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Abstract

Faced with massive data, subsampling is a popular way to downsize the data vol-
ume for reducing computational burden. The key idea of subsampling is to perform
statistical analysis on a representative subsample drawn from the full data. It provides
a practical solution to extracting useful information from big data. In this article,
we develop an efficient subsampling method for large-scale multiplicative regression
model, which can largely reduce the computational burden due to massive data. Under
some regularity conditions, we establish consistency and asymptotic normality of the
subsample-based estimator, and derive the optimal subsampling probabilities according
to the L-optimality criterion. A two-step algorithm is developed to approximate the
optimal subsampling procedure. Meanwhile, the convergence rate and asymptotic nor-
mality of the two-step subsample estimator are established. Numerical studies and two
real data applications are carried out to evaluate the performance of our subsampling
method.

Keywords: Asymptotic normality; Big data; Multiplicative regression; Optimal

subsampling; Positive responses.

1 Introduction

With the rapid development of data capturing and storage techniques, the sizes of available
datasets have grown exponentially, which motivate urgent demands for building statistical
methods to analyze huge datasets. However, it is often computationally infeasible to conduct

statistical analysis on such big data with relatively limited computing resources. Basically,
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there are two bottlenecks when performing big data analysis: (i) the dataset is too large to
be held in a computer’s memory; (ii) the computation takes too long time to output the
desired results. To deal with the two challenges, various techniques have been developed
to conduct statistical inference for big data, such as divide-and-conquer method (Chen and
Xie, 2014; Battey et al., 2018; Shi et al., 2018) and online updating method for streaming
data (Schifano et al., 2016; Wang et al., 2018a; Xue et al., 2019; Luo and Song, 2020).

Another popular technique is the subsampling method, and its basic idea is to select a
tractable and representative subsample for conducting statistical inference. Many researchers
have been devoted to the development of subsampling methods for big data. For example,
Ma et al. (2015) proposed an algorithmic leveraging-based sampling procedure for linear
model. Wang et al. (2018b) developed an optimal subsampling method for logistic model
based on A-optimality criterion. Wang et al. (2019) provided a novel information-based op-
timal subdata selection (IBOSS) approach. Wang (2019) further proposed a more efficient
estimator for logistic model based on the optimal subsample. Han et al. (2020) provided a
subsampling scheme for large-scale multi-class logistic regression. Ma et al. (2020) studied
the asymptotic properties of randomized numerical linear algebra sampling estimators for
linear models. Meng et al. (2021) proposed a low condition number pursuit subsampling
algorithm in the misspecified linear model. Wang and Ma (2021) studied the optimal sub-
sampling for quantile regression with big data. Ai et al. (2021a) investigated the Poisson
subsampling for large-scale quantile regression. In addition, Ai et al. (2021b) and Lee et al.
(2021) studied the optimal subsampling for big data generalized linear models. Zuo et al.
(2021a) proposed a sampling-based estimation method for massive survival data with addi-
tive hazards model. Yu et al. (2020) developed a distributed Poisson subsampling method
for maximum quasi-likelihood estimator. Zhang and Wang (2021) and Zuo et al. (2021b)
proposed some distributed subsampling procedures for big data linear and logistic regression
models, respectively. For more papers on subsampling methods for massive datasets, we
refer to a review paper by Yao and Wang (2021).

The multiplicative regression model plays an important role in economic/financial or
biomedical studies. Compared with generalized linear model, the multiplicative regression

has the following two advantages: First, the multiplicative regression model is suitable to



directly analyse a dataset with positive responses, such as stock prices or life times. However,
the generalized linear model is not able to describe this special characteristic of positive out-
comes. Second, in many practical applications, we are interested in the size of relative error
(e.g. stock price data), rather than that of error itself. The multiplicative regression has the
ability to capture the size of relative error, while the generalized linear model fails to com-
plete this task. There have been several papers on the statistical analysis with multiplicative
regression. e.g., Chen et al. (2010) proposed a least absolute relative errors (LARE) estima-
tion criterion for multiplicative regression model. Li et al. (2014) considered an empirical
likelihood approach towards constructing confidence intervals of the regression parameters
in multiplicative regression model. Chen et al. (2016) proposed a least product relative error
(LPRE) estimation criterion for multiplicative regression model. Xia et al. (2016) studied
the variable selection for multiplicative regression model. Faced with large-scale data with
positive responses, we adopt the optimal subsampling to resolve the computational chal-
lenges for multiplicative regression model. The main features of our approach are as follows:
First, the computational speed of our method is much faster than the full data approach.
Second, we provide an explicit expression for the optimal subsampling distribution in the
context of L-optimality criterion. Third, we establish consistency and asymptotic normality
of the subsample estimator, which is helpful for performing statistical inference.

