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Abstract—A variety of methods have been proposed for mod-
eling and mining dynamic complex networks, in which the
topological structure varies with time. As the most popular
and successful network model, Stochastic Block Model (SBM)
has been extended and applied to community detection, link
prediction, anomaly detection and evolution analysis of dynamic
networks. However, all current models based on the SBM for
modeling dynamic networks are designed at the community
level, assuming that nodes in each community have the same
dynamic behavior, which usually results in poor performance
on temporal community detection and loses the modeling of
node abnormal behavior. To solve the above problem, this paper
proposes a Hierarchical Bayesian Dynamic Stochastic Block
Model (HB-DSBM) for modeling the node-level and community-
level dynamic behavior in a dynamic network synchronously.
Based on the SBM, we introduce a hierarchical Dirichlet gen-
erative mechanism to associate the global community evolu-
tion with the microscopic transition behavior of nodes near-
perfectly and generate the observed links across the dynamic
networks. Meanwhile, an effective variational inference algorithm
is developed and we can easy to infer the communities and
dynamic behaviors of the nodes. Furthermore, with the two-
level evolution behaviors, it can identify nodes or communities
with abnormal behavior. Experiments on simulated and real-
world networks demonstrate that HB-DSBM has achieved state-
of-the-art performance on community detection and evolution. In
addition, abnormal evolutionary behavior and events on dynamic
networks can be effectively identified by our model.

Index Terms—Temporal community detection, Node-level be-
havior, Community-level behavior, Dynamic SBM, Variational
inference

I. INTRODUCTION

OMPLEX networks have been widely applied to model a

variety of real-world phenomena, e.g., social relations [1]
and biological systems [2]. As an emerging interdisciplinary
subject, network science has received increasing attention
from different fields. Community structure, as one of the
important statistical characteristics, plays an important role
in understanding the formation and function, link prediction
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and spreading dynamics of complex networks. The community
is usually denoted as a sub-network with a higher inner
density in a given network. Community detection drives the
development of link prediction, information spreading and
anomaly detection of complex networks, it also can be used
for event detection, criminal organization identification and
terrorist group mining. Therefore, a large number of methods
and models for community detection [3]-[6] have been pro-
posed, e.g., modularity optimization-based, spectral clustering
and statistical inference [7].

All of the methods described above are only designed for
static networks with constant structures. However, complex
networks are usually time-varying, i.e., the structure of the
networks changes over time, which is referred to as dynamic
or temporal complex networks. For instance, in a collaboration
network based on DBLP data, nodes and edges denote the
authors and their cooperative relationships, as well as changes
in research fields, and the number of nodes and links changes
over time. For this network, the communities usually corre-
spond to different areas of research, such as the area of Data
Mining. With the varying structures of dynamic networks, the
communities present different evolution forms [8], including
Growth, Contraction, Merge, Split, etc., and the evolution
forms are early denoted by [9] and further expanded by [3].

With the various forms of community evolution in dynamic
networks, it poses new challenges for detecting temporal com-
munities. It is widely acknowledged that a dynamic network
is usually represented as a series of snapshots, each of which
can be regarded as a static network. As a result, community
detection in dynamic networks has three subproblems, namely,
community detection in each snapshot, evolution across snap-
shots and abnormal behavior or change point identification.
These complex and interwoven challenges make it full of
vitality. In essence, these subproblems can mutually promote
and are related to each other. At the same time, the temporal
community detection can also be used for exploring functional
brain networks [10], change point detection [11], identification
of influential individuals [12], [13], fraud detection [14], etc. It
can also help understand the evolution mechanism of dynamic
networks and make better link predictions.

A variety of methods [3], [15] for community detection in
dynamic networks have been developed, including methods
based on modularity, spectrum, multi-objective optimization,
dynamics, dynamic stochastic block models and matrix de-
composition. Each method focuses either on detection, evolu-
tion or abnormal behavior. For the detection task, they improve
the community quality by considering the topological structure
of some successive snapshots, which could increase the robust-



ness of the community structure. The most representative one
is the evolutionary clustering framework, which assumes that
there should be no obvious mutation in community structure
abrupt change and leads to a number of temporal communities
detection methods like FaceNet [16]. For the community
evolution task, the methods mainly focus on the evolution
of communities across the snapshots with given community
structures. For instance, event matching-based methods es-
tablish the corresponding relationship between communities
by defining some similarity indexes across the snapshots.
However, all these methods and models are focusing on
community detection or community evolution, independently.
The abnormal behavior is more related to the community
evolution, if we have learned the dynamic behaviors on nodes
and communities, it is easy to identify the abnormal nodes
of communities or some events on networks [17]. Similarly,
some critical events and behaviors are conducive to community
detection and evolution.

In recent years, some models have tried to solve commu-
nity detection and evolution simultaneously by modeling the
dynamic network. DSBM [18] is the first generative model for
the tasks by defining a probability transition matrix between
two snapshots based on a stochastic block model. Then, some
studies [19], [20] further extended DSBM to generate the
dynamic network with an evolutionary community structure,
which relaxed the constraint of fixed connectivity probabilities.
Liu er al. [21] proposed DECS based on the evolutionary
clustering and multi-objective optimization algorithm. At the
same time, some methods of integrating community structure
and abnormal behavior have been proposed gradually. Che-
ung et al. [22] proposed to detect both change points and
community structures simultaneously based on each individual
sub-network following a Stochastic Block Model (SBM), and
utilized Minimum Description Length (MDL) Principle for
minimizing objective criterion.

