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Abstract

Faced with massive data, subsampling is a popular way to downsize the data vol-

ume for reducing computational burden. The key idea of subsampling is to perform

statistical analysis on a representative subsample drawn from the full data. It provides

a practical solution to extracting useful information from big data. In this article,

we develop an efficient subsampling method for large-scale multiplicative regression

model, which can largely reduce the computational burden due to massive data. Under

some regularity conditions, we establish consistency and asymptotic normality of the

subsample-based estimator, and derive the optimal subsampling probabilities according

to the L-optimality criterion. A two-step algorithm is developed to approximate the

optimal subsampling procedure. Meanwhile, the convergence rate and asymptotic nor-

mality of the two-step subsample estimator are established. Numerical studies and two

real data applications are carried out to evaluate the performance of our subsampling

method.

Keywords: Asymptotic normality; Big data; Multiplicative regression; Optimal

subsampling; Positive responses.

1 Introduction

With the rapid development of data capturing and storage techniques, the sizes of available

datasets have grown exponentially, which motivate urgent demands for building statistical

methods to analyze huge datasets. However, it is often computationally infeasible to conduct

statistical analysis on such big data with relatively limited computing resources. Basically,
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there are two bottlenecks when performing big data analysis: (i) the dataset is too large to

be held in a computer’s memory; (ii) the computation takes too long time to output the

desired results. To deal with the two challenges, various techniques have been developed

to conduct statistical inference for big data, such as divide-and-conquer method (Chen and

Xie, 2014; Battey et al., 2018; Shi et al., 2018) and online updating method for streaming

data (Schifano et al., 2016; Wang et al., 2018a; Xue et al., 2019; Luo and Song, 2020).

Another popular technique is the subsampling method, and its basic idea is to select a

tractable and representative subsample for conducting statistical inference. Many researchers

have been devoted to the development of subsampling methods for big data. For example,

Ma et al. (2015) proposed an algorithmic leveraging-based sampling procedure for linear

model. Wang et al. (2018b) developed an optimal subsampling method for logistic model

based on A-optimality criterion. Wang et al. (2019) provided a novel information-based op-

timal subdata selection (IBOSS) approach. Wang (2019) further proposed a more efficient

estimator for logistic model based on the optimal subsample. Han et al. (2020) provided a

subsampling scheme for large-scale multi-class logistic regression. Ma et al. (2020) studied

the asymptotic properties of randomized numerical linear algebra sampling estimators for

linear models. Meng et al. (2021) proposed a low condition number pursuit subsampling

algorithm in the misspecified linear model. Wang and Ma (2021) studied the optimal sub-

sampling for quantile regression with big data. Ai et al. (2021a) investigated the Poisson

subsampling for large-scale quantile regression. In addition, Ai et al. (2021b) and Lee et al.

(2021) studied the optimal subsampling for big data generalized linear models. Zuo et al.

(2021a) proposed a sampling-based estimation method for massive survival data with addi-

tive hazards model. Yu et al. (2020) developed a distributed Poisson subsampling method

for maximum quasi-likelihood estimator. Zhang and Wang (2021) and Zuo et al. (2021b)

proposed some distributed subsampling procedures for big data linear and logistic regression

models, respectively. For more papers on subsampling methods for massive datasets, we

refer to a review paper by Yao and Wang (2021).

The multiplicative regression model plays an important role in economic/financial or

biomedical studies. Compared with generalized linear model, the multiplicative regression

has the following two advantages: First, the multiplicative regression model is suitable to
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directly analyse a dataset with positive responses, such as stock prices or life times. However,

the generalized linear model is not able to describe this special characteristic of positive out-

comes. Second, in many practical applications, we are interested in the size of relative error

(e.g. stock price data), rather than that of error itself. The multiplicative regression has the

ability to capture the size of relative error, while the generalized linear model fails to com-

plete this task. There have been several papers on the statistical analysis with multiplicative

regression. e.g., Chen et al. (2010) proposed a least absolute relative errors (LARE) estima-

tion criterion for multiplicative regression model. Li et al. (2014) considered an empirical

likelihood approach towards constructing confidence intervals of the regression parameters

in multiplicative regression model. Chen et al. (2016) proposed a least product relative error

(LPRE) estimation criterion for multiplicative regression model. Xia et al. (2016) studied

the variable selection for multiplicative regression model. Faced with large-scale data with

positive responses, we adopt the optimal subsampling to resolve the computational chal-

lenges for multiplicative regression model. The main features of our approach are as follows:

First, the computational speed of our method is much faster than the full data approach.

Second, we provide an explicit expression for the optimal subsampling distribution in the

context of L-optimality criterion. Third, we establish consistency and asymptotic normality

of the subsample estimator, which is helpful for performing statistical inference.

The remainder of this article is organized as follows. In Section 2, we briefly review

some natations for the multiplicative regression model. In Section 3, we present a general

subsampling algorithm, and establish consistency together with asymptotic normality of the

subsample estimator. Based on the L-optimality, we derive the optimal subsampling prob-

abilities. Meanwhile, a two-step subsample-based estimator and its asymptotic properties

are given. In Section 4, we conduct extensive simulations to demonstrate the effectiveness

of our method. Section 5 provides two real data examples. In Section 6, we provide some

conclusions and future research topics. All proofs are given in the Appendix.
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2 Model and Notations

The multiplicative regression model is widely used when analyzing data with positive re-

sponses, such as incomes, stock prices and survival times, etc. Suppose that there are n

independent and identically distributed samples (X1, Y1), · · · , (Xn, Yn), where Yi > 0 for

i = 1, · · · , n. We consider the following multiplicative regression model (Chen et al., 2010),

Yi = exp(βTXi)εi, (2.1)

where Yi is a positive response variable, Xi ∈ Rp is a vector of covariates with the first

component being 1 (intercept), β = (β1, . . . ,βp)
T is a vector of regression parameters, and

εi > 0 is an error term. The true parameter value βt is in the interior of a compact set

Θ ⊂ Rp.

For convenience, we denote the full data as Fn = {(Xi, Yi)}ni=1. To estimate the pa-

rameters in model (2.1), Chen et al. (2016) proposed a least product relative error (LPRE)

criterion

`(β) =
1

n

n∑
i=1

{
Yi exp(−βTXi) + Y −1

i exp(βTXi)− 2
}
, (2.2)

which is infinitely differentiable and strictly convex. The full data LPRE estimator is

β̂LPRE = arg min
β
`(β). There is no closed-form of β̂LPRE, and a Newton-Raphson method

is usually adopted with the following iterative formula:

β̂(m+1) = β̂(m) −

{
∂2`(β̂(m))

∂β∂βT

}−1{
∂`(β̂(m))

∂β

}
. (2.3)

Of note, the computational complexity when calculating β̂LPRE is about O(Knp2), where K

is the number of iterations until convergence. As we can see, the computational burden is

heavy when the full data size is very large. To deal with this issue, we propose a subsampling-

based method for the purpose of reducing computational burden in next section.
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3 Subsample-Based Estimation Method

3.1 A General Subsampling Algorithm

In Algorithm 1, we present a general subsampling procedure for the multiplicative regression

model. To establish asymptotic properties of the subsample-based estimator β̃, we need the

following regularity assumptions.

(H.1) As n→∞, Λ = 1
n

∑n
i=1

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}

XiX
T
i goes to a positive-

definite matrix in probability.

(H.2) 1
n

∑n
i=1 ‖Xi‖ = OP (1) and 1

n2

∑n
i=1

‖Xi‖2
πi

= OP (1), where ‖ · ‖ is the Euclidean norm.

(H.3) supβ∈Θ
1
n

∑n
i=1

{
Yi exp(−βTXi) + Y −1

i exp(βTXi)
}2 ‖Xi‖2 = OP (1).

(H.4) supβ∈Θ
1
n2

∑n
i=1

1
πi

{
Yi exp(−βTXi) + Y −1

i exp(βTXi)
}2 ‖Xi‖k = OP (1), where k = 2

and 4.

(H.5) supβ∈Θ
1
n3

∑n
i=1

1
π2
i

{
Yi exp(−βTXi) + Y −1

i exp(βTXi)
}3 ‖Xi‖3 = OP (1).

Assumption (H.1) is commonly used for the multiplicative regression model (Chen et al.,

2010); Assumption (H.2) is a condition on both subsampling probabilities and the covariates;

Assumptions (H.3)-(H.5) are used to determine the convergence rate of β̃, together with its

asymptotic distribution.

The following theorem presents the consistency and asymptotic normality of the sub-

sample estimator β̃ towards the true value βt, which is useful for conducting statistical

inference.

Theorem 1 If the assumptions (H.1)-(H.5) hold, for the subsample estimator β̃ in Algo-

rithm 1 and any δ > 0, there exists a finite ∆δ > 0 such that with probability approaching

one,

P
(
‖β̃ − βt‖ ≥ r−1/2∆δ Fn

)
< δ. (3.2)

Moreover, as r →∞ and n→∞ we have

Σ−1/2(β̃ − βt)
d−→ N(0, I), (3.3)

where
d−→ denotes convergence in distribution, and Σ = Λ−1ΣcΛ

−1 with

Σc =
1

n2r

n∑
i=1

1

πi

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2

XiX
T
i . (3.4)
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Algorithm 1 General Subsampling Algorithm

• Sampling: Assign subsampling probabilities {πi}ni=1 to the full data Fn with
∑n

i=1 πi = 1,

and πi > 0. Draw a random subsample of size r(� n) with replacement based on {πi}ni=1 from

Fn. For i = 1, . . . , r, we denote the covariates, responses and corresponding subsampling

probabilities in this subsample as X∗i , Y
∗
i and π∗i , respectively.

