
1

Joint Computation Offloading and Resource

Allocation under Task-Overflowed Situations in

Mobile Edge Computing
Huijun Tang, Huaming Wu, Member, IEEE, Yubin Zhao, Member, IEEE, and Ruidong Li, Senior Member, IEEE

Abstract—With the rapid development of Artificial Intelligence
(AI) and Internet of Things (IoT), we have to perform increas-
ingly more resource-hungry and compute-intensive applications
on IoT devices, where the available computing resources are
insufficient. With the assistance of Mobile Edge Computing
(MEC), offloading partial complex tasks from mobile devices to
edge servers can achieve faster response time and lower energy
consumption. However, it still suffers from finding the optimal
offloading decision when the total amount of computations
overflows the available computing resources in MEC systems. In
this paper, we establish a multi-user and multi-task MEC model
and design an offloading indicator, through which we analyze
what the current environment belongs to. In the cases where
the computational resources of devices are sufficient or partially
sufficient, we utilize the relationship between the offloading
indicator and the cost incurred by the tasks that are executed
in the current workflow to find the optimal offloading decision.
In the cases where the computation on local and edge are both
insufficient, we propose a novel Offloading Algorithm based on
K-means clustering and Genetic algorithm for solving Multiple
knapsack problem (OAKGM), aiming not only to jointly optimize
the time and energy incurred by the tasks that are executed
in the current workflow, but also to penalize the overflowed
computations so that the task pressure in the next workflow
can be greatly reduced. In addition, a simplified Offloading
Algorithm based on Multiple Knapsack Problem (OAMKP) is
proposed to further cope with the environments with a large
number of users or tasks. Experimental results demonstrate the
effectiveness and superiority of the proposed algorithms when
compared with several benchmark offloading algorithms, which
can better exploit the computing capacities of IoT devices and
the edge server, greatly avoid resource occupation in edge nodes
and make sustainable MEC possible.

Index Terms—Mobile Edge Computing, Internet of Things,
Task Offloading, Resource Allocation, Multiple Knapsack Prob-
lem

I. INTRODUCTION

DRIVEN by Artificial Intelligence (AI) in Internet-of-

Things (IoT) systems, more and more mobile applica-

tions with large-scale Deep Neural Networks (DNNs), e.g.,

video analytics and augmented reality, are being deployed

on resource-constrained mobile devices. Thus, the essential

demand for computing capacity and low latency has exploded.

H. Tang and H. Wu are with Center for Applied Mathematics, Tianjin Uni-
versity, Tianjin 300072, China. E-mail: {tanghuijune, whming}@tju.edu.cn

Y. Zhao is with the School of Microelectronics Science and
Technology, Sun Yat-Sen University, Zhuhai, 519082, China. Email:
zhaoyb23@mail.sysu.edu.cn

R. Li is with the Institute of Science and Engineering, Kanazawa University,
Kanazawa 920-1192, Japan (e-mail: liruidong@ieee.org).

(Corresponding author: Huaming Wu)

Unfortunately, the resources of mobile devices are generally

constrained [1], [2], e.g., insufficient storage, slow computing

speed and low battery capacity, which fail to support the

complex computation of DNN training and DNN inference [3].

Currently, Mobile Edge Computing (MEC) has been widely

applied to video analytics, augmented reality, mobile big data,

internet of vehicles and other fields [4]. With the assistance

of MEC, one promising method is to offload computation-

intensive tasks from IoT devices to edge servers, enabling

resource-constrained devices to perform more complicated

tasks with less time delay and lower energy consumption [5]–

[8]. Generally, an edge server can serve several users, and

each user can generate multiple tasks in a workflow [9],

[10]. Al-Shuwaili et al. [11] applied edge computing to the

augmented reality tasks, which involves a large amount of

computation, e.g., the amount of computation required per

task for computing a 1024×768 image can reach 2,640 cycles.

Unlike cloud servers with abundant computing resources, edge

servers generally suffer from limited computational resources.

Although the computing power of edge servers is much greater

than that of mobile devices, they are relatively low compared

to cloud servers.

Intuitively, executing a huge number of tasks at the server

tends to cause high response time. As a result, there exists

an upper bound on concurrent task execution due to a large

number of offloading requests and the limited computing

power of edge servers. On the one hand, if all the IoT devices

offload their tasks to an edge server for processing, the edge

server will become overloaded and bring in additional delays

during task execution. On the other hand, once the number of

mobile users or computational tasks of each device increases

significantly, the total amount of computation of intensive

tasks are prone to overflow the overall computing capacity

in the MEC environment.

In order to deal with the above challenges, we need to

determine the priority of tasks so that the number of tasks

that cannot be executed in the current workflow should be

as few as possible. It is imperative to develop an offloading-

decision strategy that not only considers the delay and energy

consumption when executing tasks locally or at the edge, or

transferring data between the device and the edge, but also

considers the computational amount of tasks that cannot be

executed in the current workflow when tasks are intensive.

When the tasks of mobile users arrive in a workflow, there

are three options for each task: the first one is to be executed

locally on the mobile device, the second one is to be offloaded

2

TABLE I: Comparison of Selected Related Studies.

Ref. Number of Tasks Number of Users Edge Server Objectives Constraints

Meng et al. [14] Single Multiple Single Energy Total Computational Resource & Latency Requirement

Wang et al. [12] Single Multiple Multiple Energy Latency Requirement

Kao et al. [15] Multiple Multiple - Energy Latency Requirement

Wang et al. [16] Single Multiple Single Time+Monetary cost Total Computational Resource & Total Bandwidth Resource

Fang et al. [17] Single Multiple Multiple Energy+Time Latency Requirement

Ours Multiple Multiple Single Energy+Time+wn Total Computational Resource

wn is the total amount of computation of tasks that cannot be executed in the current workflow

to the server at the edge and the third one is to be delayed to

the next workflow. How to jointly make the optimal offloading

decision and resource allocation depends on two factors: one

is the cost, which is usually defined by the time delay and the

energy consumption incurred from the computing process or

the transmitting process; the other is the currently available

computing resources of the system. This can be regarded as

a multi-knapsack problem, which is an NP-hard problem that

requires a large amount of computation and causes additional

delays for offloading decision-making. This means that it

is difficult to find a polynomial-time complexity algorithm

to solve such a problem. Previous studies [12], [13] have

tried to solve the multiple knapsack problem through heuristic

algorithms, but only optimized the energy consumption when

computing tasks or transmitting data, ignoring the total amount

of computation of tasks that cannot be computed in the

current workflow, which places a heavy burden, especially

when excessive tasks need to take up plenty of resources in

the next workflow.

In this paper, we mainly focus on situations where tasks with

a large number of calculations such as augmented reality, will

occasionally overflow the computation of the local devices or

the edge server. In particular, we address a situation in the

MEC when the amount of computations to be carried out

exceeds the resource capacity of the network at the edge.

We treat the task-overflowed issue in MEC Systems as the

multiple knapsack problem and propose two novel offloading

algorithms for solving this problem. As far as we know, this

is the first work that not only optimizes the cost incurred

in the current workflow, but also penalizes the computational

burden left to the next workflow about computation offloading

and resource allocation. The aim of this paper is to jointly

minimize the time and energy incurred by the tasks, as well

as to penalize the overflowed computation and exploit the

resources as many as possible.

The major contributions of this paper can be summarized

as follows:

• Model of Overloaded Task Offloading Problem in MEC

Systems:

– The task-overflowed situation that was rarely con-

sidered in previous studies is modeled as a multiple

knapsacks problem whose NP-hardness is proved in

the paper. We optimize offloading decisions in task-

overflowed situations from the perspective of the

overflowed computation, which is more refined than

the perspective of the number of tasks which usually

measures the queue.

– We design a novel offloading indicator, which can

directly indicate the offloading strategy when the

system has sufficient computing resources. When

the current computing resources are insufficient, we

formulate a joint computation offloading and re-

source allocation strategy, which not only optimizes

the combined delay and energy consumption gen-

erated from executing or transferring process, but

also optimizes the total amount of calculations of

the overloaded tasks in the current workflow.