However, all these methods for modeling dynamic networks,
whether based on DSBM or heuristics, are designed at the
community level, i.e., they assume that nodes in each commu-
nity have the same dynamic behavior. For example, the nodes
in one community have the same transition probability from
the current snapshot to the next, which has been proved by
some empirical studies [23]. Thus, the lack of some important
dynamic patterns of different nodes and communities usually
leads to poor performance on temporal community detection
and ignores certain node-level dynamic behaviors. It is impos-
sible to recognize abnormal node behaviors in the community
network.

In this paper, we focus on modeling the evolution of
node-level and community-level of the dynamic network
synchronously. There exist two major challenges: 1) how
to accurately model both node-level and community-level
dynamic behavior? 2) how to quantify the relationship be-
tween node-level and community-level transitions? With this
information, we can infer the community structure, dynamic
evolution and nodes with abnormal behaviors. In order to
solve these problems in principle, we propose a Hierarchi-
cal Bayesian Dynamic Stochastic Block Model (HB-DSBM)
to model both community structure and evolution from the

perspective of statistical models. We characterize the changes
of the generated network by defining several latent variables,
such as community-level transition, node-level transition, and
community membership of nodes. At the same time, we
introduce a hierarchical Dirichlet generation mechanism to
associate the mesoscopic community evolution with the micro-
transition behavior of nodes in dynamic networks. Then, we
show a detailed generated process of the temporal network
and drive an effective optimization algorithm based on the
variational inference. Experiments on temporal community
detection, evolution, abnormal behavior and some case studies
show the superiority of HB-DSBM. The main contributions of
this paper can be summarized as follows:

o We propose a full Bayesian generative model called HB-
DSBM, which is a well-designed generation mechanism
based on DSBM and can generate and model the evo-
lution of nodes and communities, and the changes of
dynamic networks.

o The focus of HB-DSBM is to model dynamic commu-
nities at the node and community levels synchronously
from a hierarchical Bayesian perspective. Moreover, HB-
DSBM can help improve community detection and evo-
lution, and further identify abnormal behaviors.

o We also propose an effective variational inference algo-
rithm for HB-DSBM. Extensive experiments have been
conducted to show its superior performance and effec-
tiveness on simulated and real-world dynamic networks.

II. RELATED WORK

Recently, several innovative methods have been developed
for community mining in dynamic networks. Here, we di-
vide these methods into three categories, namely, heuristic
optimization-based for temporal community detection, genera-
tive models for modeling community evolution, and abnormal
behavior of nodes and communities identification on dynamic
networks.

A. Heuristic Optimization-based Methods

In general, heuristic optimization-based methods can be
divided into three categories, namely, two-step methods, incre-
mental clustering-based methods and evolutionary clustering.

Two-Step Methods: These methods treat community de-
tection and evolution as two independent problems. The key
idea is to detect the communities, and then use similarity
measures to match communities across different snapshots.
GraphScope [24] first used the Minimum Description Length
(MDL) principle to extract communities and detect community
evolutions. Besides, there are also many methods based on
the embedding technology with side information like node
feature, e.g., the author information in a co-author network.
For instance, TRNN [25] utilizes the multi-head self-attention
into a transformer-style neural network to capture the dynamic
information in the dynamic network, then observe the em-
bedding vector of every node to support downstream tasks
like link prediction, node classification and so on. But these
methods take side information as input in the models. If there
is no side information in the network, it is ubiquitous in the



real world due to the privacy policy, the accuracy of these
methods will drop drastically.

Incremental Clustering-based Methods: These methods
typically renew the communities according to the varying of
the dynamic network based on the community structure at
the first snapshot, which is obtained via one static network.
DynaMo [26] is an incremental modularity-based clustering
method, which is faster than Louvain algorithm. Tajeuna et
al. [11] proposed an approach for automatically detecting the
size of the snapshot to adopt when identifying and tracking
communities over time. TILES [27] used label propagation
for network changes, which is very efficient for large-scale
networks.

Evolutionary Clustering-based Methods: Evolutionary
clustering is the most popular framework for detecting
the communities of the snapshot by adding regularization.
FacetNet [16] was a typical model based on a unified frame-
work for community detection and evolution with evolution-
ary clustering. DYNMOGA [28] was proposed by turning
the community detection into a multi-objective optimization
problem. GenLouvain [29] exploited a novel measure of
dynamic networks based on the modularity, and then used
the well-known Louvain method [30] to calculate the com-
munity structure. Seifikar ef al. [31] further introduced a new
Louvain-based dynamic community detection algorithm which
is relied on the previous snapshot of the network evolution.
PisCES [32] used historical observations to predict future
events of a network, which put the two tasks into a unified
framework and made them mutually constrained.

In summary, some of these methods ignore the evolution
for community mining in dynamic networks, some treat com-
munity detection and evolution as independent problems, and
some lack theoretical explanations that simultaneously solve
community detection and evolution.

B. Generative Model

It can be divided into Dynamic Latent Space Model
(DLSM), Dynamic Stochastic Block Model (DSBM) and other
generative models.

DLSM embeds the dynamic network into a latent Eu-
clidean space and assigns each node a temporal trajectory
with time [33] and uses it to conduct community detection
[34]. Considering a large number of parameters in such
models, they are usually optimized by the Markov Chain
Monte—Carlo (MCMC) sampling and are only suitable for
small networks [35]. The classic DSBM [18] was first pro-
posed based on Stochastic Block Model (SBM) to analyze
dynamic networks by providing a unified framework to capture
both communities and their evolution simultaneously. Xu et
al. [19] proposed a state-space model for dynamic networks
based on the SBM and used an Extended Kalman Filter
(EKF) augmented with a local search to optimize the model.
Furthermore, Xu [36] constructed a stochastic block transition
model (SBTM) to model the direct influence of connections
between snapshots. Becker and Holzmann [37] analyzed the
nonparametric identification in the dynamic stochastic block
model. DBTDP [38] was developed for community detection

and evolution tracking, and the number of communities per
snapshot was automatically determined by a Dirichlet pro-
cess. Similar works are proposed in [39], [40]. In addition,
other generative models of dynamic networks have also been
proposed, for example [41] proposed a Poisson gamma prob-
abilistic model based on the Bernoulli Poisson link function.
Furthermore, some methods based on the Nonnegative Matrix
Factorization (NMF) for community detection in dynamic
networks can also be regarded as model-based [42]-[44].

