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Abstract. Suppose that OL is the ring of integers of a number field L, and suppose that

f(z) =

∞∑
n=1

af (n)qn ∈ Sk(Γ0(N)+) ∩ OL[[q]]

is a normalized Hecke eigenform for Γ0(N)+. We say that f is non-ordinary at p if there
is a prime ideal p ⊂ OL above p for which af (p) ≡ 0 (mod p). In the authors’ previous
paper with Ken Ono [10] it was proved that there are infinitely many Hecke eigenforms for
SL2(Z) such that are non-ordinary at any given finite set of primes. In this paper, we extend
this result to some genus 0 subgroups of SL2(R), namely, the normalizers Γ0(N)+ of the
congruence subgroups Γ0(N). Our result also generalizes some of Choi and Kim’s result in
[2].

1. Introduction and Statement of the result

For any square-free positive integer N , we consider

Γ0(N)+ =

{
e−1/2

(
a b
c d

)
∈ SL2(R) : ad− bc = e, a, b, c, d, e ∈ Z.e | N, e | a, e | d,N | c

}
,

which is known as an arithmetic group related to the ‘Monstrous moonshine conjectures’.
Let Γ0(N)+ = Γ0(N)+/{±I}, where I denotes the identity matrix. In particular, PSL2(Z) =

Γ0(1)+. It has been shown that there are 43 square-free integers N > 1 such that the quotient

space XN := Γ0(N)+\H has genus zero (see [4]). Each group has one cusp, which we can
always choose to be at i∞. The aim of this paper is to present results in the study of the
non-ordinary prime theory associated to these 43 spaces.

Throughout, k is a positive even integer. As usual, we let Mk(Γ0(N)+) (respectively,
Sk(Γ0(N)+)) denote the C-vector space of weight k modular forms (respectively, cusp forms)
for Γ0(N)+. Furthermore, let M !

k(Γ0(N)+) denote the infinite dimensional space of weakly
holomorphic modular forms (that is, meromorphic with poles only at the cusps) of weight k
with respect to Γ0(N)+.

Throughout this paper, we call a modular form f =
∑∞

n=0 af (n)qn ∈ Mk(Γ0(N)+) Hecke
eigenform in Mk(Γ0(N)+) if it is an eigenform for every Hecke operator Tm. If af (1) = 1 for
f ∈ Sk(Γ0(N)+), we say that f is normalized.
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Suppose that OL is the ring of integers of a number field L, and suppose that

f(z) =
∞∑
n=1

af (n)qn ∈ Sk(Γ0(N)+) ∩ OL[[q]]

is a normalized Hecke eigenform for Γ0(N)+, where

N ∈ {2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35,

38, 39, 41, 42, 46, 47, 51, 55, 59, 62, 66, 69, 70, 71, 78, 87, 94, 95, 105, 110, 119},
so that Γ0(N)+ has genus 0, and q := e2πiz. Unless otherwise stated, N shall denote an
integer in the above set throughout.

We say that f is non-ordinary at p if there is a prime ideal p ⊂ OL above p for which
af (p) ≡ 0 (mod p). Not so much is known about the distribution of non-ordinary primes. For
the case of full modular group, there are several works including results done by Hatada [6],
Hida [7]-[9], Choie-Kohnen-Ono [3], and Jin-Ma-Ono [10]. There has been progress for other
groups, too. For example, El-Guindy [5] extended some results in the full modular group
to some Hecke congruence groups, namely, Γ0(N) with N ∈ {2, 3, 5, 7, 13} where the genus
is 0. Later, Choi and Kim [2] dealt with some genus 0 plus groups, which are the groups

generated by the Hecke congruence group Γ0(p) and the Fricke involution Wp =

(
0 −1
p 0

)
,

where p is a prime. It is natural to consider the case for some other groups, too, and this is
what we study in this paper.

For Γ0(N)+ with N in the above list, we present our main result.