The remainder of this article is organized as follows. In Section 2, we briefly review
some natations for the multiplicative regression model. In Section 3, we present a general
subsampling algorithm, and establish consistency together with asymptotic normality of the
subsample estimator. Based on the L-optimality, we derive the optimal subsampling prob-
abilities. Meanwhile, a two-step subsample-based estimator and its asymptotic properties
are given. In Section 4, we conduct extensive simulations to demonstrate the effectiveness
of our method. Section 5 provides two real data examples. In Section 6, we provide some

conclusions and future research topics. All proofs are given in the Appendix.



2 Model and Notations

The multiplicative regression model is widely used when analyzing data with positive re-
sponses, such as incomes, stock prices and survival times, etc. Suppose that there are n
independent and identically distributed samples (Xy,Y;), - ,(X,,Y,), where Y; > 0 for

i=1,---,n. We consider the following multiplicative regression model (Chen et al., 2010),
}/;; = eXp(ﬁTXi)ei, (21)

where Y; is a positive response variable, X; € RP is a vector of covariates with the first
component being 1 (intercept), B8 = (B31,...,8,)" is a vector of regression parameters, and
€; > 0 is an error term. The true parameter value 3; is in the interior of a compact set
© C R”.

For convenience, we denote the full data as F, = {(X;,Y;)},. To estimate the pa-
rameters in model (2.1), Chen et al. (2016) proposed a least product relative error (LPRE)
criterion

“B) = % > Yiexp(=07X:) +¥; " exp(B7X,) — 2}, (2.2)
i=1
which is infinitely differentiable and strictly convex. The full data LPRE estimator is
ALPRE = arg mﬁin ¢(3). There is no closed-form of ,éLpRE, and a Newton-Raphson method
is usually adopted with the following iterative formula:

i) _ g _ JPUB™) T [ ogm)
(m+1) _ g(m) _ )} Z=\F T
ﬁ +1) ﬁ { 3535T } { 86 . (2.3)

Of note, the computational complexity when calculating B rprE is about O(Knp?), where K
is the number of iterations until convergence. As we can see, the computational burden is
heavy when the full data size is very large. To deal with this issue, we propose a subsampling-

based method for the purpose of reducing computational burden in next section.



3 Subsample-Based Estimation Method

3.1 A General Subsampling Algorithm

In Algorithm 1, we present a general subsampling procedure for the multiplicative regression
model. To establish asymptotic properties of the subsample-based estimator B, we need the
following regularity assumptions.

(H.1) Asn — o0, A =157 {Viexp(—B]'X;) + Y, " exp(B'X;) } X;XT goes to a positive-
definite matrix in probability.

(H.2) 257 Xl = Op(1) and 5 30 25 = Op(1), where || - | is the Euclidean norm.
(H.3) supseot Yy {Yiexp(=B7X:) + Y, exp(B7X,)} X412 = Op(1).

(H.4) suppeos 1y 2 {YViexp(—B7X,) + Y, exp(87X) } [ Xi|l* = Op(1), where k = 2
and 4.

(H.5) supgcos iy = {Yiexp(—B7X;) + ¥, exp(B87X:)} | X[ = Op(1),

i

Assumption (H.1) is commonly used for the multiplicative regression model (Chen et al.,
2010); Assumption (H.2) is a condition on both subsampling probabilities and the covariates;
Assumptions (H.3)-(H.5) are used to determine the convergence rate of B, together with its
asymptotic distribution.

The following theorem presents the consistency and asymptotic normality of the sub-
sample estimator 3 towards the true value @;, which is useful for conducting statistical

inference.

