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HB-DSBM: Modeling the Dynamic Complex

Networks from Community Level to Node Level
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Abstract—A variety of methods have been proposed for mod-
eling and mining dynamic complex networks, in which the
topological structure varies with time. As the most popular
and successful network model, Stochastic Block Model (SBM)
has been extended and applied to community detection, link
prediction, anomaly detection and evolution analysis of dynamic
networks. However, all current models based on the SBM for
modeling dynamic networks are designed at the community
level, assuming that nodes in each community have the same
dynamic behavior, which usually results in poor performance
on temporal community detection and loses the modeling of
node abnormal behavior. To solve the above problem, this paper
proposes a Hierarchical Bayesian Dynamic Stochastic Block
Model (HB-DSBM) for modeling the node-level and community-
level dynamic behavior in a dynamic network synchronously.
Based on the SBM, we introduce a hierarchical Dirichlet gen-
erative mechanism to associate the global community evolu-
tion with the microscopic transition behavior of nodes near-
perfectly and generate the observed links across the dynamic
networks. Meanwhile, an effective variational inference algorithm
is developed and we can easy to infer the communities and
dynamic behaviors of the nodes. Furthermore, with the two-
level evolution behaviors, it can identify nodes or communities
with abnormal behavior. Experiments on simulated and real-
world networks demonstrate that HB-DSBM has achieved state-
of-the-art performance on community detection and evolution. In
addition, abnormal evolutionary behavior and events on dynamic
networks can be effectively identified by our model.

Index Terms—Temporal community detection, Node-level be-
havior, Community-level behavior, Dynamic SBM, Variational
inference

I. INTRODUCTION

C
OMPLEX networks have been widely applied to model a

variety of real-world phenomena, e.g., social relations [1]

and biological systems [2]. As an emerging interdisciplinary

subject, network science has received increasing attention

from different fields. Community structure, as one of the

important statistical characteristics, plays an important role

in understanding the formation and function, link prediction
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and spreading dynamics of complex networks. The community

is usually denoted as a sub-network with a higher inner

density in a given network. Community detection drives the

development of link prediction, information spreading and

anomaly detection of complex networks, it also can be used

for event detection, criminal organization identification and

terrorist group mining. Therefore, a large number of methods

and models for community detection [3]–[6] have been pro-

posed, e.g., modularity optimization-based, spectral clustering

and statistical inference [7].

All of the methods described above are only designed for

static networks with constant structures. However, complex

networks are usually time-varying, i.e., the structure of the

networks changes over time, which is referred to as dynamic

or temporal complex networks. For instance, in a collaboration

network based on DBLP data, nodes and edges denote the

authors and their cooperative relationships, as well as changes

in research fields, and the number of nodes and links changes

over time. For this network, the communities usually corre-

spond to different areas of research, such as the area of Data

Mining. With the varying structures of dynamic networks, the

communities present different evolution forms [8], including

Growth, Contraction, Merge, Split, etc., and the evolution

forms are early denoted by [9] and further expanded by [3].

With the various forms of community evolution in dynamic

networks, it poses new challenges for detecting temporal com-

munities. It is widely acknowledged that a dynamic network

is usually represented as a series of snapshots, each of which

can be regarded as a static network. As a result, community

detection in dynamic networks has three subproblems, namely,

community detection in each snapshot, evolution across snap-

shots and abnormal behavior or change point identification.

These complex and interwoven challenges make it full of

vitality. In essence, these subproblems can mutually promote

and are related to each other. At the same time, the temporal

community detection can also be used for exploring functional

brain networks [10], change point detection [11], identification

of influential individuals [12], [13], fraud detection [14], etc. It

can also help understand the evolution mechanism of dynamic

networks and make better link predictions.

A variety of methods [3], [15] for community detection in

dynamic networks have been developed, including methods

based on modularity, spectrum, multi-objective optimization,

dynamics, dynamic stochastic block models and matrix de-

composition. Each method focuses either on detection, evolu-

tion or abnormal behavior. For the detection task, they improve

the community quality by considering the topological structure

of some successive snapshots, which could increase the robust-
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ness of the community structure. The most representative one

is the evolutionary clustering framework, which assumes that

there should be no obvious mutation in community structure

abrupt change and leads to a number of temporal communities

detection methods like FaceNet [16]. For the community

evolution task, the methods mainly focus on the evolution

of communities across the snapshots with given community

structures. For instance, event matching-based methods es-

tablish the corresponding relationship between communities

by defining some similarity indexes across the snapshots.

However, all these methods and models are focusing on

community detection or community evolution, independently.

The abnormal behavior is more related to the community

evolution, if we have learned the dynamic behaviors on nodes

and communities, it is easy to identify the abnormal nodes

of communities or some events on networks [17]. Similarly,

some critical events and behaviors are conducive to community

detection and evolution.

In recent years, some models have tried to solve commu-

nity detection and evolution simultaneously by modeling the

dynamic network. DSBM [18] is the first generative model for

the tasks by defining a probability transition matrix between

two snapshots based on a stochastic block model. Then, some

studies [19], [20] further extended DSBM to generate the

dynamic network with an evolutionary community structure,

which relaxed the constraint of fixed connectivity probabilities.

Liu et al. [21] proposed DECS based on the evolutionary

clustering and multi-objective optimization algorithm. At the

same time, some methods of integrating community structure

and abnormal behavior have been proposed gradually. Che-

ung et al. [22] proposed to detect both change points and

community structures simultaneously based on each individual

sub-network following a Stochastic Block Model (SBM), and

utilized Minimum Description Length (MDL) Principle for

minimizing objective criterion.

However, all these methods for modeling dynamic networks,

whether based on DSBM or heuristics, are designed at the

community level, i.e., they assume that nodes in each commu-

nity have the same dynamic behavior. For example, the nodes

in one community have the same transition probability from

the current snapshot to the next, which has been proved by

some empirical studies [23]. Thus, the lack of some important

dynamic patterns of different nodes and communities usually

leads to poor performance on temporal community detection

and ignores certain node-level dynamic behaviors. It is impos-

sible to recognize abnormal node behaviors in the community

network.