Theorem 1.1. Let p be a prime, and suppose that f(z) =
∑∞

n=1 af (n)qn ∈ Sk(Γ0(N)+) ∩
OL[[q]] is a normalized Hecke eigenform, where k ∈ 2Z and OL is the ring of algebraic
integers of a number field L. We denote by p a prime ideal of OL above p. mN , kN and
aN(n) are as defined in Proposition 2.3.

(1) If p = 2 and N = 2, then

af (p) ≡ 0 (mod p),

i.e. every level 2 normalized Hecke eigenform is non-ordinary at 2.
(2) If p = 3, suppose that N ∈ {3, 7, 13, 19, 21, 31, 39} or k ≡ 2 mod 4, Then

either af (p) ≡ 0 (mod p) or

mN∑
n=1

af (n)aN(mN − n) ≡ 0 (mod p).

In particular, when mN = 1, i.e., N ∈ {2, 5, 6} and k ≡ 2 (mod 4), we must have af (p) ≡
0 (mod p), i.e., f is non-ordinary at p.

(3) If p ≥ 5, suppose that (p− 1) | (k − 2− kN) and(
l

p

)
6= −1, ∀ prime l | N,

then

either af (p) ≡ 0 (mod p) or

mN∑
n=1

af (n)aN(mN − n) ≡ 0 (mod p).

In particular, when mN = 1, i.e., N ∈ {2, 5, 6}, we must have af (p) ≡ 0 (mod p), i.e., f is
non-ordinary at p.
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Remark. A normalized Hecke eigenform for Γ0(N)+ inside the space Snew
k (Γ0(N)) is the same

as a newform for Γ0(N), whose eigenvalue for Atkin-Lehner involutions are all 1, here by
Snew
k (Γ0(N)) we mean the space of newforms of weight k for Γ0(N). We show this in the

following.
First, we see that

f

(
e−1/2

(
a b
c d

)
z

)
= f

((
a b
c d

)
z

)
.

Hence for γ = e−1/2

(
a b
c d

)
∈ Γ0(N)+,

(f |k γ)(z) = ek/2(cz + d)−kf(γz) = (f |k γ0)(z),

where γ0 =

(
a b
c d

)
∈ GL+

2 (R) and |k γ is the usual slash operator. That is to say, the

modular property (f |k γ)(z) = f , is equivalent to

(f |k γ0)(z) = f(z), ∀γ0 =

(
a b
c d

)
∈ GL+

2 (R),

where ad− bc = e, a, b, c, d, e ∈ Z, e | N, e | a, e | d,N | c.

We apply this for γ = γ0 running over Γ0(N) for e = 1, γ0 =

(
0 −1
N 0

)
for e = N , and

γ0 =

(
pa0 b
Nc0 pd0

)
for e being a prime divisor of N , respectively. Then it follows that if a

normalized Hecke eigenform for Γ0(N)+ is inside the space Snew
k (Γ0(N)), it is a newform for

Γ0(N), whose eigenvalues for Atkin-Lehner involutions are all 1.

On the other hand, if f is a newform for Γ0(N) such that the eigenvalue for Atkin-Lehner
involutions are all 1, we show that it is a normalized Hecke eigenform for Γ0(N)+. As N has
at most three different prime factors, we only need to show when e = 1, p, p1p2, N .

When e = 1 or e = p | N , it is straightforward from the fact that f is a modular form for
Γ0(N) and f is eigenform of Atkin-Lehner involutions with eigenvalue 1.

When e = N , as

γ0 =

(
Na0 b
Nc0 Nd0

)
=

(
0 −1
N 0

)(
c0 d0

−Na0 −b0

)
= γ1γ2,

knowing that f is invariant under Fricke involution, we get that

(f |k γ0)(z) = (f |k γ1γ2)(z) = ((f |k γ1) |k γ2)(z) = (f |k γ2)(z) = f(z).