• Two Knapsack Problem-based Task Offloading Algo-

rithms: For small-scale MEC systems, we propose the

OAKGM algorithm that combines K-means clustering

and genetic algorithm to solve the multiple knapsack

problem, while for large-scale MEC systems [18], we

propose the OAMKP algorithm that can handle numerous

users or tasks.

• Performance Evaluation: We conduct extensive simula-

tion experiments under various system parameters. Sim-

ulation results demonstrate that when compared with the

Genetic Algorithm (GA) and the Particle Swarm Opti-

mization (PSO) algorithm, the proposed OAKGM and

OAMKP algorithms can make better use of the computing

capacities of IoT devices and edge nodes, alleviate the

task pressure to the next workflow, significantly reduce

the average cost, as well as avoid resource occupation in

edge nodes.

The rest of the paper is organized as follows: Section II

reviews the related work. Section III formulates the system

model of task offloading in MEC with workload overloaded.

The proposed OAKGM and OAMPK algorithms are described

in detail in Section IV. Section V evaluates its performance by

comparing it with state-of-the-art offloading methods. Finally,

Section VI concludes this paper and points out some possible

future work.

II. RELATED WORK

It is known that offloading tasks from resource-constrained

IoT devices to nearby edge servers will cause additional energy

consumption or time delays due to data transmission between

the local and the edge [19]. In recent years, a large amount

of research (ranging from heuristic algorithms [20]–[22],

genetic algorithms [23], [24], game theory [25], blockchain

theory [26], [27], to deep reinforcement learning-based al-

gorithms [28]–[30]) has been devoted to seeking the optimal

3

offloading strategy in MEC systems, with the aim of improving

system efficiency when the computing and communication

resources are limited.

Several offloading-decision algorithms have been proposed

in [31]–[33], with the purpose of minimizing energy consump-

tion while ignoring the time delay. Prior research [34]–[36]

has focused on joint optimization of offloading decisions and

resource allocation for delay-sensitive or compute-intensive

tasks. However, few studies have considered overloaded or

overflowed tasks that cannot be computed in the current

workflow on account of the limitation of computing resources

of mobile devices and edge servers. Most recent studies have

discussed the optimal offloading decision in the situation

where the total computing capacity of the MEC system is

sufficient for computing the current tasks [12], [14]–[17], [32],

which cannot satisfy the future or even current demand of

the MEC system. However, when taking the task-overflowed

cases into account, it will cause the already complex offloading

decision and resource allocation problem even more compli-

cated, thereby posing a huge challenge. On the contrary, in

this paper, we define a new weighted cost, which includes the

time delay and energy consumption during the computing and

transmitting process, as well as the amount of computation of

overflowed tasks in the current workflow.

In general, the joint offloading decision and resource al-

location problem can be treated as an integer programming

problem [12], [37]. Xue et al. [37] regarded the computation

offloading problem as an NP-hard problem and solved it

through an iterative heuristic task-intensive assignment algo-

rithm. Song et al. [38] proposed a dynamic programming

algorithm to manage tasks at the edge of the network. Guo

et al. [39] treated the offloading computing problem as a

Mixed Integer Programming (MIP) problem and solved it by

the Gurobi optimizer. Liu et al. [40] formulated the offloading

decision problem in IoT environments as a MIP problem to

minimize the energy consumption. Chen et al. [41] took the

relay-assisted problem into consideration and formulated the

model as a non-differentiable and non-convex optimization

problem. However, all the above-mentioned works ignore the

amount of computation of tasks that cannot be executed in

the current workflow, which may bring huge computational

pressure to the next workflow.

Some studies model the optimization process as a Lyapunov

optimization problem [42] [43]. Ouyang et al. [42] proposed

different situations depending on whether the mobility char-

acteristic is known. They propose a greedy algorithm for

short-term optimization and a Lyapunov-based algorithm for

long-term optimization. It is necessary to study the short-term

optimization because the characteristic of mobile devices and

edge servers sometimes change in long term. In this paper, we

consider the optimization in one workflow so that the change

of the devices or the environment in different workflows will

not influence the result of optimization.

Different from previous works, we design a novel task

offloading indicator in the local-edge collaborative comput-

ing model. By utilizing this indicator, we consider different

situations depended on the computational resources and the

offloading indicator. Then, we propose different methods for

different situations. When the computational resources on local

and edge are both sufficient, optimal offloading decisions

are made dependent on whether the offloading indicator is

greater than 1. When the computational resources on local and

edge are partially sufficient, we make offloading decisions by

utilizing the relationship between the cost and the offloading

indicator. When the computational resources on local and edge

are both insufficient, finding an optimal offloading decision

is a multiple knapsack problem that is NP-hard to solve.

We convert the NP-hard problem into an easy-to-solve trans-

formation problem, which consists of several simple integer

programming problems, so that the original problem can be

solved in polynomial time. We then propose two algorithms on

the basis of the offloading indicator: one is called OAKGM,

which combines K-means clustering and a genetic algorithm

to search for different thresholds of offloading indicators for

a variety of mobile devices; the other is OAMKP, which goes

through all possible threshold values of offloading indicators

for all mobile devices and finds the best threshold for the

whole MEC system.

III. SYSTEM MODEL

In order to minimize the average system cost (weighted

sum of delay and energy consumption) from IoT devices to

the edge and alleviate the computational pressure of the next

workflow, we consider an MEC system with a large amount

of computational overflow.

Fig. 1: An illustration of the MEC system with multiple mobile
devices and an edge server.

As depicted in Fig. 1, the IoT-edge computing environment

consists of m IoT devices and an edge server, and is equipped

with some computing nodes with different computing capac-

ities. Mobile users can offload their tasks to the edge server.

Without loss of generality, we consider a set of mobile users

M = {1, 2, · · · ,m}. We assume that tasks arrive in a time-

slotted form, and the length of slot is t. In a workflow, each

user has L arrival tasks, and the j task of the ith user is

denoted as taskij . The data size of these tasks are expressed

as a set D = {Dij |i = 1, 2, · · · ,m and j = 1, 2, · · · , L}. The

major notations used in this paper are defined in Table II.

4

A. Local Computing Model

When a task is processed locally on the IoT device, the time

delay and energy consumption can separately be represented

as follows:

• The time delay when performing taskij locally can be

calculated as:

T l
ij =

wij

fi
, (1)

where fi(cycle/s) is the computation speed of the ith

mobile device and wij is the amount of computation for

taskij .

• The energy consumption when performing taskij locally

can be calculated as:

El
ij = PA

i · T l
ij =

wijP
A
i

fi
, (2)

where PA
i is the active power.

Thus, the overall cost of taskij when it is processed in local

can be calculated as:

Ql
ij = αT l

ij + El
ij =

wij

fi
(α+ PA

i), (3)

where α > 0 is a weighting parameter used to measure the im-

portance of the time delay relative to the energy consumption.

B. Edge Computing Model

The computing resources of local devices are usually lim-

ited, so we can offload complex tasks to edge servers. In the

offloading process, the cost is composed of two parts: one

part is incurred from the transmitting process, the other part

is incurred from the computing process.

• The time delay during data transmission for taskij can

be calculated as:

TT
ij =

Dij

Ri

, (4)

where Ri is the data rate of device i.
• The energy consumption during data transmission for

taskij can be expressed as:

ET
ij = PT

i · TT
ij =

Dij

Ri

PT
i , (5)

where PT
i is the transmission power of the ith device.

• The time delay when computing taskij can be expressed

as:

T e
ij =

wij

fe
, (6)

where fe(cycle/s) is the computing speed of the edge

server, wij = ρijDij is the amount of computation of

taskij , and ρij is the computational complexity of taskij .

• The energy consumption when computing taskij can be

calculated as:

Ee
ij = P I

i · T l
ij =

wij

fe
P I
i , (7)

where P I
i is the idle power.

TABLE II: Notations and their definitions.