In summary, all these generative models are based on the
community-level transition tendency, assuming that the nodes
within the same community have identical dynamic behavior.
This assumption causes different dynamic behaviors of nodes
lost, thus failing to capture of dynamic behavior heterogeneity
of nodes.

C. Abnormal Behavior Identification

Abnormal behavior identification in dynamic networks can
indicate profound underlying network structure changes. It can
be divided into two types:

Node Abnormal Behavior: It refers to abnormalities that
occur due to changes in node features. Its key idea is to
calculate and compare the node feature of different time slices.
DeltaCon [45] handles streaming graphs, gradational similarity
updates for time-evolving graphs by using the L2 norm, as well
as graphs with node attributes for expressions that utilize fast
belief propagation [46] to derive node affinity. CICPD [17]
encodes nodes’ importance characteristics of each time slice
through PageRank defines a new network by using Jensen-
Shannon (JS) divergence to compute the distance of snapshots.
NetWalk [47] utilizes the popular network embedding method
based on deep autoencoder and clique embedding to dynami-
cally capture node abnormal, and by using reservoir sampling,
NetWalk can compute the vector representations with constant
space requirements.

Community or Motif Abnormal Behaviors [48], [49]:
They are obviously caused by the huge change in the group.
Peel et al. [50] introduced GHRG which laconically models
nested community structure at all scales in a network. It
considers a fixed-length sliding window and uses the gener-
alized likelihood ratio to evaluate whether and the type of
changes. The coding method of GraphScope [17] not only
considers the community structure, but also considers their
change points in time. Community detection and segment
partition are obtained and their resemblance is measured by
the Minimum Description Length (MDL) principle.

In summary, these methods focus on identifying the ab-
normal nodes or communities, or the change points on the
temporal networks. As a result, they all failed in community
detection and its evolution.

III. THE PROPOSED MODEL

In this section, we first introduce the notations used in this
paper, and then give the problem definition and the details of
our proposed HB-DSBM, including its generation process and
the joint probability distribution.
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Fig. 1: Graphical model of HB-DSBM. w!

j

is the similarity
of nodes 7 and j at snapshot ¢ and the observation variable. A
and C are evolutionary variables at the community and node
levels, respectively, representing their dynamic behaviors. B
and Z are the latent variables of DSBM, and «, 3, i and ~y
are hyperparameters.

A. Problem Formulation

Given a dynamic unweighted and undirected network with
T snapshots, we use W = {W? W2 ... WT} to represent a
series of adjacency matrices of the temporal network. We also
denote Z = {Z',72,--- , ZT} as the community assignment
for all nodes in each snapshot, ie., 2f € {1,---,K} is
used to denote the community ownership of node ¢, where
K (assumed to be constant) is the number of communities,
t=1,---,T and i = 1,---,N. In other words, z! = k
means that node ¢ belongs to the k-th community at snapshot
t. Important notations used in this paper are listed in Tab. I.
Therefore, the problem can be formulated as: given W, how
can we get the community structure, its evolutionary trajectory
and nodes across the network? Furthermore, which nodes and
communities may have abnormal behaviors? The HB-DSBM
comes into being.

The graph model of HB-DSBM is illustrated in Fig. 1,
which generates the observed links at each snapshot based
on the community and node levels. It can be described in the
following three parts.

o In this model, 7 is the prior probability of Z' and
follows a Dirichlet distribution with parameter v, B
is the probability matrix denoted on the communities,
i.e., By is the probability that two nodes belonging to
communities k£ and [ will establish a link, and it follows a
Beta distribution with hyperparameters «y; and Sy;. With
the community membership and the probability matrix, it
can generate the links at each snapshot.

o Let A € [0,1]5%K express the global community-
level transition matrix, and A, each row of A, fol-
lows a Dirichlet distribution with p as its parameter, so
> 1 Ar = 1. It denotes the global dynamic behaviors of
communities and models their evolution.

o We introduce C = {C*,C?,--.  CT} to handle the com-
munity transition tendency for each node across the snap-
shots, where each C* is generated from the community-
level transition matrix A and C' has no real meaning
just for unified formalization. At snapshot ¢ > 1, node ¢

TABLE I: Notations and their description

Notation | Description
K, N The number of communities and nodes of the dynamic
network, respectively
wt The adjacency matrix at snapshot ¢
T The probability of node 4 belonging to community k
at snapshot 1
2t The community node ¢ belonging to community at
snapshot ¢
A The community-level transition vector of k
Ct The node-level transition vector of node 7 at snapshot
t
B The probability of connection between community k
and [ at any snapshot
Y, The parameters of Dirichlet distribution of 7 and Ay
a, B The parameters of Beta distribution of B

follows its unique transition vector C! € [0, 1]%, which
is a probability vector following a Dirichlet distribution
with parameter A -1, so Y., cf, = 1. It can model
the microscopic evolution behavior of nodes and help
improve community detection and abnormal behaviors.

The first step is a general generation process for each link
of all snapshots. The second and third processes are the core
components of the model from the community and node levels,
which form the evolution dynamics of the temporal network.
The third step is very important and exquisite to associate the
community evolution with node behavior, which is known as
the hierarchical Dirichlet generative mechanism.