When e = p1p2 6= N = p1p2p3, as

γ0 =

(
p1p2a0 b0

Nc0 p1p2d0

)
=

(
p3a1 b1

Nc1 p3d1

)−1(
Na2 b2

Nc2 Nd2

)
= γ−1

1 γ2,

we have

f(z) = (f |k γ2)(z) = (f |k γ1γ0)(z) = ((f |k γ1) |k γ0)(z) = (f |k γ0)(z).

Hence we know that a normalized Hecke eigenform for Γ0(N)+ inside the space Snew
k (Γ0(N))

is the same as a newform for Γ0(N), whose eigenvalue for Atkin-Lehner involutions are all
1. In fact, from the discussion above, we see that f is a modular form for Γ0(N)+ shares the
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same meaning as f is a modular form for Γ0(N), such that f is eigenform for Atkin-Lehner
involutions and the Fricke involution with eigenvalues 1.

Moreover, we can regard Γ0(N)+ as the group generated by Γ0(N), the Artkin-Lehner

involution W (Qp) =

(
pa b
Nc pd

)
and the Fricke involution W (N) =

(
0 −1
N 0

)
. In fact, this

will apply to all N ∈ Z+ that is square free. In particular, when N is prime, this is just the
plus group which was considered by Choi and Kim [2].

From Theorem 1.1, we can tell more about non-ordinary primes. For instance, we can
establish the following. Let

S2 = {2, 3} ∪ {prime p ≥ 5 | p ≡ ±1 (mod 8)},
S5 = {3, 5} ∪ {prime p ≥ 7 | p ≡ ±1 (mod 5)} ,
S6 = {3} ∪ {prime p ≥ 5 | p ≡ ±1 (mod 24)} .

Corollary 1.2. If S is a finite subset of SN , where N ∈ {2, 5, 6}, then there are infinitely
many normalized Hecke eigenforms for Γ0(N)+ which are non-ordinary for each p ∈ S.

Remark. The proof of the corollary above is constructive. For example, suppose that S =
{p1, p2, ..., pm} is a finite subset of S2. Suppose that k is an even positive integer which is
congruent to 2 mod 4. If we have (p− 1) | (k − 10) for each p ∈ S, then every prime in S is
non-ordinary for every normalized Hecke eigenform f ∈ Sk(Γ0(2)+).

In Section 2 we show certain facts about modular forms and we prove Theorem 2.3. In
Section 3 and 4 we obtain Theorem 1.1 and Corollary 1.2. We offer some numerical examples
and give some discussion in Section 5.

2. Preliminaries

2.1. Nuts and bolts. We will make use of the Hauptmodul jN associated to Γ0(N)+ (see
[12] for more details). Knowing that jN ∈M0(Γ0(N)+) has a simple pole at infinity, for any
f ∈M !

0(Γ0(N)+), we have f = P (jN), where P is a polynomial whose degree is equal to the
order of f at infinity.

Moreover, we have that dimM2(Γ0(N)+) = 0 (see for example [12, Proposition 2]) and

ΘjN ∈M !
2(Γ0(N)+),

where Θ is the Ramanujan theta operator Θ := q d
dq

. Hence every g ∈ M !
2(Γ0(N)+) can be

written as

P (jN)ΘjN ,

where P is a polynomial. Therefore, g is the derivative of a polynomial in jN , and so its
constant term in the Fourier expansion is zero. So we have the following proposition.

Proposition 2.1. If f(z) =
∑

n�−∞ af (n)qn ∈M !
2(Γ0(N)+), then af (0) = 0.

Next we define holomorphic Eisenstein series associated to Γ0(N)+. For k ≥ 2,

E
(N)
2k (z) :=

∑
γ∈Γ∞(N)\Γ0(N)+

(cz + d)−2k with γ =

(
∗ ∗
c d

)
,
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where Γ∞(N) denotes the stabilizer group of the cusp at i∞. It is known that

E
(N)
2k (z) =

1

σk(N)

∑
v|N

vkE2k(vz),

where σk denotes the generalized divisor function

σk(m) =
∑
u|m

uk,

and E2k ∈M2k(Γ0(1)) is the normalized Eisenstein series

E2k := 1− 4k

B2k

∞∑
n=1

σ2k−1(n)qn,

where the rational numbers Bk are the usual Bernoulli numbers.