Notations Definitions

R The data rate

m The number of users of the mobile devices

L The number of tasks of the mobile devices

taskij The jth task of the ith user

PA The active power

P I The idle power

PT The transmission power

D The data size

w The amount of computation

ρ The computational complexity

τ The offloading indicator

Θ The threshold vector of the offloading indicator

θ The threshold value of the offloading indicator

T l
ij The time delay when taskij is executed in the local

T e
ij The time delay when taskij is executed at the edge

El
ij The energy consumption when taskij is executed in the local

Ee
ij The energy consumption when taskij is executed at the edge

TT
ij The time delay when taskij is transmitted to the edge

ET
ij The energy consumption when taskij is transmitted to the edge

Ql The cost in the local

Qe The cost at the edge

V l The values of items in the improved local knapsack

V e The values of items in the improved edge knapsack

κij The offloading decision for taskij

α The weighting factor of the time delay

β The weighting factor of the amount of overflowed computations

I The offloading policy for all tasks

Inext The indicator matrix of tasks to be executed in next workflow

Itr The indicator matrix of tasks executed elsewhere not guided by τ

Il The indicator matrix of tasks considered to be executed in the local

Ie The indicator matrix of tasks considered to be executed at the edge

κl The indicator matrix describes the task executed in the local

κe The indicator matrix describes the task executed at the edge

Thus, the overall cost of taskij when it is processed at the

edge can be calculated as:

Qe
ij = α(TT

ij + T e
ij) + (ET

ij + Ee
ij)

=
Dij

Ri

(α+ PT
i) +

wij

fe
(α+ P I

i). (8)

C. Local-Edge Collaborate Computing Model

The optimal computing cost for executing taskij is the

minimum of the cost executing in local and edge, which can

be expressed as:

Qij = min{Ql
ij , Q

e
ij}, (9)

where taskij is preferred to be offloaded to the edge server

than computing in local when Ql
ij > Qe

ij , which satisfying

the following condition:

ρij
fi

(α+ PA
i) >

1

Ri

(α+ PT
i) +

ρij
fe

(α+ P I
i), (10)

5

where ρij is the computational complexity of taskij and ρij =
wij/Dij . To simplify the analysis, we then define an offloading

indicator according to Eqs. (3), (8) and (9), as follows:

τij =
1

fi

ρij · (α+ PA
i)

1
Ri

(α+ PT
i) +

ρij

fe
(α+ P I

i)
. (11)

Therefore, when τij > 1, it is preferred for taskij to be

offloaded to edge, while when τij < 1, it is preferred

for taskij to be executed on local devices. The following

part consider joint computation offloading rather than a task

offloading. When the computing resources in the local and

edge are both sufficient, the cost function can be represented

as follows:

Cn =
m∑

i=1

L∑

j=1

[
(1− κij)Q

l
ij + κijQ

e
ij

]

=

m∑

i=1

L∑

j=1

Qe
ij ·

[
(1− κij)τij + κij

]
, (12)

where κij = 0 means that taskij is processed locally, and

κij = 1 means that taskij is processed at the edge. Cn is the

sum of the cost of taskij . Minimizing Cn is equal to Eq. (9).

Thus, the optimal joint offloading decision for taskij when the

computing resources in the local and edge are both sufficient

can be denoted by:

κij =

{

0, τij 6 1,

1, τij > 1,
(13)

where i = 1, 2, · · · ,m, and j = 1, 2, · · · , L

IV. THE OVERLOADED TASK OFFLOADING ALGORITHM

In this section, we propose two novel offloading decision

algorithms, which aim to minimize the average system cost

(weighted sum of delay and energy consumption) from IoT

devices to the edge, and reduce the computational pressure

caused by executing overloaded tasks in the next workflow.

A. Problem Formulation

On the one hand, when the computing resources of the local

devices and the edge server are sufficient, we decide whether

to offload according to the offloading indicator. On the other

hand, however, when the computing resources are insufficient,

i.e.,
∑L

j=1(1 − κij)wij > fit or
∑m

i=1

∑L
j=1 κijwij > fet,

we need to determine which tasks should be performed locally,

which ones should be performed at the edge, and which ones

should be performed in the next workflow.

As depicted in Fig. 2, there are four cases in the aspect of

computation resources of the MEC system:

• The total computation resource of the local device is

sufficient for all tasks whose τ 6 1 in the device and

at the same time the computation resource of the edge

server is sufficient for all tasks whose τ > 1.

• The total computation resource of the local device is

insufficient for all tasks whose τ 6 1 in the device and

the computation resource of the edge server is sufficient

for all tasks whose τ > 1.

Fig. 2: Different cases in terms of computation resources in MEC
systems.

• The total computation resource of the local device is

sufficient for all tasks whose τ 6 1 in the device and

at the same time the computation resource of the edge

server is insufficient for all tasks whose τ > 1.

• The total computation resource of the local device is in-

sufficient for all tasks whose τ 6 1 in the device and the

computation resource of the edge server is insufficient

for all tasks whose τ > 1.

Regardless of whether taskij is executed in the current

workflow or the next workflow, the minimum cost of executing

taskij is C∗

n, which is treated as a cost that must be paid.

Here, the offloading decision is made according to Eq. (13).

However, due to the insufficient computing ability of mobile

devices and edge servers, not all tasks can be offloaded with

minimum energy and time costs, which is exactly what we

need to optimize. The extra cost incurred when tasks are

not executed following the instructions of τ in the current

workflow, can be formulated as:

|Qe −Ql| =
∣
∣
∣1−

1

τ

∣
∣
∣
w(α+ PA)

fl
Itr, (14)

where Itr is the indicator matrix of tasks executed elsewhere

not guided by τ .

Furthermore, the amount of computation of tasks that are

considered to be executed in the next workflow will be count

into the cost function to keep the total amount of computation

of tasks that are not computed in the current workflow as small

as possible, which means the total amount of computation for

the tasks that go to the next workflow will be punished in our

cost function. Thus, our aim is to minimize the extra cost,

including a penalty term of overflowed computation, which

can be calculated by:

Costextra =
∣
∣
∣1−

1

τ

∣
∣
∣CwItr + βwInext, (15)

where Inext illustrates the tasks that are considered to be

executed in the next workflow, β is a penalty parameter and

6

C = α+PA

fl
.

(P1) min
Itr,Inext

:

m∑

i=1

L∑

j=1

Costextra(I
tr, Inext), (16)

s.t. :
L∑

j=1

w(I lτ<1 + I lτ>1) ≤ fit, (17)

m∑

i=1

L∑

j=1

w(Ieτ>1 + Ieτ<1) ≤ fet, (18)

I lτ<1 + Ieτ>1 + Itr + Inext = 1m×L, (19)

Itr, I lτ<1, I
l
τ>1, I

e
τ<1, I

e
τ>1, I

next ⊆ {0, 1}mL

(20)

where I lτ<1 indicates the tasks whose τ < 1 and meanwhile

which are computed in local, Ieτ>1 indicates the tasks whose

τ > 1 and meanwhile which are computed at the edge,

Itr = I lτ>1+Ieτ<1 indicates the tasks which are not computed

following the instructions of τ in the current workflow, and

Inext indicates the tasks which go to the next workflow.

Eq. (17) indicates the total computation of tasks executed

locally is less than the computing ability of the mobile device

during a time slot. Eq. (18) indicates that the total computation

of tasks offloaded to the edge server is less than the computing

ability of the edge server during a time slot.

The objective function is to minimize the total extra cost,

which includes two parts: one is the extra cost resulting from

the concessions due to the limitation of the computing ability,

and the other one is the penalty term for the overflowed

computation.

Lemma 1. P1 is a multiple knapsacks problem and NP-hard.

Proof. First, we consider an instance of P1 whose τ > 1
for all tasks. Then, we can get Ieτ<1, I

l
τ<1 = 0, I l = I lτ>1,

Itr = I l, and Inext = 1m×L − Ie − Ie. Then Costextra =
(|1− 1

τ
|C−β)wI l−βwIe+βw. Solving the instance is equal

to solving the following problem:

(P2) min
Il,Ie

:

m∑

i=1

L∑

j=1

[(∣
∣
∣1−

1

τ

∣
∣
∣C − β

)

wI l − βwIe
]

, (21)

s.t. :

L∑

j=1

wI l ≤ fit, (22)

m∑

i=1

L∑

j=1

wIe ≤ fet, (23)

I l + Ie ≤ 1m×L, (24)

I l, Ie ⊆ {0, 1}mL. (25)

The multiple knapsack problem P3 described in [44] is known

as a NP-hard problem.