Compared to DSBM [18] and SBTM [36], our HB-DSBM
inherits all their advantages and has the following innovations.
From the microscopic view, we use Cf (t > 2) to describe the
transition probability vector of node 7 at snapshot t, which
can represent the temporal trajectory of nodes. From the
mesoscopic view, we denote A as the probability matrix of
community transition, which is the dynamic behavior patterns
of communities across the dynamic networks. Furthermore,
we integrate these two pieces of information to construct and
model the dynamic network.

Based on the above discussion, it can generate the temporal
community structure and its evolution for the observed links
of the dynamic network. The complete generation process is
as follows:

1) Generate community initialize probability m ~ Dir(y).
2) Generate block matrix B ~ Beta(a, f3).
3) For each node 7 at snapshot ¢ = 1:

a) Generate every node’s community assignment
z} ~ Mult(r).
b) Generate link w;; ~ Bernoulli(o|Bzi1,Z]1).
4) Generate every community-level transition probability
vector Ay ~ Dir(u).
5) For each node 7 at snapshot ¢ > 1:

a) Generate every node-level community transition
vector Cf ~ Dir(A i-1).

b) Generate every node’s community assignment z! ~
Mult(C}).

¢) Generate link w; ~ Bernoulli(:|B.: .t).

J



According to the graphical model in Fig. 1 and the above
generation process, the joint probability distribution of HB-
DSBM can be written as:
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When ¢t = 1, we could generate the community z! of

node ¢ from a multinomial distribution with parameter ,
and then generate links between every pair of nodes fol-
lowing a Bernoulli distribution, i.e., nodes ¢ and j have a
link between them with a probability of Bernoulli(~|le_1,Z]1).
When ¢t > 1, the nodes’ community ownership Z! follows
a multinomial distribution with parameter Ct, ie., node i
follows Mult(C}) to choose its community at ¢ and C! is
generated from Dir(A_-1). Each Ay is generated from a
Dirichlet distribution with parameter p, it denotes the global
transfer tendency of community k.

To optimize this model, our goal is to calculate the poste-

rior distribution P(W, Z,C, B, A, w|«, 3,7, i), which can be
written as:
P(W Z? C? B? A77r‘a’6777ﬂ)
P(Z,C,B,A,?TH/V,a,B,'%M)’
where the parameters «, 3, v and p are ignored for conve-
nience. In the next section, we will introduce how to calculate
and optimize this posterior.

It is important to emphasize that although we have assumed
that the number of communities and nodes in the network
is fixed, these communities and nodes are unweighted and
undirected. It can be easily extended to complex situations
similar to DSBM [18]. On the other hand, we can also
extend the link generation process by replacing SBM with
a more refined model, such as the degree preserving [51]
or scale-free characteristic [52] SBM model. Although they
can help improve the generative capability and community
detection, our focus is modeling the dynamic network from
the community and node levels, and these extensions can be
used as follows.

P(Z’C7B7A7W‘W): (2)

IV. LEARNING THE MODEL

Intuitively, the proposed model is complex and difficult to
be optimized. So in this section, we propose an efficient varia-
tional expectation-maximization algorithm to infer parameters

of the model. Then, on the basis of the learned parameters Z,
C, B, A, and 7, we can infer community structure, community
evolution, block matrix and abnormal behaviors in the dynamic
network.

A. Variational Inference

It is usually difficult to directly calculate the posterior
distribution P(Z,C, B, A, ©|W, «, 8, v, u), for it needs to in-
tegrate all the hidden variables Z,C, B and A. Although we
take some conjugate prior distributions, its calculation is also
exponential. For complex probability graph models, variational
inference is usually used as an effective learning method.
With this framework, we can approximate the posterior with
a decomposable distribution ¢(Z, C, B, A, ) based on mean-
field theory [41] as follows:

ggq COTITTa

t=2i=1

where A represents parameters {Z,C, B, A,w} for simplic-
ity, the block matrix variational parameter ¢(Bla,) =
Hk,z>k Beta(ag, Bri), and community-level transition ma-
trix variational parameter ¢(A|p) = Hk 1Hl 1 Dir(fkr).

q(z t\gbt) follows a multinomial distribution with (;St as its
parameter. ¢(ct|¢!) and q(m|7) both follow the Dirichlet dis-
tribution with parameters §t and jiy;, respectively. We need
to note that all of these settings are based on the conjugate
distribution and it can help infer the variational parameters
based on the coordinate ascent algorithm.

After a series of derivation [53] and variational inference,
we have the following identity (APPENDIX A):

log P(W) = KL(q(A)||P(Z,C, B, A,x|W)) + L(q). (4)

A)g(m), (3

To learn the model, our goal is to optimize the KL diver-
gence between P(Z,C,B, A, n|W,«,,7v,u) and ¢q(A) =
q(Z,C, B, A, 7). According to Eq. 4, minimizing the diver-
gence is equivalent to maximizing L(q), referred to as the
evidence lower bound (ELBO). So our goal is to optimize
L(q) with respect to the variational parameters.

Under the variational inference framework, the variational
evidence lower bound L(g) of the model can be written as:

T _ o p(A,W)
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where qNS, E, &, B, 1 and 7 are the variational parameters.
For simplicity, we omit the conditional parts of the ¢(-)
distributions. For example, we abbreviate g(A|o, f , B, ,7)
and g(2{|¢!) to q(A) and q(2}).

We maximize the ELBO to learn the variational parameters
of the latent variables Z, 7, B, A, C' and the model parameters

@, B, 1. We take the derivatives of L(g) with respect to the
variational parameters ¢, 7, &, 3, 1, &, and set these derivatives
to zeros and get the update rules as:

~ oL 6L 6L 6L 6L oL
3 o o

Next, we will introduce the iteration rules on the variational
parameters_ (b,% a, B 1 and f respectively. We also need to
add that, ¢ and ¢ are denoted at the node level, which are
referred to as local variational parameters. On the contrary,
the parameters &, 3 and 7 are global for they are designed at
the community level.