• Estimation: Based on the subsample {(Y ∗i ,X∗i ), i = 1, . . . , r}, we minimize the following

weighted least product relative error criterion function `∗(β) to get an estimate β̃, where

`∗(β) =
1

r

r∑
i=1

1

nπ∗i

{
Y ∗i exp(−βTX∗i ) + Y ∗i

−1 exp(βTX∗i )− 2
}
. (3.1)

Due to the convexity of `∗(β), a Newton’s method is adopted until β̃(m+1) and β̃(m) are

closed enough,

β̃(m+1) = β̃(m) −

[
r∑
i=1

1

π∗i

{
ω∗i (β̃

(m)) + ω∗i (β̃
(m))

−1
}

X∗i (X
∗
i )
T

]−1

×

[
r∑
i=1

1

π∗i

{
−ω∗i (β̃(m)) + ω∗i (β̃

(m))
−1
}

X∗i

]

with ω∗i (β) = Y ∗i exp(−βTX∗i ), i = 1, · · · , r.
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3.2 Optimal Subsampling Strategy

To practically implement the Algorithm 1, we need to specify the subsampling probabilities

πi’s. A simple choice is to use the uniform sampling with {πi = n−1}ni=1. Because this

uniform sampling does not distinguish different data points, it is less effective compared

with nonuniform sampling approach. Theorem 1 shows that the distribution of β̃ − βt is

approximated by a normal random vector u with mean zero and covariace Σ. The asymptotic

mean squared error (AMSE) of β̃ is equal to the trace of Σ. i.e.,

AMSE(β̃) = E(‖u‖2) = tr(Σ), (3.5)

where tr(·) denotes the trace of a matrix. Therefore, we derive optimal subsampling probabil-

ities by minimizing the trace of the variance-covariance matrix Σ. However, the calculation

burden of Λ−1 is heavy due to big n. To further reduce the computational burden, we adopt

the idea of Loewner-ordering to define the partial ordering of positive definite matrices. For

two positive definite matrices Γ1 and Γ2, we define the partial ordering as Γ1 ≥ Γ2 if and

only if Γ1−Γ2 is a nonnegative definite matrix. Following Wang et al. (2018b), we suggest to

specify the optimal subsampling probabilities by minimize tr(Σc) rather than tr(Σ), which

is also referred to as the L-optimality criterion (Atkinson et al., 2007).

Theorem 2 Under the assumptions (H.1)-(H.5), if the subsampling probabilities are chosen

as

πOSPi =
| − Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)|‖Xi‖∑n
j=1 | − Yj exp(−βTt Xj) + Y −1

j exp(βTt Xj)|‖Xj‖
, i = 1, . . . , n, (3.6)

then tr(Σc) attains its minimum.

3.3 Two-Step Subsampling Algorithm

The optimal subsampling probabilities {πOSPi }ni=1 cannot be used directly because they de-

pend on the unavailable βt. As suggested by Wang et al. (2018b), we use a pilot estimator

β̃0 to replace the βt in (3.6). In addition, for those data points with Y −1
i exp(βTt Xi) be-

ing close to Yi exp(−βTt Xi), the corresponding subsampling probabilities are very small. If

these data point are selected into a subsample, the weighted criterion function `∗(β) given in
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(3.1) would be dominated by them. To protect the `∗(β) from being inflated by these data

points, we truncate | − Yi exp(−βTt Xi) + Y −1
i exp(βTt Xi)|‖Xi‖ by max(| − Yi exp(−βTt Xi) +

Y −1
i exp(βTt Xi)|‖Xi‖, υ), where υ > 0 is a specified bound, e.g. υ = 10−6. We summarize

the above procedure in the following Algorithm 2.

Algorithm 2 Two-Step Strategy
Step 1.

• Take a pilot subsample with size r0 from Fn by uniform subsampling probabilities {πi =

n−1}ni=1, we obtain a pilot estimate β̃0 through minimizing (3.1).

• For i = 1, · · · , n, we calculate the subsampling probabilities

πi(β̃0) =
max(| − Yi exp(−β̃T0 Xi) + Y −1

i exp(β̃T0 Xi)|‖Xi‖, υ)∑n
j=1 max(| − Yj exp(−β̃T0 Xj) + Y −1

j exp(β̃T0 Xj)|‖Xj‖, υ)
. (3.7)

Step 2.

• Draw a subsample of size r with replacement from Fn based on the subsampling prob-

abilities πi(β̃0)’s. Using the subsample Fr = {(X∗i , Y ∗i , π∗i )}ri=1, we can obtain a two-step

subsample estimator β̆ through minimizing

`∗
β̃0

(β) =
1

r

r∑
i=1

1

nπ∗i (β̃0)

{
Y ∗i exp(−βTX∗i ) + Y ∗i

−1 exp(βTX∗i )− 2
}
. (3.8)

Note that we first takes a pilot subsample of size r0 and then selects an optimal subsample

of size r in the Algorithm 2. We do not recommend to combine the two subsamples together

for outputting estimator. The reason is that if we can perform statistical analysis using a

combined subsample with size r0 + r, then we would own a better subsample by setting the

subsample size in the second step as r0 + r directly. Below we establish the consistency and

asymptotic normality of β̆ towards βt. We need the following regularity moment conditions:

(H.6) supβ∈Θ
1
n

∑n
i=1

{
Yi exp(−βTXi) + Y −1

i exp(βTXi)
}6

= OP (1).

(H.7) 1
n

∑n
i=1 ‖Xi‖8 = OP (1).

Assumptions (H.6) and (H.7) impose some moment conditions on the covariates and

the responses, which are needed for the development of theoretical properties for the two-

step subsample-based estimator. The assumptions (H.6) and (H.7) are reasonable in most

practical situations.
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Theorem 3 Under assumptions (H.1), (H.3), (H.6) and (H.7), for any δ > 0, there exists

a finite ∆δ > 0 such that with probability approaching one,

P
(
‖β̆ − βt‖ ≥ r−1/2∆δ Fn

)
< δ. (3.9)

Moreover, as r →∞ and n→∞, we have

Σ−1/2(β̆ − βt)
d−→ N(0, I), (3.10)

where
d−→ denotes convergence in distribution, and Σ = Λ−1ΣoptΛ

−1 with

Σopt =
1

r

[
1

n

n∑
i=1

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2

XiX
T
i

max
{
| − Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)|‖Xi‖, υ
}]

×

[
1

n

n∑
i=1

max
{
| − Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)|‖Xi‖, υ
}]

, (3.11)

and υ > 0 is a pre-specified truncation value, e.g. υ = 10−6.

In order to perform statistical inference, we need to provide an estimator for the variance-

covariance matrix Σ. A simple way is to replace βt with β̆ for the asymptotic variance-

covariance matrix in Theorem 3. However, this approach based on the full data Fn with

heavy calculations. To alleviate computational burden, we adopt the method of moment to

estimate the variance-covariance matrix Σ with a subsample Fr = {(X∗i , Y ∗i , π∗i (β̃0))}ri=1 in

the second step of Algorithm 2,

Σ̆ = Λ̆−1Σ̆optΛ̆
−1, (3.12)

where

Λ̆ =
1

nr

r∑
i=1

1

π∗i (β̃0)

{
Y ∗i exp(−β̆TX∗i ) + Y ∗

−1

i exp(β̆TX∗i )
}

X∗i (X
∗
i )
T ,

and

Σ̆opt =
1

n2r2

r∑
i=1

1

π∗i (β̃0)
2

{
−Y ∗i exp(−β̆TX∗i ) + Y ∗

−1

i exp(β̆TX∗i )
}

X∗i (X
∗
i )
T .

Note that E(Λ̆|Fn) = Λ and E(Σ̆opt|Fn) = Σopt, if we replace β̆ with βt in Σ̆opt. That is to

say, both Λ̆ and Σ̆opt are unbiased estimators of Λ and Σopt, respectively. We will check the

performance of this estimated variance-covariance matrix in (3.12) via numerical simulation.
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4 Simulation

In this section, we conduct extensive simulations to demonstrate the effectiveness of our pro-

posed subsampling method. The true parameter value is chosen as βt = (0.5, 1, 0.5,−0.5, 0.3)T .

Denote X = (1, X̃T )T with X̃ = (X1, . . . , X4)T , i.e. p = 5. We consider the following four

cases for the generation of covariate X̃,

Case 1. X̃ ∼ N(0,Ω), where Ωij = 0.5|i−j|.

Case 2. X̃ ∼ 0.5N(1,Ω) + 0.5N(−1,Ω), where Ωij = 0.5|i−j|.

Case 3. X̃ ∼ t5(0,Ω). i.e., X̃ follows a multivariate t distribution with degree of freedom 5

and covariance matrix Ωij = 0.5|i−j|.

Case 4. X̃ = (X1, . . . , X4)T , and Xi’s are independent and identically distributed exponen-

tial random variables with probability density function f(x) = e−x.

We consider two cases for the error term: log(ε) follows N(0, 1), and log(ε) follows

Uniform(−2, 2). The r0 in step 1 of Algorithm 2 is chosen as r0 = 500, and the subsample

size is r = 600, 800 and 1000, respectively. All the simulation results in Tables 1−5, together

with Figure 1 and 2 are based on 500 replications with n = 106.

We evaluate the performance of our optimal subsampling criterion (OSC) given in the

Algorithm 2. Note that Ma et al. (2020) presented eight different nonuniform subsampling

probabilities in the context of linear models. However, it is not clear how to directly extend

these sampling methods to the multiplicative regression due to its nonlinearity. Anyway, we

have tried the eight subsampling probabilities of Ma et al. (2020), and found two of them are

better than the uniform subsampling for multiplicative regression. Therefore, we consider

the uniform subsampling (UNIF) probabilities, root leverage subsampling (RL) probabili-

ties and inverse-covariance subsampling (IC) probabilities for comparison, i.e., πUNIFi = 1
n
,

πRLi = ‖X(XTX)−1xi‖∑n
i=1 ‖X(XTX)−1xi‖ and πICi = ‖(XTX)−1xi‖∑n

i=1 ‖(XTX)−1xi‖ , respectively. It is worth to pointing

out that πRLi and πICi are two ad hoc subsampling probabilities for our method, because

their expressions are derived from the linear model rather than the multiplicative regression

model. In Tables 1-4, we present the estimation results for β1 (intercept) and β2 (βi’s are
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similar to β2 and omitted, i = 3, 4, 5), which include the estimated bias (BIAS) given by the

sample mean of the estimates minus the true value βt , the sampling standard error (SSE)

of the estimates, the sample mean of the estimated standard errors (ESE), and the empirical

95% coverage probabilities (CP) towards the true value βt based on normal approximation.

From the results in Tables 1-4 we can see that four subsample-based estimators seem to be

unbiased, the SSE and ESE are similar, and the coverage probabilities of confidence intervals

are satisfactory. Furthermore, these estimators become better as the subsample size r in-

creases. Moreover, the SSE and ESE of OSC-based estimator are much smaller than those of

other subsampling-based estimators. The performances of RL and IC are better than UNIF

for β2, while the RL and IC are not uniformly better than the UNIF towards the intercept

term β1. Similar conclusions are also found in the linear model (Wang et al., 2019; Zhang

and Wang, 2021).

To further investigate the superiority of our proposed subsampling method, we calculate

the MSEs of β̆ from 500 subsamples using MSE = 1
500

∑500
d=1 ‖β̆(d) − βt‖

2
, where β̆(d) is from

the dth subsample. We present the MSEs of each method in Figures 1 and 2. It is clear to

see that the RL, IC and OSC always result in smaller MSEs than the UNIF. Furthermore,

the OSC leads to the smallest MSEs compared with other sampling probabilities. The MSEs

decrease as r increases, which confirms the consistency of our subsampling method. From

Theorem 3, the convergence rate of the proposed subsample estimator is r−1/2. To improve

the estimation efficiency, we suggest to choose a subsample as large as possible according to

the available computing resources. As suggested by one reviewer, it is interesting to explore

the influence of the pilot subsample size r0. In Table 5, we present the estimation results for

case 1 with different sample size r0 = 400, 500 and 600, respectively. As mentioned before,

the pilot subsample with size r0 does not come into the estimation step in Algorithm 2.