In this paper, we focus on modeling the evolution of

node-level and community-level of the dynamic network

synchronously. There exist two major challenges: 1) how

to accurately model both node-level and community-level

dynamic behavior? 2) how to quantify the relationship be-

tween node-level and community-level transitions? With this

information, we can infer the community structure, dynamic

evolution and nodes with abnormal behaviors. In order to

solve these problems in principle, we propose a Hierarchi-

cal Bayesian Dynamic Stochastic Block Model (HB-DSBM)

to model both community structure and evolution from the

perspective of statistical models. We characterize the changes

of the generated network by defining several latent variables,

such as community-level transition, node-level transition, and

community membership of nodes. At the same time, we

introduce a hierarchical Dirichlet generation mechanism to

associate the mesoscopic community evolution with the micro-

transition behavior of nodes in dynamic networks. Then, we

show a detailed generated process of the temporal network

and drive an effective optimization algorithm based on the

variational inference. Experiments on temporal community

detection, evolution, abnormal behavior and some case studies

show the superiority of HB-DSBM. The main contributions of

this paper can be summarized as follows:

• We propose a full Bayesian generative model called HB-

DSBM, which is a well-designed generation mechanism

based on DSBM and can generate and model the evo-

lution of nodes and communities, and the changes of

dynamic networks.

• The focus of HB-DSBM is to model dynamic commu-

nities at the node and community levels synchronously

from a hierarchical Bayesian perspective. Moreover, HB-

DSBM can help improve community detection and evo-

lution, and further identify abnormal behaviors.

• We also propose an effective variational inference algo-

rithm for HB-DSBM. Extensive experiments have been

conducted to show its superior performance and effec-

tiveness on simulated and real-world dynamic networks.

II. RELATED WORK

Recently, several innovative methods have been developed

for community mining in dynamic networks. Here, we di-

vide these methods into three categories, namely, heuristic

optimization-based for temporal community detection, genera-

tive models for modeling community evolution, and abnormal

behavior of nodes and communities identification on dynamic

networks.

A. Heuristic Optimization-based Methods

In general, heuristic optimization-based methods can be

divided into three categories, namely, two-step methods, incre-

mental clustering-based methods and evolutionary clustering.

Two-Step Methods: These methods treat community de-

tection and evolution as two independent problems. The key

idea is to detect the communities, and then use similarity

measures to match communities across different snapshots.

GraphScope [24] first used the Minimum Description Length

(MDL) principle to extract communities and detect community

evolutions. Besides, there are also many methods based on

the embedding technology with side information like node

feature, e.g., the author information in a co-author network.

For instance, TRNN [25] utilizes the multi-head self-attention

into a transformer-style neural network to capture the dynamic

information in the dynamic network, then observe the em-

bedding vector of every node to support downstream tasks

like link prediction, node classification and so on. But these

methods take side information as input in the models. If there

is no side information in the network, it is ubiquitous in the
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real world due to the privacy policy, the accuracy of these

methods will drop drastically.

Incremental Clustering-based Methods: These methods

typically renew the communities according to the varying of

the dynamic network based on the community structure at

the first snapshot, which is obtained via one static network.

DynaMo [26] is an incremental modularity-based clustering

method, which is faster than Louvain algorithm. Tajeuna et

al. [11] proposed an approach for automatically detecting the

size of the snapshot to adopt when identifying and tracking

communities over time. TILES [27] used label propagation

for network changes, which is very efficient for large-scale

networks.

Evolutionary Clustering-based Methods: Evolutionary

clustering is the most popular framework for detecting

the communities of the snapshot by adding regularization.

FacetNet [16] was a typical model based on a unified frame-

work for community detection and evolution with evolution-

ary clustering. DYNMOGA [28] was proposed by turning

the community detection into a multi-objective optimization

problem. GenLouvain [29] exploited a novel measure of

dynamic networks based on the modularity, and then used

the well-known Louvain method [30] to calculate the com-

munity structure. Seifikar et al. [31] further introduced a new

Louvain-based dynamic community detection algorithm which

is relied on the previous snapshot of the network evolution.

PisCES [32] used historical observations to predict future

events of a network, which put the two tasks into a unified

framework and made them mutually constrained.

In summary, some of these methods ignore the evolution

for community mining in dynamic networks, some treat com-

munity detection and evolution as independent problems, and

some lack theoretical explanations that simultaneously solve

community detection and evolution.

B. Generative Model

It can be divided into Dynamic Latent Space Model

(DLSM), Dynamic Stochastic Block Model (DSBM) and other

generative models.

DLSM embeds the dynamic network into a latent Eu-

clidean space and assigns each node a temporal trajectory

with time [33] and uses it to conduct community detection

[34]. Considering a large number of parameters in such

models, they are usually optimized by the Markov Chain

Monte–Carlo (MCMC) sampling and are only suitable for

small networks [35]. The classic DSBM [18] was first pro-

posed based on Stochastic Block Model (SBM) to analyze

dynamic networks by providing a unified framework to capture

both communities and their evolution simultaneously. Xu et

al. [19] proposed a state-space model for dynamic networks

based on the SBM and used an Extended Kalman Filter

(EKF) augmented with a local search to optimize the model.

Furthermore, Xu [36] constructed a stochastic block transition

model (SBTM) to model the direct influence of connections

between snapshots. Becker and Holzmann [37] analyzed the

nonparametric identification in the dynamic stochastic block

model. DBTDP [38] was developed for community detection

and evolution tracking, and the number of communities per

snapshot was automatically determined by a Dirichlet pro-

cess. Similar works are proposed in [39], [40]. In addition,

other generative models of dynamic networks have also been

proposed, for example [41] proposed a Poisson gamma prob-

abilistic model based on the Bernoulli Poisson link function.

Furthermore, some methods based on the Nonnegative Matrix

Factorization (NMF) for community detection in dynamic

networks can also be regarded as model-based [42]–[44].

In summary, all these generative models are based on the

community-level transition tendency, assuming that the nodes

within the same community have identical dynamic behavior.

This assumption causes different dynamic behaviors of nodes

lost, thus failing to capture of dynamic behavior heterogeneity

of nodes.

C. Abnormal Behavior Identification

Abnormal behavior identification in dynamic networks can

indicate profound underlying network structure changes. It can

be divided into two types:

Node Abnormal Behavior: It refers to abnormalities that

occur due to changes in node features. Its key idea is to

calculate and compare the node feature of different time slices.

DeltaCon [45] handles streaming graphs, gradational similarity

updates for time-evolving graphs by using the L2 norm, as well

as graphs with node attributes for expressions that utilize fast

belief propagation [46] to derive node affinity. CICPD [17]

encodes nodes’ importance characteristics of each time slice

through PageRank defines a new network by using Jensen-

Shannon (JS) divergence to compute the distance of snapshots.

NetWalk [47] utilizes the popular network embedding method

based on deep autoencoder and clique embedding to dynami-

cally capture node abnormal, and by using reservoir sampling,

NetWalk can compute the vector representations with constant

space requirements.