B. Parameter Learning
The iteration rules on the variational parameters is given by:
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where 9(x) = 1;(5)) = 28,

The inference detail of variational parameters can be seen in
Supplemental Materials (APPENDIX A). As we can see, the
hyperparameters of the model such as p and « are constants,
and their values have no significant effect on the performance

of the model and algorithm.

C. The Algorithm

As mentioned above, we have given all the update rules
of parameters in our model. Here the optimization process of
the model is given as Algorithm 1, where £ and ¢ are local
variational parameters because they are related to each node,
and @, 3, 7 and j are global variational parameters.

Algorithm 1 Optimization algorithm for HB-DSBM

Input: the adjacency matrix W? for each snapshot, hyper-
parameters, max iteration times 7,4, and the threshold e.
Output: the variational parameters &, 3, 7, i1, &, ¢.
1: parameters initialization
2: repeat ~ _
3:  given ¢, update 7, &, o, § and pu according to Egs. 7,
8,9, 10, 11, 12 and 13.
4:  given 7, § a, B and g, update ¢ according to
Eqs.~14, 15 and 16.
5: until L converges or iteration times > Nyaz
6: return &, 7, a, B, g and ¢

The computational complexity of the proposed algorithm
mainly depends on three parts. The complexity of updating ¢
is O(TN?K?), the complexity of the step that updates ¢ is
O(TNK?) and the complexity of the step that calculates the
ELBO is O(TN?K?), where T is the number of snapshots,
N is the number of nodes in the network and K is the number
of communities. In summary, the computational complexity of
this algorithm is O(T'N2K?).

Considering that most real-world networks are sparse, we
can further improve the efficiency and reduce running time
and complexity as O(mK?), where m is the number of edges
for all snapshots of the dynamic network. We can further



reduce computing time by using some sampling methods based
on stochastic optimization or parallelism for the proposed
algorithm.

V. EXPERIMENTS

In this section, we conduct several experiments to demon-
strate the performance of our proposed model on temporal
communities detection, community and node evolution and
abnormal behaviors identification of dynamic networks.

A. Baselines and Settings

We compare our HB-DSBM with typical and representative
temporal community detection methods. They are designed ei-
ther from spectral methods, incremental optimization, defined
optimization functions, generative models or global views.
These baselines could represent the best level of community
analysis in dynamic networks, which are listed as follows:

o ECD [54]: It combines the proposed new genetic operator
and classic genetic operators to exploit inter and intra
connections between nodes. This approach improves the
discovery of evolving community structures and finds the
best balance between clustering accuracy and temporal
smoothness.

o DECS [21]: It is a novel algorithm based on genome rep-
resentation, employing Population Generation via Label
Propagation (PGLP) for population initialization and de-
composition framework for multi-objective optimization.

o ESPRA [55]: It is a density-based method by combining
the resource allocation (RA) index in link prediction
and structural perturbation model [56] to improve the
community detection.

¢ GenLouvain [29]: It denotes a generalized network
function, time-dependent modularity, and can model the
temporal coupling across the snapshots with heuristic
optimization.

o AFFECT [57]: It extends the classical evolutionary clus-
tering [58] with adaptive evolution factor, so no balance
parameter is needed to be designed. It is a general frame-
work for temporal community analysis with different
clustering methods.

« DYNMOGA [28]: It generalizes the evolutionary cluster-
ing based on a multiobjective optimization algorithm, and
can compromise the snapshot quality and historical cost
effectively and determine the number of communities in
dynamic networks.

« DSBM [18]: It is the most successful generative model
for dynamic community detection and evolution analysis
based on SBM.

« PisCES [32]: From the perspective of spectral optimiza-
tion, this is a global method that can infer the evolution
by combining a series of networks, eigenvector smoothing
and degree correction.

For a fair comparison, we take the open codes by the authors
and set the default parameters in the original papers. For
our HB-DSBM, since the values of the hyperparameters do
not significantly affect the results, without loss of generality,
we set ag; = 10 when k& # [ and axr = N, and set

8 = akl,l # k = 10. Besides, 4 and ~ are also set to the
same value, ie., p = v = 7 for 1 < k < K in our
experiments.

B. Performance Metrics and Datasets

To compare the performance of HB-DSBM and baseline
methods, we introduce some indicators as our performance
metrics. We also show the synthetic and real dynamic net-
works.

1) Evaluation Index: Accuracy (AC) or error rate [59] is
usually denoted as the distance between the ground truth and
community membership of one method. Its definition is as
follows:

AC =227 - Z2'Z'"|F, (17)

where Z and Z’' are the community membership of ground
truth and one method, respectively. || - || is the Frobenius
norm, the smaller AC value on each snapshot, the better the
community results.

As most temporal community detection work [60] does, we
also use Normalized Mutual Information (NMI) as one of our
performance metrics to evaluate the proposed model and base-
lines for community detection in dynamic networks. Because
NMI is specifically designed for static networks, we calculate
it for different methods on each snapshot of the dynamic
network. NMI is used when there exists ground truth, which
measures the similarity between a given community partition
and the true community structure. Let Z = {Zy,--- , Zx } and
Z' = {Z,---,Z}} represent the true community partition
and the community partition to be evaluated, respectively,
where Z; or Zj, is the nodes set of community k. For Z
and Z’, we usually have Z, N Z; = 0,k # [ and |J Zj, is the
node set of dynamic networks. The NMI is denoted as:

NMI(Z, Z) = L 14 2)10% 55,5
)= T el (Z), H(Z)

(18)

where H(Z) and H(Z') are the entropy of community Z
and Z', respectively. The value of NMI is between 0 and 1.
The higher the value of NMI is, the more similar the given
community partition is to the true community partition.
Adjusted Rand index is another metric for clustering and
community detection performance, which is defined as:

Index — E[Index]
max(Index) — E[Index]’

where Index is the Rand index value of a community, defined
as RI = 22 where a and b are the number of node pairs

placed in the same cluster and in different clusters, respec-
tively. E[Index] is the expectation of Index. A larger ARI
value indicates better performance on community detection.

