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ABSTRACT. Suppose that Op is the ring of integers of a number field L, and suppose that

Z(If n)q" € Sk(To(N)*) N OL[q]]

n=1

is a normalized Hecke eigenform for T'q(N)T. We say that f is non-ordinary at p if there
is a prime ideal p C O, above p for which ay(p) = 0 (mod p). In the authors’ previous
paper with Ken Ono [10] it was proved that there are infinitely many Hecke eigenforms for
SL2(Z) such that are non-ordinary at any given finite set of primes. In this paper, we extend
this result to some genus 0 subgroups of SLy(RR), namely, the normalizers To(N)" of the
congruence subgroups I'g(IV). Our result also generalizes some of Choi and Kim’s result in
1.

1. INTRODUCTION AND STATEMENT OF THE RESULT

For any square-free positive integer N, we consider

Lo(N)t = {6_1/2 (i Z) € SLy(R) : ad — bc = e,a,b,c,d,e € Z.e | N,e[a,e\d,N\c},

which is known as an arithmetic group related to the ‘Monstrous moonshine conjectures’.
Let Tg(N)+t = To(N) " /{£I}, where I denotes the identity matrix. In particular, PSLy(Z) =
[o(1)*. It has been shown that there are 43 square-free integers N > 1 such that the quotient
space Xy = Lo(N)*\H has genus zero (see [4]). Each group has one cusp, which we can
always choose to be at i0o. The aim of this paper is to present results in the study of the
non-ordinary prime theory associated to these 43 spaces.

Throughout, k is a positive even integer. As usual, we let My(T'o(N)T) (respectively,
Sk(To(N)1)) denote the C-vector space of weight k modular forms (respectively, cusp forms)
for To(N)*. Furthermore, let M;(Io(N)*) denote the infinite dimensional space of weakly
holomorphic modular forms (that is, meromorphic with poles only at the cusps) of weight k
with respect to I'o(N)*

Throughout this paper, we call a modular form f = "> as(n)¢" € My(To(N)") Hecke
eigenform in My(To(N)T) if it is an eigenform for every Hecke operator T,,. If a;(1) = 1 for
f € Sk(To(N)T), we say that f is normalized.
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groups.
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Suppose that Oy, is the ring of integers of a number field L, and suppose that

Zaf n)q" € Sp(To(N)*) N O|[q]]

is a normalized Hecke eigenform for I'g(N)T, where
N €4{2,3,5,6,7,10,11,13,14,15,17,19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35,
38,30, 41,42, 46, 47, 51, 55, 59, 62, 66, 69, 70, 71, 78, 87, 94, 95, 105, 110, 119},

so that To(N)T has genus 0, and ¢ := €?™*. Unless otherwise stated, N shall denote an
integer in the above set throughout.

We say that f is non-ordinary at p if there is a prime ideal p C Op above p for which
af(p) =0 (mod p). Not so much is known about the distribution of non-ordinary primes. For
the case of full modular group, there are several works including results done by Hatada [0],
Hida [7]-[9], Choie-Kohnen-Ono [3], and Jin-Ma-Ono [10]. There has been progress for other
groups, too. For example, El-Guindy [5] extended some results in the full modular group
to some Hecke congruence groups, namely, I'g(N) with N € {2,3,5,7,13} where the genus
is 0. Later, Choi and Kim [2] dealt with some genus 0 plus groups, which are the groups
generated by the Hecke congruence group I'g(p) and the Fricke involution W, = 2 _01>,
where p is a prime. It is natural to consider the case for some other groups, too, and this is
what we study in this paper.

For T'o(N)" with N in the above list, we present our main result.

Theorem 1.1. Let p be a prime, and suppose that f(z) = > 2 ar(n)g” € Sp(To(N)*T) N
OLllq]] is a normalized Hecke eigenform, where k € 27 and Oy, is the ring of algebraic
integers of a number field L. We denote by p a prime ideal of Op above p. my, ky and
an(n) are as defined in Proposition [2.5,

(1) If p=2 and N = 2, then

as(p) =0 (mod p),

i.e. every level 2 normalized Hecke eigenform is non-ordinary at 2.