(P3) max
x

:

m∑

i=1

n∑

j=1

vixij , (26)

s.t. :
n∑

j=1

wjxij ≤ ci, (27)

m∑

i=1

xij ≤ 1n, (28)

xij ∈ {0, 1}n. (29)

P3 can be polynomial-time reducible to P2, which is an

instance of P1. The reduction is as follows:

• Let I l = [I1, I2, · · · , Im]. Reshape Ie, w as vectors Ieflat,
wflat whose lengths are m×L. xi is corresponding to Ii,
where i = 1, · · · ,m and xm+1 = Ieflat. Let vi = −(|1−
1
τ
|C − β)w, where i = 1, · · · ,m and vm+1 = βwT

flat.

Thus, Eq. (26) can be reduced to

min
Il,Ie

flat

:

m∑

i=1

L∑

j=1

[(∣
∣
∣1−

1

τ

∣
∣
∣C − β

)

wI l −
β

mL
wT

flatI
e
flat

]

,

which is equal to Eq. (22).

• Let ci = fit, i = 1, · · · ,m, cm+1 = fet, Then Eq. (27)

can be reduced to
∑L

j=1 wjI
i ≤ fit, w

T
flatI

e
flat ≤ fet

which are equal to Eqs. (23) and (24).

•

∑m
i=1 xij ≤ 1n and xij ∈ {0, 1}n can be reduced to

I l + Ie ≤ 1m×L and I l, Ie ⊆ {0, 1}mL, respectively.

There are m+ 1 containers whose capacity is the computing

power of devices. Ii and Ie indicate tasks are packed into a

local knapsack and an edge knapsack, respectively. Therefore,

we can conclude that P1 is a multiple knapsack problem and

it is NP-hard.

Fig. 3: The extra cost generated in the local and at the edge.

The extra costs generated in the local and at the edge are

defined as Costlextra and Costeextra, respectively.

Costlextra =
∣
∣
∣1−

1

τ

∣
∣
∣CwI lτ>1 + βwInextτ<1 , (30)

Costeextra =
∣
∣
∣1−

1

τ

∣
∣
∣CwIeτ<1 + βwInextτ>1 . (31)

7

From Eqs. (30) and (31), we find both Costlextra and

Costeextra are positively associated with |1− 1
τ
|. As depicted

in Fig. 3, when the value of τ is closer to 1, the value of

|1− 1
τ
| is smaller, which means it is preferred for Costlextra

and Costeextra to execute tasks whose τ is closer to 1. In

reality, the conclusion is understandable: τij = 1 means

executing on local is equal to executing on edge for taskij .

When the computing ability is insufficient, we need to choose

which tasks are executed in the current workflow to minimize

the extra cost and the rest of tasks will be executed in the

next workflow. As mentioned above, the cost of the current

workflow consists of two parts: one part is the lowest cost we

need to paid whether tasks executed on local or on edge; the

other part is the extra cost of tasks which are indicated by Itr.

The former cost is fixed, and the latter cost is what we need

to optimize. In order to choose tasks from Itr to minimizing

the extra cost of the current workflow, we execute tasks in the

current workflow whose τ is closer to 1 by using the limited

remaining computing ability.

Lemma 2. A mobile device user i has L tasks, which are

sorted by |1− 1
τ
| from smallest to largest. Itri is the indicator

vector of user i which illustrates tasks executed elsewhere,

without being guided by whether τ is greater than 1 or not.

When the amount of computation of tasks are equal and Itri
indicate the task whose τ is closer to 1 as 1, Costextra is

smaller.

Proof. First, let’s assume Itri and Itr
′

i as follows:

Itri = [1, 1, · · · ,
︸ ︷︷ ︸

1

1
k−1

, 0
k
, 0, · · · , 0
︸ ︷︷ ︸

0

], k ≥ 2,

Itr
′

i = [1, 1, · · · ,
︸ ︷︷ ︸

1

0
k−1

, 1
k
, 0, · · · , 0
︸ ︷︷ ︸

0

], k ≥ 2.

Then, Costextra with the indicator Itri can be calculated as:

Costextra(I
tr
i) =

∣
∣
∣1−

1

τ

∣
∣
∣CwItr + βwInext

=

k−1∑

j=1

∣
∣
∣1−

1

τj

∣
∣
∣Cw + βwInext

≤

k−2∑

j=1

∣
∣
∣1−

1

τj

∣
∣
∣Cw +

∣
∣
∣1−

1

τk

∣
∣
∣Cw + βwInext

= Costextra(I
tr′

i)

P1 is a 0-1 NP-hard problem [45], whose computational

complexity will significantly arise due to the increase of

binary variables. We convert P1 into several simple knapsack

problems based on the relationship between Costextra and τ ,

which are prone to be solved. On the one hand, we translate

the threshold of τ from 1 to a new vector Θ which is more

suitable to the current environment, and we decide whether to

offload the task or not by the threshold and τ . On the other

hand, the tasks which are assigned on the local or on the edge

will further be allocated computational resources, and the tasks

which are not be allocated computational resources will be

computed in the next workflow. The preliminary offloading

policies I l(Θ) and Ie(Θ) of the current threshold Θ in the

local and at the edge are computed as follows, respectively.

I lij(Θ) =

{

1, τij ≤ Θ(i),

0, otherwise.
(32)

Ieij(Θ) =

{

1, τij > Θ(i),

0, otherwise.
(33)

Furthermore, two simple knapsack problem are solved in

local and edge to get the final offloading policy I∗ij(θ) of the

current threshold Θ, which is decided by κl(Θ) and κe(Θ) as

follows:

I∗ij(Θ) =







0, κl(Θ) = 1,

1, κe(Θ) = 1,

2, κl(Θ) = 0 & κe(Θ) = 0.

(34)

where I∗ij(Θ) = 0 means computing taskij in local under the

current Θ, I∗ij(Θ) = 1 means computing taskij at the edge

under the current Θ, and I∗ij(Θ) = 2 means computing taskij
in the next workflow under the current Θ. κl(Θ) and κe(Θ)
are the results of two simple knapsack problems. We describe

two simple knapsack problems in the following parts.

Therefore, the total cost of the system under the current θ
can be calculated as:

cost(Θ) =

m∑

i=1

L∑

j=1

Cost(I∗ij(Θ)), (35)

where

Cost(I∗ij(Θ)) =







Ql
ij , I∗ij(Θ) = 0,

Qe
ij , I∗ij(Θ) = 1,

βwij , I∗ij(Θ) = 2.

(36)

B. Find the Optimal Θ∗

In MEC systems, the active power PA
i , the idle power P I

i ,

the transmission power PT
i and the computational speed fi

are generally different for varying mobile devices, which have

a great impact on the distribution of τ . For instance, as shown

in Fig. 4, the values of τ of tasks in the 4th device are signif-

icantly different from those in the 5th device. So we define a

threshold vector Θm×1, where different mobile devices may

have different threshold values. In the case of task overflow,

the number of tasks or the amount of computation may be

very large, so it is very urgent to relieve the computational

pressure in the next workflow. In order to tackle this challenge,

we propose two algorithms based on the multiple knapsack

problem to offload tasks: the OAKGM algorithm is designed

to search for an optimal threshold vector, while the OAMKP

algorithm is designed to search for an optimal threshold value.

Because the large difference between the values of τ of

different tasks may cause a lot of unnecessary calculation and

the values of τ of each device can be roughly divided into

2 3 clusters in Fig. 4, we utilize K-means clustering to cluster

τi = {τi1, τi2, · · · , τiL} and get the K-table as shown in Fig. 6,

where the values of τi are divided into three clusters.

When the computational resources of each device are suffi-

cient, the threshold is one. However, when the computational

8

Fig. 4: The distribution of τi (i = 1, 2, · · · , 5).

Fig. 5: The encoding of Θ in the OAKGM algorithm when the
number of users is five.

resources are insufficient, we have to make a trade-off between

the cost and the limitation of computational resources. We

propose the OAKGM algorithm, the purpose of which is to

search for the most suitable Θ to minimize the system cost

and alleviate the computational pressure in the next workflow.

