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Abstract—With the rapid development of Artificial Intelligence
(AD) and Internet of Things (IoT), we have to perform increas-
ingly more resource-hungry and compute-intensive applications
on IoT devices, where the available computing resources are
insufficient. With the assistance of Mobile Edge Computing
(MEC), offloading partial complex tasks from mobile devices to
edge servers can achieve faster response time and lower energy
consumption. However, it still suffers from finding the optimal
offloading decision when the total amount of computations
overflows the available computing resources in MEC systems. In
this paper, we establish a multi-user and multi-task MEC model
and design an offloading indicator, through which we analyze
what the current environment belongs to. In the cases where
the computational resources of devices are sufficient or partially
sufficient, we utilize the relationship between the offloading
indicator and the cost incurred by the tasks that are executed
in the current workflow to find the optimal offloading decision.
In the cases where the computation on local and edge are both
insufficient, we propose a novel Offloading Algorithm based on
K-means clustering and Genetic algorithm for solving Multiple
knapsack problem (OAKGM), aiming not only to jointly optimize
the time and energy incurred by the tasks that are executed
in the current workflow, but also to penalize the overflowed
computations so that the task pressure in the next workflow
can be greatly reduced. In addition, a simplified Offloading
Algorithm based on Multiple Knapsack Problem (OAMKP) is
proposed to further cope with the environments with a large
number of users or tasks. Experimental results demonstrate the
effectiveness and superiority of the proposed algorithms when
compared with several benchmark offloading algorithms, which
can better exploit the computing capacities of IoT devices and
the edge server, greatly avoid resource occupation in edge nodes
and make sustainable MEC possible.

Index Terms—Mobile Edge Computing, Internet of Things,
Task Offloading, Resource Allocation, Multiple Knapsack Prob-
lem

I. INTRODUCTION

RIVEN by Artificial Intelligence (AI) in Internet-of-
Things (IoT) systems, more and more mobile applica-
tions with large-scale Deep Neural Networks (DNNs), e.g.,
video analytics and augmented reality, are being deployed
on resource-constrained mobile devices. Thus, the essential
demand for computing capacity and low latency has exploded.
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Unfortunately, the resources of mobile devices are generally
constrained [1]], [2]], e.g., insufficient storage, slow computing
speed and low battery capacity, which fail to support the
complex computation of DNN training and DNN inference [J3]].

Currently, Mobile Edge Computing (MEC) has been widely
applied to video analytics, augmented reality, mobile big data,
internet of vehicles and other fields [4]. With the assistance
of MEC, one promising method is to offload computation-
intensive tasks from IoT devices to edge servers, enabling
resource-constrained devices to perform more complicated
tasks with less time delay and lower energy consumption [5]—
[8]. Generally, an edge server can serve several users, and
each user can generate multiple tasks in a workflow [9],
[10]. Al-Shuwaili et al. [11] applied edge computing to the
augmented reality tasks, which involves a large amount of
computation, e.g., the amount of computation required per
task for computing a 1024 x 768 image can reach 2,640 cycles.
Unlike cloud servers with abundant computing resources, edge
servers generally suffer from limited computational resources.
Although the computing power of edge servers is much greater
than that of mobile devices, they are relatively low compared
to cloud servers.

Intuitively, executing a huge number of tasks at the server
tends to cause high response time. As a result, there exists
an upper bound on concurrent task execution due to a large
number of offloading requests and the limited computing
power of edge servers. On the one hand, if all the IoT devices
offload their tasks to an edge server for processing, the edge
server will become overloaded and bring in additional delays
during task execution. On the other hand, once the number of
mobile users or computational tasks of each device increases
significantly, the total amount of computation of intensive
tasks are prone to overflow the overall computing capacity
in the MEC environment.

In order to deal with the above challenges, we need to
determine the priority of tasks so that the number of tasks
that cannot be executed in the current workflow should be
as few as possible. It is imperative to develop an offloading-
decision strategy that not only considers the delay and energy
consumption when executing tasks locally or at the edge, or
transferring data between the device and the edge, but also
considers the computational amount of tasks that cannot be
executed in the current workflow when tasks are intensive.
When the tasks of mobile users arrive in a workflow, there
are three options for each task: the first one is to be executed
locally on the mobile device, the second one is to be offloaded



TABLE I: Comparison of Selected Related Studies.

Ref. Number of Tasks Number of Users Edge Server Objectives Constraints

Meng et al. [14] Single Multiple Single Energy Total Computational Resource & Latency Requirement
Wang et al. [12] Single Multiple Multiple Energy Latency Requirement

Kao et al. [15] Multiple Multiple Energy Latency Requirement

Wang et al. [16] Single Multiple Single Time+Monetary cost Total Computational Resource & Total Bandwidth Resource
Fang et al. [17] Single Multiple Multiple Energy+Time Latency Requirement

Ours Multiple Multiple Single Energy+Time+w,, Total Computational Resource

wp, is the total amount of computation of tasks that cannot be executed in the current workflow

to the server at the edge and the third one is to be delayed to
the next workflow. How to jointly make the optimal offloading
decision and resource allocation depends on two factors: one
is the cost, which is usually defined by the time delay and the
energy consumption incurred from the computing process or
the transmitting process; the other is the currently available
computing resources of the system. This can be regarded as
a multi-knapsack problem, which is an NP-hard problem that
requires a large amount of computation and causes additional
delays for offloading decision-making. This means that it
is difficult to find a polynomial-time complexity algorithm
to solve such a problem. Previous studies [[12], [13] have
tried to solve the multiple knapsack problem through heuristic
algorithms, but only optimized the energy consumption when
computing tasks or transmitting data, ignoring the total amount
of computation of tasks that cannot be computed in the
current workflow, which places a heavy burden, especially
when excessive tasks need to take up plenty of resources in
the next workflow.