(2) If p = 3, suppose that N € {3,7,13,19,21,31,39} or k =2 mod 4, Then

either as(p) =0 (mod p) or Zaf(n)aN(mN —n) =0 (mod p).

n=1

In particular, when my =1, i.e., N € {2,5,6} and k = 2 (mod 4), we must have as(p) =
0 (mod p), i.e., f is non-ordinary at p.
(3) If p > 5, suppose that (p — 1) | (k—2 — ky) and

(i) # —1, Vprimel| N,

p
then
either as(p) =0 (mod p) or Zaf(n)aN(mN —n) =0 (mod p).
n=1

In particular, when my =1, i.e., N € {2,5,6}, we must have af(p) =0 (mod p), i.e., f is
non-ordinary at p.
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Remark. A normalized Hecke eigenform for I'g(/N) T inside the space SV (Ig(N)) is the same
as a newform for I'o(/V), whose eigenvalue for Atkin-Lehner involutions are all 1, here by
SpeV(To(N)) we mean the space of newforms of weight k for I'o(N). We show this in the

following.
(@)= (C o))

First, we see that
b

Hence for y = e~1/2 (CCL d) e To(N)*,

(f Ik 1) (2) = *(cz+ d) " F(v2) = (f |e ) (2),

a b € GL; (R) and | « is the usual slash operator. That is to say, the

d
modular property (f |r v)(z) = f, is equivalent to

where vy =

a b
(b)) = 16, v = (4 1) € GLR)
where ad — bc = e,a,b,c,d,e € Z,e | N,e | a,e | d,N | c.
0 —1

N O)fore:N,and

We apply this for v = 79 running over I'q(N) for e = 1, v = (
Yo = (zzzr? pzl ) for e being a prime divisor of N, respectively. Then it follows that if a
0 Pdo
normalized Hecke eigenform for I'o(N)™ is inside the space Sp(I'o(NN)), it is a newform for
(), whose eigenvalues for Atkin-Lehner involutions are all 1.

On the other hand, if f is a newform for I'g(/V) such that the eigenvalue for Atkin-Lehner
involutions are all 1, we show that it is a normalized Hecke eigenform for I'o(N)*. As N has
at most three different prime factors, we only need to show when e = 1, p, p1ps, V.

When e =1 or e = p | N, it is straightforward from the fact that f is a modular form for
[o(N) and f is eigenform of Atkin-Lehner involutions with eigenvalue 1.
When e = N, as

~_(Nay b\ _ [0 -1 o  do ) _
0= NCO Ndo N 0 —Nao —bo = N2,

knowing that f is invariant under Fricke involution, we get that

(f [k 70)(2) = (f [k m2)(2) = ((f [« M) [k 72)(2) = (f [k 22)(2) = [(2).
When e = pi1py # N = p1paps, as

Yo = P1Pp2ao bo _ (P31 by - Nay by :7717
0 Nco  pipady Nci psdy Ncy Ndy LA

f(2) = (f e 72)(2) = (f [k m790)(2) = ((f [& 1) [k %) (2) = (f [k 20)(2)-

Hence we know that a normalized Hecke eigenform for I'g(N)™ inside the space Sp¥(T'o(N))
is the same as a newform for I'((/V), whose eigenvalue for Atkin-Lehner involutions are all
1. In fact, from the discussion above, we see that f is a modular form for I'o(/N)* shares the

we have
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same meaning as f is a modular form for I'o(/V), such that f is eigenform for Atkin-Lehner
involutions and the Fricke involution with eigenvalues 1.
Moreover, we can regard T'o(N)T as the group generated by I'g(N), the Artkin-Lehner

involution W(Q,) = ]]ifac pbd) and the Fricke involution W (N) = ](37 _01

will apply to all N € Z, that is square free. In particular, when NV is prime, this is just the
plus group which was considered by Choi and Kim [2].