After computing K-table by utilizing K-means clustering, we

obtain the optimal threshold vector Θ∗ through a genetic

algorithm [46], [47]. The algorithmic process of the genetic

algorithm is described as follows:

• Encoding Chromosomes: As depicted in Fig. 5, we

encode every chromosome as a binary vector whose

length is m× 2, which corresponds to a threshold vector

Θ.

• Selection: The fitness function of the genetic algorithm

is equal to −Cost(I∗ij(Θ)), because the aim of our

algorithm is to find an optimal Θ that minimizes the Cost
of the overflowed MEC system.

• Crossover and Mutation: To generate more high-fitness

chromosomes, we use single-point crossover and swap

mutation [47].

The proposed OAKGM algorithm is as illustrated in Fig. 6,

the numbers of K-table correspond to the clusters of K-means

clustering. I l(Θ) and Ie(Θ) are the indicator matrices that

represent the tasks considered to be executed in the local and

at the edge, respectively, which can be calculated as follows:

I lij(Θ) =

{

1, K − tableij ≤ Θ(i),

0, otherwise.
(37)

Ieij(Θ) =

{

1, K − tableij > Θ(i),

0, otherwise.
(38)

Fig. 6: The illustration of the K-table

C. Optimization in the Local

In the case when the computing resources in the local are

insufficient to compute all tasks whose I lij(Θ) are equal to 1,

which means
∑lli(Θ)

j=1 wl
ij(Θ) > fit, where lli(Θ) is the number

of tasks for the ith device that satisfies I lij(Θ) = 1 and wl
i(Θ)

is the amount of computation corresponding to these tasks.

In this part, we need to determine which tasks should

compute in the local and which tasks should compute in the

next workflow. So it can be regarded as a knapsack problem:

the capacity of the knapsack is fit; the item weight of the

knapsack is wij , and the item value of the knapsack is V l
ij(Θ),

where V l
ij(Θ) is the difference between the cost in the case

when taskij is computed in the next workflow and the cost in

the case when taskij computed in the local. The greater the

difference is, the more cost it takes for the task to enter the

next workflow, that is, the better it is computed in the local.

V l
ij(Θ) = βwl

ij(Θ)−Ql
ij(Θ)

= wij(Θ)
(

β −
α+ Pi

fi

)

, (39)

where the unit value of items is vli = β − α+Pi

fi
. Therefore,

when Θ is given, the optimization problem can be described

as follows:

(P4) max
κl
i(Θ)

:

lli(Θ)
∑

j

vlijw
l
ij(Θ)κl

ij(Θ), (40)

s.t. :

lli(Θ)
∑

j

wl
ij(Θ)κl

ij(Θ) ≤ fit, (41)

κl
i(Θ) ∈ {0, 1}l

l
i(Θ), (42)

where κl∗
i (Θ) is the best solution under the current Θ, which

makes the total cost of tasks whose I lij(Θ) = 0 are equal to

1 the lowest in the current Θ.

D. Optimization at the Edge

When the computing resources at the edge are insufficient

to compute all tasks whose Ieij(Θ) are equal to 1, which

means
∑le(Θ)

k=1 we
k(Θ) > fet, where le(Θ) is the number of

9

tasks satisfying Ieij(Θ) = 1, and we(Θ) is the computation

corresponding to these tasks.

In this part, we need to determine which tasks should

compute at the edge and which ones should compute in the

next workflow. It can also be regarded as a knapsack problem:

the capacity of the knapsack is fet, the item weight of the

knapsack is wk(Θ), and the item values of the knapsack is

V e
k (Θ), where V e

k (Θ) is the difference between the cost if

taskij is computed in the next workflow and the cost if taskk
is computed at the edge. The greater the difference is, the more

cost it takes for the tasks to go to the next workflow, that is,

the better it is executed at the edge.

V e
k (Θ) = βwe

k(Θ)−Qe
k(Θ)

= we
k(Θ)

[

β −
α+ Pi

fiτek (Θ)

]

, (43)

where k = 1, 2, · · · , le(Θ) and τek (Θ) is the offloading

indicator corresponding to we
k(Θ). The unit value of items

of the knapsack is vek(Θ) = β − α+Pk

fkτ
e
k
(Θ) . Thus, when Θ is

given, the problem is described as follows:

(P5) max
κe(Θ)

:

le(Θ)
∑

k

vek(Θ)we
k(Θ)κe

k(Θ), (44)

s.t. :

le(Θ)
∑

k

we
k(Θ)κe

k(Θ) ≤ fet, (45)

κe(Θ) ∈ {0, 1}l
e(Θ), (46)

where κe∗(Θ) is the best solution that makes the total cost

of tasks whose I lij(Θ) are equal to 1. For convenience, we

transform κe∗(Θ) to a matrix, whose dimension is m× L.

Fig. 7: The illustration of algorithms

E. Two Offloading Algorithms based on Knapsack Problem

In the case when the current threshold is Θ, we gather

κe∗(Θ) and κl∗(Θ) together so that we can obtain I∗(Θ)
according to Eq. (34).

Algorithm 1 shows the process of obtaining the optimal

solution through K-means clustering, genetic algorithm and

Algorithm 1 Offloading Algorithm based on K-means cluster-

ing and Genetic algorithm for solving the Multiple knapsack

problem (OAKGM)

Input: α

Output: I∗(Θ∗)

for workflows do

Initialize env=[ρ, fe, fi, Ri, D, PA, PT , P I]

Compute τ by Eq. (11)

Compute K-table by K-means clustering

Initialize chromosomes

for num = 1 : max iter do

Compute Θ by chromosomes as Fig. 5

Compute I l(Θ) and Ie(Θ) using Θ and K-table by

Eq. (37) and Eq. (38), respectively

Compute κl∗(Θ) by solving (P4)

Compute κe∗(Θ) by solving (P5)

Compute I∗(Θ) by Eq. (34)

Compute −Cost(I∗(Θ)) as fitness

Do a softmax selection by fitness

Do single-point crossovers

Randomly select bits and flip them and generate new

chromosomes

end for

end for

return Cost∗ and I∗(Θ∗)

Algorithm 2 Offloading Algorithm based on Multiple Knap-

sack Problem (OAMKP)

Input: α

Output: I∗(θ∗)

for workflows do

Initialize env=[ρ, fe, fi, Ri, D, PA, PT , P I]

Initialize cost, s = 1
Compute τ by Eq. (11)

Reshape and sort τ as τ
′

for s = 1 : m× L do

θ = τ
′

(s)
Compute κl∗(θ) by solving (P4)

Compute κe∗(θ) by solving (P5)

Compute I∗(θ)
Compute the Cost(I∗(θ)) of I∗(θ)
if Cost(I∗(θ)) < Cost∗ then

Cost∗ = Cost(I∗(θ))
s∗ = s

end if

end for

θ∗ = θ(s∗)
Compute I∗(θ∗)

end for

return Cost∗ and I∗(θ∗)

10

knapsack problem. First the values of τi is classified into

K clusters. Then we utilize genetic algorithm to find the

optimal Θ rather than make a traversal on KM cases whose

time complexity grows exponentially with M, because genetic

algorithm have advantages over traversal when computing

scale grows exponentially. We find that the value of τ when

the majority of tasks that are offloaded to the edge is greater

than the value of τ when they are executed locally.

As the number of users or tasks becomes larger, we propose

a simplified OAMKP algorithm to speed up computing, as

illustrated in Algorithm 2, where the simplified threshold θ is

a constant. Since the offloading indicator τ is discrete, we

iterate over all values in τ as the possible values of θ to

get an approximate optimal solution of the overloaded MEC

system. Referring to [48], the time complexity of the OAMKP

algorithm is O
(
m× L× [

∑m
i lli(θ)

2 + le(θ)2]
)
.

V. PERFORMANCE EVALUATION

In this section, we conduct simulations to verify the effec-

tiveness of our proposed algorithms under various parameter

settings. Specifically, we compare the proposed method with

several benchmark offloading schemes in the MEC environ-

ment.