Theorem 1 If the assumptions (H.1)-(H.5) hold, for the subsample estimator B in Algo-
rithm 1 and any 0 > 0, there exists a finite As > 0 such that with probability approaching

one,
P18 -8 =285 | F,) <o (3.2)
Moreover, as r — oo and n — oo we have
=23 -8,) -5 N(0,1), (3.3)
where —% denotes convergence in distribution, and X = A1, A" with

I «— 1 - 2
Xe = ; ™ {—Yiexp(—B/X,) + Y, Texp(8{ X;) } XiXT. (3.4)
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Algorithm 1 General Subsampling Algorithm

e Sampling: Assign subsampling probabilities {7;}!_; to the full data F,, with > 7  m = 1,

and m; > 0. Draw a random subsample of size (< n) with replacement based on {7;}! ; from

Fn. Fori =1,...,r, we denote the covariates, responses and corresponding subsampling

probabilities in this subsample as X7, Y* and 7, respectively.

e Estimation: Based on the subsample {(Y;*,X?),i = 1,...,r}, we minimize the following

weighted least product relative error criterion function ¢*(3) to get an estimate B, where
£(8) = 130 L (1 exp(-B7X0) + Y7 expl8TX;) 2} 3.1)

r mr
i=1

Due to the convexity of ¢*(3), a Newton’s method is adopted until B+ and B are

closed enough,

Ao = [Z (B) + wi (B™) }XZ‘(XZ‘)T]

[ 1
7T*
=1 7

{18 + <B<m>>‘1}X:]




3.2 Optimal Subsampling Strategy

To practically implement the Algorithm 1, we need to specify the subsampling probabilities
m;’s. A simple choice is to use the uniform sampling with {m; = n™'}",. Because this
uniform sampling does not distinguish different data points, it is less effective compared
with nonuniform sampling approach. Theorem 1 shows that the distribution of 8 — 3, is

approximated by a normal random vector u with mean zero and covariace 3. The asymptotic

mean squared error (AMSE) of B is equal to the trace of X. i.e.,
AMSE(8) = E(||ul*) = tx(%), (3.5)

where tr(-) denotes the trace of a matrix. Therefore, we derive optimal subsampling probabil-
ities by minimizing the trace of the variance-covariance matrix 3. However, the calculation
burden of A~ is heavy due to big n. To further reduce the computational burden, we adopt
the idea of Loewner-ordering to define the partial ordering of positive definite matrices. For
two positive definite matrices I'y and I'y, we define the partial ordering as I'; > I'y if and
only if I'; — 'y is a nonnegative definite matrix. Following Wang et al. (2018b), we suggest to
specify the optimal subsampling probabilities by minimize tr(X.) rather than tr(X), which
is also referred to as the L-optimality criterion (Atkinson et al., 2007).

Theorem 2 Under the assumptions (H.1)-(H.5), if the subsampling probabilities are chosen
as

osp_ = YViep(=BIX) + Y e BIX)IK) .,
LTSI Yien(—BIX,) + Y L exp(BIX)[ XS]

on, (3.6)

then tr(X.) attains its minimum.

3.3 Two-Step Subsampling Algorithm

The optimal subsampling probabilities {797}

?_, cannot be used directly because they de-
pend on the unavailable B;. As suggested by Wang et al. (2018b), we use a pilot estimator
By to replace the B, in (3.6). In addition, for those data points with Y; ' exp(87X;) be-
ing close to Y; exp(—B1X;), the corresponding subsampling probabilities are very small. If

these data point are selected into a subsample, the weighted criterion function ¢*(3) given in
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(3.1) would be dominated by them. To protect the ¢*(3) from being inflated by these data
points, we truncate | — Y; exp(—BF X;) + Y, ' exp(8]'X,)|||Xs|| by maz (] — Y; exp(—BLX;) +
Y exp(BIX;)|||Xq], v), where v > 0 is a specified bound, e.g. v = 107%. We summarize

7

the above procedure in the following Algorithm 2.

Algorithm 2 Two-Step Strategy
Step 1.

e Take a pilot subsample with size ry from F,, by uniform subsampling probabilities {m; =

n~1}"_,, we obtain a pilot estimate By through minimizing (3.1).
e For i =1,---  n, we calculate the subsampling probabilities
() — e = Vien(-BEX) + ¥ exp(B X)X .
> max(| = Yjexp(=B7X;) + Y exp(85 X)||X,]], v)
Step 2.

e Draw a subsample of size r with replacement from JF, based on the subsampling prob-
abilities m;(By)’s. Using the subsample F, = {(X*, Y/, 7)}_,, we can obtain a two-step

7

subsample estimator 8 through minimizing

058 == — (Vexp(—BTX)) + Y exp(TX0) — 2} . (38)

Note that we first takes a pilot subsample of size ry and then selects an optimal subsample
of size r in the Algorithm 2. We do not recommend to combine the two subsamples together
for outputting estimator. The reason is that if we can perform statistical analysis using a
combined subsample with size ry + r, then we would own a better subsample by setting the
subsample size in the second step as rg + r directly. Below we establish the consistency and
asymptotic normality of é towards 3;. We need the following regularity moment conditions:
(HL6) supseot S0, {¥iexp(~B7X,) + Y, exp(87X,)}* = Op(1)

(EL7) L570, IX]* = Op(1).