. In fact, this

From Theorem (1.1} we can tell more about non-ordinary primes. For instance, we can
establish the following. Let

Sy = {2,3}U{prime p >5|p==+1 (mod 8)},
Ss = {3,5}U{prime p>7]|p=+1 (mod 5)},
Se = {3}U{primep>5|p==+1 (mod 24)}.

Corollary 1.2. If S is a finite subset of Sy, where N € {2,5,6}, then there are infinitely
many normalized Hecke eigenforms for To(N)T which are non-ordinary for each p € S.

Remark. The proof of the corollary above is constructive. For example, suppose that S =
{p1,p2, ..., Dm } is a finite subset of S;. Suppose that k is an even positive integer which is
congruent to 2 mod 4. If we have (p — 1) | (k — 10) for each p € S, then every prime in S is
non-ordinary for every normalized Hecke eigenform f € Si(T'o(2)").

In Section 2 we show certain facts about modular forms and we prove Theorem 2.3. In
Section 3 and 4 we obtain Theorem 1.1 and Corollary 1.2. We offer some numerical examples
and give some discussion in Section 5.

2. PRELIMINARIES

2.1. Nuts and bolts. We will make use of the Hauptmodul jy associated to T'o(N)" (see
[12] for more details). Knowing that jy € My(To(N)*1) has a simple pole at infinity, for any
f € M)(To(N)T), we have f = P(jxn), where P is a polynomial whose degree is equal to the
order of f at infinity.

Moreover, we have that dimMs(Tg(N)*) = 0 (see for example [12, Proposition 2]|) and

Oj € My(To(N)™),

where O is the Ramanujan theta operator © := qd%. Hence every g € Mj(I'o(N)T) can be
written as

where P is a polynomial. Therefore, ¢ is the derivative of a polynomial in jy, and so its
constant term in the Fourier expansion is zero. So we have the following proposition.

Proposition 2.1. If f(z) = (n)q" € My(To(N)*), then af(0) = 0.

n>>—oo af
Next we define holomorphic Eisenstein series associated to T'o(N)*. For k > 2,

EWN(2) = Z (cz+d)™?* with = (z ;) :

'YEFOQ(JV)\FU(JV)Jr
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where I'oo(N) denotes the stabilizer group of the cusp at ico. It is known that

E(N) = Z’u Eor(vz)

where o} denotes the generalized divisor functlon
="
ulm

and Eor € Mok(Iy(1)) is the normalized Eisenstein series

where the rational numbers Bj, are the usual Bernoulli numbers.

Now we breifly define the notion of a congruence between g-series. For two g-series F'(q) =
Y onsn, @(n)q" and G(q) = >, -, b(n)q"™ in Or[[g]] for a number field L, and for a prime ideal
p C Op, we say that F' is congruent to G modulo p if v,(a(n) — b(n)) > 1 for every n(where
v, is the p-adic valuation), and we denote this by

F(q) = G(g)(mod p).
As we have Fo, = 1 (mod 24), for p = 2,3, if ged(p, ox(N)) = 1, it is not hard to see that
BN =1 (mod
2% = p)-
For prime p > 5, with the property that E,_;(z) = 1(mod p), we know that

1
Zv(p_l)/2Ep_1(vz) = 1(mod p)

(N)
EMy = ——
p—1 O-(p—l)/Q(N) 'U|N

always hold for p { 0(,_1)/2(IN). Moreover, as we know that
T(p1y/2(N Zu p—1)/ H(l + l(pfl)/Q)’
ulN 1IN
where [ is prime. So Euler’s criterion implies that p { o(,—1y/2(N) is equivalent to

(1) # —1, Vprimel| N,
p

where () denotes the Legendre symbol. Hence we have

Proposition 2.2. Suppose that Eéiv)(z) are weight 2k holomorphic Fisenstein series asso-
ciated to To(N)*.

(1) If p = 2,3, then for any positive integer k > 2 such that ged(p, ox(N)) = 1, Eég)(z) =
1(mod p).

(2) If p > 5 is prime and

(i) # —1, Vprimel| N,
p

then E(N{( ) = 1(mod p).
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We also need to construct a modular form of some positive weight, say ky, vanishing at
the cusp oo only. This is achieved using the Kronecker limit functions (cf. [11] and [12]).
Let

n(z) =g ][00 - ¢
n=1
denote the Dedekind eta function.