2) Datasets: We use the following synthetic and real-world
datasets of dynamic networks to evaluate HB-DSBM and the
baselines for temporal community analysis:

ARI =

19)

o Synthetic Dataset 1: It was firstly adopted by Lin et
al. [16], [59] based on the GN network data. Specifically,
it usually generates a temporal network with 128 or
256 nodes, 4 communities and 10 snapshots. A single
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Fig. 2: Community detection results on the synthetic dataset, the x-axis is snapshot ¢. From left to right, the synthetic temporal
networks are parameterized as synthetic dataset 1: (a) o = 5,nC = 9,aD = 20; (b) 0 = 5,nC = 3,aD = 20; (c)
o =4,nC = 9,aD = 16; (d) 0 = 4,nC = 3,aD = 16 and synthetic dataset 2: (e) switch; (f) merge-split. The top-down
results are presented based on the different metrics AC, NMI and ARI, respectively. For each data, we randomly generate 20
networks with the same configuration parameters, and the values are the mean of corresponding results.

parameter o representing the mean number of edges from
a node to nodes in other communities is used to describe
the data. And we use nC' to indicate the number of nodes
to leave their original community in each snapshot while
aD to indicate the average degree of nodes. Relatively
speaking, this data has s stable dynamic behaviors across
the snapshots. With different parameter settings, we have
different temporal networks to evaluate the models.
Synthetic Dataset 2: It was proposed by [8] to de-
scribe community dynamics. For this dataset, several
community-level events are introduced to make it more
similar to real-world networks. Generally, each generated
network contains 10 snapshots and 1,000 nodes, with
an average degree of 15 and a maximum degree of 50.
The number of communities ranges from 20 to 50, and
the probability of edges between communities is 0.2. Its
node degree follows the power-law distribution. In our
experiments, we select two classes of datasets, namely,
switch and merge-split, which are the most representative
temporal networks with dynamic behaviors at the node
and community levels, respectively.

KIT-Email Dataset: It is an email network [61] where
nodes represent senders and recipients and the edge
denotes the relationships. It has 1,097 email IDs (the
number of nodes) and 27,887 messages. We use it to
construct three temporal networks with time intervals
of 2, 3 and 6 months, respectively, and the number of
snapshots of the three temporal networks is 24, 16 and
8, respectively. The number of communities ranges from
23 to 32.

o DBLP Dataset: It comes from the DBLP bibliography'.
Similar to the processing of DSBM [18], we select data
from three major fields, i.e., data mining (DM), database
(DB) and artificial intelligence (AI) from 28 conferences
during nine years. After preprocessing, it contains 1,163
authors and 26,986 papers. We construct this temporal
network based on the cooperative relationships and the
ground truth is their research fields. We split this network
into 9 time snapshots with each corresponding to one
year.

o A Patent Dataset: We collect this data from WAN-
FANG DATA? and focus on one university. It includes
3,427 patents ranging from 2010 to 2020, belonging
to the patent classification number G06 (COMPUTING;
CALCULATING; COUNTING). We construct its author
collaboration network. Due to the imbalance of patent
counts, we divide it into 4 snapshots, which come
from years (2010 — 2014, 2014 — 2016, 2016 — 2018,
2018 — 2020), respectively, and each snapshot contains
1,942 nodes and 15,000 edges on average.

C. Experiments on Community Detection

We compare HB-DSBM with ECD, DECS, ESPRA,
DYNOMGA, DSBM, GenLou, and PisCES on two types of
synthetic datasets and real-world temporal networks.

1) Synthetic Networks: For Synthetic Dataset 1, we gen-
erate four temporal networks, the specific parameter settings
are 0 = 5,nC = 9,aD = 20; 0 = 5,nC = 3,aD = 20;
o = 4,nC = 9,aD = 16; 0 = 4,nC = 3,aD = 16,

Uhttps://dblp.uni-trier.de/
Zhttp://www.wanfangdata.com.cn/index.htm]
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respectively. They all have 128 nodes and 4 communities,
but different degrees of dynamic evolution behaviors. For

Fig. 3: Sankey diagram of nodes and communities evolution on Synthetic Dataset 1 with 0 =5, nC' =9 and aD = 20.
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Fig. 4: Community detection results on real-world datasets.
From left to right, the KIT email temporal networks with 24,
16 and 8 snapshots, respectively, and the DBLP network. For
each line, the results are presented based on different metrics
AC, NMI and ARI, respectively.

Synthetic Dataset 2, we select two typical synthetic networks,
one is specially designed for the dynamic behavior of nodes
and the other is for communities, called switch and merge-
split, respectively. They all have 1,000 nodes and varying the
number of communities and their degree distributions are all
power-law. For each temporal network, we report the results
based on the three metrics as shown in Fig. 2. It is easy
to know that HB-DSBM has achieved the best performance
based on the AC, NMI and ARI on all six different dynamic
networks. This is because our model can model both the
community detection and its evolution, so accurate community
and node behaviors can help to improve the detection results.
PisCES achieves the second-best performance because it is
committed to improving community structure by incorpo-
rating the evolution of the temporal network across time.
However, PisCES has very poor performance on the merge-
split network, in which the communities have great varying
behaviors, so it cannot cope with the community evolution.
Although GenLouvain has also achieved good results since
it can preserve the consistency of community structure over
time by coupling constraints, it usually overfits the network
structure and automatically determines that the number of
communities exceeds the ground truth. The performance of
ECD, DECS, ESPRA, DSBM and AFFEXT is somewhere in
between and is difficult to distinguish on different networks.