In this paper, we mainly focus on situations where tasks with
a large number of calculations such as augmented reality, will
occasionally overflow the computation of the local devices or
the edge server. In particular, we address a situation in the
MEC when the amount of computations to be carried out
exceeds the resource capacity of the network at the edge.
We treat the task-overflowed issue in MEC Systems as the
multiple knapsack problem and propose two novel offloading
algorithms for solving this problem. As far as we know, this
is the first work that not only optimizes the cost incurred
in the current workflow, but also penalizes the computational
burden left to the next workflow about computation offloading
and resource allocation. The aim of this paper is to jointly
minimize the time and energy incurred by the tasks, as well
as to penalize the overflowed computation and exploit the
resources as many as possible.

The major contributions of this paper can be summarized
as follows:

e Model of Overloaded Task Offloading Problem in MEC
Systems:

— The task-overflowed situation that was rarely con-
sidered in previous studies is modeled as a multiple
knapsacks problem whose NP-hardness is proved in
the paper. We optimize offloading decisions in task-
overflowed situations from the perspective of the
overflowed computation, which is more refined than
the perspective of the number of tasks which usually

measures the queue.

— We design a novel offloading indicator, which can
directly indicate the offloading strategy when the
system has sufficient computing resources. When
the current computing resources are insufficient, we
formulate a joint computation offloading and re-
source allocation strategy, which not only optimizes
the combined delay and energy consumption gen-
erated from executing or transferring process, but
also optimizes the total amount of calculations of
the overloaded tasks in the current workflow.

e Two Knapsack Problem-based Task Offloading Algo-
rithms: For small-scale MEC systems, we propose the
OAKGM algorithm that combines K-means clustering
and genetic algorithm to solve the multiple knapsack
problem, while for large-scale MEC systems [18], we
propose the OAMKP algorithm that can handle numerous
users or tasks.

e Performance Evaluation: We conduct extensive simula-
tion experiments under various system parameters. Sim-
ulation results demonstrate that when compared with the
Genetic Algorithm (GA) and the Particle Swarm Opti-
mization (PSO) algorithm, the proposed OAKGM and
OAMKP algorithms can make better use of the computing
capacities of IoT devices and edge nodes, alleviate the
task pressure to the next workflow, significantly reduce
the average cost, as well as avoid resource occupation in
edge nodes.

The rest of the paper is organized as follows: Section
reviews the related work. Section formulates the system
model of task offloading in MEC with workload overloaded.
The proposed OAKGM and OAMPK algorithms are described
in detail in Section Section [V] evaluates its performance by
comparing it with state-of-the-art offloading methods. Finally,
Section |VI| concludes this paper and points out some possible
future work.

II. RELATED WORK

It is known that offloading tasks from resource-constrained
IoT devices to nearby edge servers will cause additional energy
consumption or time delays due to data transmission between
the local and the edge [19]]. In recent years, a large amount
of research (ranging from heuristic algorithms [20]-[22],
genetic algorithms [23[], [24], game theory [25], blockchain
theory [26], [27], to deep reinforcement learning-based al-
gorithms [28]]-[30]) has been devoted to seeking the optimal



offloading strategy in MEC systems, with the aim of improving
system efficiency when the computing and communication
resources are limited.

Several offloading-decision algorithms have been proposed
in [31]-[33]], with the purpose of minimizing energy consump-
tion while ignoring the time delay. Prior research [34]-[36]
has focused on joint optimization of offloading decisions and
resource allocation for delay-sensitive or compute-intensive
tasks. However, few studies have considered overloaded or
overflowed tasks that cannot be computed in the current
workflow on account of the limitation of computing resources
of mobile devices and edge servers. Most recent studies have
discussed the optimal offloading decision in the situation
where the total computing capacity of the MEC system is
sufficient for computing the current tasks [[12]], [[14]—-[17]], [32]],
which cannot satisfy the future or even current demand of
the MEC system. However, when taking the task-overflowed
cases into account, it will cause the already complex offloading
decision and resource allocation problem even more compli-
cated, thereby posing a huge challenge. On the contrary, in
this paper, we define a new weighted cost, which includes the
time delay and energy consumption during the computing and
transmitting process, as well as the amount of computation of
overflowed tasks in the current workflow.

In general, the joint offloading decision and resource al-
location problem can be treated as an integer programming
problem [12], [37]]. Xue et al. [37] regarded the computation
offloading problem as an NP-hard problem and solved it
through an iterative heuristic task-intensive assignment algo-
rithm. Song et al. [38] proposed a dynamic programming
algorithm to manage tasks at the edge of the network. Guo
et al. [39] treated the offloading computing problem as a
Mixed Integer Programming (MIP) problem and solved it by
the Gurobi optimizer. Liu et al. [40] formulated the offloading
decision problem in IoT environments as a MIP problem to
minimize the energy consumption. Chen et al. [41] took the
relay-assisted problem into consideration and formulated the
model as a non-differentiable and non-convex optimization
problem. However, all the above-mentioned works ignore the
amount of computation of tasks that cannot be executed in
the current workflow, which may bring huge computational
pressure to the next workflow.

Some studies model the optimization process as a Lyapunov
optimization problem [42]] [43]. Ouyang et al. [42] proposed
different situations depending on whether the mobility char-
acteristic is known. They propose a greedy algorithm for
short-term optimization and a Lyapunov-based algorithm for
long-term optimization. It is necessary to study the short-term
optimization because the characteristic of mobile devices and
edge servers sometimes change in long term. In this paper, we
consider the optimization in one workflow so that the change
of the devices or the environment in different workflows will
not influence the result of optimization.

