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Abstract. DNA methylation alterations have been widely studied as me-

diators of environmentally-induced disease risks. With new advances in

technique, epigenome-wide DNA methylation data (EWAS) have become

the new standard for epigenetic studies in human populations. However,

to date most epigenetic studies of mediation effects only involve selected

(gene-specific) candidate methylation markers. There is an urgent need for

appropriate analytical methods for EWAS mediation analysis. In this paper,

we provide an overview of recent advances on high-dimensional mediation

analysis, with application to two DNA methylation data.

Keywords. Multiple comparison; False discovery rate; Variable selection;

Regularization; Joint significance test; Mediation analysis; Epigenetics.

1 Introduction

DNA methylation (DNAm) is a major epigenetic regulator of gene expression (El-Osta

and Wolffe 2001; Herman and Baylin 2003;, Esteller 2007). It stands at the intersection of

genetic and environmental risk factors for disease, and is critical for improved risk prediction

and understanding of the biology of chronic diseases as health care transitions to a new era

of precision medicine (Feinberg and Fallin 2015). Unlike genetic variation, which is static

throughout the life course, environmental factors and human behaviors can induce changes

in DNAm. These epigenetic changes may serve as mediating factors in the causal pathway

from exposure or treatment to health outcomes. More importantly, these changes can also

be modified or even reversed through preventive and therapeutic interventions (Cortessis et

al. 2012).

Mediation analysis plays an important role in the social and behavioral sciences (Baron

and Kenny 1986; MacKinnon 2008; Preacher and Hayes 2008; Kenny 2008). The main
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goal of mediation analysis is to investigate whether the effect of an independent variable

on a dependent variable is at least partially transmitted through an intermediate variable

(mediator). For more related literatures, we refer to the monographs (MacKinnon 2008;

Hayes 2013; VanderWeele 2015) and the review articles (MacKinnon et al. 2007; Wood, et

al. 2008; Ten Have and Joffe 2012; Richiardi et al. 2013; Wang and Sobel 2013; Preacher

2015; VanderWeele 2016; Richmond et al. 2016).

Currently, most mediation studies of DNAm only involve candidate (gene-specific) methy-

lation markers (Bellavia et al. 2013; Tarantini et al. 2013, Bind et al. 2014). Recent

advances in measurement techniques, such as Illumina Infinium platforms, have resulted in

epigenome-wide DNAm data (EWAS) becoming the standard for studies of epigenetics in

human populations. A motivating example is an epigenome-wide DNA methylation study

(Zhang et al. 2016), where some of roughly 480K probes on DNA methylation markers

could be potential mediators between the exposure (smoking) and the health outcome (lung

function). These high-dimensional EWAS data pose great challenges for data analyses (par-

ticularly mediation analyses), for which appropriate analytical methods are urgently needed.

Several papers, e.g., Liu et al. (2013), have proposed high-dimensional mediation analysis

methods in the framework of adjusting for multiple comparisons. These methods considered

each exposure-DNAm mediator relation and each DNAm mediator-outcome relation sepa-

rately, adjusting for multiple comparisons by Bonferroni’s approach or false discovery rate

(FDR). However, as shown in Figure 2 below, multiple mediators can lead to the same out-

come, meaning that it is necessary to adjust for other mediators when assessing the effect

of a given individual mediator. Furthermore, these methods cannot be used for predicting

multifactorial disease risk, e.g., by developing a prediction index based on more than one

DNAm markers.

To address these gaps in the literature, Zhang et al. (2016) proposed to use the sure

independent screening (SIS; Fan and Lv 2008) and minimax concave penalty (MCP; Zhang

2010) based joint significance test approach. There are also other related results on high-

dimensional mediation analysis. For example, Huang and Pan (2016) proposed a transfor-

mation model using spectral decomposition to test the mediation effects of high-dimensional

continuous mediators. Zhao and Luo (2016) proposed a sparse high-dimensional mediation

model by introducing a new penalty called Pathway Lasso. Chén et al. (2018) introduced

a novel direction of mediation approach by linearly combining potential mediators into a

smaller number of orthogonal components in the high-dimensional setting. Wu et al. (2018)

studied the mediation effects of DNA methylation between alcohol consumption and epithe-

lial ovarian cancer using high-dimensional logistic regression.

In this paper, we will review the recent advances on high-dimensional mediation analysis,
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with application to DNA methylation studies. The remainder of this Chapter is organized

as follows. In Section 2, we give the definition of a mediation model with a single mediator,

and review some traditional methods to assess the mediation effect. In Section 3, we briefly

present a multiple mediators model, together with some recent advances. In Section 4,

we pay attention to several new developments on high-dimensional mediation analysis. In

Section 5, we showed the application of two selected methods to real data analysis. Some

concluding remarks are reported in Section 6.