From Fig. 2 (a), (b), (c) and (d), HB-DSBM and other
baselines all present the results of serialization on small-scale
temporal networks. However, for Fig. 2 (e) and (f), these
methods are polarized on community detection in large-scale
temporal networks with more complex dynamic behaviors. To
be specific, HB-DSBM still achieves the best performance
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Fig. 6: Anomaly index of node-level transform trends. Note that Patent and Synthetic datasets have the same anomaly index
patterns, which indicates that the Patent network also contains a dramatic community evolution.

on both networks, PisCES has better performance than other
baselines, while DSBM has a very low NMI because its
sampling algorithm makes it inefficient in large networks,
even with 1,000 nodes at each snapshot. ECD, DECS and
DYNOMGA also have poor performance, especially on the
switch network. Without loss of generality, the models with
the community and network evolution analysis usually have
better results than others.

2) Real-World Networks: As for real-world datasets, we
also evaluate the performance of different methods in terms of
AC, NMI and ARI. We compare the results of our proposed
method with the baselines of the KIT-email and DBLP dy-
namic networks. As we can see from Fig. 4, on the three
KIT-email networks, HB-DSBM has the best performance
than other baselines on two networks no matter based on the
AC, NMI or ARI. On the temporal network with 6-month
intervals, our model also has competitive results, for that in
this network, each snapshot of which is relatively independent
of the other two. So we can conclude that HB-DSBM not only
has a stronger ability for community detection but also better
simulates the characteristics of the real-world networks. We
also note that the NMI and ARI of our method are roughly
equal to that of other methods in the first snapshot. The later
the snapshots are, the better the performance of our method,
which shows a general upward trend. This is because the
transition has no impact on the first snapshot in the model,
while from the second snapshot, the advantage of our model
in the detailed description of node transition heterogeneity is
reflected. Besides, DSBM also has competitive performance.
To sum up, the statistical modes with dynamic evolution are
more suitable for real-world temporal networks.

The experimental results on DBLP are shown in Fig. 4 (d).
The performance of our method is significantly superior to

that of other methods, which demonstrates the effectiveness of
our method in community detection. Among other methods,
DSBM has a better effect because it is a generative model,
while the sparsity of DBLP data and the parameter sensitivity
of PisCES lead to the poor effect of PisCES. It can be seen
from this figure that our curve is smoother than that of other
methods, because we put community detection and community
evolution in a unified framework, making full use of the
transition between nodes and communities.

D. Community Evolution Analysis

Previous models, such as DSBM, treat nodes in the same
community indiscriminately, i.e., two nodes in the same
community will have the same transform tendency in the
next snapshot, which means that the method can only reveal
community-level transform trends. In our model, the latent
parameters C' and A represent the node- and community-
level transform trends, respectively. For the comparison of
community evolution, if one method could not analyze the
dynamic behavior, we will match the temporal communities
across the snapshots and show its dynamic evolution. For the
synthetic datasets, we select two representative networks for
analyzing the dynamic behaviors. Figs. 3 and (APPENDIX
D Fig.5) describe the Sankey diagram of evolution of the
networks on Synthetic Dataset 1 and Synthetic Dataset 2
merge-split, respectively. In addition, Sankey diagram is a
kind of flow diagram, where the width of every branch is
proportional to the flow rate, which is w in our
diagram. So the Sankey diagram can visualize the community
evolution in the dynamic network.

For the first temporal network, there are four communities
and a stable dynamic evolution, Fig. 3 (a) is the ground
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Note that his ego network expanded rapidly from 2016 to 2018,

and it contains many people belonging to other communities,

such as the School of Electrical and Information Engineering during 2018 — 2020.

truth, and other subfigures are the results of different methods.
Although all methods show good performance on each snap-
shot, few methods can detect the evolution perfectly. DECS,
DYNMOGA and ESPRA present a chaotic evolutionary tra-
jectory. On the contrary, DSBM, GenLouvain and our HB-
DSBM could reveal the hidden behaviors of the network.
However, DSBM fails to perform node transition across the
snapshots because it is only designed for the communities,
while HB-DSBM is much closer to the real-world evolution
of the network.

For more complex situations of merge-split and DBLP
networks, we present some better baselines, as shown in (AP-
PENDIX D Fig.5) and (APPENDIX D Fig.6). The behaviors
revealed by DYNMOGA are extremely chaotic, because it
could not directly model the evolution. Among other methods
that could model the evolution of temporal networks, DSBM
adapts to the network due to its focus on the community level.
Our HB-DSBM is more realistic than GenLouvain and PisCES
because it can model the dynamic evolution at both community
and node levels.

Furthermore, we analyze the community-level interaction
based on the learned parameters. As depicted in Fig. 5, DSBM,
PisCES and HB-DSBM can learn the block matrix. It presents
the community interaction for two different temporal networks,
PisCES has no clear block structure. Compared with DSBM,
our HB-DSBM not only learns the link probability within

the community, but also preserves interactions between the
communities. This result also demonstrates the advantage of
our method in discovering the dynamic behavior of nodes.