A. Simulation Settings

In a workflow, tasks arrival and their data sizes are expressed

as D = {Dij |i = 1, 2, · · · ,m and j = 1, 2, · · · , L}. The

number of mobile devices in local is set as 10, the numbers

of tasks in small scale environment are set as 5, 6, 7, 8 which

corresponds to 50, 60, 70, 80 nodes, respectively. In big scale

environment the numbers of tasks are set as 10, 15 and 20,

which corresponds to 100, 150, 200 nodes, respectively. The

number of clusters of τi is 3. In order to make sure that

most of βwij ∈ [0, 10], we set β ∈ [1/wmax, 20/wmax], where

wmax = Dmax ·ρmax. Similar to [49], the parameter settings for

our experiment are described in Table III.

In real-world scenarios, tasks arrive randomly and the

number of tasks of each devices are not same in a time slot.

Thus, the data sizes of the quarter tasks are randomly set to

0 in experiments so that the number of tasks varies between

devices. To improve the reliability, we conduct experiments

in fifty different environments and each of them is generated

randomly according to the parameter settings, and we run

fifty simulations under each environment. The computing

ability of each devices fi, the active power PA
i , the idle

power P I
i , and the transmission power PT

i are all different in

different environments. So the simulations consider not only

the changes of the numbers of tasks but also the changes of

devices. Furthermore, the resource occupancy rate is defined

as follows:

resource occupancy rate =

∑m
i=1

∑L
j=1 wij · I

′

ij
∑m

i=1 fit+ fet
, (47)

where I ′ij =

{

0, I∗ij = 2,

1, otherwise.
is the indicator matrix of tasks

computed in the current workflow.

TABLE III: Evaluation Parameters

Parameters Value

R 4 Gbps

PA [0.1, 1] W

P I [0.001, 0.002] W

PT [0.01, 0.1] W

D [500, 1000] Kbit

ρ [10, 500]
fe 4000 MHz

fi [500, 1200] MHz

α 1

β 4× 10−8

B. Benchmarks

We compare the proposed algorithms with five baseline

offloading schemes, which are listed as follows:

• Genetic Algorithm (GA) [46]: In this method, we regard

each offloading decision as a m×L dimensional chromo-

some. The number of chromosomes is 128, and the length

of each chromosome is m × L. The maximum number

of generations is 200. Through a fitness function related

to the cost, we select the superior chromosome and

eliminate the inferior chromosomes through the processes

of crossover, mutation, and selection. Finally, we can

obtain the offloading decision with the highest fitness

value.

• Particle Swarm Optimization (PSO) [50]: In this

method, we regard each offloading decision as a map. The

number of particles is 128. The velocity extremum that

limits the maximum change of a particle in an iteration

is 0.2. The two learning factors are both set to 2. The

inertia weight is 0.8. When a particle arrives at a certain

location on the map, the map will change its offloading

options at this location and get a fitness value. Finally,

we can obtain the offloading decision with the highest

fitness value.

• Random Offloading Policy (ROP): In this policy, we

make offloading decisions randomly.

• Only-Local Policy (OLP): There are two options for

tasks under this policy: one is to compute tasks locally,

and the other is to compute tasks in the next workflow.

• Only-Edge Policy (OEP): There are two options for

tasks under this policy: one is to compute tasks at the

edge, and the other is to compute tasks in the next

workflow.

C. Performance Comparison

Fig. 8 shows the average cost under different offloading

methods. When compared with GA, PSO, ROP, OLP and OEP

algorithms, the OAKGM algorithm is significantly superior in

terms of average cost. For instance, compared with GA, the

OAMKP method achieves 4.19%, 9.09%, 8.89% and 7.31%
improvements when the numbers of tasks are 5, 6, 7 and 8,

respectively. Compared with PSO, it achieves 8.18%, 7.13%,

5.50% and 4.87% improvements when the numbers of tasks

are 5, 6, 7 and 8, respectively.

Fig. 9 shows that when compared with GA, PSO, ROP, OLP

and OEP algorithms, the OAMKP algorithm is significantly

11

Fig. 8: Average costs of different algorithms under environments with
varying numbers of users and tasks.

Fig. 9: Average costs of different algorithms under environments with
varying numbers of users and tasks

superior in terms of average cost. For instance, compared with

GA, the OAMKP method achieves 8.66%, 8.07% and 6.35%
improvements when the numbers of tasks are 10, 15 and 20,

respectively. Compared with PSO, it achieves 10.12%, 8.38%
and 4.71% improvements when the numbers of tasks are 10, 15

and 20, respectively. The total amount of computation of the

tasks when m = 10 and L = 20 is much larger than that when

m = 10 and L = 10, which means that more computations

can be overflowed, leading to a decrease in the improvement

percentage as the number of tasks L increases.

Fig. 10: The resource occupancy rates of different algorithms under
environments with varying numbers of users and tasks

Due to the limitations of ROP, OLP and OEP schemes in

terms of the resource occupancy rate, we will ignore them

in the remaining experiments. Thus, we mainly compare the

proposed OAMKP algorithm with GA and PSO algorithms.

Fig. 10 shows the average resource occupancy rates of

the OAMKP, GA and PSO algorithms. It can be seen that

our algorithm has a larger resource occupancy rate than

the GA and PSO algorithms, which means that when our

offloading-decision algorithm is deployed in the MEC system,

the amount of computation to enter the next workflow will

be greatly reduced. When the number of tasks increases, the

average resource occupancy rates of our algorithm and the

PSO algorithm increase, while the resource occupancy rate of

the GA algorithm decreases. Obviously, when mobile devices

and tasks become intensive, our algorithm greatly outperforms

the GA and PSO algorithms.

Fig. 11 shows the average time cost under various environ-

ments with different numbers of users and tasks. Combined

with Fig. 10, we know that our algorithm can execute more

tasks in a similar or shorter time when compared with the GA

and PSO algorithms.

Fig. 11: Average time costs of different algorithms under environ-
ments with varying numbers of users and tasks

Fig. 12: Average cost of different algorithms when varying β

Figs. 12 and 13 show the influence of different β on the

results of different algorithms. Under such β, most of the

overflowed cost βwij is in [0, 10], where wij is the amount of

computation of the task, which is going to the next workflow.

12

Fig. 13: Average resource occupancy rates of different algorithms
when varying β

We can see that even though β changes, the result of the

GA algorithm is similar to that of the PSO algorithm. The

proposed algorithm always achieves better than the GA and

PSO algorithms under different β, and the resource occupancy

rate of our algorithm can reach 95.84%, which is much higher

than that of the GA and PSO algorithms.

Fig. 14: Average costs of different algorithms when varying fe

Fig. 14 shows the impact of different fe on the average cost.

When fe increases, the average cost of OLP will not change

because the tasks are only executed locally. The average costs

of other algorithms decrease as the available total computing

resources of each workflow is increasing. For environments

with different fe, the offloading decision of our algorithm is

the best choice.

Fig. 15 shows the influence of different fe on the resource

occupancy rate. When fe increases, the average resource

occupancy rate of our algorithm decreases, while the rates

of the GA and PSO algorithms increase slightly because of

the randomness of these two algorithms, which makes them

perform well in the environment where tasks are slightly more

sparse. However, the best resource occupancy rate is still far

from the OAMKP algorithm under different fe.

Considering the queue effect, we compare it with two

Fig. 15: Average resource occupancy rate of different algorithms
when varying fe

Fig. 16: Total overflowed computations and tasks under OAMKP and
OAMKPqueue

methods: one is OAMKP, the other is OAMKPqueue, which

replaces the penalty term for overflowed computations with

the penalty term for the queue. We utilize a product of the

penalty coefficient γ and the number of unexecuted tasks

in the current workflow as the queueing penalty term. After

simple scaling, we set the penalty coefficient to 5, which

corresponds to β = 4 × 10−8. As shown in Fig. 16, the

solid lines and the dotted lines correspond to OAMKP and

OAMKPqueue respectively, while the blue lines and yellow

lines correspond to the total overflowed computations and total

overflowed tasks respectively. As Fig. 16 shows, OAMKP ends

tasks earlier than OAMKPqueue, which means that optimizing

overflowed computations is more suited to solve the task-

overflowed situation than optimizing the queue because the

latter is a coarse-grain optimization.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider the task-overflowed situation

when the total amount of computations of the tasks to be

carried out exceeds the total computing capacity of the MEC

system. We design a novel task offloading indicator in local-

edge collaborative computing environments, the purpose of

which is not only to minimize the system cost, but also to

alleviate the computational pressure of the next workflow. On

the basis of the indicator, we propose two offloading algo-

rithms based on the multiple knapsack problem, i.e., OAKGM

13

and OAMKP. It is found that the former is more suitable for

small-scale MEC systems composed of several users and tasks,

while the latter is more suitable for larger-scale MEC systems

with numerous users or multiple tasks. Experimental results

demonstrate that the proposed algorithms can achieve better

performance than existing GA and PSO algorithms. It can

make better use of the computing capacities of IoT devices

and edge servers, greatly avoid resource occupation at the edge

nodes, and effectively reduce the computational pressure of the

next workflow.