Proposition 2.3 ([1I1], Theorem 16). For any square-free N, assume that N has r prime
factors. Let us define the constant Iy by

24
Iy =271 4,0 ).
e ( | <24,0<N>>>
Then the Kronecker limit function defined by
In
An(z) = ([Inwa) |
v|N

is a weight ky = 2"l modular form on To(N)T, vanishing at the cusp ioo only. Therefore,
1ts inverse

Ay(z) ™ =q™ > ay(n)q",
n=0

where my = % and ay(0) = 1, is a weakly holomorphic modular form of weight —ky
with respect to To(N)T.

Note when N € {2,5,6}, we have that my = 1 (with ky = 8 and ks = k¢ = 4), meaning
that Ax(z) only have a simple zero at ico. In fact, 2, 5,6 are the only 3 out of the 43 numbers
with my = 1.

2.2. A technical result. The result below shows how weakly holomorphic modualr forms
for To(IN)* act, which will lead to Theorem

Theorem 2.4. Let p be a prime, and suppose that f(z) =Y 0% ap(n)g® € M(To(N)T)N
OLllq]], where k € 2Z and Oy, is the ring of algebraic integers of a number field L. my, ky
and ay(n) are as defined in Proposition[2.5
(1) If p = 2, suppose that a > 0 is an integer for which
k—2 < 8"
Suppose that N = 2. If ords(f) > —p?, then for any integer b > a, we have

as(p?) =0 (mod p).
(2) If p = 3, suppose that a > 0 is an integer for which
k—2 < kyp®.

Suppose that N € {3,7,13,19,21,31,39} or k =2 (mod 4). If ords(f) > —p®, then for any

integer b > a, we have
mn

Zaf(npb)aN(mN —n) =0 (mod p).

n=0
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(3) If p > 5, suppose that a > 0 is an integer for which
k—2 < knp®.
Suppose that
(]%) # —1, Vprimel| N,
If ordo(f) > —p® and (p — 1) | (k — 2 — ky), then for any integer b > a, we have

mn

Zaf(npb)aN(mN —n) =0 (mod p).

n=0

Proof. The proof begins with the construction of suitable weakly holomorphic modular forms
of weight 2 — k. The product of such forms with f have weight 2, and so Proposition 2.1
implies that their constant terms vanish.

For p = 2,3, when k& > 2 and p { 04 (IV), we have that Eég) =1 (mod 24).
When p = 2, p{ o, (N) & N = 2% where u is a positive integer. As N is square-free, it
has to be just 2. When N = 2, we can always find h € 27Z, so that
2 —k=nh—kyp"
It follows that
An(2) B € My (To(N)").

Therefore, the constant term of fA N(z)_pr,(LN) is zero. We have

Ag(2)™" = (n(2)n(22))° = ¢~ + 8+ O(a),
Hence
ap(p") + 8a(0) = as(p") = 0 (mod 2).
When p = 3, if there is no [ { N such that [ = 2 mod 3 or if k is even, we have that

the formula oy, (N) = [y (1 + [*) implies that ged(p,ox(N)) = 1. That is to say, when
N €{3,7,13,19,21, 31,39} or when k = 2 mod 4, we can always find h € 27Z, so that

2 —k=h—kyp” and E,SN) =1 (mod 24).

By a similar argument as before, we have

my

Z as(np®)an(my —n) =0 (mod 3).

n=0
For prime p > 5, since (p—1) | (k—2—ky) and k — 2 < kyp®, we can find a non-negative
integer ¢ such that
2—k=c(p—1)— knp".
It follows that
An(2) (B € My (To(N)*).