2 Single mediator model

To characterize the path-specific effect of an exposure on an outcome that is mediated

through a mediator (in Figure 1), we consider the three-variable regression equation (MacK-

innon, 2008):

Y = i1 + γ∗X + e1,

M = i2 + αX + e2, (2.1)

Y = i3 + γX + βM + e3,

where X is the independent variable (exposure), M is the mediator, Y is the dependent vari-

able (outcome); i1, i2 and i3 are intercepts, γ∗ represents the total effect of the independent

variable X on the dependent variable Y ; γ is the “direct effect” of X on Y adjusted for the

mediator M ; α is the path coefficient relating X and Y ; β is the path coefficient relating

the mediator M to the dependent variable Y adjusted for X; e1, e2 and e3 are error terms.

It is straightforward to derive that the γ∗ (total effect) is equal to γ (direct effect) plus αβ

(indirect effect).

To assess whether there exists an indirect effect from X to Y that is mediated by M , a

popular technique is the product of coefficients approach, most well known as the Sobel test

(Sobel 1982),

H0 : αβ = 0 vs. HA : αβ ̸= 0. (2.2)

The test statistic for (2.2) is given as Ŝ = α̂β̂/σ̂αβ, where α̂, β̂, σ̂2
α and σ̂2

β are ordinary

least squares (OLS) estimates, and σ̂αβ =
√

α̂2σ̂2
β + β̂2σ̂2

α is derived from the delta method.

By Sobel (1982), the asymptotic distribution of Ŝ is N(0, 1). Thus, the p-value is Psobel =

2{1 − Φ(|Ŝ|)}, where Φ(·) is the cumulative distribution function of N(0, 1). Of note, the

Sobel test requires the assumption that the sampling distribution of the indirect effect is

normal. However, the product of two normal variables tends to be asymmetric with nonzero
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skewness and kurtosis, and the performance of Sobel test is usually conservative (Hayes

2009). Another common approach is the joint significance test (Taylor et al. 2008), where

the p-value of test (2.2) is given as Pjoint = max(Pa, Pb) with Pa = 2{1 − Φ(|α̂|/σ̂α)} and

Pb = 2{1−Φ(|β̂|/σ̂β)}. That is to say, the joint significance test requires that both α and β

are significant simultaneously. Moreover, there also exist some alternative mediation testing

methods, e.g. difference in coefficients (MacKinnon et al., 2002), distribution of the product

(Williams and MacKinnon, 2008), resampling methods (Preacher and Hayes, 2008), and

permutation methods (Taylor and MacKinnon, 2012).

3 Multiple mediators model

In practice, there may exist multiple mediators on the causal pathway between an ex-

posure and an outcome (in Figure 2). To describe this causal relationship, we consider the

following multiple mediators regression model (MacKinnon, 2008),

Y = c∗ + γ∗X + ϵ1,

Mk = ck + αkX + ek, k = 1, · · · , p, (3.1)

Y = c+ γX + β1M1 + · · ·+ βpMp + ϵ2,

where M = (M1, · · · ,Mp)
′ is the vector of mediators; γ∗ represents the relation between

the X and Y in the “direct path”, γ is the parameter relating X to Y adjusted for the

effects of M in the “indirect path”; αk is the parameter relating X to the mediating variable

Mk, k = 1, · · · , p; β = (β1, · · · , βp)
′ is the vector of parameters relating the mediators to

Y adjusted for the effects of X; c, c∗, and {ck, k = 1, · · · , p} are intercept terms; ϵ1, ϵ2 and

{ek, k = 1, · · · , p} are residuals.

Let Xi, Mi = (Mi1, · · · ,Mip)
′ and Yi be i.i.d. observations, i = 1, · · · , n. Consider the

multiple testing problem,

H0k : αkβk = 0 vs. HAk : αkβk ̸= 0, k = 1, · · · , p. (3.2)

For testing of (3.2), it can be performed with a univariate or multivariate approach. Here,

the univariate approach analyzes each mediator separately using a marginal model Y =

c+ γX + βkMk + ϵ2 (Barfield et al., 2017; Sampson et al., 2018). A major drawback of this

naive univariate method is the neglect of other possible correlated mediators, which may

result in biased estimates and efficiency loss. To solve this issue, the multivariate approach

can improve power and accuracy (Boca et al. 2014), since it can adjust for confounding

variables (other DNAm mediators) by including them in the model.
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Boca et al. (2014) used the max correction (Westfall and Young 1993) and permutation

to address the family wise error rate, which can be briefly described as follows: Step 1:

Calculate the maximum-type test statistics Ŝ = max1≤k≤p{|α̂kβ̂k|}, where α̂k and β̂k are the

OLS estimates in (3.1). Step 2: PermuteX to obtain α̂∗
k, and get β̂∗

k by permuting the residual

of regressing Y on E. Calculate the permutation statistics Ŝ∗ = max1≤k≤p{|α̂∗
kβ̂

∗
k|}. Step 3:

Repeat Step 2 to obtain a distribution of Ŝ∗, and the 95th percentile of this distribution is

denoted as Q0.95. We declare Mk to be significant if |α̂kβ̂k| ≥ Q0.95, k = 1, · · · , p. Of note,

this permutation approach that focuses on the maximum of the test statistics can significantly

improve the power to detect mediators over the Bonferroni-based multiple adjustment (Boca

et al. 2014).

4 High-dimensional mediators model

As the number of mediators increasing, p may be larger than n, the multiple mediators

model (3.1) can be generalized to the framework of high-dimensional mediation analysis.

Below, we will review some recent advances on high-dimensional mediation effects for con-

tinuous outcome and binary outcome, respectively.

4.1 Continuous outcome

For high-dimensional linear regression, the ordinary least squares (OLS) estimate is not

available since the number of mediators p is larger than the sample size n (Tibshirani et al.,

2015). There are two approaches for these high-dimensional correlated mediators (in Figure

2): orthogonal transformation approach and the variable selection approach.

Huang and Pan (2016) and Chén et al. (2018) proposed to transform the original p medi-

ators to be uncorrelated given the exposure such that we can evaluate the mediation effects

using a series of single mediator models. More specifically, let M̃ = F (M) = (M̃1, · · · , M̃p)
′

be the vector of new transformed variables, where M = (M1, · · · ,Mp) is the vector of origi-

nal mediators, F (·) : Rp 7→ Rp is an orthogonal transformation. As suggested by Huang and

Pan (2016) and Chén et al. (2018), we can assume the following three-variable regression

model,

M̃k = c̃k + α̃kX + ζk, k = 1, · · · , p,
Y = c̃+ γ̃X + β̃1M̃1 + · · ·+ β̃pM̃p + ϵ, (4.1)

where ϵ and {ζk, k = 1, · · · , p} are random error terms. The orthogonal transformation F (·)
plays a key role in this method, we can use the spectral decomposition (Huang and Pan,
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2016) or the directions of mediation (Chén et al., 2018) as the transformation for the original

mediators. Because the new transformed variables M̃k’s are orthogonal, we can estimate the

parameters in (4.1) separately for each M̃k using marginal models, k = 1, · · · , p.
However, the orthogonal transformation approach cannot evaluate the contribution from

each individual mediator since the transformed variable M̃k is a linear combination of the

original p mediators. To tackle this issue, Zhang et al. (2016) used the sure independent

screening (SIS; Fan and Lv 2008) and minimax concave penalty (MCP; Zhang 2010) to

reduce the dimension of mediators, and adopt the joint significance test procedure. The

proposed method in Zhang et al. (2016) for mediation analyses has been implemented with

the R package HIMA. We summarize the details as follows:

Step 1.(Screening). Use the SIS (Fan and Lv 2008) to identify a subset I = {1 ≤ k ≤ p :

Mk is among the top d = [2n/ log(n)] largest effects for the response Y }.
Step 2. (MCP-penalized estimate). Compute {β̂k, k ∈ I } by minimizing the MCP penalized

criterion,

Qmcp =
n∑

i=1

(
Yi − c− γXi −

∑
k∈I

βkMik

)2

+
∑
k∈I

pλ,δ(βk), (4.2)

where pλ,δ(·) is the minimax concave penalty:

pλ,δ(βk) = λ

[
|βk| −

|βk|2

2δλ

]
I{0 ≤ |βk| < δλ}+ λ2δ

2
I{|βk| ≥ δλ}. (4.3)

Here λ > 0 is the regularization parameter, and δ > 0 determines the concavity of MCP.