For future work, by utilizing energy harvesting technolo-

gies [51], we will comprehensively consider the characteristics

of abundant computing resources in cloud computing and low

transmission delay in green and sustainable MEC systems. In

addition, we will attempt to tackle the task-overflowed issues

in serverless edge computing frameworks [52], [53] with a

focus on joint computation offloading and resource allocation.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-

ence Foundation of China under Grant No. 62071327 and

61801325.

REFERENCES

[1] K. Nakamura, P. Manzoni, M. Zennaro, J.-C. Cano, C. T. Calafate,
and J. M. Cecilia, “FUDGE,” in Proceedings of the 1st Workshop

on Experiences with the Design and Implementation of Frugal Smart

Objects. ACM, Sep. 2020.
[2] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Privacy-

preserved task offloading in mobile blockchain with deep reinforcement
learning,” IEEE Transactions on Network and Service Management,
vol. 17, no. 4, pp. 2536–2549, dec 2020.

[3] M. Xue, H. Wu, R. Li, M. Xu, and P. Jiao, “EosDNN: An efficient
offloading scheme for DNN inference acceleration in local-edge-cloud
collaborative environments,” IEEE Transactions on Green Communica-

tions and Networking, pp. 1–1, 2021.
[4] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge

computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, Feb. 2018.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[6] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM

2018 - IEEE Conference on Computer Communications. IEEE, Apr.
2018.

[7] H. Wu, Y. Sun, and K. Wolter, “Energy-efficient decision making for
mobile cloud offloading,” IEEE Transactions on Cloud Computing,
vol. 8, no. 2, pp. 570–584, Apr. 2020.

[8] S. Malik, H. Akram, S. S. Gill, H. Pervaiz, and H. Malik, “EFFORT:
Energy efficient framework for offload communication in mobile cloud
computing,” Software: Practice and Experience, 2020.

[9] L. Huang, X. Feng, L. Zhang, L. Qian, and Y. Wu, “Multi-server
multi-user multi-task computation offloading for mobile edge computing
networks,” Sensors, vol. 19, no. 6, p. 1446, Mar. 2019.

[10] I. A. Elgendy, W.-Z. Zhang, Y. Zeng, H. He, Y.-C. Tian, and Y. Yang,
“Efficient and secure multi-user multi-task computation offloading for
mobile-edge computing in mobile IoT networks,” IEEE Transactions on

Network and Service Management, vol. 17, no. 4, pp. 2410–2422, dec
2020.

[11] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation
for mobile edge computing-based augmented reality applications,” IEEE

Wireless Communications Letters, vol. 6, no. 3, pp. 398–401, Jun. 2017.
[12] J. Wang, Y. Yue, R. Wang, M. Yu, J. Yu, H. Liu, X. Ying, and R. Yu,

“Energy-efficient admission of delay-sensitive tasks for multi-mobile
edge computing servers,” in 2019 IEEE 25th International Conference

on Parallel and Distributed Systems (ICPADS). IEEE, Dec. 2019.

[13] Y. Geng, Y. Yang, and G. Cao, “Energy-efficient computation offloading
for multicore-based mobile devices,” in IEEE INFOCOM 2018 - IEEE

Conference on Computer Communications. IEEE, Apr. 2018.

[14] Y. Meng and J. Dai, “Energy-efficient joint computation offloading and
resource allocation in multi-user mec systems,” Journal of Physics:

Conference Series, vol. 1693, no. 1, p. 012042 (12pp), 2020.

[15] Y. Kao, B. Krishnamachari, M. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrained mobile computing,”
IEEE Transactions on Mobile Computing, vol. 16, no. 11, pp. 3056–
3069, 2017.

[16] K. Wang, Z. Hu, Q. Ai, Y. Zhong, J. Yu, P. Zhou, L. Chen, and
H. Shin, “Joint offloading and charge cost minimization in mobile edge
computing,” IEEE Open Journal of the Communications Society, vol. 1,
pp. 205–216, 2020.

[17] J. Fang, J. Shi, S. Lu, M. Zhang, and Z. Ye, “An efficient computation
offloading strategy with mobile edge computing for iot,” Micromachines,
vol. 12, no. 2, 2021.

[18] H. Kim, W.-K. Hong, J. Yoo, and S. eun Yoo, “Experimental research
testbeds for large-scale WSNs: A survey from the architectural perspec-
tive,” International Journal of Distributed Sensor Networks, vol. 11,
no. 3, p. 630210, mar 2015.

[19] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &

Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[20] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in IEEE INFOCOM 2017 - IEEE Conference

on Computer Communications. IEEE, May 2017.

[21] M. Avgeris, D. Dechouniotis, N. Athanasopoulos, and S. Papavassiliou,
“Adaptive resource allocation for computation offloading,” ACM Trans-

actions on Internet Technology, vol. 19, no. 2, pp. 1–20, Apr. 2019.

[22] Y. Deng, Z. Chen, X. Yao, S. Hassan, and A. M. A. Ibrahim, “Parallel
offloading in green and sustainable mobile edge computing for delay-
constrained IoT system,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 12, pp. 12 202–12 214, Dec. 2019.

[23] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
optimized partial computation offloading in mobile-edge computing with
genetic simulated-annealing-based particle swarm optimization,” IEEE

Internet of Things Journal, vol. 8, no. 5, pp. 3774–3785, Mar. 2021.

[24] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent iot applications in edge and fog
computing environments,” IEEE Transactions on Mobile Computing,
vol. 20, no. 4, pp. 1298–1311, 2021.

[25] S. Josilo and G. Dan, “Computation offloading scheduling for periodic
tasks in mobile edge computing,” IEEE/ACM Transactions on Network-

ing, vol. 28, no. 2, pp. 667–680, Apr. 2020.

[26] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO:
An energy-efficient dynamic task offloading algorithm for blockchain-
enabled IoT-edge-cloud orchestrated computing,” IEEE Internet of

Things Journal, vol. 8, no. 4, pp. 2163–2176, Feb. 2021.

[27] A. Lakhan, M. Ahmad, M. Bilal, A. Jolfaei, and R. M. Mehmood, “Mo-
bility aware blockchain enabled offloading and scheduling in vehicular
fog cloud computing,” IEEE Transactions on Intelligent Transportation

Systems, vol. 22, no. 7, pp. 4212–4223, jul 2021.

[28] M. Tang and V. W. Wong, “Deep reinforcement learning for task
offloading in mobile edge computing systems,” IEEE Transactions on

Mobile Computing, pp. 1–1, 2020.

[29] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A deep meta reinforcement
learning-based task offloading framework for edge-cloud computing,”
IEEE Transactions on Network and Service Management, vol. 18, no. 3,
pp. 3448–3459, 2021.

[30] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, vol. 19,
no. 11, pp. 2581–2593, Nov. 2020.

[31] L. Pu, X. Chen, J. Xu, and X. Fu, “D2d fogging: An energy-efficient
and incentive-aware task offloading framework via network-assisted d2d
collaboration,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 3887–3901, Dec. 2016.

[32] K. Wang, K. Yang, and C. S. Magurawalage, “Joint energy minimization
and resource allocation in c-RAN with mobile cloud,” IEEE Transac-

tions on Cloud Computing, vol. 6, no. 3, pp. 760–770, Jul. 2018.