The results for other cases are similar and omitted. The results in Table 5 indicate that the

performances of subsampling methods are similar if r0 is relatively large (e.g. r0 = 400).

We conduct the second simulation to assess the computational efficiency of our proposed

subsampling method. We generate data using the same mechanism as the first simulation

with Case 1, except that βt = (0.5, ..., 0.5)T with p = 5, 50 and 100, respectively. Table

6 reports the required CPU times (in seconds) to obtain β̆ with r0 = 500, r = 1000,
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n = 106, 3 × 106, 5 × 106 and 107, where the Algorithm 2 is implemented on a single

core. All computations are carried out on a laptop running R software with 16GB random-

access memory (RAM). The computing time for the full data method is also reported for

comparison. Of note, the results are the CPU time when implementing each method in the

RAM, while the time to generate data is not counted. Moreover, the results are the mean

CPU time of ten replications. The subsampling probabilities of RL and IC are approximated

by the fast algorithm in Drineas et al. (2012). It can be seen from the results that the UNIF

is much faster than the other methods. The main reason is that the UNIF does not require

an additional step to calculate the subsampling probability. It is clear that our proposed

OSC takes less computing time compared with the RL, IC and full data methods, and its

advantage is more significant as the full data size n increases.

5 Application

5.1 The Bike Sharing Data

In this section, we apply our proposed method to the bike sharing dataset, which contains

17,379 observations. We consider four covariates : a binary variable “workingday”(X1) to

indicate whether a certain day is a working day or not(1 = working day; 0 = non-working

day), three continuous variables: temperature(X2), humidity(X3) and windspeed(X4). The

square of the number of bikes rented hourly is used as the response. For comparison, we also

provide the full data LPRE estimator β̂LPRE = (2.2142,−0.0342, 1.4525,−1.1379, 0.1816)T ,

where the first term is an intercept. As we can see, the rented bikes in non-working days are

more than that of working days. The temperature and windspeed have a positive influence

on the number of rented bikes, and the humidity has a negative effect. The r0 in step 1 of

Algorithm 2 is chosen as r0 = 200, and we give the OSC, UNIF, RL and IC subsampling-

based estimators and calculate the SSE and ESE based on 1000 subsamples with r = 200, 400

and 600, respectively. The BIAS is given by the sample mean of the estimates minus the

full data LPRE estimator. The results in Table 7 indicate that four subsample estimators

are unbiased, and the SSE and ESE are similar. Moreover, we report the subsampling-based
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estimators and the 95% confidence intervals with one subsample in Table 8. As expected, the

confidence intervals constructed by our proposed method are shorter compared with other

subsampling method. For all subsampling methods, as r increases, the length of confidence

interval decreases. To further check the rationality of our method, We calculate MSEs

of β̆ with MSE = 1
1000

∑1000
d=1 ‖β̆(d) − β̂LPRE‖

2
, where β̆(d) is a two-step subsampling-based

estimator from the dth subsample. In Figure 3, we present the MSEs of four subsampling-

based estimators. It is observed that the OSC results in the smallest MSE.

5.2 The Electric Power Consumption Data

We apply our proposed method to an electric power consumption dataset, which contains

2,049,280 completed measurements for a house located at Sceaux between December 2006

and November 2010. For analysis, the minute-averaged current intensity(in ampere) is used

as the response. We consider three covariates: active electrical energy in the kitchen(X1,

in watt-hour), active electrical energy in the laundry room(X2, in watt-hour), and active

electrical energy for an electric water-heater and an air-conditioner(X3, in watt-hour). All

covariates are centered and scaled with mean 0 and variance 1. The full data LPRE estimator

is β̂LPRE = (1.1162, 0.2205, 0.2045, 0.6326)T , where the first term is an intercept. The r0 in

step 1 of Algorithm 2 is chosen as r0 = 500, and we give the OSC, UNIF, RL and IC

subsampling-based estimators and calculate the corresponding SSE and ESE based on 1000

subsamples with r = 600, 800 and 1000, respectively. Similar to section 5.1, we report

the BIAS, SSE and ESE in Table 9. Moreover the subsampling-based estimators and 95%

confidence intervals with one subsample are presented in Table 10. The corresponding MSEs

are reported in Figure 3. It is clear to see that the overall performance of OSC is much

better than those of the other three subsampling probabilities.

6 Conclusion

In this paper, we have studied the statistical properties of a general subsampling algorithm

for multiplicative regression model with big data. Based on the asymptotic property of

subsample estimator, we derived optimal subsampling probabilities under the L-optimality

13



criterion. For practical implementation, a two-step algorithm was developed, for which we

also derived some theoretical properties. Simulation studies and two real data examples were

used to verify the effectiveness of our method. In recent years, many sampling methods have

been developed, such as Meng et al. (2021) and Ma et al. (2020). The two papers mainly

focused on subsampling methods in the context of linear models. As suggested by one

reviewer, it is desirable to consider the Randomized Numerical Linear Algebra algorithms

for the multiplicative regression model. Moreover, how to design optimal subsampling for

misspecified multiplicative regression is an interesting research topic.
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Appendix

In this Appendix, we give the proof details of Theorems 1-3.

Lemma 1 If the assumptions (H.1)-(H.5) hold, then conditionally on Fn we have

˙̀∗ (βt) = OP |Fn

(
r−1/2

)
, (A.1)

and

Λ̃−Λ = OP |Fn

(
r−1/2

)
, (A.2)
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where

˙̀∗ (βt) =
∂`∗ (βt)

∂β
=

1

r

r∑
i=1

1

nπ∗i

{
−Y ∗i exp(−βTt X∗i ) + Y ∗

−1

i exp(βTt X∗i )
}

X∗i ,

and

Λ̃ = ῭∗ (βt) =
∂2`∗ (βt)

∂β∂βT
=

1

r

r∑
i=1

1

nπ∗i

{
Y ∗i exp(−βTt X∗i ) + Y ∗

−1

i exp(βTt X∗i )
}

X∗i (X
∗
i )
T .

Proof. Direct calculation yields that

E
{

˙̀∗ (βt) |Fn
}

=
1

n

n∑
i=1

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}

Xi

= OP

(
n−1/2

)
. (A.3)

This is because for each element of ˙̀∗ (βt), say ˙̀∗
j (βt), for 1 ≤ j ≤ p, we have

E
[
E
{

˙̀∗
j (βt) |Fn

}]
= 0, (A.4)

and

V ar
[
E
{

˙̀∗
j (βt) |Fn

}]
= E

[
1

n2

n∑
i=1

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2

XijXij

]

≤ 1

n
E

[
1

n

n∑
i=1

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2 ‖Xi‖2

]
= OP

(
n−1
)
, (A.5)

where the last equality is from the assumption (H.3). Combining (A.4), (A.5) and Cheby-

shev’s inequality, we have E
{

˙̀∗ (βt) |Fn
}

= OP

(
n−1/2

)
.

By the assumption (H.4), for j = 1, . . . , p, we can derive that

V ar
{

˙̀∗
j (βt) |Fn

}
=

1

r

[
n∑
i=1

1

n2πi

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2

XijXij

−

{
1

n

n∑
i=1

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}

Xij

}2 ]

≤ 1

n2r

n∑
i=1

1

πi

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2 ‖Xi‖2

= OP

(
r−1
)
. (A.6)
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From (A.3), (A.6) and the Markov’s inequality, we have

P
{∣∣∣ ˙̀∗ (βt)− E{ ˙̀∗ (βt)}

∣∣∣ ≥ Bεr
−1/2|Fn

}
≤
V ar

{
˙̀∗ (βt) |Fn

}
(Bεr−1/2)

2

= ε,

where

Bε =

V ar
{

˙̀∗ (βt) |Fn
}

r−1ε

1/2

.

This implies ˙̀∗ (βt)−E{ ˙̀∗ (βt)} = OP

(
r−1/2

)
. Combining this and (A.3), we have ˙̀∗ (βt) =

E{ ˙̀∗ (βt)}+OP

(
r−1/2

)
= OP

(
n−1/2

)
+OP

(
r−1/2

)
= OP

(
r−1/2

)
.

To prove (A.2), direct calculation yields that

E
(
Λ̃|Fn

)
= Λ. (A.7)

For any component Λ̃j1j2 of Λ̃ with 1 ≤ j1 ≤ j2 ≤ p,

V ar
(
Λ̃j1j2|Fn

)
= E

(
Λ̃j1j2 −Λj1j2|Fn

)2

=
1

r

n∑
i=1

πi

[
1

nπi

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}
xij1xij2 −Λj1j2

]2

=
1

n2r

n∑
i=1

1

πi

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2 (

xij1xij2
)2 − 1

r

(
Λj1j2

)2

≤ 1

n2r

n∑
i=1

1

πi

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2 ‖Xi‖4

= OP

(
r−1
)
, (A.8)

where the last equality is from the assumption (H.4). The Markov’s inequality, (A.7) and

(A.8) imply (A.2). This ends the proof. �

Proof of Theorem 1. Note that

˙̀∗ (βt) =
1

r

r∑
i=1

1

nπ∗i

{
−Y ∗i exp(−βTt X∗i ) + Y ∗

−1

i exp(βTt X∗i )
}

X∗i =
1

r

r∑
i=1

ξi, (A.9)
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where

ξi =
1

nπ∗i

{
−Y ∗i exp(−βTt X∗i ) + Y ∗

−1

i exp(βTt X∗i )
}

X∗i , i = 1, . . . , r.

For each element of ξi, say ξij, for 1 ≤ j ≤ p. Given Fn, ξ1, . . . , ξr are i.i.d with

E (ξij|Fn) =
1

n

n∑
i=1

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}

Xij,

and

V ar (ξij|Fn) = rΣc =
1

n2

n∑
i=1

1

πi

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2

XijXij

−

[
1

n

n∑
i=1

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}

Xij

]2

=
1

n2

n∑
i=1

1

πi

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2

XijXij + oP (1)

≤ 1

n2

n∑
i=1

1

πi

{
Yi exp(−βTt Xi + Y −1

i exp(βTt Xi)
}2 ‖Xi‖2 + oP (1)

= OP (1) , (A.10)

Meanwhile, for every τ > 0,

r∑
i=1

E
{
‖r−1/2ξi‖

2
I
(
‖r−1/2ξi‖ > τ

)
|Fn
}

=
r∑
i=1

E
{
‖r−1/2ξi‖

2
I
(
‖ξi‖ > r1/2τ

)
|Fn
}

≤ 1

r

r∑
i=1

E

(
‖ξi‖2 · ‖ξi‖

r1/2τ
|Fn
)

≤ 1

r1/2τ
E
(
‖ξi‖3|Fn

)
=

1

r1/2τ

1

n3

n∑
i=1

1

πi2
{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}3 ‖Xi‖3.