Now we breifly define the notion of a congruence between q-series. For two q-series F (q) =∑
n≥n0

a(n)qn and G(q) =
∑

n≥n0
b(n)qn in OL[[q]] for a number field L, and for a prime ideal

p ⊂ OL, we say that F is congruent to G modulo p if vp(a(n)− b(n)) ≥ 1 for every n(where
vp is the p-adic valuation), and we denote this by

F (q) ≡ G(q)(mod p).

As we have E2k ≡ 1 (mod 24), for p = 2, 3, if gcd(p, σk(N)) = 1, it is not hard to see that

E
(N)
2k ≡ 1 (mod p).

For prime p ≥ 5, with the property that Ep−1(z) ≡ 1(mod p), we know that

E
(N)
p−1(z) =

1

σ(p−1)/2(N)

∑
v|N

v(p−1)/2Ep−1(vz) ≡ 1(mod p)

always hold for p - σ(p−1)/2(N). Moreover, as we know that

σ(p−1)/2(N) =
∑
u|N

u(p−1)/2 =
∏
l|N

(1 + l(p−1)/2),

where l is prime. So Euler’s criterion implies that p - σ(p−1)/2(N) is equivalent to(
l

p

)
6= −1, ∀ prime l | N,

where
( ·
·

)
denotes the Legendre symbol. Hence we have

Proposition 2.2. Suppose that E
(N)
2k (z) are weight 2k holomorphic Eisenstein series asso-

ciated to Γ0(N)+.

(1) If p = 2, 3, then for any positive integer k ≥ 2 such that gcd(p, σk(N)) = 1, E
(N)
2k (z) ≡

1(mod p).
(2) If p ≥ 5 is prime and (

l

p

)
6= −1, ∀ prime l | N,

then E
(N)
p−1(z) ≡ 1(mod p).
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We also need to construct a modular form of some positive weight, say kN , vanishing at
the cusp i∞ only. This is achieved using the Kronecker limit functions (cf. [11] and [12]).
Let

η(z) = q1/24

∞∏
n=1

(1− qn)

denote the Dedekind eta function.

Proposition 2.3 ([11], Theorem 16). For any square-free N , assume that N has r prime
factors. Let us define the constant lN by

lN = 21−rlcm

(
4, 2r−1 24

(24, σ(N))

)
.

Then the Kronecker limit function defined by

∆N(z) =

∏
v|N

η(vz)

lN

,

is a weight kN = 2r−1lN modular form on Γ0(N)+, vanishing at the cusp i∞ only. Therefore,
its inverse

∆N(z)−1 = q−mN

∞∑
n=0

aN(n)qn,

where mN = lNσ(N)
24

and aN(0) = 1, is a weakly holomorphic modular form of weight −kN
with respect to Γ0(N)+.

Note when N ∈ {2, 5, 6}, we have that mN = 1 (with k2 = 8 and k5 = k6 = 4), meaning
that ∆N(z) only have a simple zero at i∞. In fact, 2, 5, 6 are the only 3 out of the 43 numbers
with mN = 1.

2.2. A technical result. The result below shows how weakly holomorphic modualr forms
for Γ0(N)+ act, which will lead to Theorem 1.1.

Theorem 2.4. Let p be a prime, and suppose that f(z) =
∑∞

n�−∞ af (n)qn ∈M !
k(Γ0(N)+)∩

OL[[q]], where k ∈ 2Z and OL is the ring of algebraic integers of a number field L. mN , kN
and aN(n) are as defined in Proposition 2.3.

(1) If p = 2, suppose that a ≥ 0 is an integer for which

k − 2 ≤ 8pa.

Suppose that N = 2. If ord∞(f) > −pa, then for any integer b ≥ a, we have

af (p
b) ≡ 0 (mod p).

(2) If p = 3, suppose that a ≥ 0 is an integer for which

k − 2 ≤ kNp
a.