Step 3. (Joint significance test). Let S = {k : β̂k ̸= 0}, which is based on the MCP-

penalized estimate in Step 2. The p-value for the joint significance test is given as

Pjoint,k = max(P1k, P2k),

with

P1k = min(|S| · 2{1− Φ(|β̂k|/σ̂βk
)}, 1)

and

P2k = min(|S| · 2{1− Φ(|α̂k|/σ̂αk
)}, 1),

where |S| is the number of variables in S, Φ(·) is the cumulative distribution function of

N(0, 1). Here β̂k is the MCP estimate in (4.2), whose standard error σ̂βk
can be obtained

from the oracle property of MCP (Zhang 2010); α̂k is the ordinary least square estimator

for αk, and σ̂αk
is the corresponding estimated standard error.
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4.2 Binary outcome

To explore the mediation mechanism on binary outcome, Wu et al. (2018) adopted the

causal inference test (CIT; Millstein et al. 2009) together with counterfactual mediation

procedure in VanderWeele and Vansteelandt (2013). Here we summarize their method in

details as follows:

Step 1. (X is associated with Y ). A logistic regression model is fitted to examine the

association between the exposure X and the binary outcome Y with logit{P (Y = 1)} =

c∗ + γ∗X. In addition, we consider the hypothesis testing H0 : γ
∗ = 0 vs. HA : γ∗ ̸= 0.

Step 2. (Mk is associated with Y conditional on X). We fit all the mediators Mk into

one single multiple logistic regression model conditional on X as logit{P (Y = 1)} = c +

γX + β1M1 + · · ·+ βpMp. Since the number of mediators p is much larger than the sample

size n, the traditional maximum likelihood does not work for this testing task H0k : βk = 0,

k = 1, · · · , p. To solve this problem, Wu et al. (2018) proposed to use the de-sparsified Lasso

estimator β̂k, where van de Geer et al. (2014) have proved the asymptotic normality for β̂k.

The corresponding p-value P
(b)
k is adjusted for multiple testing by the Bonferroni correction.

Denote S1 = {k;P (b)
k < 0.05} as the significant variables in the mediator-outcome causal

pathways.

Step 3. (X is associated with Mk conditional on Y , k ∈ S1). The identified significant

variables Mk in Step 2 are subsequently regressed on X given Y as Mk = ck+αkX+ηkY +ek,

k ∈ S1. Consider the testing H0 : αk = 0, and index of significant variables is denoted as S2.

Step 4. (Y is independent of X conditional on {Mk, k ∈ S2}). To check if the outcome Y is

independent of X conditional on those significant mediators identified in Step 3, we fit the

following logistic regression model

logit{P (Y = 1)} = c+ γX +
∑
k∈S2

βkMk.

Consider the testing H0 : γ = 0 vs. HA : γ ̸= 0. To get the p-value, we can use a bootstrap

type approach in Millstein et al. (2009).

Step 5. (Validation of the CIT results). To further validate the identified potentially

significant mediators by the CIT approach in Steps 1-4, Wu et al. (2018) used the causal

multiple mediators framework of VanderWeele and Vansteelandt (2013).

Of note, Steps 1-4 in the framework of CIT ensures that the effects of X on Y are

wholly transmitted through the mediators. However, some effect is likely to impose on Y

directly from X, rather than be transmitted indirectly by mediators. In other words, the

CIT-based method can only tackle whole-mediation effects. Moreover, as pointed out by Wu

et al. (2018), the procedure in Step 5 regards multiple mediators as joint mediators, hence

7



it is impossible to weigh the relative importance of individual mediators.

5 Applications

5.1 Normative Aging Study

The first application is the US Department of Veterans Affairs Normative Aging Study,

which is an ongoing longitudinal cohort of elderly, predominantly white American veterans

(NAS, Spiro and Vokonas 2007). In 1963, 2280 men aged 21 to 80 years and free of hyper-

tension or other chronic conditions were enrolled. Between January 1, 1999 and December

31, 2013, 686 were randomly selected and had blood samples profiled using the Illumina In-

finium 450K BeadChip DNA methylation array. Zhang et al. (2016) studied the mechanism

of how these methylation markers mediate the relationship between smoking (measured in

pack-years) and lung function, which is measured by 4 outcomes: FEV1 (forced expirato-

ry volume in 1 second), FVC (forced expiratory vital capacity), FEV1/FVC, and MMEF

(maximum mid expiratory flow). After excluding subjects with lung-related diseases, e.g.,

asthma, emphysema, and COPD, a sample size of 290 was used in the analysis. The prop-

er temporal relationship (exposure → methylation → outcome) was ensured by taking the

appropriate temporal order of measurement for smoking, DNAm, and lung function. They

also adjusts for age, height, and weight in each equation of Model (3.1).

From 486K CpGs, they used Model (3.1) and identified two CpGs as mediators associated

with at least one lung function outcome. Specifically, cg05575921 (in AHRR) was associated

with FEV1, FVC, and FEV1/FVC. Methylation at this site was previously shown to be

a sensitive marker of smoking history (Harlid et al. 2014; Gao et al. 2016). Another

CpG, cg24859433 in the intergenic region 6p21.33, was associated with MMEF and also

previously associated with smoking (Zeilinger et al. 2013; Ambatipudi et al. 2016). Thus,

the overlap between our EWAS results and the current literature demonstrates the validity

of this approach. On the other hand, the naive test (Liu et al. 2013) with Bonferroni’s

adjustment failed to identify any significant mediators.