Different from previous works, we design a novel task
offloading indicator in the local-edge collaborative comput-
ing model. By utilizing this indicator, we consider different
situations depended on the computational resources and the
offloading indicator. Then, we propose different methods for

different situations. When the computational resources on local
and edge are both sufficient, optimal offloading decisions
are made dependent on whether the offloading indicator is
greater than 1. When the computational resources on local and
edge are partially sufficient, we make offloading decisions by
utilizing the relationship between the cost and the offloading
indicator. When the computational resources on local and edge
are both insufficient, finding an optimal offloading decision
is a multiple knapsack problem that is NP-hard to solve.
We convert the NP-hard problem into an easy-to-solve trans-
formation problem, which consists of several simple integer
programming problems, so that the original problem can be
solved in polynomial time. We then propose two algorithms on
the basis of the offloading indicator: one is called OAKGM,
which combines K-means clustering and a genetic algorithm
to search for different thresholds of offloading indicators for
a variety of mobile devices; the other is OAMKP, which goes
through all possible threshold values of offloading indicators
for all mobile devices and finds the best threshold for the
whole MEC system.

III. SYSTEM MODEL

In order to minimize the average system cost (weighted
sum of delay and energy consumption) from IoT devices to
the edge and alleviate the computational pressure of the next
workflow, we consider an MEC system with a large amount
of computational overflow.
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Fig. 1: An illustration of the MEC system with multiple mobile

devices and an edge server.

As depicted in Fig. [T} the IoT-edge computing environment
consists of m IoT devices and an edge server, and is equipped
with some computing nodes with different computing capac-
ities. Mobile users can offload their tasks to the edge server.
Without loss of generality, we consider a set of mobile users
M ={1,2,--- ,m}. We assume that tasks arrive in a time-
slotted form, and the length of slot is ¢. In a workflow, each
user has L arrival tasks, and the j task of the ith user is
denoted as task;;. The data size of these tasks are expressed
asaset D={D,;li=1,2,--- ,mand j=1,2,--- ,L}. The
major notations used in this paper are defined in Table [[I]



A. Local Computing Model

When a task is processed locally on the IoT device, the time
delay and energy consumption can separately be represented
as follows:

o The time delay when performing task;; locally can be
calculated as:

Wi
L=
where f;(cycle/s) is the computation speed of the ‘"
mobile device and w;; is the amount of computation for
taskij.
« The energy consumption when performing task;; locally
can be calculated as:
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where P/ is the active power.

Thus, the overall cost of task;; when it is processed in local
can be calculated as:

l ! l wy A
i =aol; + B = f”(a+P) 3)
K3
where o > 0 is a weighting parameter used to measure the im-
portance of the time delay relative to the energy consumption.

B. Edge Computing Model

The computing resources of local devices are usually lim-
ited, so we can offload complex tasks to edge servers. In the
offloading process, the cost is composed of two parts: one
part is incurred from the transmitting process, the other part
is incurred from the computing process.

o The time delay during data transmission for task;; can

be calculated as:

r_ Dy
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where R; is the data rate of device 1.

o The energy consumption during data transmission for

task;; can be expressed as:
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where P! is the transmission power of the i‘" device.

« The time delay when computing task;; can be expressed
as:

Wij

fe’

where f.(cycle/s) is the computing speed of the edge
server, w;; = p;;D;; is the amount of computation of
task;;, and p;; is the computational complexity of task;;.

o The energy consumption when computing task;; can be
calculated as:

TS = (©)
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where P! is the idle power.

TABLE 1I: Notations and their definitions.

Notations Definitions

R The data rate

m The number of users of the mobile devices

L The number of tasks of the mobile devices

task;; The j”‘ task of the i*" user

pA The active power

P! The idle power
pT The transmission power

D The data size

w The amount of computation

P The computational complexity

T The offloading indicator

(S) The threshold vector of the offloading indicator

The threshold value of the offloading indicator

Ti"j The time delay when task;; is executed in the local
T The time delay when task;; is executed at the edge
EfJ The energy consumption when task;; is executed in the local
EY; The energy consumption when task;; is executed at the edge
T}; The time delay when task;; is transmitted to the edge
E?; The energy consumption when task;; is transmitted to the edge
Q! The cost in the local

Q° The cost at the edge

Vi The values of items in the improved local knapsack

ve The values of items in the improved edge knapsack

Kij The offloading decision for task;;

[eY The weighting factor of the time delay

B The weighting factor of the amount of overflowed computations
1 The offloading policy for all tasks

et The indicator matrix of tasks to be executed in next workflow

I The indicator matrix of tasks executed elsewhere not guided by 7
It The indicator matrix of tasks considered to be executed in the local
I° The indicator matrix of tasks considered to be executed at the edge
r! The indicator matrix describes the task executed in the local

K The indicator matrix describes the task executed at the edge

Thus, the overall cost of task;; when it is processed at the
edge can be calculated as:

G =a(Th +T5) +
D

=Y pT
Rt P+

(EzT + Ef;)

—L(a+ P]). (8)

C. Local-Edge Collaborate Computing Model

The optimal computing cost for executing task;; is the
minimum of the cost executing in local and edge, which can
be expressed as:

. mm{Qw, Gh )

where task;; is preferred to be offloaded to the edge server
than computing in local when Qéj > Qf;, which satisfying
the following condition:

1 i
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10
7, (10)



where p;; is the computational complexity of task;; and p;; =
w;;/D;;. To simplify the analysis, we then define an offloading
indicator according to Eqgs. (3), (8) and (9), as follows:

_ 1 pij'(a+PiA)
 fig(a+ PD) + B (a+ P’

Therefore, when 7;; > 1, it is preferred for task;; to be
offloaded to edge, while when 7;; < 1, it is preferred
for task;; to be executed on local devices. The following
part consider joint computation offloading rather than a task
offloading. When the computing resources in the local and
edge are both sufficient, the cost function can be represented
as follows:
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where x;; = 0 means that task;; is processed locally, and
k;; = 1 means that task;; is processed at the edge. C,, is the
sum of the cost of task;;. Minimizing C), is equal to Eq. @I)
Thus, the optimal joint offloading decision for task;; when the
computing resources in the local and edge are both sufficient
can be denoted by:

07 Tij < 17

13
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where ¢t =1,2,--- ;m,and 5 =1,2,--- | L

IV. THE OVERLOADED TASK OFFLOADING ALGORITHM

In this section, we propose two novel offloading decision
algorithms, which aim to minimize the average system cost
(weighted sum of delay and energy consumption) from IoT
devices to the edge, and reduce the computational pressure
caused by executing overloaded tasks in the next workflow.

A. Problem Formulation

On the one hand, when the computing resources of the local
devices and the edge server are sufficient, we decide whether
to offload according to the offloading indicator. On the other
hand, however, when the computing resources are insufficient,
ie., Z]L:l(l — mj)wij > fit or Z:il Jl./zl RijWsij > fet,
we need to determine which tasks should be performed locally,
which ones should be performed at the edge, and which ones
should be performed in the next workflow.

As depicted in Fig. 2| there are four cases in the aspect of
computation resources of the MEC system:

e The total computation resource of the local device is
sufficient for all tasks whose 7 < 1 in the device and
at the same time the computation resource of the edge
server is sufficient for all tasks whose 7 > 1.

o The total computation resource of the local device is
insufficient for all tasks whose 7 < 1 in the device and
the computation resource of the edge server is sufficient
for all tasks whose 7 > 1.

| The computation resources of amobile device

‘The computation resources of the edge server

= The computation resources needed when computing
- the tasks whose r <1

% The computation resources needed when computing
i the tasks whose r > 1

Fig. 2: Different cases in terms of computation resources in MEC
systems.

o The total computation resource of the local device is
sufficient for all tasks whose 7 < 1 in the device and
at the same time the computation resource of the edge
server is insufficient for all tasks whose 7 > 1.

o The total computation resource of the local device is in-
sufficient for all tasks whose 7 < 1 in the device and the
computation resource of the edge server is insufficient
for all tasks whose 7 > 1.

Regardless of whether task;; is executed in the current
workflow or the next workflow, the minimum cost of executing
task;; is Cy, which is treated as a cost that must be paid.
Here, the offloading decision is made according to Eq. (I3).
However, due to the insufficient computing ability of mobile
devices and edge servers, not all tasks can be offloaded with
minimum energy and time costs, which is exactly what we
need to optimize. The extra cost incurred when tasks are
not executed following the instructions of 7 in the current

workflow, can be formulated as:

w(a + P4)
fi

where I'" is the indicator matrix of tasks executed elsewhere
not guided by 7.

Furthermore, the amount of computation of tasks that are
considered to be executed in the next workflow will be count
into the cost function to keep the total amount of computation
of tasks that are not computed in the current workflow as small
as possible, which means the total amount of computation for
the tasks that go to the next workflow will be punished in our
cost function. Thus, our aim is to minimize the extra cost,
including a penalty term of overflowed computation, which
can be calculated by:

Q- =- . ae

1
COStetha = ‘1 - *‘C’U)IW + Bwlnext7 (15)
T

where I™¢*! illustrates the tasks that are considered to be
executed in the next workflow, 3 is a penalty parameter and
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where IL_, indicates the tasks whose 7 < 1 and meanwhile
which are computed in local, 2., indicates the tasks whose
7 > 1 and meanwhile which are computed at the edge,
I'r = It | +1I¢_, indicates the tasks which are not computed
following the instructions of 7 in the current workflow, and
I™e*t indicates the tasks which go to the next workflow.
Eq. (I7) indicates the total computation of tasks executed
locally is less than the computing ability of the mobile device
during a time slot. Eq. (T8) indicates that the total computation
of tasks offloaded to the edge server is less than the computing
ability of the edge server during a time slot.

The objective function is to minimize the total extra cost,
which includes two parts: one is the extra cost resulting from
the concessions due to the limitation of the computing ability,
and the other one is the penalty term for the overflowed
computation.

Lemma 1. P, is a multiple knapsacks problem and NP-hard.

Proof. First, we consider an instance of Py whose 7 > 1
for all tasks. Then, we can get I¢_,,IL_; =0, I' = IL_,,
It" = ' and "% = 1,5 — I¢ — I°. Then CoStoyira =
(11— 21|C - B)wI' — BwI®+ Bw. Solving the instance is equal
to solving the following problem:

min :
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s.t. Zwrl < fit, (22)
j=1
m L
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I' 1° C {0, 1}, (25)

The multiple knapsack problem Pg described in [44] is known

as a NP-hard problem.

m n
(P3) max : Z Z ViTij, (26)
i=1 j=1
s.t.: ijxij < Ci, (27)
j=1
> mij <1y, (28)
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P35 can be polynomial-time reducible to Po, which is an
instance of P;. The reduction is as follows:

o LetI'=[I',I? .-, I™]. Reshape I°, w as vectors I§,,,,
Wy1q¢ Whose lengths are mx L. z; is corresponding to I°,
where i=1,---,mand 41 = I, Letv; = —(|1 -

10 - Byw, where i=1,---,m and vy = Pwf,,.
Thus Eq. (26) can be reduced to

55 ml - i\crﬂ)wﬂ R

i=1 j=1

min

1T 510

which is equal to Eq. (22).

o Letc¢; = fit, i =1,--- ,m, ¢ymy1 = fet, Then Eq. 27)
can be reduced to Zlewjli < fit, Wha I < fet
which are equal to Eqs. (23) and (24)

o« Yt xy; <1, and x;; € {0,1}" can be reduced to
I'+1° < 1,,xr and I', I¢ C {0, 1}™L, respectively.