Community or Motif Abnormal Behaviors [48], [49]:

They are obviously caused by the huge change in the group.

Peel et al. [50] introduced GHRG which laconically models

nested community structure at all scales in a network. It

considers a fixed-length sliding window and uses the gener-

alized likelihood ratio to evaluate whether and the type of

changes. The coding method of GraphScope [17] not only

considers the community structure, but also considers their

change points in time. Community detection and segment

partition are obtained and their resemblance is measured by

the Minimum Description Length (MDL) principle.

In summary, these methods focus on identifying the ab-

normal nodes or communities, or the change points on the

temporal networks. As a result, they all failed in community

detection and its evolution.

III. THE PROPOSED MODEL

In this section, we first introduce the notations used in this

paper, and then give the problem definition and the details of

our proposed HB-DSBM, including its generation process and

the joint probability distribution.
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Fig. 1: Graphical model of HB-DSBM. wt
ij is the similarity

of nodes i and j at snapshot t and the observation variable. A

and C are evolutionary variables at the community and node

levels, respectively, representing their dynamic behaviors. B

and Z are the latent variables of DSBM, and α, β, µ and γ

are hyperparameters.

A. Problem Formulation

Given a dynamic unweighted and undirected network with

T snapshots, we use W = {W 1,W 2, · · · ,WT } to represent a

series of adjacency matrices of the temporal network. We also

denote Z = {Z1, Z2, · · · , ZT } as the community assignment

for all nodes in each snapshot, i.e., zti ∈ {1, · · · ,K} is

used to denote the community ownership of node i, where

K (assumed to be constant) is the number of communities,

t = 1, · · · , T and i = 1, · · · , N . In other words, zti = k

means that node i belongs to the k-th community at snapshot

t. Important notations used in this paper are listed in Tab. I.

Therefore, the problem can be formulated as: given W , how

can we get the community structure, its evolutionary trajectory

and nodes across the network? Furthermore, which nodes and

communities may have abnormal behaviors? The HB-DSBM

comes into being.

The graph model of HB-DSBM is illustrated in Fig. 1,

which generates the observed links at each snapshot based

on the community and node levels. It can be described in the

following three parts.

• In this model, π is the prior probability of Z1 and

follows a Dirichlet distribution with parameter γ, B

is the probability matrix denoted on the communities,

i.e., Bkl is the probability that two nodes belonging to

communities k and l will establish a link, and it follows a

Beta distribution with hyperparameters αkl and βkl. With

the community membership and the probability matrix, it

can generate the links at each snapshot.

• Let A ∈ [0, 1]K×K express the global community-

level transition matrix, and Ak, each row of A, fol-

lows a Dirichlet distribution with µ as its parameter, so∑
lAkl = 1. It denotes the global dynamic behaviors of

communities and models their evolution.

• We introduce C = {C1, C2, · · · , CT } to handle the com-

munity transition tendency for each node across the snap-

shots, where each Ct is generated from the community-

level transition matrix A and C1 has no real meaning

just for unified formalization. At snapshot t > 1, node i

TABLE I: Notations and their description

Notation Description

K, N The number of communities and nodes of the dynamic
network, respectively

W t The adjacency matrix at snapshot t
πk The probability of node i belonging to community k

at snapshot 1

zti The community node i belonging to community at
snapshot t

Ak The community-level transition vector of k

Ct

i The node-level transition vector of node i at snapshot
t

Bkl The probability of connection between community k
and l at any snapshot

γ, µ The parameters of Dirichlet distribution of π and Ak

α, β The parameters of Beta distribution of B

follows its unique transition vector Ct
i ∈ [0, 1]K , which

is a probability vector following a Dirichlet distribution

with parameter Az
t−1
i

, so
∑

k c
t
ik = 1. It can model

the microscopic evolution behavior of nodes and help

improve community detection and abnormal behaviors.

The first step is a general generation process for each link

of all snapshots. The second and third processes are the core

components of the model from the community and node levels,

which form the evolution dynamics of the temporal network.

The third step is very important and exquisite to associate the

community evolution with node behavior, which is known as

the hierarchical Dirichlet generative mechanism.

Compared to DSBM [18] and SBTM [36], our HB-DSBM

inherits all their advantages and has the following innovations.

From the microscopic view, we use Ct
i (t ≥ 2) to describe the

transition probability vector of node i at snapshot t, which

can represent the temporal trajectory of nodes. From the

mesoscopic view, we denote A as the probability matrix of

community transition, which is the dynamic behavior patterns

of communities across the dynamic networks. Furthermore,

we integrate these two pieces of information to construct and

model the dynamic network.

Based on the above discussion, it can generate the temporal

community structure and its evolution for the observed links

of the dynamic network. The complete generation process is

as follows:

1) Generate community initialize probability π ∼ Dir(γ).
2) Generate block matrix B ∼ Beta(α, β).
3) For each node i at snapshot t = 1:

a) Generate every node’s community assignment

z1i ∼Mult(π).
b) Generate link ω1

ij ∼ Bernoulli(·|Bz1
i
,z1

j
).

4) Generate every community-level transition probability

vector Ak ∼ Dir(µ).
5) For each node i at snapshot t > 1:

a) Generate every node-level community transition

vector Ct
i ∼ Dir(Az

t−1
i

).

b) Generate every node’s community assignment zti ∼
Mult(Ct

i ).
c) Generate link ωt

ij ∼ Bernoulli(·|Bzt
i
,zt

j
).
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According to the graphical model in Fig. 1 and the above

generation process, the joint probability distribution of HB-

DSBM can be written as:

P (W,Z,C,B,A, π|α, β, γ, µ)

=

T∏

t=1

Pr(W t|Zt, B)Pr(Z1|π)
T∏

t=2

Pr(Zt|Ct)

T∏

t=2

Pr(Ct|A,Zt−1)Pr(A|µ)Pr(π|γ)Pr(B|α, β)

=

T∏

t=1

[ ∏

wij=1

B
z
(t)
i

z
(t)
j

∏

wij=0

(1−B
z
(t)
i

z
(t)
j

)
] N∏

i=1

πz1
i

T∏

t=2

N∏

i=1

Ct
i

zt
i

T∏

t=2

N∏

i=1

Γ(
∑

lAzt−1
i

l)∏
l Γ(Az

t−1
i

l)

∏

l

C
A

z
t−1
i

l
−1

il

∏

k

Γ(
∑

l(µkl))∏
l Γ(µkl)

∏

l

A
µkl−1
kl

Γ(
∑

k γk)∏
k Γ(γk)

∏

k

π
γk−1
k

∏

k,l≥k

Γ(αkl + βkl)

Γ(αkl)Γ(βkl)
Bαkl−1

kl (1−Bkl)
βkl−1. (1)

When t = 1, we could generate the community z1i of

node i from a multinomial distribution with parameter π,

and then generate links between every pair of nodes fol-

lowing a Bernoulli distribution, i.e., nodes i and j have a

link between them with a probability of Bernoulli(·|Bz1
i
,z1

j
).

