dg, C. Rk, and D. Fa, “Sparse low rank factorization for deep

neural network compression,” Neurocomputing, vol. 398, pp. 185–196,
2020.

[6] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren,
“PatDNN: Achieving real-time DNN execution on mobile devices
with pattern-based weight pruning,” in Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming

Languages and Operating Systems. ACM, Mar. 2020.
[7] C. Ding, A. Zhou, Y. Liu, R. Chang, and S. Wang, “A cloud-edge

collaboration framework for cognitive service,” IEEE Transactions on

Cloud Computing, vol. PP, no. 99, pp. 1–1, 2020.
[8] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, “Optimal task offloading

and resource allocation in mobile-edge computing with inter-user task
dependency,” IEEE Transactions on Wireless Communications, vol. 19,
no. 1, pp. 235–250, 2020.

[9] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed
deep learning-based offloading for mobile edge computing networks,”
Mobile Networks and Applications, 2018.

[10] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of lightweight
task offloading strategy for mobile edge computing based on deep
reinforcement learning,” Future Generation Computer Systems, vol. 102,
pp. 847–861, 2020.

[11] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta reinforcement
learning,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 1, pp. 242–253, 2020.



8

[12] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computation
offloading,” IEEE Wireless Communications, vol. 27, no. 1, pp. 92–99,
2020.

[13] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” SIGPLAN Not., vol. 52, no. 4, p. 615–629, Apr. 2017.

[14] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “IONN: Incremental
offloading of neural network computations from mobile devices to edge
servers,” in Proceedings of the ACM Symposium on Cloud Computing.
ACM, Oct. 2018.

[15] K. Y. Shin, H.-J. Jeong, and S.-M. Moon, “Enhanced partitioning of
DNN layers for uploading from mobile devices to edge servers,” in The

3rd International Workshop on Deep Learning for Mobile Systems and

Applications - EMDL '19. ACM Press, 2019.

Min Xue is currently working towards a Master’s degree

at the Center for Applied Mathematics, Tianjin University,

China. Contact her at xm 17@edu.cn.

Huaming Wu is currently an associate professor at the

Center for Applied Mathematics, Tianjin University, China.

Contact him at whming@tju.edu.cn.

Ruidong Li is currently an Associate Professor in Institute

of Science and Engineering, Kanazawa University, Japan.

Contact him at liruidong@ieee.org.