By the assumption (H.5), as r →∞ we have

r∑
i=1

E
{
‖r−1/2ξi‖

2
I
(
‖r−1/2ξi‖ > τ

)
|Fn
}
≤ 1

r1/2τ
·OP (1) = oP (1).
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This and (A.10) show that the Lindeberg-Feller conditions are satisfied in probability. From

(A.9) and (A.10), by the Lindeberg-Feller central limit theorem in Proposition 2.27 of Van der

Vaart (1998), conditionally on Fn,

Σc
−1/2 ˙̀∗ (βt) =

1

r1/2
{V ar (ξi|Fn)}−1/2

r∑
i=1

ξi → N (0, I) (A.11)

in distribution.

Because the estimator β̃ is the minimizer of `∗(β),
√
r(β̃ − βt) is the minimizer of

D∗ (λ) = `∗ (βt + λ/
√
r)− `∗ (βt), where λ ∈ Rp. By Taylor’s expansion,

D∗ (λ) =
1√
r
λT ˙̀∗ (βt) +

1

2r
λT ῭∗ (βt)λ+ oP (1)

= λTZ∗ +
1

2
λTH∗λ+ oP (1), (A.12)

where Z∗ = 1√
r

˙̀∗ (βt) and H∗ = 1
r
῭∗ (βt).

Due to D∗ (λ) is convex, from the corollary in page 2 of Hjort and Pollard (2011), its

minimizer
√
r(β̃ − βt) satisfies

√
r(β̃ − βt) = − (H∗)−1Z∗ + oP (1). (A.13)

Thus,

β̃ − βt = −r−1/2

{
1

r
῭∗ (βt)

}−1{
1√
r

˙̀∗ (βt)

}
+ oP (1)

= −Λ̃−1 ˙̀∗ (βt) + oP (1). (A.14)

From Lemma 1, Λ̃−1 = OP |Fn (1). Combining this with (A.1) and (A.14),

β̃ − βt = OP |Fn

(
r−1/2

)
+ oP (1),

which implies that

β̃ − βt = OP |Fn

(
r−1/2

)
. (A.15)

From (A.2) of Lemma 1,

Λ̃−1 −Λ−1 = −Λ−1(Λ̃−Λ)Λ̃−1 = OP |Fn

(
r−1/2

)
. (A.16)
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Based on (H.1) and (A.10), it is verified that

Σ = Λ−1ΣcΛ
−1 = OP |Fn

(
r−1
)
. (A.17)

In view of (A.14), (A.16) and (A.17), we can derive that

Σ−1/2(β̃ − βt) = Σ−1/2
{
−Λ̃−1 ˙̀∗ (βt) + oP (1)

}
= −Σ−1/2Λ−1 ˙̀∗ (βt)−Σ−1/2(Λ̃−1 −Λ−1) ˙̀∗ (βt) + oP (1)

= −Σ−1/2Λ−1Σ1/2
c Σ−1/2

c
˙̀∗ (βt) +OP |Fn

(
r1/2
)
OP |Fn

(
r−1/2

)
OP |Fn

(
r−1/2

)
+ oP (1)

= −Σ−1/2Λ−1Σ1/2
c Σ−1/2

c
˙̀∗ (βt) +OP |Fn

(
r−1/2

)
+ oP (1). (A.18)

Due to the fact that Σ−1/2Λ−1Σ
1/2
c (Σ−1/2Λ−1Σ

1/2
c )T = I, (A.11) and Slutsky’s Theorem,

we have Σ−1/2(β̃ − βt) converges to N(0, I) in distribution given Fn in probability. This

means that for any x ∈ Rp,

P{Σ−1/2(β̃ − βt) ≤ x|Fn} → Φ (x) , (A.19)

in probability, where Φ(x) is the cumulative distribution function of standard multivariate

normal vector. Note that the (A.19) is a bounded random variable, convergence in probability

to a constant implies convergence to the mean. Therefore, the unconditional probability

P
{

Σ−1/2(β̃ − βt) ≤ x
}

= E
[
P
{

Σ−1/2(β̃ − βt) ≤ x|Fn
}]
→ Φ(x).

This ends the proof. �

Proof of Theorem 2. Note that

tr(Σc) =
1

r

n∑
i=1

tr

[
1

πi

{
−Yi exp(−βTXi) + Y −1

i exp(βTXi)
}2

XiXi
T

]
=

1

r

n∑
i=1

πi

n∑
i=1

tr

[
1

πi

{
−Yi exp(−βTXi) + Y −1

i exp(βTXi)
}2 ‖Xi‖2

]

≥ 1

r

{
n∑
i=1

| − Yi exp(−βTXi) + Y −1
i exp(βTXi)|‖Xi‖

}2

,

where the last inequality is from Cauchy-Schwarz inequality and the equality holds if and

only if πi = C| − Yi exp(−βTXi) + Y −1
i exp(βTXi)|‖Xi‖ for some constant C > 0. This

completes the proof. �
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We first establish two lemmas that will be used in the proof of Theorem 3.

Lemma 2 If Assumptions (H.3), (H.6)-(H.7) hold, then for k1 = 2, 4,

1

n2

n∑
i=1

1

πi(β̃0)

{
Yi exp(−βTXi) + Y −1

i exp(βTXi)
}2 ‖Xi‖k1 = OP (1). (A.20)

Proof. From the expression of πi(β̃0),

1

n2

n∑
i=1

1

πi(β̃0)

{
Yi exp(−βTXi) + Y −1

i exp(βTXi)
}2 ‖Xi‖k1

=
1

n2

n∑
i=1

{
Yi exp(−βTXi) + Y −1

i exp(βTXi)
}2 ‖Xi‖k1

max
{
| − Yi exp(−β̃T0 Xi) + Y −1

i exp(β̃T0 Xi)|‖Xi‖, υ
}

×
n∑
i=1

max
{
| − Yi exp(−β̃T0 Xi) + Y −1

i exp(β̃T0 Xi)|‖Xi‖, υ
}

≤ 1

nυ

n∑
i=1

{
Yi exp(−βTXi) + Y −1

i exp(βTXi)
}2 ‖Xi‖k1

× 1

n

n∑
i=1

{
| − Yi exp(−β̃T0 Xi) + Y −1

i exp(β̃T0 Xi)|‖Xi‖+ υ
}
. (A.21)

Note that

E
[{
Yi exp(−βTXi) + Y −1

i exp(βTXi)
}2 ‖Xi‖k1

]
≤
[
E
{
Yi exp(−βTXi) + Y −1

i exp(βTXi)
}4
E
(
‖Xi‖2k1

)]1/2

≤ ∞, (A.22)

where the last inequality is from (H.6) and (H.7).

By the assumption (H.3), we have

1

n

n∑
i=1

{
| − Yi exp(−β̃T0 Xi) + Y −1

i exp(β̃T0 Xi)|‖Xi‖+ υ
}

≤ 1

n

n∑
i=1

{
|Yi exp(−β̃T0 Xi) + Y −1

i exp(β̃T0 Xi)|‖Xi‖+ υ
}

= OP (1).

Combining this with (A.21), (A.22) and using the law of large number, (A.20) follows.
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Lemma 3 If Assumptions (H.1), (H.3), (H.6) and (H.7) hold, then conditionally on Fn in

probability,

˙̀∗
β̃0

(βt) = OP |Fn

(
r−1/2

)
, (A.23)

and

Λ̃β̃0
−Λ = OP |Fn

(
r−1/2

)
, (A.24)

where

Λ̃β̃0
= ῭∗

β̃0
(βt) =

1

r

r∑
i=1

1

nπ∗i (β̃0)

{
Y ∗i exp(−βTt X∗i ) + Y ∗

−1

i exp(βTt X∗i )
}

X∗iX
∗T
i .

Proof. Direct calculation yields that

E
{

˙̀∗
β̃0

(βt) |Fn
}

=
1

n

n∑
i=1

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}

Xi

= OP

(
n−1/2

)
. (A.25)

This is because for the jth element of ˙̀∗
β̃0

(βt), say ˙̀∗
β̃0,j

(βt), 1 ≤ j ≤ p, we get

E
[
E
{

˙̀∗
β̃0,j

(βt) |Fn
}]

= 0, (A.26)

and

V ar
[
E
{

˙̀∗
β̃0,j

(βt) |Fn
}]

= E

[
1

n2

n∑
i=1

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2

XijXij

]

≤ 1

n
E

[
1

n

n∑
i=1

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2 ‖Xi‖2

]
= OP

(
n−1
)
. (A.27)

Combining (A.26), (A.27) and Chebyshev’s inequality, we have E
{

˙̀∗
β̃0

(βt) |Fn
}

= OP

(
n−1/2

)
.

By direct calculation,

V ar
{

˙̀∗
β̃0,j

(βt) |Fn
}

=
1

r

[
n∑
i=1

1

n2π∗i (β̃0)

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2

XijXij
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−

{
1

n

n∑
i=1

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}

Xij

}2 ]

≤ 1

n2r

n∑
i=1

1

π∗i (β̃0)

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2 ‖Xi‖2

= OP

(
r−1
)
. (A.28)

From (A.25), (A.28) and the Markov’s inequality, we have ˙̀∗
β̃0

(βt)−E{ ˙̀∗
β̃0

(βt)} = OP

(
r−1/2

)
.

Combining this and (A.25), we have ˙̀∗
β̃0

(βt) = E{ ˙̀∗
β̃0

(βt)} + OP

(
r−1/2

)
= OP

(
n−1/2

)
+

OP

(
r−1/2

)
= OP

(
r−1/2

)
.

By direct calculation,

E
(
Λ̃β̃0
|Fn
)

= Eβ̃0

{
E
(
Λ̃β̃0
|Fn, β̃0

)}
= Eβ̃0

(Λ|Fn) = Λ, (A.29)

where Eβ̃0
means the expectation is taken with respect to the distribution of β̃0 given Fn.

For any component Λ̃j1j2
β̃0

of Λ̃β̃0
with 1 ≤ j1 ≤ j2 ≤ p,

V ar
(
Λj1j2

β̃0
|Fn, β̃0

)
=

1

n2r

n∑
i=1

1

πi(β̃0)

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2

(xij1x
T
ij2

)2 − 1

r

(
Λj1j2

)2

≤ 1

n2r

n∑
i=1

1

πi(β̃0)

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2 ‖Xi‖4

= OP

(
r−1
)
, (A.30)

where the last equality is from Lemma 2. From (A.29) and (A.30) together with Markov’s

inequality, (A.24) follows.