When t > 1, the nodes’ community ownership Zt follows

a multinomial distribution with parameter Ct, i.e., node i

follows Mult(Ct
i ) to choose its community at t and Ct

i is

generated from Dir(Azt−1
i

). Each Ak is generated from a

Dirichlet distribution with parameter µ, it denotes the global

transfer tendency of community k.

To optimize this model, our goal is to calculate the poste-

rior distribution P (W,Z,C,B,A, π|α, β, γ, µ), which can be

written as:

P (Z,C,B,A, π|W ) =
P (W,Z,C,B,A, π|α, β, γ, µ)

P (Z,C,B,A, π|W,α, β, γ, µ)
, (2)

where the parameters α, β, γ and µ are ignored for conve-

nience. In the next section, we will introduce how to calculate

and optimize this posterior.

It is important to emphasize that although we have assumed

that the number of communities and nodes in the network

is fixed, these communities and nodes are unweighted and

undirected. It can be easily extended to complex situations

similar to DSBM [18]. On the other hand, we can also

extend the link generation process by replacing SBM with

a more refined model, such as the degree preserving [51]

or scale-free characteristic [52] SBM model. Although they

can help improve the generative capability and community

detection, our focus is modeling the dynamic network from

the community and node levels, and these extensions can be

used as follows.

IV. LEARNING THE MODEL

Intuitively, the proposed model is complex and difficult to

be optimized. So in this section, we propose an efficient varia-

tional expectation-maximization algorithm to infer parameters

of the model. Then, on the basis of the learned parameters Z,

C, B, A, and π, we can infer community structure, community

evolution, block matrix and abnormal behaviors in the dynamic

network.

A. Variational Inference

It is usually difficult to directly calculate the posterior

distribution P (Z,C,B,A, π|W,α, β, γ, µ), for it needs to in-

tegrate all the hidden variables Z,C,B and A. Although we

take some conjugate prior distributions, its calculation is also

exponential. For complex probability graph models, variational

inference is usually used as an effective learning method.

With this framework, we can approximate the posterior with

a decomposable distribution q(Z,C,B,A, π) based on mean-

field theory [41] as follows:

q(∆) =

T∏

t=1

N∏

i=1

q(zti)

T∏

t=2

N∏

i=1

q(cti)q(B)q(A)q(π), (3)

where ∆ represents parameters {Z,C,B,A, π} for simplic-

ity, the block matrix variational parameter q(B|α̃, β̃) =∏
k,l≥k Beta(α̃kl, β̃kl), and community-level transition ma-

trix variational parameter q(A|µ̃) =
∏K

k=1

∏K
l=1Dir(µ̃kl).

q(zti |φ̃
t
i) follows a multinomial distribution with φ̃ti as its

parameter. q(cti|ξ̃
t
i) and q(π|γ̃) both follow the Dirichlet dis-

tribution with parameters ξ̃ti and µ̃kl, respectively. We need

to note that all of these settings are based on the conjugate

distribution and it can help infer the variational parameters

based on the coordinate ascent algorithm.

After a series of derivation [53] and variational inference,

we have the following identity (APPENDIX A):

logP (W ) = KL(q(∆)||P (Z,C,B,A, π|W )) + L̃(q). (4)

To learn the model, our goal is to optimize the KL diver-

gence between P (Z,C,B,A, π|W,α, β, γ, µ) and q(∆) =
q(Z,C,B,A, π). According to Eq. 4, minimizing the diver-

gence is equivalent to maximizing L̃(q), referred to as the

evidence lower bound (ELBO). So our goal is to optimize

L̃(q) with respect to the variational parameters.

Under the variational inference framework, the variational

evidence lower bound L̃(q) of the model can be written as:

L̃(q) =
∑

z

∫

π,B,A,C

q(∆) log
p(∆,W )

q(∆)
d∆

= E
φ̃,α̃,β̃

T∑

t=1

[logP (W t|Zt, B)]

+ E
γ̃,φ̃

[logP (Z1|π)] + E
φ̃,ξ̃

T∑

t=2

[logP (Zt|Ct)]

+ E
ξ̃,φ̃,µ̃

T∑

t=2

[logP (Ct|A,Zt−1)]

+ Eµ̃[logP (A)] + Eγ̃ [logP (π)] + E
α̃,β̃

[logP (B)]

− Eγ̃ [log q(π)]− E
α̃,β̃

[log q(B)]− Eµ̃[log q(A)]

−
T∑

t=2

N∑

i=1

E
ξ̃
[log q(Ct

i )]−
T∑

t=1

N∑

i=1

E
φ̃
[log q(zti)], (5)
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where φ̃, ξ̃, α̃, β̃, µ̃ and γ̃ are the variational parameters.

For simplicity, we omit the conditional parts of the q(·)
distributions. For example, we abbreviate q(∆|φ̃, ξ̃, α̃, β̃, µ̃, γ̃)
and q(zti |φ̃

t
i) to q(∆) and q(zti).

We maximize the ELBO to learn the variational parameters

of the latent variables Z, π,B,A,C and the model parameters

γ, α, β, µ. We take the derivatives of L̃(q) with respect to the

variational parameters φ̃, γ̃, α̃, β̃, µ̃, ξ̃, and set these derivatives

to zeros and get the update rules as:

∇L̃(q) =

{
∂L̃

∂γ̃
,
∂L̃

∂α̃
,
∂L̃

∂β̃
,
∂L̃

∂µ̃
,
∂L̃

∂ξ̃
,
∂L̃

∂φ̃

}
= 0. (6)

Next, we will introduce the iteration rules on the variational

parameters φ̃, γ̃, α̃, β̃, µ̃ and ξ̃, respectively. We also need to

add that, φ̃ and ξ̃ are denoted at the node level, which are

referred to as local variational parameters. On the contrary,

the parameters α̃, β̃ and γ̃ are global for they are designed at

the community level.