Zhang et al. (2016) also calculated the extent to which the total effect is mediated

through methylation markers, defined as αkβk/γ
∗ for each CpG site (in the last column of

Table 4 of Zhang et al. 2016). CpG cg05575921 mediates about 50% of the total effect of

smoking on both FEV1 and FVC, and 40% on FEV1/FVC; while cg24859433 mediates 16%

of the total effect of smoking on MMEF.
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5.2 Epithelial ovarian cancer

The second application is from the Mayo Clinic Ovarian Cancer Case-Control Study,

with 196 cases and 202 age-matched controls (n = 398). Data include alcohol consumption

(X), DNAm markers (M ; the total number p= 25926), epithelial ovarian cancer status

(Y ). Epithelial ovarian cancer (EOC) is the leading cause of gynecologic cancer death in

the United States (Morgan et al., 2011). Bagnardi et al. (2001) showed that a higher daily

alcohol intake (100 g/day) is a risk factor for EOC. Philibert et al. (2012) found that alcohol

consumption is associated with changes in DNA methylation, and Shen et al. (2013) showed

that DNA methylation alterations could represent a mechanism of epithelial ovarian cancer

risk. A natural question arises on whether the effect of alcohol consumption on epithelial

ovarian cancer is mediated by DNA methylation.

To identify those potential mediators, Wu et al. (2018) adopted the five-step procedure

in Section 4.2. During the testing process, several covariates were included in the model,

including the effects of estimated differential leukocyte cell counts, age, current smoking

status, study enrollment year, location of residence, parity and age at first birth, and the

first principal component representing within-European population sub-structure. They i-

dentified two CpG sites (cg09358725, cg11016563) that represent potential mediators of the

relationship between alcohol consumption and EOC case-control status. However, it is im-

possible to assess the individual effects of cg09358725 and cg11016563, since the mediation

testing method in Section 4.2 treats multiple mediators jointly.

6 Concluding remarks

Mediation analysis is often used to investigate the role of intermediate variables that lie

on the causal path between an exposure and outcome. Until recently most of the mediation

analysis methods have been restricted to a single mediator or multiple (yet low-dimensional)

mediators. In this paper we briefly described some basic concepts and methods for single and

multiple mediation models. Then we focused on the new developments for high-dimensional

mediation analysis, with application in DNA methylation studies.

The research on mediation analysis can be roughly divided into two categories: structural

equation modeling (SEM) and counterfactual frameworks. The SEM framework is mainly

based on regression to describe the causal relation with the model coefficients interpreted as

causal effects. Various topics under the SEM framework have been explored, e.g., Cheung

(2007), Jo et al. (2011), Lindquist (2012), Enders et al. (2013), Zhang and Wang (2013),

Fritz et al. (2016). The counterfactual approach devotes to decomposing the total effect into
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direct and indirect effects in the framework of causal inference (Rubin, 1974). Examples in-

clude VanderWeele (2009), Imai (2010), Imai et al. (2010), Albert and Nelson (2011), Valeri

and VanderWeele (2013), Albert and Wang (2015), Daniel et al. (2015), Wang and Albert

(2017), among others. Tingley et al. (2014) developed an R package mediation for conduct-

ing counterfactual mediation analysis. The two methods in Section 4 (and correspondingly

the two applications in Section 5) represent the exploration in each framework.

Of note, the SIS + MCP based procedure in Zhang et al. (2016) relies on variable

screening and cleaning stage, and the screened-out mediators are excluded from the testing

process. Therefore, this method may miss some potential mediators. A possible solution is

to use the de-biased Lasso method (Zhang and Zhang 2014), and we will report this result

in a forthcoming article.

Furthermore, we can consider mediation analysis for high-dimensional survival models,

e.g., Rein (2017). The more sophisticated situation where exposures, mediators, and out-

comes could be longitudinally measured is another topic of future interest.

Finally, although we reviewed the high dimensional variable selection methods in DNA

methylation studies, these methods can be applied to other subject areas, e.g., microbiome

studies (Tsilimigras and Fodor 2016; Sohn and Li, 2017; Xia and Sun, 2017; Zhang et al.

2018).
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Figure 1. A scenario with a single mediator between exposure and outcome.
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Figure 2. A scenario with multiple/high-dimensional mediators between exposure and

outcome.
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