There are m + 1 containers whose capacity is the computing
power of devices. I’ and I°¢ indicate tasks are packed into a
local knapsack and an edge knapsack, respectively. Therefore,
we can conclude that P4 is a multiple knapsack problem and

it is NP-hard. O
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Fig. 3: The extra cost generated in the local and at the edge.

The extra costs generated in the local and at the edge are

defined as Cost.,,,, and Cost¢,,,,, respectively.
COStlextra - ‘]‘ - - ’Cﬂ} >1 + Bwjfzwlta (30)
Coste,, . = h - ;(erﬁd +pwItest. (31



From Egs. and we find both Cost! .. and
Costt,,,, are positively assomated with |1 — £[. As depicted
in Flg Bl when the value of 7 is closer to 1, the value of
[1— | is smaller, which means it is preferred for Costl , .
and Costemtm to execute tasks whose 7 is closer to 1. In
reality, the conclusion is understandable: 7;,; = 1 means
executing on local is equal to executing on edge for task;;.
When the computing ability is insufficient, we need to choose
which tasks are executed in the current workflow to minimize
the extra cost and the rest of tasks will be executed in the
next workflow. As mentioned above, the cost of the current
workflow consists of two parts: one part is the lowest cost we
need to paid whether tasks executed on local or on edge; the
other part is the extra cost of tasks which are indicated by I*".
The former cost is fixed, and the latter cost is what we need
to optimize. In order to choose tasks from I*" to minimizing
the extra cost of the current workflow, we execute tasks in the
current workflow whose 7 is closer to 1 by using the limited
remaining computing ability.

Lemma 2. A mobile device user © has L tasks, which are
sorted by |1 — %| from smallest to largest. 1" is the indicator
vector of user i which illustrates tasks executed elsewhere,
without being guided by whether T is greater than I or not.
When the amount of computation of tasks are equal and I}"
indicate the task whose 7 is closer to 1 as 1, Costegira IS
smaller.

Proof. First, let’s assume I and '™ as follows:

I;IST:[I’L"', 170703"'70}7 ]{322,
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Then, Costeyirq With the indicator I r can be calculated as:
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P, is a 0-1 NP-hard problem [45]], whose computational
complexity will significantly arise due to the increase of
binary variables. We convert P into several simple knapsack
problems based on the relationship between C'osteytrq and 7,
which are prone to be solved. On the one hand, we translate
the threshold of 7 from 1 to a new vector © which is more
suitable to the current environment, and we decide whether to
offload the task or not by the threshold and 7. On the other
hand, the tasks which are assigned on the local or on the edge
will further be allocated computational resources, and the tasks
which are not be allocated computational resources will be
computed in the next workflow. The preliminary offloading

policies I'(©) and I¢(0) of the current threshold © in the
local and at the edge are computed as follows, respectively.

< i
1L(0) = 1, m; < @'(z), (32)
0, otherwise.
Ley=<"' " ' 33
i(©) {0, otherwise. (33)

Furthermore, two simple knapsack problem are solved in
local and edge to get the final offloading policy I7;(0) of the
current threshold ©, which is decided by !(©) and x¢(0©) as
follows:

0, k(©)=1,
I5(0) =41, k¢©)=1, (34)
2, kY(O)=0& k°(O) =0.

where I;;(©) = 0 means computing task;; in local under the
current ©, [(©) = 1 means computing task;; at the edge
under the current ©, and I/;(©) = 2 means computing task;;
in the next workflow under the current ©. x!(0) and x°(0)
are the results of two simple knapsack problems. We describe
two simple knapsack problems in the following parts.

Therefore, the total cost of the system under the current
can be calculated as:

m L
cost(0) = ZZ ost(1;3(© (35)
where
ﬁj, Ijj(@) =0,
Cost([fj(G))) = fj, IZ-*j(@) =1, (36)

B. Find the Optimal ©*

In MEC systems, the active power PZ-A, the idle power P,
the transmission power P! and the computational speed f;
are generally different for varying mobile devices, which have
a great impact on the distribution of 7. For instance, as shown
in Fig. ] the values of 7 of tasks in the 4¢h device are signif-
icantly different from those in the 5¢h device. So we define a
threshold vector ©,,,x1, where different mobile devices may
have different threshold values. In the case of task overflow,
the number of tasks or the amount of computation may be
very large, so it is very urgent to relieve the computational
pressure in the next workflow. In order to tackle this challenge,
we propose two algorithms based on the multiple knapsack
problem to offload tasks: the OAKGM algorithm is designed
to search for an optimal threshold vector, while the OAMKP
algorithm is designed to search for an optimal threshold value.
Because the large difference between the values of 7 of
different tasks may cause a lot of unnecessary calculation and
the values of 7 of each device can be roughly divided into
2 3 clusters in Fig. [d] we utilize K-means clustering to cluster
7i = {71, Tia, - - , i } and get the K-table as shown in Fig.@
where the values of 7; are divided into three clusters.