B. Parameter Learning

The iteration rules on the variational parameters is given by:

γ̃k = γk +

N∑

i=1

φ̃1ik, (7)

ξ̃tik ∝ φ̃tik +
∑

l

φ̃t−1
il

( µ̃kl∑
l µ̃kl

− 1
)
+ 1, (8)

α̃kk = αkk +

∑
t

∑
i<j φ̃

t
ikφ̃

t
jkw

t
ij

T
, (9)

β̃kk = βkk +

∑
t

∑
i<j φ̃

t
ikφ̃

t
jk(1− wt

ij)

T
, (10)

α̃kl = αkl +

∑
t

∑
i 6=j φ̃

t
ikφ̃

t
jlw

t
ij

T
, (11)

β̃kl = βkl +

∑
t

∑
i 6=j φ̃

t
ikφ̃

t
jl(1− wt

ij)

T
, (12)

µ̃kl ∝ µl +

∑T
t=2

∑
i φ̃

t−1
ik

T − 1
. (13)

For parameter φ̃:

1) When t = 1:

φ̃1ik ∝ exp
{∑

j

∑

l

φ̃1jl

[
w1

ij [ψ(α̃kl)− ψ(α̃kl + β̃kl)]

+ (1− w1
ij)[ψ(β̃kl)− ψ(α̃kl + β̃kl)]

]

+ ψ(γ̃k)− ψ(
∑

l

γ̃l) +
∑

l

ψ(µ̃kl)− ψ(
∑

l

µ̃kl)

+
∑

l

(
µ̃kl∑
l µ̃kl

− 1)
(
ψ(ξ̃2ik)− ψ(

∑

l

ξ̃2il)
)}
. (14)

2) When 1 < t < T :

φ̃tik ∝ exp
{∑

j

∑

l

φ̃tjl

[
wt

ij [ψ(α̃kl)− ψ(α̃kl + β̃kl)]

+ (1− wt
ij)[ψ(β̃kl)− ψ(α̃kl + β̃kl)]

]

+ ψ(ξ̃tik)− ψ(
∑

l

ξ̃til) +
∑

l

ψ(µ̃kl)− ψ(
∑

l

µ̃kl)

+
∑

l

(
µ̃kl∑
l µ̃kl

− 1)
(
ψ(ξ̃t+1

ik )− ψ(
∑

l

ξ̃t+1
il )

)}
. (15)

3) When t = T :

φ̃Tik ∝ exp
{∑

j

∑

l

φ̃Tjl
[
wT

ij [ψ(α̃kl)− ψ(α̃kl + β̃kl)]

+ (1− wT
ij)[ψ(β̃kl)− ψ(α̃kl + β̃kl)]

]

+ ψ(ξ̃Tik)− ψ(
∑

l

ξ̃Til )
}
, (16)

where ψ(x) = Γ′(x)
Γ(x) = d log Γ(x)

dx
.

The inference detail of variational parameters can be seen in

Supplemental Materials (APPENDIX A). As we can see, the

hyperparameters of the model such as µ and α are constants,

and their values have no significant effect on the performance

of the model and algorithm.

C. The Algorithm

As mentioned above, we have given all the update rules

of parameters in our model. Here the optimization process of

the model is given as Algorithm 1, where ξ̃ and φ̃ are local

variational parameters because they are related to each node,

and α̃, β̃, γ̃ and µ̃ are global variational parameters.

Algorithm 1 Optimization algorithm for HB-DSBM

Input: the adjacency matrix W t for each snapshot, hyper-

parameters, max iteration times nmax and the threshold ε.

Output: the variational parameters α̃, β̃, γ̃, µ̃, ξ̃, φ̃.

1: parameters initialization

2: repeat

3: given φ̃, update γ̃, ξ̃, α̃, β̃ and µ̃ according to Eqs. 7,

8, 9, 10, 11, 12 and 13.

4: given γ̃, ξ̃, α̃, β̃ and µ̃, update φ̃ according to

Eqs. 14, 15 and 16.

5: until L̃ converges or iteration times > nmax

6: return ξ̃, γ̃, α̃, β̃, µ̃ and φ̃

The computational complexity of the proposed algorithm

mainly depends on three parts. The complexity of updating φ

is O(TN2K2), the complexity of the step that updates ξ is

O(TNK2) and the complexity of the step that calculates the

ELBO is O(TN2K2), where T is the number of snapshots,

N is the number of nodes in the network and K is the number

of communities. In summary, the computational complexity of

this algorithm is O(TN2K2).
Considering that most real-world networks are sparse, we

can further improve the efficiency and reduce running time

and complexity as O(mK2), where m is the number of edges

for all snapshots of the dynamic network. We can further
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reduce computing time by using some sampling methods based

on stochastic optimization or parallelism for the proposed

algorithm.

V. EXPERIMENTS

In this section, we conduct several experiments to demon-

strate the performance of our proposed model on temporal

communities detection, community and node evolution and

abnormal behaviors identification of dynamic networks.

A. Baselines and Settings

We compare our HB-DSBM with typical and representative

temporal community detection methods. They are designed ei-

ther from spectral methods, incremental optimization, defined

optimization functions, generative models or global views.

These baselines could represent the best level of community

analysis in dynamic networks, which are listed as follows:

• ECD [54]: It combines the proposed new genetic operator

and classic genetic operators to exploit inter and intra

connections between nodes. This approach improves the

discovery of evolving community structures and finds the

best balance between clustering accuracy and temporal

smoothness.

• DECS [21]: It is a novel algorithm based on genome rep-

resentation, employing Population Generation via Label

Propagation (PGLP) for population initialization and de-

composition framework for multi-objective optimization.

• ESPRA [55]: It is a density-based method by combining

the resource allocation (RA) index in link prediction

and structural perturbation model [56] to improve the

community detection.

• GenLouvain [29]: It denotes a generalized network

function, time-dependent modularity, and can model the

temporal coupling across the snapshots with heuristic

optimization.

• AFFECT [57]: It extends the classical evolutionary clus-

tering [58] with adaptive evolution factor, so no balance

parameter is needed to be designed. It is a general frame-

work for temporal community analysis with different

clustering methods.

• DYNMOGA [28]: It generalizes the evolutionary cluster-

ing based on a multiobjective optimization algorithm, and

can compromise the snapshot quality and historical cost

effectively and determine the number of communities in

dynamic networks.

• DSBM [18]: It is the most successful generative model

for dynamic community detection and evolution analysis

based on SBM.

• PisCES [32]: From the perspective of spectral optimiza-

tion, this is a global method that can infer the evolution

by combining a series of networks, eigenvector smoothing

and degree correction.