E. Abnormal Behaviors

Based on the node-level transition matrix C' over time in
HB-DSBM, we can capture node transition behaviors between
consecutive slices, so it can detect node’s abnormal behaviors
by calculating the entropy of C'. More specifically, the anomaly
index of node 7 can be calculated as follows:

T-1
Bim =Y S el
t=1 k

where a large F; indicates that node % transfers its community
membership across the snapshots frequently, which are usually
the abnormal behaviors in many cases of temporal networks.

We calculate the anomaly index on three temporal networks,
namely, DBLP, Patent and Synthetic Dataset 2 merge-split
event. It can be seen from Fig. 6 that the DBLP network
only has the four largest anomaly indices, which indicates that
DM, DB and AI have relatively stable community structures
during nine years (2001 — 2009). In contrast, most nodes
in Patent have the largest anomaly index, we believe Patent
data has significant community evolution events from 2014
to 2020. To prove it, we also calculate the anomaly index of

(20)



Synthetic Dataset 2 merge-split event (based on the generation
and evolution mechanism, there are indeed a large number of
evolutionary anomalous nodes). It can be observed from Fig. 6
(b) and (c) that Patent and Synthetic networks have the same
patterns, which confirms our inference.

In addition, we find some anomaly and interesting cases in
DBLP and Patent networks. Fig. 7 shows some ego networks
of the most abnormal authors in DBLP, we can see that
Shuicheng Yan and his partners Thomas S. Huang et al. always
belong to the same community, which indicates that they might
be in the same team. We emphasize that DBLP Dataset only
represents someone who publishes a paper with someone else
as an edge. This kind of relationship is a weak relationship.
Therefore, Shuicheng Yan switches his community frequently
only represents that his research involves all three domains.
As depicted in Fig. 8, Zhang Jiawan’s patent ego network
expanded rapidly from 2016 to 2018, which may indicate
that he has begun to actively carry out the implementation
of scientific research results. However, from 2018 to 2020,
he not only switched community, but also contacted other
communities like Liu Zeyu. According to our investigation,
this was caused by a community merger event. The School of
Software Engineering and the School of Computer Science are
merged into the College of Intelligence and Computing. This
further proves that our anomaly index can discover anomalous
nodes and events.

F. Complexity Comparison

Though the VEM algorithm of HB-DSBM is an iterative
method, it only requires a small number of iterations to
reach the local optimum (APPENDIX B). Furthermore, its
computational complexity depends on the total number of
edges in the whole network, while the real-world networks
are always sparse. Thus, the running time of HB-DSBM is
acceptable. Fig. 9 shows the execution time of our method
and baselines in synthetic dataset 1 with multiplied number
of nodes. And all the methods are tested on a PC with 16
Gb memory and Intel Core ¢5 — 7400 CPU. The average
degree of each dataset is fixed at 16, thus with the increase of
the number of nodes, the network will become increasingly
more sparse. As we can see, DYNMOGA is very fast on
each dataset due to multiobjective optimization. GenLouvain
is faster than DYNMOGA on the datasets with the number
of nodes below 8192, however, when the number of nodes
increases to 8192, GenLouvain will receive an OOM (our of
memory) error. When the number of nodes is below 2048,
ESPRA is faster than HB-DSBM, DSBM, DECS and ECD,
but when the number of nodes increases, its run time is
not acceptable (OOT). Both DECS and ECD receive errors
(OOT and OOM, respectively) when the number of nodes
is larger than 1024. Though DSBM has less parameters than
HB-DSBM, the MCMC algorithm makes DSBM rather slow
in terms of its parameter scale. Besides, if we use the VEM
method for the DSBM, it will be faster than the MCMC, but
the accuracy will be lost. Finally, although the execution time
of HB-DSBM is not faster than GenLouvain and DYNMOGA,
it is sufficient to handle a network with 8192 nodes due to good
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Fig. 9: Execution time comparison on synthetic dataset 1 (¢ =
3,nC = 3,aD = 16) with different numbers of nodes (due
to low performance, we omitted AFFECT). The dotted line
indicates that the corresponding method receives an OOM (out
of memory) error on the data point beyond the OT/OM line.
When the data point belongs to a solid line beyond the OT/OM
line, it means that the corresponding method receives an OOT

(out of time) error.

convergence performance. Furthermore, HB-DSBM is still not
fast enough to calculate a network with millions of nodes, but
this can be solved with parallel technology or the utilize of
neural network, this is also what we will do in the future.

VI. CONCLUSION AND FUTURE WORK

Temporal community detection and its evolution analysis
have been widely applied in a variety of applications of net-
work science. Constructing the generated model for dynamic
networks can help predict the varying of its structure and
function. In this paper, we propose a full Bayesian genera-
tive model named HB-DSBM, which models dynamic net-
works, detects community structure, analyzes node-level and
community-level evolution and identifies abnormal behaviors.
It describes the generation and evolution of the network in
detail from the perspective of joining nodes and communities.
Furthermore, we propose an effective optimization algorithm
for the model based on the variational inference, in which we
design approximate posterior distributions for dynamic transi-
tion behavior at the node and community levels. Experiments
on community detection, dynamic evolution and abnormal
behavior show that this model achieves better performance
on both simulated and real-world datasets. On the whole, our
model can also reveal the dynamic behavior of communities
and nodes based on the well-designed generative mechanism
and optimization.

There are some interesting points on our model that can be
expanded. The first and most important problem is the model
selection of dynamic networks, i.e., how to automatically
determine the number of communities. Although a lot of
methods have been developed for static networks and some for



dynamic networks, they are not enough to meet the need of
generative models, such as our HB-DSBM. Another problem
is how to predict community change points based on dynamic
behaviors and enable them to achieve better prediction tasks.
Besides, the algorithm for our model is not suitable for
very large-scale dynamic networks, using Stochastic Gradient
Descent (SGD) to optimize HB-DSBM will be the focus of
future research.
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