Proof of Theorem 3. Note that

˙̀∗
β̃0

(βt) =
1

r

r∑
i=1

1

nπ∗i (β̃0)

{
−Y ∗i exp(−βTt X∗i ) + Y ∗

−1

i exp(βTt X∗i )
}

X∗i =
1

r

r∑
i=1

ξβ̃0

i , (A.31)

where

ξβ̃0

i =
1

nπ∗i (β̃0)

{
−Y ∗i exp(−βTt X∗i ) + Y ∗

−1

i exp(βTt X∗i )
}

X∗i , i = 1, . . . , r.
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For each element of ξβ̃0

i , say ξβ̃0

ij . Given Fn and β̃0, ξβ̃0

1 , . . . , ξβ̃0
r are i.i.d with

E
(
ξβ̃0

ij |Fn, β̃0

)
=

1

n

n∑
i=1

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}

Xij,

and

V ar
(
ξβ̃0

ij |Fn, β̃0

)
= rΣc =

1

n2

n∑
i=1

1

πi(β̃0)

{
−Yi exp(−βTXi) + Y −1

i exp(βTXi)
}2

XijXij

−

[
1

n

n∑
i=1

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}

Xij

]2

=
1

n2

n∑
i=1

1

πi(β̃0)

{
−Yi exp(−βTXi) + Y −1

i exp(βTXi)
}2

XijXij + oP (1)

≤ 1

n2

n∑
i=1

1

πi(β̃0)

{
Yi exp(−βTXi + Y −1

i exp(βTXi)
}2 ‖Xi‖2 + oP (1)

= OP (1) . (A.32)

Meanwhile, for every τ > 0,

r∑
i=1

E

{
‖r−1/2ξβ̃0

i ‖
2
I
(
‖r−1/2ξβ̃0

i ‖ > τ
)
|Fn, β̃0

}
=

r∑
i=1

E

{
‖r−1/2ξβ̃0

i ‖
2
I
(
‖ξβ̃0

i ‖ > r1/2τ
)
|Fn, β̃0

}

≤ 1

r

r∑
i=1

E

(
‖ξβ̃0

i ‖2 · ‖ξ
β̃0

i ‖
r1/2τ

|Fn, β̃0

)
≤ 1

r1/2τ
E
(
‖ξβ̃0

i ‖3|Fn, β̃0

)
=

1

r1/2τ

1

n3

n∑
i=1

1

π2
i (β̃0)

{
−Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}3 ‖Xi‖3

≤ 1

r1/2τ

1

n3

n∑
i=1

1

π2
i (β̃0)

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}3 ‖Xi‖3

=
1

r1/2τ

1

n3

n∑
i=1

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}3 ‖Xi‖3[

max
{
| − Yi exp(−β̃T0 Xi) + Y −1

i exp(β̃T0 Xi)|‖Xi‖, υ
}]2

×

[
n∑
i=1

max
{
| − Yi exp(−β̃T0 Xi) + Y −1

i exp(β̃T0 Xi)|‖Xi‖, υ
}]2

≤ 1

r1/2τ

1

nυ2

n∑
i=1

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}3 ‖Xi‖3
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×

[
1

n

n∑
i=1

{
|Yi exp(−β̃T0 Xi) + Y −1

i exp(β̃T0 Xi)|‖Xi‖+ υ
}]2

= oP (1),

where the last equality is from the assumption (H.3), (H.6) and (H.7). This and (A.32) show

that the Lindeberg-Feller conditions are satisfied in probability. From (A.31) and (A.32),

by the Lindeberg-Feller central limit theorem (Proposition 2.27 of Van der Vaart (1998)),

conditionally on Fn and β̃0,

(Σβ̃0
opt)
−1/2 ˙̀∗

β̃0
(βt) =

1

r1/2

{
V ar(ξβ̃0

i |Fn)
}−1/2

r∑
i=1

ξβ̃0

i → N(0, I) (A.33)

in distribution.

Note that

Σopt =
1

r

[
1

n

n∑
i=1

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2

XiX
T
i

max
(
| − Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)|‖Xi‖, υ
)]︸ ︷︷ ︸

E1

×

{
1

n

n∑
i=1

max
(
| − Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)|‖Xi‖, υ
)}

︸ ︷︷ ︸
E2

,

and

Σβ̃0
opt =

1

r

 1

n

n∑
i=1

{
Yi exp(−βTXi) + Y −1

i exp(βTXi)
}2

XiX
T
i

max
(
| − Yi exp(−β̃T0 Xi) + Y −1

i exp(β̃T0 Xi)|‖Xi‖, υ
)


︸ ︷︷ ︸
E3

×

{
1

n

n∑
i=1

max
(
| − Yi exp(−β̃T0 Xi) + Y −1

i exp(β̃T0 Xi)|‖Xi‖, υ
)}

︸ ︷︷ ︸
E4

.

The distance between Σopt and Σβ̃0
opt can be described as

‖Σopt −Σβ̃0
opt‖ ≤ r−1‖E1 − E3‖ · ‖E2‖+ r−1‖E2 − E4‖ · ‖E3‖. (A.34)

By the assumption (H.3) and ‖β̃0 − βt‖ = OP (r
−1/2
0 ), we can deduce that

r−1‖E1 − E3‖ ≤
1

r

[
1

nυ2

n∑
i=1

{
Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)
}2 ‖Xi‖2

]
· ‖β̃0 − βt‖
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= OP (r−1r
−1/2
0 ),

and

‖E2‖ ≤
1

n

n∑
i=1

(
|Yi exp(−βTt Xi) + Y −1

i exp(βTt Xi)|‖Xi‖+ υ
)

= OP (1).

Similarly, we have r−1‖E2 − E4‖ = OP (r−1r
−1/2
0 ) and ‖E3‖ = OP (1). Therefore,

‖Σopt −Σβ̃0
opt‖ = OP

(
r−1r

−1/2
0

)
. (A.35)

The estimator β̆ is the minimizer of ˙̀∗
β̃0

(β), so
√
r(β̆ − βt) is the minimizer of D̆∗ (λ) =

`∗
β̃0

(βt + λ/
√
r)− `∗

β̃0
(βt), where λ ∈ Rp. By Taylor’s expansion,

D̆∗ (λ) =
1√
r
λT ˙̀∗

β̃0
(βt) +

1

2r
λT ῭∗

β̃0
(βt)λ+ oP (1)

= λT Z̆∗ +
1

2
λTH̆∗λ+ oP (1), (A.36)

where Z̆∗ = 1√
r

˙̀∗
β̃0

(βt), and H̆∗ = 1
r
῭∗
β̃0

(βt). Since D∗ (λ) is convex, from the corollary in

page 2 of Hjort and Pollard (2011), its minimizer
√
r(β̆ − βt) satisfies

√
r(β̆ − βt) = −(H̆∗)−1Z̆∗ + oP (1). (A.37)

Thus,

β̆ − βt = −r−1/2

{
1

r
῭∗
β̃0

(βt)

}−1{
1√
r

˙̀∗
β̃0

(βt)

}
+ oP (1)

= −Λ̃−1

β̃0

˙̀∗ (βt) + oP (1). (A.38)

From Lemma 1, Λ̃−1

β̃0
= OP |Fn (1). Combining this with (A.23) and (A.38)

β̆ − βt = OP |Fn

(
r−1/2

)
+ oP (1),

which implies that

β̆ − βt = OP |Fn

(
r−1/2

)
. (A.39)
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From (A.24) of Lemma 3,

Λ̃−1

β̃0
−Λ−1 = −Λ−1(Λ̃β̃0

−Λ)Λ̃−1

β̃0
= OP |Fn

(
r−1/2

)
. (A.40)

From (A.38),(A.39) and (A.40),

Σ−1/2(β̆ − βt) = Σ−1/2
{
−Λ̃−1

β̃0

˙̀∗
β̃0

(βt) + oP (1)
}

= −Σ−1/2Λ−1 ˙̀∗
β̃0

(βt)−Σ−1/2(Λ̃−1

β̃0
−Λ−1) ˙̀∗

β̃0
(βt) + oP (1)

= −Σ−1/2Λ−1(Σβ̃0
opt)

1/2(Σβ̃0
opt)
−1/2 ˙̀∗

β̃0
(βt) +OP |Fn

(
r1/2
)
OP |Fn

(
r−1/2

)
OP |Fn

(
r−1/2

)
+ oP (1)

= −Σ−1/2Λ−1(Σβ̃0
opt)

1/2(Σβ̃0
opt)
−1/2 ˙̀∗

β̃0
(βt) +OP |Fn

(
r−1/2

)
+ oP (1).

The result in Theorem 3 follows from Slutsky’s Theorem and the fact that

Σ−1/2Λ−1(Σβ̃0
opt)

1/2
{

Σ−1/2Λ−1(Σβ̃0
opt)

1/2
}T

= Σ−1/2Λ−1Σβ̃0
optΛ

−1Σ−1/2

= Σ−1/2Λ−1ΣoptΛ
−1Σ−1/2 +OP (r−1r

−1/2
0 )

= I +OP (r−1r
−1/2
0 ),

which is obtained using (A.35). This means that for any x ∈ Rp

P
{

Σ−1/2(β̆ − βt) ≤ x|Fn, β̃0

}
→ Φ(x), (A.41)

in probability. Since the conditional probability is a bounded random variable, convergence

in probability to a constant implies convergence to the mean. Therefore, the unconditional

probability

P
{

Σ−1/2(β̃ − βt) ≤ x
}

= E
[
P
{

Σ−1/2(β̃ − βt) ≤ x|Fn, β̃0

}]
→ Φ(x).

This ends the proof. �
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Table 1. Simulation results on the two-step subsample estimator β̆1 with log(ε) ∼ N(0, 1).