That is to say, the constant term of ]"AJ\;(Z)*Z’b(EI(,qu)C is zero. If

l
(;) # —1, Vprimel| N,
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we have E;]R(z) = 1(mod p). Then we have that the constant term of fAy(z)? is zero

modulo p. Recall that
An(2) ™ =™ Y an(n)g",
n=0

where an(0) = 1. We will get
my

Zaf(npb)aN(mN —n) =0 (mod p).

n=0

3. PROOF OF THEOREM 1.1

As f(z) => 0" 1ar(n)g™ € Sp(To(N)T) N OL[lq]] is a normalized Hecke eigenform, we see
that a;(0) = 0 and ords(f) > —p® for every a > 0. In addition, we have the property that
ay(p*n) = az(p)*ag(n) (mod p).

Recall that p is a prime ideal of Op above p.
For the case p = 2, we have
af(p) = as(p)* = ap(p”) =0 (mod p).
For the case p > 3, knowing that

mn

Zaf(npb)aN(mN —n) =0 (mod p),

n=0

we get that

a(p)’ Zaf(n)aN(mN —n) =0 (mod p).

Hence we have

either ay(p) =0 (mod p) or Zaf(n)aN(mN —n) =0 (mod p).

n=1
In particular, when N € {2,5,6}, it is not hard to see that
o(N) _,_ . 24
=——=.2"7"] 4,2 ———— | = 1.
T ( 7LV
In fact, they are the only 3 numbers out of the given 43 with such a property. It follows that
my
> " ay(np”)ay(my —n) =0 (mod p)
n=0

turns to be

as(p”) =0 (mod p)
as af(0) = 0 because f is a cusp form. Together with the fact that a;(p’) = ay(p) (mod p),
we get as(p) =0 (mod p), that is to say, f is non-ordinary at p.
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4. PROOF OF COROLLARY 1.2

When N = 2, for the given finite set of primes S C S5, let

ks =2u]](p— 1)+ 10,

peS

where u is an arbitrary non-negative integer. For every normalized Hecke eigenform fg €
Sks(To(2)T), we know that fg is non-ordinary at 2 from Theorem [1.1{(1). It is not hard to
see that ks = 2 mod 4, hence fg is non-ordinary at 3 by Theorem [1.1[2). We only need to
consider the case that p > 5.

For p > 5, from Theorem [L.13), it is known that if (p — 1) | (k — 10) (note that ky = 8)

and <%> # —1, every normalized Hecke eigenform f € Si(I'z(2)") will be non-ordinary at
p. By quadratic reciprocity, we have that

(;) £ -1 4= p= =1 (mod 8).

It follows that every fg will be non-ordinary at every p € S C S,. As u can be chosen freely,
we know that there are infinitely many kg, for which every normalized Hecke eigenform
fs € Sk (Fo(N)™) will be non-ordinary at p. The only thing we need to show is that we can
always find Hecke eigenforms inside each S, (I'o(N)™).

Note first that E,g?ﬁSAg € Sks(F'o(2)™). Hence dimSk,(I'9(2)7) > 1, that is to say,
Sks(To(2)T) won't be trivial. Furthermore, as Hecke operators are normal operators and
commute with each other and the Atkin-Lehner operators, we see that one can find a basis
for Sks(T'o(2)T), consisting of simultancous Hecke eigenforms. Then we know that there is
at least one normalized Hecke eigenform f € Sk, (I'0(2)") for each kg, and the conclusion
follows.

When N = 5,6, for the given finite set of primes S C S5, Sg, respectively, let
ks = ZUH(p— 1) +6.
peES
Applying the quadratic reciprocity law, for p > 7, we will get

(g) # —1 <= p=+1 (mod b),

(g) 41 = p=+1 (mod 12).

Together with the fact that ks = kg = 4, we will get the conclusion after a similar discussion
as the case N = 2.