Suppose that N ∈ {3, 7, 13, 19, 21, 31, 39} or k ≡ 2 (mod 4). If ord∞(f) > −pa, then for any
integer b ≥ a, we have

mN∑
n=0

af (np
b)aN(mN − n) ≡ 0 (mod p).
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(3) If p ≥ 5, suppose that a ≥ 0 is an integer for which

k − 2 ≤ kNp
a.

Suppose that (
l

p

)
6= −1, ∀ prime l | N,

If ord∞(f) > −pa and (p− 1) | (k − 2− kN), then for any integer b ≥ a, we have

mN∑
n=0

af (np
b)aN(mN − n) ≡ 0 (mod p).

Proof. The proof begins with the construction of suitable weakly holomorphic modular forms
of weight 2 − k. The product of such forms with f have weight 2, and so Proposition 2.1
implies that their constant terms vanish.

For p = 2, 3, when k ≥ 2 and p - σk(N), we have that E
(N)
2k ≡ 1 (mod 24).

When p = 2, p - σk(N) ⇔ N = 2u, where u is a positive integer. As N is square-free, it
has to be just 2. When N = 2, we can always find h ∈ 2Z, so that

2− k = h− kNpb.

It follows that

∆N(z)−p
b

E
(N)
h ∈M !

2−k(Γ0(N)+).

Therefore, the constant term of f∆N(z)−p
b
E

(N)
h is zero. We have

∆2(z)−1 = (η(z)η(2z))−8 = q−1 + 8 +O(q),

Hence

af (p
b) + 8af (0) ≡ af (p

b) ≡ 0 (mod 2).

When p = 3, if there is no l - N such that l ≡ 2 mod 3 or if k is even, we have that
the formula σk(N) =

∏
l|N(1 + lk) implies that gcd(p, σk(N)) = 1. That is to say, when

N ∈ {3, 7, 13, 19, 21, 31, 39} or when k ≡ 2 mod 4, we can always find h ∈ 2Z, so that

2− k = h− kNpb and E
(N)
h ≡ 1 (mod 24).

By a similar argument as before, we have
mN∑
n=0

af (np
b)aN(mN − n) ≡ 0 (mod 3).

For prime p ≥ 5, since (p− 1) | (k− 2− kN) and k− 2 ≤ kNp
b, we can find a non-negative

integer c such that

2− k = c(p− 1)− kNpb.
It follows that

∆N(z)−p
b

(E
(N)
p−1)c ∈M !

2−k(Γ0(N)+).

That is to say, the constant term of f∆N(z)−p
b
(E

(N)
p−1)c is zero. If(

l

p

)
6= −1, ∀ prime l | N,
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we have E
(N)
p−1(z) ≡ 1(mod p). Then we have that the constant term of f∆N(z)−p

b
is zero

modulo p. Recall that

∆N(z)−1 = q−mN

∞∑
n=0

aN(n)qn,

where aN(0) = 1. We will get

mN∑
n=0

af (np
b)aN(mN − n) ≡ 0 (mod p).

�

3. Proof of Theorem 1.1

As f(z) =
∑∞

n=1 af (n)qn ∈ Sk(Γ0(N)+) ∩ OL[[q]] is a normalized Hecke eigenform, we see
that af (0) = 0 and ord∞(f) > −pa for every a ≥ 0. In addition, we have the property that

af (p
an) ≡ af (p)

aaf (n) (mod p).

Recall that p is a prime ideal of OL above p.
For the case p = 2, we have

af (p) ≡ af (p)
a ≡ af (p

a) ≡ 0 (mod p).

For the case p ≥ 3, knowing that

mN∑
n=0

af (np
b)aN(mN − n) ≡ 0 (mod p),

we get that

af (p)
b

mN∑
n=0

af (n)aN(mN − n) ≡ 0 (mod p).

Hence we have

either af (p) ≡ 0 (mod p) or

mN∑
n=1

af (n)aN(mN − n) ≡ 0 (mod p).