OSC UNIF

r BIAS SSE ESE CP BIAS SSE ESE CP

Case 1 600 −0.0012 0.0309 0.0302 0.942 −0.0027 0.0464 0.0428 0.932

800 −0.0012 0.0261 0.0260 0.944 −0.0004 0.0386 0.0374 0.944

1000 −0.0001 0.0210 0.0233 0.970 −0.0004 0.0354 0.0337 0.930

Case 2 600 0.0003 0.0308 0.0297 0.936 0.0009 0.0450 0.0429 0.948

800 −0.0013 0.0260 0.0257 0.940 −0.0003 0.0374 0.0375 0.938

1000 −0.0012 0.0235 0.0230 0.948 −0.0003 0.0337 0.0338 0.954

Case 3 600 −0.0025 0.0312 0.0313 0.952 −0.0011 0.0430 0.0431 0.956

800 0.0014 0.0285 0.0272 0.948 −0.0005 0.0374 0.0376 0.942

1000 0.0006 0.0256 0.0242 0.942 −0.0003 0.0337 0.0339 0.958

Case 4 600 −0.0022 0.0778 0.0764 0.948 −0.0013 0.1006 0.0955 0.928

800 0.0034 0.0666 0.0661 0.948 −0.0016 0.0798 0.0834 0.964

1000 0.0056 0.0593 0.0591 0.950 −0.0013 0.0754 0.0754 0.952

RL IC

r BIAS SSE ESE CP BIAS SSE ESE CP

Case 1 600 −0.0002 0.0465 0.0447 0.928 0.0027 0.0477 0.0454 0.936

800 −0.0018 0.0378 0.0387 0.962 −0.0030 0.0403 0.0395 0.940

1000 −0.0001 0.0349 0.0350 0.944 −0.0002 0.0363 0.0356 0.944

Case 2 600 −0.0002 0.0452 0.0443 0.944 −0.0024 0.0476 0.0465 0.948

800 −0.0001 0.0390 0.0385 0.944 0.0021 0.0425 0.0408 0.942

1000 0.0006 0.0341 0.0346 0.960 −0.0001 0.0386 0.0368 0.938

Case 3 600 0.0002 0.0473 0.0458 0.940 −0.0031 0.0456 0.0455 0.948

800 0.0026 0.0408 0.0400 0.942 0.0009 0.0428 0.0400 0.928

1000 0.0012 0.0359 0.0359 0.956 −0.0024 0.0371 0.0359 0.950

Case 4 600 0.0039 0.1040 0.0990 0.928 −0.0032 0.0898 0.0871 0.938

800 0.0053 0.0869 0.0865 0.946 −0.0007 0.0765 0.0759 0.954

1000 −0.0013 0.0769 0.0774 0.950 −0.0027 0.0704 0.0683 0.936
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Table 2. Simulation results on the two-step subsample estimator β̆2 with log(ε) ∼ N(0, 1).

OSC UNIF

r BIAS SSE ESE CP BIAS SSE ESE CP

Case 1 600 0.0010 0.0313 0.0326 0.954 −0.0001 0.0499 0.0491 0.936

800 0.0003 0.0283 0.0281 0.944 0.0007 0.0424 0.0430 0.944

1000 −0.0004 0.0252 0.0250 0.946 −0.0016 0.0399 0.0387 0.942

Case 2 600 −0.0017 0.0667 0.0629 0.946 0.0032 0.0931 0.0902 0.952

800 −0.0012 0.0545 0.0545 0.948 −0.0021 0.0827 0.0794 0.942

1000 −0.0001 0.0492 0.0486 0.938 −0.0005 0.0767 0.0718 0.922

Case 3 600 0.0002 0.0248 0.0236 0.938 −0.0021 0.0376 0.0374 0.944

800 −0.0018 0.0201 0.0203 0.964 −0.0003 0.0347 0.0333 0.946

1000 −0.0009 0.0169 0.0180 0.972 −0.0011 0.0311 0.0299 0.942

Case 4 600 −0.0003 0.0257 0.0265 0.962 0.0012 0.0428 0.0418 0.940

800 −0.0004 0.0233 0.0229 0.954 −0.0006 0.0385 0.0368 0.936

1000 −0.0014 0.0203 0.0205 0.948 −0.0007 0.0345 0.0331 0.938

RL IC

r BIAS SSE ESE CP BIAS SSE ESE CP

Case 1 600 −0.0010 0.0480 0.0466 0.948 −0.0009 0.0491 0.0466 0.934

800 −0.0022 0.0408 0.0408 0.950 −0.0012 0.0457 0.0408 0.926

1000 −0.0006 0.0361 0.0367 0.962 0.0003 0.0360 0.0366 0.946

Case 2 600 −0.0058 0.0879 0.0860 0.936 0.0006 0.0867 0.0850 0.950

800 −0.0029 0.0778 0.0750 0.934 0.0068 0.0771 0.0749 0.940

1000 0.0008 0.0674 0.0677 0.948 −0.0001 0.0695 0.0673 0.946

Case 3 600 −0.0027 0.0339 0.0336 0.942 −0.0020 0.0339 0.0335 0.944

800 −0.0012 0.0293 0.0294 0.954 0.0021 0.0297 0.0295 0.944

1000 −0.0003 0.0262 0.0264 0.948 0.0015 0.0282 0.0263 0.938

Case 4 600 −0.0011 0.0366 0.0379 0.952 −0.0001 0.0406 0.0397 0.944

800 0.0001 0.0322 0.0331 0.950 0.0002 0.0368 0.0352 0.930

1000 0.0002 0.0285 0.0298 0.946 0.0004 0.0336 0.0313 0.936
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Table 3. Simulation results on the two-step subsample estimator β̆1 with

log(ε) ∼ Uniform(−2, 2).

OSC UNIF

r BIAS SSE ESE CP BIAS SSE ESE CP

Case 1 600 −0.0015 0.0328 0.0332 0.964 0.0018 0.0386 0.0384 0.950

800 0.0022 0.0295 0.0287 0.950 0.0007 0.0318 0.0333 0.962

1000 −0.0014 0.0260 0.0256 0.958 −0.0017 0.0305 0.0298 0.938

Case 2 600 −0.0021 0.0337 0.0328 0.930 −0.0005 0.0393 0.0385 0.948

800 −0.0020 0.0287 0.0284 0.930 −0.0015 0.0337 0.0333 0.944

1000 −0.0019 0.0252 0.0254 0.944 −0.0002 0.0297 0.0298 0.956

Case 3 600 0.0004 0.0343 0.0346 0.956 −0.0004 0.0389 0.0385 0.948

800 −0.0026 0.0294 0.0299 0.956 −0.0013 0.0338 0.0333 0.944

1000 −0.0003 0.0262 0.0268 0.954 −0.0018 0.0306 0.0298 0.938

Case 4 600 −0.0055 0.0823 0.0842 0.960 −0.0050 0.0855 0.0859 0.954

800 −0.0031 0.0680 0.0728 0.966 0.0006 0.0759 0.0744 0.948

1000 −0.0019 0.0630 0.0652 0.958 0.0017 0.0706 0.0664 0.934

RL IC

r BIAS SSE ESE CP BIAS SSE ESE CP

Case 1 600 0.0006 0.0396 0.0399 0.952 −0.0051 0.0395 0.0405 0.948

800 −0.0002 0.0359 0.0346 0.930 −0.0035 0.0353 0.0351 0.944

1000 −0.0012 0.0324 0.0309 0.936 0.0004 0.0328 0.0314 0.938

Case 2 600 −0.0015 0.0389 0.0396 0.954 0.0001 0.0426 0.0419 0.944

800 −0.0001 0.0336 0.0342 0.958 −0.0007 0.0368 0.0364 0.956

1000 0.0006 0.0313 0.0306 0.942 0.0008 0.0319 0.0325 0.952

Case 3 600 −0.0004 0.0411 0.0410 0.954 0.0003 0.0408 0.0410 0.952

800 0.0013 0.0353 0.0354 0.950 −0.0004 0.0364 0.0355 0.942

1000 −0.0019 0.0341 0.0317 0.938 −0.0001 0.0323 0.0317 0.942

Case 4 600 0.0001 0.0906 0.0885 0.968 0.0024 0.0796 0.0776 0.942

800 0.0001 0.0748 0.0766 0.960 0.0050 0.0678 0.0673 0.944

1000 0.0073 0.0674 0.0685 0.948 0.0001 0.0608 0.0601 0.942
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Table 4. Simulation results on the two-step subsample estimator β̆2 with

log(ε) ∼ Uniform(−2, 2).

OSC UNIF

r BIAS SSE ESE CP BIAS SSE ESE CP

Case 1 600 0.0019 0.0378 0.0358 0.940 −0.0032 0.0440 0.0445 0.954

800 0.0027 0.0321 0.0309 0.938 0.0030 0.0374 0.0385 0.950

1000 −0.0009 0.0275 0.0275 0.952 −0.0011 0.0357 0.0344 0.954

Case 2 600 −0.0016 0.0667 0.0694 0.950 −0.0027 0.0811 0.0819 0.950

800 −0.0023 0.0593 0.0600 0.948 −0.0027 0.0707 0.0710 0.958

1000 0.0008 0.0522 0.0536 0.964 −0.0032 0.0647 0.0636 0.944

Case 3 600 −0.0003 0.0254 0.0257 0.942 0.0001 0.0355 0.0345 0.920

800 0.0001 0.0222 0.0223 0.964 −0.0005 0.0314 0.0299 0.942

1000 −0.0005 0.0198 0.0199 0.952 −0.0009 0.0275 0.0267 0.954

Case 4 600 0.0025 0.0281 0.0292 0.964 −0.0014 0.0396 0.0387 0.936

800 0.0011 0.0246 0.0252 0.970 −0.0014 0.0353 0.0333 0.932

1000 0.0010 0.0225 0.0225 0.944 −0.0015 0.0301 0.0297 0.958

RL IC

r BIAS SSE ESE CP BIAS SSE ESE CP

Case 1 600 −0.0002 0.0423 0.0421 0.944 0.0009 0.0428 0.0419 0.952

800 0.0007 0.0363 0.0364 0.962 −0.0008 0.0349 0.0363 0.952

1000 0.0003 0.0326 0.0325 0.960 0.0012 0.0325 0.0324 0.964

Case 2 600 0.0022 0.0791 0.0774 0.948 0.0076 0.0758 0.0766 0.950

800 0.0005 0.0679 0.0671 0.942 0.0062 0.0671 0.0664 0.930

1000 0.0020 0.0601 0.0598 0.946 −0.0055 0.0578 0.0595 0.960

Case 3 600 −0.0008 0.0320 0.0301 0.936 0.0011 0.0313 0.0303 0.940

800 0.0014 0.0279 0.0261 0.928 −0.0001 0.0251 0.0262 0.954

1000 −0.0005 0.0241 0.0233 0.948 0.0008 0.0231 0.0234 0.938

Case 4 600 0.0004 0.0359 0.0341 0.954 0.0011 0.0380 0.0360 0.944

800 0.0020 0.0300 0.0294 0.950 −0.0002 0.0334 0.0313 0.954

1000 0.0002 0.0264 0.0264 0.950 0.0009 0.0265 0.0280 0.960
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Table 5. Simulation results on the two-step subsample estimator β̆1 for case 1 with

log(ε) ∼ N(0, 1).