[33] S. Li, Y. Tao, X. Qin, L. Liu, Z. Zhang, and P. Zhang, “Energy-
aware mobile edge computation offloading for IoT over heterogenous
networks,” IEEE Access, vol. 7, pp. 13 092–13 105, 2019.

14

[34] Q. Wang, S. Guo, J. Liu, and Y. Yang, “Energy-efficient computation
offloading and resource allocation for delay-sensitive mobile edge com-
puting,” Sustainable Computing: Informatics and Systems, vol. 21, pp.
154–164, Mar. 2019.

[35] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-
efficient admission of delay-sensitive tasks for mobile edge computing,”
IEEE Transactions on Communications, vol. 66, no. 6, pp. 2603–2616,
Jun. 2018.

[36] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city internet of
things,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8099–8110,
Sep. 2020.

[37] Y. Xue, X. Wu, and J. Yue, “An offloading algorithm of dense-tasks for
mobile edge computing,” in Proceedings of the International Conference

on Wireless Communication and Sensor Networks. ACM, May 2020.
[38] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue, “An approach to

QoS-based task distribution in edge computing networks for IoT appli-
cations,” in 2017 IEEE International Conference on Edge Computing

(EDGE). IEEE, Jun. 2017.
[39] K. Guo, M. Yang, Y. Zhang, and Y. Ji, “An efficient dynamic offloading

approach based on optimization technique for mobile edge computing,”
in 2018 6th IEEE International Conference on Mobile Cloud Computing,

Services, and Engineering (MobileCloud). IEEE, Mar. 2018.
[40] F. Liu, Z. Huang, and L. Wang, “Energy-efficient collaborative task com-

putation offloading in cloud-assisted edge computing for iot sensors,”
Sensors, vol. 19, no. 5, p. 1105, Mar 2019.

[41] X. Chen, Y. Cai, Q. Shi, M. Zhao, B. Champagne, and L. Hanzo,
“Efficient resource allocation for relay-assisted computation offloading
in mobile-edge computing,” IEEE Internet of Things Journal, vol. 7,
no. 3, pp. 2452–2468, 2020.

[42] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE

Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, 2018.

[43] Y. Ding, K. Li, C. Liu, Z. Tang, and K. Li, “Short- and long-term cost
and performance optimization for mobile user equipments,” Journal of

Parallel and Distributed Computing, vol. 150, pp. 69–84, apr 2021.
[44] M. Assi and R. A. Haraty, “A survey of the knapsack problem,” in 2018

International Arab Conference on Information Technology (ACIT), 2019.
[45] X. Wang, J. Wang, X. Wang, and X. Chen, “Energy and delay tradeoff

for application offloading in mobile cloud computing,” IEEE Systems

Journal, vol. 11, no. 2, pp. 858–867, 2017.
[46] I. Rojas, J. Gonzalez, H. Pomares, J. J. Merelo, P. A. Castillo, and

G. Romero, “Statistical analysis of the main parameters involved in the
design of a genetic algorithm,” IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), vol. 32, no. 1, pp.
31–37, 2002.

[47] S. Samanta, A. Choudhury, N. Dey, A. Ashour, and V. Balas, “Chapter
9 - quantum-inspired evolutionary algorithm for scaling factor opti-
mization during manifold medical information embedding,” in Quantum

Inspired Computational Intelligence, S. Bhattacharyya, U. Maulik, and
P. Dutta, Eds. Boston: Morgan Kaufmann, 2017, pp. 285–326.

[48] Papadimitriou and H. Christos, “On the complexity of integer program-
ming,” Journal of the ACM (JACM), vol. 28, no. 4, pp. 765–768, 1981.

[49] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and L. Qi, “A
computation offloading method over big data for IoT-enabled cloud-
edge computing,” Future Generation Computer Systems, vol. 95, pp.
522–533, Jun. 2019.

[50] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm opti-
mization,” in Evolutionary Programming VII, V. W. Porto, N. Saravanan,
D. Waagen, and A. E. Eiben, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998, pp. 591–600.

[51] F. Zhao, Y. Chen, Y. Zhang, Z. Liu, and X. Chen, “Dynamic offloading
and resource scheduling for mobile edge computing with energy harvest-
ing devices,” IEEE Transactions on Network and Service Management,
vol. 18, no. 2, pp. 2154–2165, 2021.

[52] M. Golec, R. Ozturac, Z. Pooranian, S. S. Gill, and R. Buyya, “iFaaS-
Bus: A security and privacy based lightweight framework for serverless
computing using iot and machine learning,” IEEE Transactions on

Industrial Informatics, pp. 1–1, 2021.
[53] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,

D. Taibi, M. Assuncao, S. S. Gill, R. Gaire, and S. Dustdar, “Serverless
edge computing: Vision and challenges,” in 2021 Australasian Computer

Science Week Multiconference. ACM, feb 2021.

Huijun Tang received the BSc degree from Jinan
University, China in 2016 and the M.S. degree from
Tianjin University, China in 2018. She is currently
pursuing the PhD degree at the Center for Ap-
plied Mathematics, Tianjin University, China. Her
research interests include internet of things, mobile
edge computing and deep learning.

Huaming Wu received the B.E. and M.S. degrees
from Harbin Institute of Technology, China in 2009
and 2011, respectively, both in electrical engineer-
ing. He received the Ph.D. degree with the highest
honor in computer science at Freie Universität Berlin
(FU Berlin), Germany in 2015. He is currently
an Associate Professor in the Center for Applied
Mathematics, Tianjin University, China. His research
interests include wireless networks, mobile edge
computing, internet of things and deep learning.

Yubin Zhao received his B.S. and M.S. in 2007 and
2010 respectively from Beijing University of Posts
and Telecommunications (BUPT), Beijing, China.
He received his Ph.D degree in computer science
in 2014 from Freie Universität Berlin (FU Berlin),
Berlin, Germany. He is currently an Associate Pro-
fessor in Center for Cloud Computing, Shenzhen In-
stitutes of Advanced Technology, Chinese Academy
of Sciences, Shenzhen, China, since 2014. He serves
as the guest editor and reviewer for several journals.
He also received outstanding research award in CI-

CCAT 2019. His current research interest includes wireless power transfer,
indoor localization and target tracking.

Ruidong Li is an associate professor at Kanazawa
University, Japan. Before joining this university, he
was a senior researcher at the National Institute
of Information and Communications Technology
(NICT), Japan. He received the M.Sc. degree and
Ph.D. degree in computer science from the Univer-
sity of Tsukuba in 2005 and 2008, respectively. He
serves as the secretary of IEEE ComSoc Internet
Technical Committee (ITC), and are the founders
and chairs of IEEE SIG on Big Data Intelligent
Networking and IEEE SIG on Intelligent Internet

Edge. He is the associate editor of IEEE Internet of Things Journal, and also
served as the guest editors for a set of prestigious magazines, transactions,
and journals, such as IEEE communications magazine, IEEE network, IEEE
TNSE. He also served as chairs for several conferences and workshops, such
as the general co-chair for IEEE MSN 2021, AIVR2019, IEEE INFOCOM
2019/2020/2021 ICCN workshop, TPC co-chair for IWQoS 2021, IEEE MSN
2020, BRAINS 2020, IEEE ICDCS 2019/2020 NMIC workshop, and ICCSSE
2019. His research interests include future networks, big data, intelligent In-
ternet edge, Internet of things, network security, information-centric network,
artificial intelligence, quantum Internet, cyber-physical system, and wireless
networks. He is a senior member of IEEE and a member of IEICE.

	Introduction
	Related Work
	System model
	Local Computing Model
	Edge Computing Model
	Local-Edge Collaborate Computing Model

	The Overloaded Task Offloading Algorithm
	Problem Formulation
	Find the Optimal *
	Optimization in the Local
	Optimization at the Edge
	Two Offloading Algorithms based on Knapsack Problem

	Performance Evaluation
	Simulation Settings
	Benchmarks
	Performance Comparison

	Conclusion and Future Work
	References
	Biographies
	Huijun Tang
	Huaming Wu
	Yubin Zhao
	Ruidong Li