When the computational resources of each device are suffi-
cient, the threshold is one. However, when the computational
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Fig. 5: The encoding of © in the OAKGM algorithm when the
number of users is five.

resources are insufficient, we have to make a trade-off between
the cost and the limitation of computational resources. We
propose the OAKGM algorithm, the purpose of which is to
search for the most suitable © to minimize the system cost
and alleviate the computational pressure in the next workflow.
After computing K-table by utilizing K-means clustering, we
obtain the optimal threshold vector ©* through a genetic
algorithm [46], [47]]. The algorithmic process of the genetic
algorithm is described as follows:

« Encoding Chromosomes: As depicted in Fig. 5} we
encode every chromosome as a binary vector whose
length is m x 2, which corresponds to a threshold vector
O.

o Selection: The fitness function of the genetic algorithm
is equal to —Cost(I};(©)), because the aim of our
algorithm is to find an optimal © that minimizes the C'ost
of the overflowed MEC system.

¢ Crossover and Mutation: To generate more high-fitness
chromosomes, we use single-point crossover and swap
mutation [47]).

The proposed OAKGM algorithm is as illustrated in Fig. [6]
the numbers of K-table correspond to the clusters of K-means
clustering. 1'(©) and ¢(©) are the indicator matrices that
represent the tasks considered to be executed in the local and
at the edge, respectively, which can be calculated as follows:

1, K —table;; < O(i),
0, otherwise.
1, K —table;; > O(i),
I5(0) = ablei; > ©() (38)
0, otherwise.

096 |2.05|1.15|0.43 | 2.26 21312113 i__l_ji
0.79 (168|079 | 009|016 || 2 |3 | 2| 1] 1 ,z,
2.0110.60|154]0.93]|1.45 3(112]1]|2 E 1 i
1.95(4.40 | 1.33 | 2.74 | 3.41 1(3([1[2]2 E 0 i
017|014 (125|123 |146| 1|1 |22 |3 .l.
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[ Jre []re

Fig. 6: The illustration of the K-table

C. Optimization in the Local

In the case when the computing resources in the local are
insufficient to compute all tasks whose I ﬁj (©) are equal to 1,

which means Z?Z(?) w};(©) > fit, where I}(©) is the number
of tasks for the i*" device that satisfies I};(©) = 1 and w}(©)
is the amount of computation corresponding to these tasks.
In this part, we need to determine which tasks should
compute in the local and which tasks should compute in the
next workflow. So it can be regarded as a knapsack problem:
the capacity of the knapsack is f;t; the item weight of the
knapsack is w;;, and the item value of the knapsack is V};(©),
where Vilj(@) is the difference between the cost in the case
when task;; is computed in the next workflow and the cost in
the case when task;; computed in the local. The greater the
difference is, the more cost it takes for the task to enter the
next workflow, that is, the better it is computed in the local.

V(©) = Buwi;(©) — Q1;(8)
o+ P
= wij(@)(ﬁ - T)’

where the unit value of items is v} = 8 — 2Fi  Therefore,
when O is given, the optimization problem can be described
as follows:

(39)

1L(e)
(Pa) Hll(fg(): viw; (©)k;(8), (40)
H’i ]
1L(e)
str > wh(©)kl;(0) < fit, (A1)
J
k(©) € {0.1}4), “2)

where x*(©) is the best solution under the current ©, which
makes the total cost of tasks whose Ifj((%) = 0 are equal to
1 the lowest in the current ©.

D. Optimization at the Edge
When the computing resources at the edge are insufficient
to compute all tasks whose I (©) are equal to 1, which

means 22:(?) w§(©) > fet, where [°(©) is the number of



tasks satisfying I;(©) = 1, and w®(©) is the computation
corresponding to these tasks.

In this part, we need to determine which tasks should
compute at the edge and which ones should compute in the
next workflow. It can also be regarded as a knapsack problem:
the capacity of the knapsack is f.t, the item weight of the
knapsack is wy(©), and the item values of the knapsack is
VE(©), where V¢(©) is the difference between the cost if
task;; is computed in the next workflow and the cost if tasky,
is computed at the edge. The greater the difference is, the more
cost it takes for the tasks to go to the next workflow, that is,
the better it is executed at the edge.

Vi (©) = Buwi(0) — Qx(0)
o+ P
=wp(0)|6 — ,
1O~ 1)
where £k = 1,2,---,1%(0) and 77(0©) is the offloading

indicator corresponding to wy(©). The unit value of items

of the knapsack is v (0) = 8 — fk‘)‘;fg). Thus, when O is

given, the problem is described as follows:

(43)

1°(e)

(Ps) D vi(Owi(O)ki(0), (44

(45)

K°(0) € {0,131,

where k°*(©) is the best solution that makes the total cost
of tasks whose Ifj(@) are equal to 1. For convenience, we
transform x°*(©) to a matrix, whose dimension is m x L.