OSC UNIF

r0 BIAS SSE ESE CP BIAS SSE ESE CP

r = 600 400 −0.0025 0.0310 0.0302 0.950 0.0005 0.0412 0.0429 0.952

500 0.0007 0.0303 0.0302 0.946 −0.0014 0.0446 0.0431 0.930

600 0.0023 0.0291 0.0302 0.948 −0.0001 0.0437 0.0430 0.934

r = 800 400 −0.0003 0.0250 0.0261 0.950 −0.0008 0.0387 0.0377 0.954

500 0.0007 0.0263 0.0261 0.948 −0.0008 0.0402 0.0375 0.936

600 −0.0005 0.0248 0.0260 0.950 −0.0004 0.0381 0.0375 0.948

r = 1000 400 −0.0015 0.0226 0.0233 0.956 −0.0006 0.0348 0.0337 0.948

500 −0.0001 0.0243 0.0232 0.942 −0.0013 0.0339 0.0337 0.952

600 −0.0005 0.0214 0.0232 0.972 0.0001 0.0334 0.0336 0.946

RL IC

r0 BIAS SSE ESE CP BIAS SSE ESE CP

r = 600 400 −0.0032 0.0450 0.0447 0.952 −0.0003 0.0467 0.0455 0.948

500 −0.0048 0.0465 0.0446 0.936 0.0003 0.0453 0.0453 0.950

600 −0.0001 0.0448 0.0447 0.932 −0.0014 0.0458 0.0453 0.940

r = 800 400 −0.0021 0.0377 0.0389 0.956 0.0021 0.0420 0.0395 0.926

500 −0.0025 0.0386 0.0390 0.952 0.0009 0.0403 0.0394 0.956

600 −0.0021 0.0377 0.0387 0.960 0.0009 0.0410 0.0395 0.940

r = 1000 400 −0.0020 0.0350 0.0350 0.952 0.0015 0.0369 0.0355 0.940

500 0.0018 0.0369 0.0350 0.940 −0.0015 0.0357 0.0356 0.952

600 −0.0011 0.0347 0.0349 0.946 −0.0001 0.0333 0.0356 0.960
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Table 6. The CPU time for Case 1 with log(ε) ∼ N(0, 1) and r = 1000 (seconds).

Methods n = 106 n = 3× 106 n = 5× 106 n = 107

p = 5 UNIF 0.009 0.032 0.054 0.107

OSC 0.173 0.521 0.920 1.792

RL 1.647 5.281 9.385 19.288

IC 1.684 5.301 9.411 20.513

Full data 1.322 4.294 6.577 13.544

p = 50 UNIF 0.055 0.072 0.103 0.180

OSC 0.752 2.116 3.728 7.565

RL 2.841 8.962 16.371 34.041

IC 2.893 9.115 16.814 35.356

Full data 53.594 171.255 275.725 597.980

p = 100 UNIF 0.197 0.212 0.254 0.363

OSC 1.547 4.415 6.918 15.257

RL 3.742 13.700 22.343 46.529

IC 3.778 13.819 22.726 47.943

Full data 244.745 766.650 1353.470 2764.720

35



T
a
b
le

7
.

T
h
e

B
IA

S
an

d
(S

S
E

,
E

S
E

)
fo

r
th

e
b
ik

e
sh

ar
in

g
d
at

a†
.

β
O

S
C

U
N

IF
R

L
IC

r
=

20
0

β
1

−
0.

01
2
0(

0.
21

1
7,

0
.2

01
6)

0.
01

55
(0

.2
54

6,
0.

24
89

)
0.

00
36

(0
.2

47
3,

0.
24

02
)

0.
01

67
(0

.2
47

2,
0.

23
03

)

β
2

0.
00

6
5

(0
.0

85
6
,

0
.0

82
3)

0.
00

05
(0

.0
95

6,
0.

09
33

)
−

0.
00

29
(0

.0
95

5,
0.

09
34

)
−

0.
00

45
(0

.1
01

3,
0.

09
98

)

β
3

0.
00

1
1

(0
.1

91
1
,

0
.1

89
4)

−
0.

01
66

(0
.2

48
7,

0.
23

81
)
−

0.
00

27
(0

.2
43

7,
0.

23
53

)
−

0.
01

17
(0

.2
52

2,
0.

24
02

)

β
4

0.
00

6
2

(0
.2

01
6
,

0
.1

97
9)

−
0.

00
50

(0
.2

55
5,

0.
24

68
)
−

0.
00

36
(0

.2
47

0,
0.

23
84

)
−

0.
00

98
(0

.2
55

7,
0.

23
75

)

β
5

−
0
.0

1
05

(0
.3

2
75

,
0.

31
46

)
−

0.
00

45
(0

.4
09

0,
0.

38
34

)
0.

01
87

(0
.3

68
2,

0.
36

53
)

0.
00

21
(0

.3
54

6,
0.

34
29

)

r
=

40
0

β
1

0
.0

04
5

(0
.1

4
11

,
0
.1

38
1)

−
0.

00
09

(0
.1

87
9,

0.
17

87
)

0.
00

67
(0

.1
75

0,
0.

17
24

)
0.

00
40

(0
.1

65
4,

0.
16

51
)

β
2

−
0
.0

02
3
(0

.0
55

6
,

0.
05

61
)

0.
00

23
(0

.0
67

3,
0.

06
67

)
0.

00
37

(0
.0

67
5,

0.
06

66
)

0.
00

05
(0

.0
72

1,
0.

07
17

)

β
3

−
0.

01
6
3
(0

.1
28

7
,

0
.1

30
2)
−

0.
00

35
(0

.1
80

6,
0.

17
01

)
−

0.
00

92
(0

.1
66

3,
0.

16
79

)
−

0.
00

34
(0

.1
70

5,
0.

17
18

)

β
4

0.
00

5
0

(0
.1

39
6
,

0.
13

49
)
−

0.
00

25
(0

.1
85

7,
0.

17
69

)
−

0.
00

59
(0

.1
79

5,
0.

17
10

)
−

0.
00

12
(0

.1
70

6,
0.

17
03

)

β
5

0.
00

1
2

(0
.2

14
5
,

0
.2

13
9)

0.
01

89
(0

.2
74

4,
0.

27
43

)
0.

00
79

(0
.2

62
9,

0.
26

09
)

−
0.

00
27

(0
.2

51
3,

0.
24

44
)

r
=

60
0

β
1

0
.0

00
2

(0
.1

1
01

,
0
.1

12
0)

0.
00

15
(0

.1
46

3,
0.

14
68

)
−

0.
00

56
(0

.1
38

4,
0.

14
14

)
0.

00
93

(0
.1

37
8,

0.
13

54
)

β
2

0.
00

1
0

(0
.0

46
5
,

0
.0

45
8)

0.
00

11
(0

.0
54

9,
0.

05
46

)
0.

00
38

(0
.0

55
9,

0.
05

47
)

−
0.

00
15

(0
.0

60
9,

0.
05

88
)

β
3

0
.0

0
35

(0
.1

0
5
7,

0.
10

56
)
−

0.
00

44
(0

.1
41

6,
0.

13
92

)
0.

00
07

(0
.1

38
4,

0.
13

76
)

−
0.

00
68

(0
.1

44
2,

0.
14

04
)

β
4

−
0.

00
4
5
(0

.1
09

7
,

0
.1

10
8)

0.
00

13
(0

.1
49

2,
0.

14
56

)
0.

00
75

(0
.1

37
4,

0.
14

06
)

−
0.

00
27

(0
.1

40
9,

0.
13

97
)

β
5

−
0.

00
8
7
(0

.1
75

9
,

0
.1

75
3)

0.
00

33
(0

.2
25

2,
0.

22
65

)
−

0.
00

06
(0

.2
05

4,
0.

21
37

)
−

0.
00

58
(0

.2
04

6,
0.

20
07

)

36



T
a
b
le

8
.

T
h
e

es
ti

m
at

or
β̆

an
d

95
%

co
n
fi
d
en

ce
in

te
rv

al
w

it
h

on
e

su
b
sa

m
p
le

fo
r

th
e

b
ik

e
sh

ar
in

g
d
at

a†
.

O
S

C
U

N
IF

R
L

IC

r
=

20
0

β
1

2.
33

0
2

(1
.9

19
4
,

2
.7

41
1
)

1.
80

64
(1

.2
34

1,
2.

37
88

)
1.

69
05

(1
.2

42
3,

2.
13

88
)

1.
86

52
(1

.4
47

0,
2.

28
34

)

β
2

−
0.

00
4
0

(−
0.

15
1
3
,

0
.1

4
33

)
−

0.
07

77
(−

0.
26

06
,

0.
10

52
)

0.
00

98
(−

0.
17

63
,

0.
19

59
)

0.
03

53
(−

0.
17

40
,

0.
24

46
)

β
3

1
.3

1
01

(0
.9

4
6
5,

1.
67

3
7)

1.
51

61
(1

.0
62

8
,

1.
96

93
)

1.
63

22
(1

.1
81

2,
2.

08
33

)
1.

93
60

(1
.4

32
3,

2.
43

96
)

β
4

−
1.

25
3
2

(−
1.

65
6
4,
−

0.
84

99
)
−

0.
65

44
(−

1.
20

51
,
−

0.
10

37
)
−

0.
81

36
(−

1.
28

45
,−

0.
34

28
)
−

0.
99

10
(−

1.
47

39
,−

0.
50

82
)

β
5

0
.0

7
06

(−
0
.5

87
0
,

0.
72

8
2)

0.
66

45
(−

0.
13

50
,

1.
46

40
)

1.
26

00
(0

.5
43

0,
1.

97
70

)
0.

12
68

(−
0.

59
19

,
0.

84
55

)

r
=

40
0

β
1

2.
16

3
4

(1
.9

21
1
,

2
.4

05
6
)

2.
10

57
(1

.7
53

8,
2.

45
75

)
2.

25
73

(1
.9

21
5,

2.
59

31
)

2.
04

17
(1

.7
38

3,
2.

34
52

)

β
2

−
0.

08
6
6

(−
0.

19
4
8
,

0
.0

2
15

)
−

0.
01

63
(−

0.
15

13
,

0.
11

88
)

0.
01

47
(−

0.
12

56
,

0.
15

50
)
−

0.
06

82
(−

0.
20

72
,

0.
07

08
)

β
3

1
.6

4
68

(1
.3

8
2
8,

1.
91

0
7)

1.
50

91
(1

.2
01

8
,

1.
81

64
)

1.
49

56
(1

.1
68

9,
1.

82
23

)
1.

53
91

(1
.1

95
6

,
1.

88
27

)

β
4

−
1.

14
5
2

(−
1.

40
0
6,
−

0.
88

98
)
−

0.
98

13
(−

1.
32

55
,
−

0.
63

71
)
−

1.
06

74
(−

1.
39

95
,−

0.
73

53
)
−

0.
95

03
(−

1.
27

44
,−

0.
62

62
)

β
5

0.
43

8
6

(0
.0

40
9
,

0
.8

36
4
)

−
0.