5. EXAMPLES AND REMARKS

Ezxample (1). Let S = {3,7,17}. In the following table we list some of the weights k for
which Hecke eigenforms for I'g(2)" are non-ordinary at each prime p.
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p | 22 < k <76 such that all Hecke eigenforms for Si(T'9(2)") are non-ordinary at p
3 122 26 30 34 38 42 46 50 54 58 62 66 70 74
7|22 28 34 40 46 52 o8 64 70 76
17 26 42 o8 74

In particular, take the case kK = 58. Suppose that g-expansion of a normalized weight 58
Hecke eigenform for T'g(2)"

fss(z) = Y ag(n)g".

n=1
With the L-functions and Modular Forms Database (LMFDB) (http://www.lmfdb.org), we
get that

ap(3) = —24128544277404 — 230,
ap(7) = —361576196879296085843128 — 2359369242863,
ap(17) = —6669041846564826791162194466180718 + 914552894715917879281363,

where 3 = 259204/3104405074519849. Tt is not hard to see a;(p) = 0 (mod p) for each p € S.
In particular, the trace forms are non-ordinary at each p, too. For the trace form of f, the
sum of its distinct conjugates under Aut(C), say Tr(f) = > 7, an(p)(n)g", we get that

amp)(3) = —48257088554808 = 0 (mod 3),
arm(p)(7) = —T723152393758592171686256 = 0 (mod 7),
amp(17) = —13338083693129653582324388932361436 = 0 (mod 17).

Ezample (2). Let S = {3,23}. In the following table we list some of the weights k& for which
Hecke eigenforms for T'g(6)" are non-ordinary at each prime p € S.

p | 26 <k <94 such that all Hecke eigenforms for Sy(I'g(6)") are non-ordinary at p
3 126 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94
23 28 50 72 94

In particular, take the case k& = 50. Suppose that g-expansion of the normalized weight
50 Hecke eigenform for I'g(6)"

o0

fso(z) =Y ag(n)g".

n=1

With the database LMFDB again, we get that

ap(3) = —282429536481,
ap(23) = —2019988045548970731585104823964104 + 3938244938599365058 3,

where 3 = 12700800+/2444780087512801. It is not hard to see that they meet the result.
For the trace form of f, say Tr(f) = > ", ams(n)q", we get that

amypy(3) = —564859072962 = 0 (mod 3),
amp(23) = —4039976091097941463170209647928208 = 0 (mod 23).
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Remark (1). For the case p > 5 in Theorem [L.1] if we could find u € Z, so that k+c(p—1) —
ukyp® = 2, then we would have that the constant term of fAN(z)_“pb is just zero modulo
p. Let

Ay(z) ™" =q"mn Z ayn(n)q".
n=0
Then we see that the following holds.
umpy
Z ap(np”)aun(umy —n) =0 (mod p).
n=0

Suppose that f is a normalized Hecke eigenform, it turns out that

umy
either as(p) =0 (mod p) or Z ag(n)a,n(umy —n) =0 (mod p).
n=1
The result is a bit ugly, but we may cover some more cases.
For example, for the case u = 2, we have

2mpn

either as(p) =0 (mod p) or Z ag(n)agn(2my —n) =0 (mod p),

n=1

where as n(n) is denoted by
AN(Z)72 = qumN Z GQ’N<77,)qn.
n=0

The latter congruence can be figured out with ay(n),n < 2my. If this congruence won’t
hold, we can say f is non-ordinary at p.

Remark (2). Moreover, there is no result for the cases such that the genus isn’t 0, up to the
completion of this paper. One main barrier is that the minimal order of pole for modular
function at ioo may not be just 1. It is not possible in general to find a modular function
like jy so that every modular function will be a polynomial of it.

Take T'g(1) for example, where [ is a prime. Atkin [I] proved in 1973 that if  is prime, oo is
never a Weierstrass point of Xy(/). So the minimal order of pole of a non-constant modular
function for I'y(1), holomorphic away from oo, is exactly g + 1, where g is the genus.

When [ = 24u + 1, we know that the genus is just 2u — 1 by using the well-known genus
formula. It is easy to see that ¢(z) = (n(z)/n(l2))? is just a modular function for T'y(1),
holomorphic away from a pole of order 2u at co. Moreover, the order of vanishing for ¢(z)
at 0 is again just 2u. (See, for example [13, Theorem 1.65].) It follows that if f(z) is a
modular function for I'y(7), holomorphic away from oo, then the only thing we may find will
be something of the form

fE) =+ Pi)e(),

where ¢ is a constant, j is the usual singular moduli and P, are polynomials such that
degP, < 2u — 1.
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