For a fair comparison, we take the open codes by the authors

and set the default parameters in the original papers. For

our HB-DSBM, since the values of the hyperparameters do

not significantly affect the results, without loss of generality,

we set αkl = 10 when k 6= l and αkk = N , and set

β = αkl, l 6= k = 10. Besides, µ and γ are also set to the

same value, i.e., µk = γk = 1
K

for 1 < k < K in our

experiments.

B. Performance Metrics and Datasets

To compare the performance of HB-DSBM and baseline

methods, we introduce some indicators as our performance

metrics. We also show the synthetic and real dynamic net-

works.

1) Evaluation Index: Accuracy (AC) or error rate [59] is

usually denoted as the distance between the ground truth and

community membership of one method. Its definition is as

follows:

AC = ‖ZZT − Z ′Z ′T ‖F , (17)

where Z and Z ′ are the community membership of ground

truth and one method, respectively. ‖ · ‖F is the Frobenius

norm, the smaller AC value on each snapshot, the better the

community results.

As most temporal community detection work [60] does, we

also use Normalized Mutual Information (NMI) as one of our

performance metrics to evaluate the proposed model and base-

lines for community detection in dynamic networks. Because

NMI is specifically designed for static networks, we calculate

it for different methods on each snapshot of the dynamic

network. NMI is used when there exists ground truth, which

measures the similarity between a given community partition

and the true community structure. Let Z = {Z1, · · · , ZK} and

Z ′ = {Z ′
1, · · · , Z

′
K} represent the true community partition

and the community partition to be evaluated, respectively,

where Zk or Z ′
k is the nodes set of community k. For Z

and Z ′, we usually have Zk ∩ Zl = ∅, k 6= l and
⋃
Zk is the

node set of dynamic networks. The NMI is denoted as:

NMI(Z,Z ′) =

∑
Z,Z′ p(Z,Z ′) log p(Z,Z′)

p(Z)p(Z′)

max(H(Z), H(Z ′))
, (18)

where H(Z) and H(Z ′) are the entropy of community Z

and Z ′, respectively. The value of NMI is between 0 and 1.

The higher the value of NMI is, the more similar the given

community partition is to the true community partition.

Adjusted Rand index is another metric for clustering and

community detection performance, which is defined as:

ARI =
Index− E[Index]

max(Index)− E[Index]
, (19)

where Index is the Rand index value of a community, defined

as RI = a+b

(n2)
, where a and b are the number of node pairs

placed in the same cluster and in different clusters, respec-

tively. E[Index] is the expectation of Index. A larger ARI

value indicates better performance on community detection.

2) Datasets: We use the following synthetic and real-world

datasets of dynamic networks to evaluate HB-DSBM and the

baselines for temporal community analysis:

• Synthetic Dataset 1: It was firstly adopted by Lin et

al. [16], [59] based on the GN network data. Specifically,

it usually generates a temporal network with 128 or

256 nodes, 4 communities and 10 snapshots. A single
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Fig. 2: Community detection results on the synthetic dataset, the x-axis is snapshot t. From left to right, the synthetic temporal

networks are parameterized as synthetic dataset 1: (a) σ = 5, nC = 9, aD = 20; (b) σ = 5, nC = 3, aD = 20; (c)

σ = 4, nC = 9, aD = 16; (d) σ = 4, nC = 3, aD = 16 and synthetic dataset 2: (e) switch; (f) merge-split. The top-down

results are presented based on the different metrics AC, NMI and ARI, respectively. For each data, we randomly generate 20

networks with the same configuration parameters, and the values are the mean of corresponding results.

parameter σ representing the mean number of edges from

a node to nodes in other communities is used to describe

the data. And we use nC to indicate the number of nodes

to leave their original community in each snapshot while

aD to indicate the average degree of nodes. Relatively

speaking, this data has s stable dynamic behaviors across

the snapshots. With different parameter settings, we have

different temporal networks to evaluate the models.

• Synthetic Dataset 2: It was proposed by [8] to de-

scribe community dynamics. For this dataset, several

community-level events are introduced to make it more

similar to real-world networks. Generally, each generated

network contains 10 snapshots and 1, 000 nodes, with

an average degree of 15 and a maximum degree of 50.

The number of communities ranges from 20 to 50, and

the probability of edges between communities is 0.2. Its

node degree follows the power-law distribution. In our

experiments, we select two classes of datasets, namely,

switch and merge-split, which are the most representative

temporal networks with dynamic behaviors at the node

and community levels, respectively.

• KIT-Email Dataset: It is an email network [61] where

nodes represent senders and recipients and the edge

denotes the relationships. It has 1, 097 email IDs (the

number of nodes) and 27, 887 messages. We use it to

construct three temporal networks with time intervals

of 2, 3 and 6 months, respectively, and the number of

snapshots of the three temporal networks is 24, 16 and

8, respectively. The number of communities ranges from

23 to 32.

• DBLP Dataset: It comes from the DBLP bibliography1.

Similar to the processing of DSBM [18], we select data

from three major fields, i.e., data mining (DM), database

(DB) and artificial intelligence (AI) from 28 conferences

during nine years. After preprocessing, it contains 1, 163
authors and 26, 986 papers. We construct this temporal

network based on the cooperative relationships and the

ground truth is their research fields. We split this network

into 9 time snapshots with each corresponding to one

year.

• A Patent Dataset: We collect this data from WAN-

FANG DATA2 and focus on one university. It includes

3, 427 patents ranging from 2010 to 2020, belonging

to the patent classification number G06 (COMPUTING;

CALCULATING; COUNTING). We construct its author

collaboration network. Due to the imbalance of patent

counts, we divide it into 4 snapshots, which come

from years (2010 − 2014, 2014 − 2016, 2016 − 2018,

2018 − 2020), respectively, and each snapshot contains

1, 942 nodes and 15, 000 edges on average.

C. Experiments on Community Detection

We compare HB-DSBM with ECD, DECS, ESPRA,

DYNOMGA, DSBM, GenLou, and PisCES on two types of

synthetic datasets and real-world temporal networks.

1) Synthetic Networks: For Synthetic Dataset 1, we gen-

erate four temporal networks, the specific parameter settings

are σ = 5, nC = 9, aD = 20; σ = 5, nC = 3, aD = 20;

σ = 4, nC = 9, aD = 16; σ = 4, nC = 3, aD = 16,

1https://dblp.uni-trier.de/
2http://www.wanfangdata.com.cn/index.html
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(a) GroundTruth (b) DSBM (c) HB-DSBM

(d) GenLouvain (e) PisCES (f) DYNMOGA

(g) DECS (h) ESPRA (i) AFFECT

Fig. 3: Sankey diagram of nodes and communities evolution on Synthetic Dataset 1 with σ = 5, nC = 9 and aD = 20.
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Fig. 4: Community detection results on real-world datasets.