(46)

forevery g r, do

compute I(0L (0, then the MKP can be transformed to KPs (Pa) (Pr)
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Fig. 7: The illustration of algorithms

E. Two Offloading Algorithms based on Knapsack Problem
In the case when the current threshold is ©, we gather
k°*(0) and k'*(O) together so that we can obtain I*(©)
according to Eq. (34).
Algorithm [I] shows the process of obtaining the optimal
solution through K-means clustering, genetic algorithm and

Algorithm 1 Offloading Algorithm based on K-means cluster-
ing and Genetic algorithm for solving the Multiple knapsack
problem (OAKGM)

Input: o
Output: [*(©*)
for workflows do
Initialize env=[p, f., fi, Ri, D, P4, PT, P1]
Compute 7 by Eq.
Compute K-table by K-means clustering
Initialize chromosomes
for num = 1 : max_iter do
Compute © by chromosomes as Fig. [5]
Compute I'(©) and I¢(©) using © and K-table by
Eq. and Eq. (38), respectively
Compute x*(0) by solving (P4)
Compute x°*(0) by solving (P5)
Compute I*(0) by Egq.
Compute —Cost(I*(0)) as fitness
Do a softmax selection by fitness
Do single-point crossovers
Randomly select bits and flip them and generate new
chromosomes
end for
end for
return Cost* and [*(©*)

Algorithm 2 Offloading Algorithm based on Multiple Knap-
sack Problem (OAMKP)

Input: «
Output: I*(6*)
for workflows do
Initialize env=[p, f., f;, Ri, D, P4, PT, P1]
Initialize cost, s = 1
Compute 7 by Eq. (T1)
Reshape and sort 7 as 7
for s=1:mx L do
0 =1 (s)
Compute £'*(0) by solving (Py)
Compute x°*(0) by solving (Ps)
Compute *(6)
Compute the Cost(I*(0)) of I*(6)
if Cost(I*(0)) < Cost* then
Cost* = Cost(I*(0))
st =s
end if
end for
0* = 0(s*)
Compute I*(6*)
end for
return C'ost™ and I*(0*)




knapsack problem. First the values of 7; is classified into
K clusters. Then we utilize genetic algorithm to find the
optimal © rather than make a traversal on K cases whose
time complexity grows exponentially with M, because genetic
algorithm have advantages over traversal when computing
scale grows exponentially. We find that the value of 7 when
the majority of tasks that are offloaded to the edge is greater
than the value of 7 when they are executed locally.

As the number of users or tasks becomes larger, we propose
a simplified OAMKP algorithm to speed up computing, as
illustrated in Algorithm [2] where the simplified threshold 6 is
a constant. Since the offloading indicator 7 is discrete, we
iterate over all values in 7 as the possible values of 6 to
get an approximate optimal solution of the overloaded MEC
system. Referring to [48]], the time complexity of the OAMKP
algorithm is O (m x L x [37" 14(6)% +1°(6)?]).

V. PERFORMANCE EVALUATION

In this section, we conduct simulations to verify the effec-
tiveness of our proposed algorithms under various parameter
settings. Specifically, we compare the proposed method with
several benchmark offloading schemes in the MEC environ-
ment.

A. Simulation Settings

In a workflow, tasks arrival and their data sizes are expressed
as D = {Dj;li = 1,2,--- ,mandj = 1,2,---,L}. The
number of mobile devices in local is set as 10, the numbers
of tasks in small scale environment are set as 5, 6, 7, 8 which
corresponds to 50, 60, 70, 80 nodes, respectively. In big scale
environment the numbers of tasks are set as 10, 15 and 20,
which corresponds to 100, 150, 200 nodes, respectively. The
number of clusters of 7; is 3. In order to make sure that
most of Sw;; € [0,10], we set 8 € [1/Wmax, 20/Wmax], Where
Wimax = Dmax * Pmax- Similar to [49], the parameter settings for
our experiment are described in Table

In real-world scenarios, tasks arrive randomly and the
number of tasks of each devices are not same in a time slot.
Thus, the data sizes of the quarter tasks are randomly set to
0 in experiments so that the number of tasks varies between
devices. To improve the reliability, we conduct experiments
in fifty different environments and each of them is generated
randomly according to the parameter settings, and we run
fifty simulations under each environment. The computing
ability of each devices f;, the active power PiA, the idle
power P/, and the transmission power P are all different in
different environments. So the simulations consider not only
the changes of the numbers of tasks but also the changes of
devices. Furthermore, the resource occupancy rate is defined
as follows:

m L
>t Zj:l Wij - Iz(j
Yoty fit+ fet

(47)

resource occupancy rate =

0, I;=2,
1, otherwise.
computed in the current workflow.

where I, = is the indicator matrix of tasks

TABLE III: Evaluation Parameters

Parameters | Value
R 4 Gbps
PA [0.1,1] W
P! [0.001,0.002] W
PT [0.01,0.1] W
D (500, 1000] Kbit
p (10, 500]
fe 4000 MHz
fi [500, 1200] MHz
o 1
Jé] 4x10°8

B. Benchmarks

We compare the proposed algorithms with five baseline

offloading schemes, which are listed as follows:

o Genetic Algorithm (GA) [46]: In this method, we regard
each offloading decision as a m x L dimensional chromo-
some. The number of chromosomes is 128, and the length
of each chromosome is m x L. The maximum number
of generations is 200. Through a fitness function related
to the cost, we select the superior chromosome and
eliminate the inferior chromosomes through the processes
of crossover, mutation, and selection. Finally, we can
obtain the offloading decision with the highest fitness
value.

o Particle Swarm Optimization (PSO) [50]: In this
method, we regard each offloading decision as a map. The
number of particles is 128. The velocity extremum that
limits the maximum change of a particle in an iteration
is 0.2. The two learning factors are both set to 2. The
inertia weight is 0.8. When a particle arrives at a certain
location on the map, the map will change its offloading
options at this location and get a fitness value. Finally,
we can obtain the offloading decision with the highest
fitness value.

« Random Offloading Policy (ROP): In this policy, we
make offloading decisions randomly.

e Only-Local Policy (OLP): There are two options for
tasks under this policy: one is to compute tasks locally,
and the other is to compute tasks in the next workflow.

e Only-Edge Policy (OEP): There are two options for
tasks under this policy: one is to compute tasks at the
edge, and the other is to compute tasks in the next
workflow.