In particular, when N ∈ {2, 5, 6}, it is not hard to see that

mN =
σ(N)

24
· 21−rlcm

(
4, 2r−1 24

(24, σ(N))

)
= 1.

In fact, they are the only 3 numbers out of the given 43 with such a property. It follows that

mN∑
n=0

af (np
b)aN(mN − n) ≡ 0 (mod p)

turns to be

af (p
b) ≡ 0 (mod p)

as af (0) = 0 because f is a cusp form. Together with the fact that af (p
b) ≡ af (p) (mod p),

we get af (p) ≡ 0 (mod p), that is to say, f is non-ordinary at p.
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4. Proof of Corollary 1.2

When N = 2, for the given finite set of primes S ⊂ S2, let

kS = 2u
∏
p∈S

(p− 1) + 10,

where u is an arbitrary non-negative integer. For every normalized Hecke eigenform fS ∈
SkS(Γ0(2)+), we know that fS is non-ordinary at 2 from Theorem 1.1(1). It is not hard to
see that kS ≡ 2 mod 4, hence fS is non-ordinary at 3 by Theorem 1.1(2). We only need to
consider the case that p ≥ 5.

For p ≥ 5, from Theorem 1.1(3), it is known that if (p − 1) | (k − 10) (note that k2 = 8)

and
(

2
p

)
6= −1, every normalized Hecke eigenform f ∈ Sk(Γ0(2)+) will be non-ordinary at

p. By quadratic reciprocity, we have that(
2

p

)
6= −1⇐⇒ p ≡ ±1 (mod 8).

It follows that every fS will be non-ordinary at every p ∈ S ⊂ S2. As u can be chosen freely,
we know that there are infinitely many kS, for which every normalized Hecke eigenform
fS ∈ SkS(Γ0(N)+) will be non-ordinary at p. The only thing we need to show is that we can
always find Hecke eigenforms inside each SkS(Γ0(N)+).

Note first that E
(2)
kS−8∆2 ∈ SkS(Γ0(2)+). Hence dimSkS(Γ0(2)+) ≥ 1, that is to say,

SkS(Γ0(2)+) won’t be trivial. Furthermore, as Hecke operators are normal operators and
commute with each other and the Atkin-Lehner operators, we see that one can find a basis
for SkS(Γ0(2)+), consisting of simultaneous Hecke eigenforms. Then we know that there is
at least one normalized Hecke eigenform f ∈ SkS(Γ0(2)+) for each kS, and the conclusion
follows.

When N = 5, 6, for the given finite set of primes S ⊂ S5, S6, respectively, let

kS = 2u
∏
p∈S

(p− 1) + 6.

Applying the quadratic reciprocity law, for p ≥ 7, we will get(
5

p

)
6= −1⇐⇒ p ≡ ±1 (mod 5),

(
3

p

)
6= −1⇐⇒ p ≡ ±1 (mod 12).

Together with the fact that k5 = k6 = 4, we will get the conclusion after a similar discussion
as the case N = 2.

5. Examples and Remarks

Example (1). Let S = {3, 7, 17}. In the following table we list some of the weights k for
which Hecke eigenforms for Γ0(2)+ are non-ordinary at each prime p.
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p 22 ≤ k ≤ 76 such that all Hecke eigenforms for Sk(Γ0(2)+) are non-ordinary at p
3 22 26 30 34 38 42 46 50 54 58 62 66 70 74
7 22 28 34 40 46 52 58 64 70 76
17 26 42 58 74

In particular, take the case k = 58. Suppose that q-expansion of a normalized weight 58
Hecke eigenform for Γ0(2)+

f58(z) =
∞∑
n=1

af (n)qn.