From left to right, the KIT email temporal networks with 24,

16 and 8 snapshots, respectively, and the DBLP network. For

each line, the results are presented based on different metrics

AC, NMI and ARI, respectively.

respectively. They all have 128 nodes and 4 communities,

but different degrees of dynamic evolution behaviors. For

Synthetic Dataset 2, we select two typical synthetic networks,

one is specially designed for the dynamic behavior of nodes

and the other is for communities, called switch and merge-

split, respectively. They all have 1, 000 nodes and varying the

number of communities and their degree distributions are all

power-law. For each temporal network, we report the results

based on the three metrics as shown in Fig. 2. It is easy

to know that HB-DSBM has achieved the best performance

based on the AC, NMI and ARI on all six different dynamic

networks. This is because our model can model both the

community detection and its evolution, so accurate community

and node behaviors can help to improve the detection results.

PisCES achieves the second-best performance because it is

committed to improving community structure by incorpo-

rating the evolution of the temporal network across time.

However, PisCES has very poor performance on the merge-

split network, in which the communities have great varying

behaviors, so it cannot cope with the community evolution.

Although GenLouvain has also achieved good results since

it can preserve the consistency of community structure over

time by coupling constraints, it usually overfits the network

structure and automatically determines that the number of

communities exceeds the ground truth. The performance of

ECD, DECS, ESPRA, DSBM and AFFEXT is somewhere in

between and is difficult to distinguish on different networks.

From Fig. 2 (a), (b), (c) and (d), HB-DSBM and other

baselines all present the results of serialization on small-scale

temporal networks. However, for Fig. 2 (e) and (f), these

methods are polarized on community detection in large-scale

temporal networks with more complex dynamic behaviors. To

be specific, HB-DSBM still achieves the best performance
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Fig. 5: Block matrix or community interaction on DBLP data and Synthetic Dataset 2 merge-split event, where the diagonal

line indicates the link probability within the community.
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Fig. 6: Anomaly index of node-level transform trends. Note that Patent and Synthetic datasets have the same anomaly index

patterns, which indicates that the Patent network also contains a dramatic community evolution.

on both networks, PisCES has better performance than other

baselines, while DSBM has a very low NMI because its

sampling algorithm makes it inefficient in large networks,

even with 1, 000 nodes at each snapshot. ECD, DECS and

DYNOMGA also have poor performance, especially on the

switch network. Without loss of generality, the models with

the community and network evolution analysis usually have

better results than others.

2) Real-World Networks: As for real-world datasets, we

also evaluate the performance of different methods in terms of

AC, NMI and ARI. We compare the results of our proposed

method with the baselines of the KIT-email and DBLP dy-

namic networks. As we can see from Fig. 4, on the three

KIT-email networks, HB-DSBM has the best performance

than other baselines on two networks no matter based on the

AC, NMI or ARI. On the temporal network with 6-month

intervals, our model also has competitive results, for that in

this network, each snapshot of which is relatively independent

of the other two. So we can conclude that HB-DSBM not only

has a stronger ability for community detection but also better

simulates the characteristics of the real-world networks. We

also note that the NMI and ARI of our method are roughly

equal to that of other methods in the first snapshot. The later

the snapshots are, the better the performance of our method,

which shows a general upward trend. This is because the

transition has no impact on the first snapshot in the model,

while from the second snapshot, the advantage of our model

in the detailed description of node transition heterogeneity is

reflected. Besides, DSBM also has competitive performance.

To sum up, the statistical modes with dynamic evolution are

more suitable for real-world temporal networks.

The experimental results on DBLP are shown in Fig. 4 (d).

The performance of our method is significantly superior to

that of other methods, which demonstrates the effectiveness of

our method in community detection. Among other methods,

DSBM has a better effect because it is a generative model,

while the sparsity of DBLP data and the parameter sensitivity

of PisCES lead to the poor effect of PisCES. It can be seen

from this figure that our curve is smoother than that of other

methods, because we put community detection and community

evolution in a unified framework, making full use of the

transition between nodes and communities.

D. Community Evolution Analysis

Previous models, such as DSBM, treat nodes in the same

community indiscriminately, i.e., two nodes in the same

community will have the same transform tendency in the

next snapshot, which means that the method can only reveal

community-level transform trends. In our model, the latent

parameters C and A represent the node- and community-

level transform trends, respectively. For the comparison of

community evolution, if one method could not analyze the

dynamic behavior, we will match the temporal communities

across the snapshots and show its dynamic evolution. For the

synthetic datasets, we select two representative networks for

analyzing the dynamic behaviors. Figs. 3 and (APPENDIX

D Fig.5) describe the Sankey diagram of evolution of the

networks on Synthetic Dataset 1 and Synthetic Dataset 2
merge-split, respectively. In addition, Sankey diagram is a

kind of flow diagram, where the width of every branch is

proportional to the flow rate, which is
the number of nodes

N
in our

diagram. So the Sankey diagram can visualize the community

evolution in the dynamic network.

For the first temporal network, there are four communities

and a stable dynamic evolution, Fig. 3 (a) is the ground
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Fig. 7: An anomaly case in DBLP dataset from 2008 to 2010, where Shuicheng Yan has the largest anomaly index.
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Fig. 8: An anomaly case in Patent Dataset from 2015 to 2020. Zhang Jiawan belongs to the School of Software Engineering.

Note that his ego network expanded rapidly from 2016 to 2018, and it contains many people belonging to other communities,

such as the School of Electrical and Information Engineering during 2018− 2020.

truth, and other subfigures are the results of different methods.

Although all methods show good performance on each snap-

shot, few methods can detect the evolution perfectly. DECS,

DYNMOGA and ESPRA present a chaotic evolutionary tra-

jectory. On the contrary, DSBM, GenLouvain and our HB-

DSBM could reveal the hidden behaviors of the network.

However, DSBM fails to perform node transition across the

snapshots because it is only designed for the communities,

while HB-DSBM is much closer to the real-world evolution

of the network.

For more complex situations of merge-split and DBLP

networks, we present some better baselines, as shown in (AP-

PENDIX D Fig.5) and (APPENDIX D Fig.6). The behaviors

revealed by DYNMOGA are extremely chaotic, because it

could not directly model the evolution. Among other methods

that could model the evolution of temporal networks, DSBM

adapts to the network due to its focus on the community level.