C. Performance Comparison

Fig. [8] shows the average cost under different offloading
methods. When compared with GA, PSO, ROP, OLP and OEP
algorithms, the OAKGM algorithm is significantly superior in
terms of average cost. For instance, compared with GA, the
OAMKP method achieves 4.19%, 9.09%, 8.89% and 7.31%
improvements when the numbers of tasks are 5, 6, 7 and 8,
respectively. Compared with PSO, it achieves 8.18%, 7.13%,
5.50% and 4.87% improvements when the numbers of tasks
are 5, 6, 7 and 8, respectively.

Fig.[9]shows that when compared with GA, PSO, ROP, OLP
and OEP algorithms, the OAMKP algorithm is significantly
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superior in terms of average cost. For instance, compared with
GA, the OAMKP method achieves 8.66%, 8.07% and 6.35%
improvements when the numbers of tasks are 10, 15 and 20,
respectively. Compared with PSO, it achieves 10.12%, 8.38%
and 4.71% improvements when the numbers of tasks are 10, 15
and 20, respectively. The total amount of computation of the
tasks when m = 10 and L = 20 is much larger than that when
m = 10 and L = 10, which means that more computations
can be overflowed, leading to a decrease in the improvement
percentage as the number of tasks L increases.
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Fig. 10: The resource occupancy rates of different algorithms under
environments with varying numbers of users and tasks

Due to the limitations of ROP, OLP and OEP schemes in
terms of the resource occupancy rate, we will ignore them
in the remaining experiments. Thus, we mainly compare the
proposed OAMKP algorithm with GA and PSO algorithms.

Fig. shows the average resource occupancy rates of
the OAMKP, GA and PSO algorithms. It can be seen that
our algorithm has a larger resource occupancy rate than
the GA and PSO algorithms, which means that when our
offloading-decision algorithm is deployed in the MEC system,
the amount of computation to enter the next workflow will
be greatly reduced. When the number of tasks increases, the
average resource occupancy rates of our algorithm and the
PSO algorithm increase, while the resource occupancy rate of
the GA algorithm decreases. Obviously, when mobile devices
and tasks become intensive, our algorithm greatly outperforms
the GA and PSO algorithms.

Fig. [I1] shows the average time cost under various environ-
ments with different numbers of users and tasks. Combined
with Fig. we know that our algorithm can execute more
tasks in a similar or shorter time when compared with the GA
and PSO algorithms.
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Figs. [12] and [T3] show the influence of different 3 on the
results of different algorithms. Under such (3, most of the
overflowed cost Sw;; is in [0, 10], where w;; is the amount of
computation of the task, which is going to the next workflow.
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We can see that even though [ changes, the result of the
GA algorithm is similar to that of the PSO algorithm. The
proposed algorithm always achieves better than the GA and
PSO algorithms under different 3, and the resource occupancy
rate of our algorithm can reach 95.84%, which is much higher
than that of the GA and PSO algorithms.
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Fig.|14] shows the impact of different f, on the average cost.
When f. increases, the average cost of OLP will not change
because the tasks are only executed locally. The average costs
of other algorithms decrease as the available total computing
resources of each workflow is increasing. For environments
with different f., the offloading decision of our algorithm is
the best choice.

Fig. 15| shows the influence of different f. on the resource
occupancy rate. When f, increases, the average resource
occupancy rate of our algorithm decreases, while the rates
of the GA and PSO algorithms increase slightly because of
the randomness of these two algorithms, which makes them
perform well in the environment where tasks are slightly more
sparse. However, the best resource occupancy rate is still far
from the OAMKP algorithm under different f..

Considering the queue effect, we compare it with two
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methods: one is OAMKP, the other is OAMKP ¢y, Which
replaces the penalty term for overflowed computations with
the penalty term for the queue. We utilize a product of the
penalty coefficient 7 and the number of unexecuted tasks
in the current workflow as the queueing penalty term. After
simple scaling, we set the penalty coefficient to 5, which
corresponds to 3 = 4 x 107%. As shown in Fig. the
solid lines and the dotted lines correspond to OAMKP and
OAMKP e respectively, while the blue lines and yellow
lines correspond to the total overflowed computations and total
overflowed tasks respectively. As Fig. [I6]shows, OAMKP ends
tasks earlier than OAMKP,,c,., Which means that optimizing
overflowed computations is more suited to solve the task-
overflowed situation than optimizing the queue because the
latter is a coarse-grain optimization.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider the task-overflowed situation
when the total amount of computations of the tasks to be
carried out exceeds the total computing capacity of the MEC
system. We design a novel task offloading indicator in local-
edge collaborative computing environments, the purpose of
which is not only to minimize the system cost, but also to
alleviate the computational pressure of the next workflow. On
the basis of the indicator, we propose two offloading algo-
rithms based on the multiple knapsack problem, i.e., OAKGM



and OAMKEP. It is found that the former is more suitable for
small-scale MEC systems composed of several users and tasks,
while the latter is more suitable for larger-scale MEC systems
with numerous users or multiple tasks. Experimental results
demonstrate that the proposed algorithms can achieve better
performance than existing GA and PSO algorithms. It can
make better use of the computing capacities of IoT devices
and edge servers, greatly avoid resource occupation at the edge
nodes, and effectively reduce the computational pressure of the
next workflow.

For future work, by utilizing energy harvesting technolo-
gies [51]], we will comprehensively consider the characteristics
of abundant computing resources in cloud computing and low
transmission delay in green and sustainable MEC systems. In
addition, we will attempt to tackle the task-overflowed issues
in serverless edge computing frameworks [52], [53] with a
focus on joint computation offloading and resource allocation.
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