With the L-functions and Modular Forms Database (LMFDB) (http://www.lmfdb.org), we
get that

af (3) = −24128544277404− 23β,

af (7) = −361576196879296085843128− 235936924286β,

af (17) = −6669041846564826791162194466180718 + 91455289471591787928136β,

where β = 25920
√

3104405074519849. It is not hard to see af (p) ≡ 0 (mod p) for each p ∈ S.
In particular, the trace forms are non-ordinary at each p, too. For the trace form of f , the
sum of its distinct conjugates under Aut(C), say Tr(f) =

∑∞
n=1 aTr(f)(n)qn, we get that

aTr(f)(3) = −48257088554808 ≡ 0 (mod 3),

aTr(f)(7) = −723152393758592171686256 ≡ 0 (mod 7),

aTr(f)(17) = −13338083693129653582324388932361436 ≡ 0 (mod 17).

Example (2). Let S = {3, 23}. In the following table we list some of the weights k for which
Hecke eigenforms for Γ0(6)+ are non-ordinary at each prime p ∈ S.

p 26 ≤ k ≤ 94 such that all Hecke eigenforms for Sk(Γ0(6)+) are non-ordinary at p
3 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94
23 28 50 72 94

In particular, take the case k = 50. Suppose that q-expansion of the normalized weight
50 Hecke eigenform for Γ0(6)+

f50(z) =
∞∑
n=1

af (n)qn.

With the database LMFDB again, we get that

af (3) = −282429536481,

af (23) = −2019988045548970731585104823964104 + 3938244938599365058β,

where β = 12700800
√

2444780087512801. It is not hard to see that they meet the result.
For the trace form of f , say Tr(f) =

∑∞
n=1 aTr(f)(n)qn, we get that

aTr(f)(3) = −564859072962 ≡ 0 (mod 3),

aTr(f)(23) = −4039976091097941463170209647928208 ≡ 0 (mod 23).
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Remark (1). For the case p ≥ 5 in Theorem 1.1, if we could find u ∈ Z+ so that k+c(p−1)−
ukNp

b = 2, then we would have that the constant term of f∆N(z)−up
b

is just zero modulo
p. Let

∆N(z)−u = q−umN

∞∑
n=0

auN(n)qn.

Then we see that the following holds.

umN∑
n=0

af (np
b)auN(umN − n) ≡ 0 (mod p).

Suppose that f is a normalized Hecke eigenform, it turns out that

either af (p) ≡ 0 (mod p) or

umN∑
n=1

af (n)auN(umN − n) ≡ 0 (mod p).

The result is a bit ugly, but we may cover some more cases.
For example, for the case u = 2, we have

either af (p) ≡ 0 (mod p) or

2mN∑
n=1

af (n)a2,N(2mN − n) ≡ 0 (mod p),

where a2,N(n) is denoted by

∆N(z)−2 = q−2mN

∞∑
n=0

a2,N(n)qn.

The latter congruence can be figured out with af (n), n ≤ 2mN . If this congruence won’t
hold, we can say f is non-ordinary at p.

Remark (2). Moreover, there is no result for the cases such that the genus isn’t 0, up to the
completion of this paper. One main barrier is that the minimal order of pole for modular
function at i∞ may not be just 1. It is not possible in general to find a modular function
like jN so that every modular function will be a polynomial of it.

Take Γ0(l) for example, where l is a prime. Atkin [1] proved in 1973 that if l is prime,∞ is
never a Weierstrass point of X0(l). So the minimal order of pole of a non-constant modular
function for Γ0(l), holomorphic away from ∞, is exactly g + 1, where g is the genus.

When l = 24u + 1, we know that the genus is just 2u− 1 by using the well-known genus
formula. It is easy to see that ϕ(z) = (η(z)/η(lz))2 is just a modular function for Γ0(l),
holomorphic away from a pole of order 2u at ∞. Moreover, the order of vanishing for ϕ(z)
at 0 is again just 2u. (See, for example [13, Theorem 1.65].) It follows that if f(z) is a
modular function for Γ0(l), holomorphic away from∞, then the only thing we may find will
be something of the form

f(z) = c+
∞∑
r=1

Pr(j(z))ϕ(z)r,

where c is a constant, j is the usual singular moduli and Pr are polynomials such that
degPr ≤ 2u− 1.
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