00
45

(−
0.

54
89

,
0.

53
99

)
−

0.
38

26
(−

0.
90

57
,

0.
14

05
)

0.
42

34
(−

0.
01

18
,

0.
85

86
)

r
=

60
0

β
1

2.
19

3
2

(1
.9

77
3
,

2
.4

09
0
)

2.
24

79
(1

.9
40

9,
2.

55
49

)
2.

15
30

(1
.8

96
2,

2.
40

98
)

2.
36

82
(2

.0
97

6,
2.

63
89

)

β
2

−
0
.1

0
71

(−
0
.2

04
6
,
−

0
.0

09
7)

−
0.

04
16

(−
0.

15
08

,
0.

06
77

)
−

0.
04

43
(−

0.
15

18
,

0.
06

33
)
−

0.
00

19
(−

0.
11

55
,

0.
11

18
)

β
3

1
.4

8
58

(1
.2

6
1
9,

1.
70

9
8)

1.
50

13
(1

.2
39

0
,

1.
76

35
)

1.
42

36
(1

.1
50

2,
1.

69
70

)
1.

39
14

(1
.1

24
7,

1.
65

80
)

β
4

−
1.

02
8
8

(−
1.

26
5
1,
−

0.
79

25
)
−

1.
19

69
(−

1.
50

60
,
−

0.
88

78
)
−

1.
22

04
(−

1.
47

03
,−

0.
97

06
)
−

1.
29

41
(−

1.
58

34
,−

1.
00

48
)

β
5

0
.1

6
37

(−
0
.1

59
0
,

0.
48

6
5)

0.
10

16
(−

0.
33

61
,

0.
53

94
)

0.
78

35
(0

.3
90

5,
1.

17
65

)
−

0.
07

10
(−

0.
43

78
,

0.
29

59
)

37



T
a
b

le
9
.

T
h
e

B
IA

S
an

d
(S

S
E

,
E

S
E

)
fo

r
th

e
el

ec
tr

ic
p

ow
er

co
n
su

m
p
ti

on
d
at

a†
.

β
O

S
C

U
N

IF
R

L
IC

r
=

6
0
0

β
1

0
.0

00
6

(0
.0

1
91

,
0
.0

18
6)

0.
00

16
(0

.0
26

2,
0.

02
58

)
0.

00
09

(0
.0

28
3,

0.
02

88
)

0.
00

15
(0

.0
28

6,
0.

02
90

)

β
2

−
0.

00
0
1
(0

.0
10

2
,

0
.0

10
0)

0.
00

16
(0

.0
25

2,
0.

02
26

)
0.

00
07

(0
.0

12
4,

0.
01

24
)

0.
00

07
(0

.0
12

6,
0.

01
24

)

β
3

0
.0

01
9

(0
.0

1
34

,
0
.0

12
5)

0.
00

53
(0

.0
30

4,
0.

02
54

)
0.

00
05

(0
.0

13
7,

0.
01

34
)

0.
00

17
(0

.0
14

0,
0.

01
34

)

β
4

0
.0

01
7

(0
.0

1
71

,
0
.0

16
5)

0.
00

10
(0

.0
21

4,
0.

02
11

)
0.

00
04

(0
.0

21
2,

0.
02

23
)
−

0.
00

08
(0

.0
22

1,
0.

02
23

)

r
=

8
0
0

β
1

0
.0

01
0

(0
.0

1
58

,
0
.0

15
8)

−
0.

00
01

(0
.0

23
4,

0.
02

24
)

0.
00

01
(0

.0
24

9,
0.

02
49

)
−

0.
00

08
(0

.0
25

2,
0.

02
51

)

β
2

0
.0

00
3

(0
.0

0
87

,
0
.0

08
8)

0.
00

11
(0

.0
22

3,
0.

01
99

)
0.

00
06

(0
.0

10
9,

0.
01

08
)

0.
00

01
(0

.0
10

9,
0.

01
08

)

β
3

0
.0

00
7

(0
.0

0
94

,
0
.0

09
0)

0.
00

44
(0

.0
26

4,
0.

02
25

)
0.

00
09

(0
.0

12
1,

0.
01

17
)

0.
00

07
(0

.0
12

0,
0.

01
17

)

β
4

0
.0

02
0

(0
.0

1
45

,
0
.0

14
0)

0.
00

08
(0

.0
19

2,
0.

01
83

)
0.

00
09

(0
.0

19
7,

0.
01

93
)

0.
00

10
(0

.0
19

8,
0.

01
94

)

r
=

1
0
00

β
1

0
.0

00
2

(0
.0

1
45

,
0
.0

14
5)

−
0.

00
05

(0
.0

20
4,

0.
02

01
)
−

0.
00

07
(0

.0
22

6,
0.

02
25

)
−

0.
00

15
(0

.0
22

5,
0.

02
25

)

β
2

0
.0

00
3

(0
.0

0
76

,
0
.0

07
5)

0.
00

24
(0

.0
19

3,
0.

01
80

)
0.

00
08

(0
.0

09
8,

0.
00

97
)

0.
00

08
(0

.0
10

1,
0.

00
97

)

β
3

0
.0

00
3

(0
.0

0
71

,
0
.0

07
3)

0.
00

42
(0

.0
23

5,
0.

02
05

)
0.

00
07

(0
.0

11
1,

0.
01

04
)

0.
00

06
(0

.0
10

8,
0.

01
04

)

β
4

0
.0

00
1

(0
.0

1
27

,
0
.0

12
7)

0.
00

12
(0

.0
16

3,
0.

01
64

)
0.

00
01

(0
.0

17
8,

0.
01

73
)

0.
00

05
(0

.0
16

5,
0.

01
73

)

38



T
a
b
le

1
0
.

E
st

im
at

or
β̆

an
d

95
%

co
n
fi
d
en

ce
in

te
rv

al
w

it
h

on
e

su
b
sa

m
p
le

fo
r

th
e

el
ec

tr
ic

p
ow

er
co

n
su

m
p
ti

on
d
at

a†
.

O
S

C
U

N
IF

R
L

IC

r
=

6
00

β
1

1
.1

4
85

(1
.1

1
2
9,

1.
18

42
)

1.
12

29
(1

.0
75

0,
1.

17
08

)
1.

08
44

(1
.0

26
1,

1.
14

27
)

1.
12

77
(1

.0
66

5,
1.

18
89

)

β
2

0
.2

2
87

(0
.2

0
7
5,

0.
24

99
)

0.
21

19
(0

.1
55

4,
0.

26
85

)
0.

21
87

(0
.1

94
0,

0.
24

34
)

0.
20

34
(0

.1
79

1,
0.

22
77

)

β
3

0
.1

9
21

(0
.1

7
5
1,

0.
20

90
)

0.
17

12
(0

.1
38

0,
0.

20
44

)
0.

19
43

(0
.1

67
6,

0.
22

10
)

0.
20

99
(0

.1
84

3,
0.

23
54

)

β
4

0
.6

2
61

(0
.5

9
4
9,

0.
65

74
)

0.
65

32
(0

.6
13

8,
0.

69
25

)
0.

65
75

(0
.6

11
9,

0.
70

31
)

0.
62

73
(0

.5
81

1,
0.

67
34

)

r
=

8
00

β
1

1
.1

2
03

(1
.0

8
7
4,

1.
15

33
)

1.
08

82
(1

.0
40

7,
1.

13
58

)
1.

15
00

(1
.1

04
6,

1.
19

54
)

1.
11

02
(1

.0
64

2,
1.

15
61

)

β
2

0
.2

0
88

(0
.1

8
9
0,

0.
22

85
)

0.
22

08
(0

.1
82

0,
0.

25
96

)
0.

21
18

(0
.1

94
3,

0.
22

94
)

0.
20

47
(0

.1
84

0,
0.

22
54

)

β
3

0
.1

9
53

(0
.1

7
8
3,

0.
21

22
)

0.
19

09
(0

.1
46

7,
0.

23
52

)
0.

19
60

(0
.1

74
4,

0.
21

76
)

0.
19

72
(0

.1
75

9,
0.

21
85

)

β
4

0
.6

3
47

(0
.6

0
6
4,

0.
66

30
)

0.
65

75
(0

.6
19

2,
0.

69
59

)
0.

61
23

(0
.5

76
4,

0.
64

82
)

0.
62

87
(0

.5
93

4,
0.

66
40

)

r
=

1
00

0
β

1
1
.1

2
64

(1
.0

9
8
0,

1.
15

49
)

1.
11

91
(1

.0
79

7,
1.

15
84

)
1.

07
99

(1
.0

36
3,

1.
12

36
)

1.
08

90
(1

.0
49

0,
1.

12
90

)

β
2

0
.2

2
44

(0
.2

0
7
3,

0.
24

14
)

0.
21

78
(0

.1
70

9,
0.

26
48

)
0.

21
83

(0
.1

99
7,

0.
23

69
)

0.
23

38
(0

.2
14

6,
0.

25
30

)

β
3

0
.2

1
88

(0
.2

0
2
5,

0.
23

50
)

0.
21

45
(0

.1
77

9,
0.

25
11

)
0.

20
87

(0
.1

88
0,

0.
22

94
)

0.
21

17
(0

.1
90

6,
0.

23
29

β
4

0
.6

2
57

(0
.6

0
0
7,

0.
65

07
)

0.
64

47
(0

.6
12

8,
0.

67
65

)
0.

66
66

(0
.6

32
8,

0.
70

04
)

0.
64

20
(0

.6
10

5,
0.

67
35

)

39



400 600 800 1000 1200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

r

M
S

E

OSC
UNIF
RL
IC
Full

Case 1

400 600 800 1000 1200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

r

M
S

E

OSC
UNIF
RL
IC
Full

Case 2

400 600 800 1000 1200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

r

M
S

E

OSC
UNIF
RL
IC
Full

Case 3

400 600 800 1000 1200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

r

M
S

E

OSC
UNIF
RL
IC
Full

Case 4

Figure 1. The MSEs for different subsampling probabilities with log(ε) ∼ N(0, 1).
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Figure 2. The MSEs for different subsampling probabilities with log(ε) ∼ Uniform(−2, 2).
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(a) The bike sharing data

400 600 800 1000 1200

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

r

M
S

E

OSC
UNIF
RL
IC
Full

(b) The electric power consumption data

Figure 3. The results of MSEs in the real data analysis.

42


	Introduction
	Model and Notations
	Subsample-Based Estimation Method
	A General Subsampling Algorithm
	 Optimal Subsampling Strategy
	Two-Step Subsampling Algorithm

	Simulation
	Application
	The Bike Sharing Data
	The Electric Power Consumption Data

	Conclusion