Our HB-DSBM is more realistic than GenLouvain and PisCES

because it can model the dynamic evolution at both community

and node levels.

Furthermore, we analyze the community-level interaction

based on the learned parameters. As depicted in Fig. 5, DSBM,

PisCES and HB-DSBM can learn the block matrix. It presents

the community interaction for two different temporal networks,

PisCES has no clear block structure. Compared with DSBM,

our HB-DSBM not only learns the link probability within

the community, but also preserves interactions between the

communities. This result also demonstrates the advantage of

our method in discovering the dynamic behavior of nodes.

E. Abnormal Behaviors

Based on the node-level transition matrix C over time in

HB-DSBM, we can capture node transition behaviors between

consecutive slices, so it can detect node’s abnormal behaviors

by calculating the entropy of C. More specifically, the anomaly

index of node i can be calculated as follows:

Ei = −
T−1∑

t=1

∑

k

ctik log c
(t+1)
ik , (20)

where a large Ei indicates that node i transfers its community

membership across the snapshots frequently, which are usually

the abnormal behaviors in many cases of temporal networks.

We calculate the anomaly index on three temporal networks,

namely, DBLP, Patent and Synthetic Dataset 2 merge-split

event. It can be seen from Fig. 6 that the DBLP network

only has the four largest anomaly indices, which indicates that

DM, DB and AI have relatively stable community structures

during nine years (2001 − 2009). In contrast, most nodes

in Patent have the largest anomaly index, we believe Patent

data has significant community evolution events from 2014
to 2020. To prove it, we also calculate the anomaly index of
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Synthetic Dataset 2 merge-split event (based on the generation

and evolution mechanism, there are indeed a large number of

evolutionary anomalous nodes). It can be observed from Fig. 6

(b) and (c) that Patent and Synthetic networks have the same

patterns, which confirms our inference.

In addition, we find some anomaly and interesting cases in

DBLP and Patent networks. Fig. 7 shows some ego networks

of the most abnormal authors in DBLP, we can see that

Shuicheng Yan and his partners Thomas S. Huang et al. always

belong to the same community, which indicates that they might

be in the same team. We emphasize that DBLP Dataset only

represents someone who publishes a paper with someone else

as an edge. This kind of relationship is a weak relationship.

Therefore, Shuicheng Yan switches his community frequently

only represents that his research involves all three domains.

As depicted in Fig. 8, Zhang Jiawan’s patent ego network

expanded rapidly from 2016 to 2018, which may indicate

that he has begun to actively carry out the implementation

of scientific research results. However, from 2018 to 2020,

he not only switched community, but also contacted other

communities like Liu Zeyu. According to our investigation,

this was caused by a community merger event. The School of

Software Engineering and the School of Computer Science are

merged into the College of Intelligence and Computing. This

further proves that our anomaly index can discover anomalous

nodes and events.

F. Complexity Comparison

Though the VEM algorithm of HB-DSBM is an iterative

method, it only requires a small number of iterations to

reach the local optimum (APPENDIX B). Furthermore, its

computational complexity depends on the total number of

edges in the whole network, while the real-world networks

are always sparse. Thus, the running time of HB-DSBM is

acceptable. Fig. 9 shows the execution time of our method

and baselines in synthetic dataset 1 with multiplied number

of nodes. And all the methods are tested on a PC with 16
Gb memory and Intel Core i5 − 7400 CPU. The average

degree of each dataset is fixed at 16, thus with the increase of

the number of nodes, the network will become increasingly

more sparse. As we can see, DYNMOGA is very fast on

each dataset due to multiobjective optimization. GenLouvain

is faster than DYNMOGA on the datasets with the number

of nodes below 8192, however, when the number of nodes

increases to 8192, GenLouvain will receive an OOM (our of

memory) error. When the number of nodes is below 2048,

ESPRA is faster than HB-DSBM, DSBM, DECS and ECD,

but when the number of nodes increases, its run time is

not acceptable (OOT). Both DECS and ECD receive errors

(OOT and OOM, respectively) when the number of nodes

is larger than 1024. Though DSBM has less parameters than

HB-DSBM, the MCMC algorithm makes DSBM rather slow

in terms of its parameter scale. Besides, if we use the VEM

method for the DSBM, it will be faster than the MCMC, but

the accuracy will be lost. Finally, although the execution time

of HB-DSBM is not faster than GenLouvain and DYNMOGA,

it is sufficient to handle a network with 8192 nodes due to good
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Fig. 9: Execution time comparison on synthetic dataset 1 (σ =
3, nC = 3, aD = 16) with different numbers of nodes (due

to low performance, we omitted AFFECT). The dotted line

indicates that the corresponding method receives an OOM (out

of memory) error on the data point beyond the OT/OM line.

When the data point belongs to a solid line beyond the OT/OM

line, it means that the corresponding method receives an OOT

(out of time) error.

convergence performance. Furthermore, HB-DSBM is still not

fast enough to calculate a network with millions of nodes, but

this can be solved with parallel technology or the utilize of

neural network, this is also what we will do in the future.

VI. CONCLUSION AND FUTURE WORK

Temporal community detection and its evolution analysis

have been widely applied in a variety of applications of net-

work science. Constructing the generated model for dynamic

networks can help predict the varying of its structure and

function. In this paper, we propose a full Bayesian genera-

tive model named HB-DSBM, which models dynamic net-

works, detects community structure, analyzes node-level and

community-level evolution and identifies abnormal behaviors.

It describes the generation and evolution of the network in

detail from the perspective of joining nodes and communities.

Furthermore, we propose an effective optimization algorithm

for the model based on the variational inference, in which we

design approximate posterior distributions for dynamic transi-

tion behavior at the node and community levels. Experiments

on community detection, dynamic evolution and abnormal

behavior show that this model achieves better performance

on both simulated and real-world datasets. On the whole, our

model can also reveal the dynamic behavior of communities

and nodes based on the well-designed generative mechanism

and optimization.

There are some interesting points on our model that can be

expanded. The first and most important problem is the model

selection of dynamic networks, i.e., how to automatically

determine the number of communities. Although a lot of

methods have been developed for static networks and some for
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dynamic networks, they are not enough to meet the need of

generative models, such as our HB-DSBM. Another problem

is how to predict community change points based on dynamic

behaviors and enable them to achieve better prediction tasks.

Besides, the algorithm for our model is not suitable for

very large-scale dynamic networks, using Stochastic Gradient

Descent (SGD) to optimize HB-DSBM will be the focus of

future research.
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