Assumptions (H.6) and (H.7) impose some moment conditions on the covariates and
the responses, which are needed for the development of theoretical properties for the two-
step subsample-based estimator. The assumptions (H.6) and (H.7) are reasonable in most

practical situations.



Theorem 3 Under assumptions (H.1), (H.3), (H.6) and (H.7), for any § > 0, there exists
a finite As > 0 such that with probability approaching one,

P@B—@HZFWAﬂEJ<d (3.9)
Moreover, as r — oo and n — 0o, we have
=28 - B,) = N(0,1), (3.10)

where % denotes convergence in distribution, and X = AflfloptA*1 with

5 1 1i {YViexp(—B7X,) + Y, exp(B7X,)} X, XT
W7 L max {| — Yiexp(—BTX,) + Y, Lexp(B7 X)X o}

1” -
X [H > max {| - Yiexp(—8/ X;) + Y exp(,@in)]HXiH,U}] : (3.11)
and v > 0 is a pre-specified truncation value, e.q. v = 1075,

In order to perform statistical inference, we need to provide an estimator for the variance-
covariance matrix X. A simple way is to replace B; with B for the asymptotic variance-
covariance matrix in Theorem 3. However, this approach based on the full data F,, with
heavy calculations. To alleviate computational burden, we adopt the method of moment to
estimate the variance-covariance matrix ¥ with a subsample F, = {(X*, Y, 7*(8o))}, in

the second step of Algorithm 2,

Y= AT, AT (3.12)
where
A=ty g L el 4 el 87X X0
=1
and

Note that E(A|F,) = A and E(Zp|Fn) = Zopt, if we replace 8 with 8, in 3,,,. That is to
say, both A and f]opt are unbiased estimators of A and 3., respectively. We will check the

performance of this estimated variance-covariance matrix in (3.12) via numerical simulation.
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4 Simulation

In this section, we conduct extensive simulations to demonstrate the effectiveness of our pro-
posed subsampling method. The true parameter value is chosen as 3; = (0.5,1,0.5, —0.5,0.3)7".
Denote X = (1, X™)7 with X = (X1,...,X4)T, i.e. p=15. We consider the following four

cases for the generation of covariate X,

Case 1. X ~ N(0,9), where Q;; = 0.5/,
Case 2. X ~ 0.5N(1,9Q) + 0.5N(—1,Q), where £;; = 0.5/,

Case 3. X ~ t5(0,Q). i.e., X follows a multivariate ¢ distribution with degree of freedom 5

and covariance matrix 2;; = 0.5l

Case 4. X = (X1,...,X4)T, and X;’s are independent and identically distributed exponen-

tial random variables with probability density function f(z) = e™*.

We consider two cases for the error term: log(e) follows N(0, 1), and log(e) follows
Uniform(—2, 2). The ry in step 1 of Algorithm 2 is chosen as 1o = 500, and the subsample
size is r = 600, 800 and 1000, respectively. All the simulation results in Tables 1—5, together
with Figure 1 and 2 are based on 500 replications with n = 106.

We evaluate the performance of our optimal subsampling criterion (OSC) given in the
Algorithm 2. Note that Ma et al. (2020) presented eight different nonuniform subsampling
probabilities in the context of linear models. However, it is not clear how to directly extend
these sampling methods to the multiplicative regression due to its nonlinearity. Anyway, we
have tried the eight subsampling probabilities of Ma et al. (2020), and found two of them are
better than the uniform subsampling for multiplicative regression. Therefore, we consider
the uniform subsampling (UNIF) probabilities, root leverage subsampling (RL) probabili-

ties and inverse-covariance subsampling (IC) probabilities for comparison, i.e., 77N = %,

aRL — _IIXXTX) x|
i > iy X(XTX) = x|

and 7/¢ = Z?[ﬁ?))((%;)ﬂlxl-ll’ respectively. It is worth to pointing

out that 7F and 7/¢ are two ad hoc subsampling probabilities for our method, because
their expressions are derived from the linear model rather than the multiplicative regression

model. In Tables 1-4, we present the estimation results for §; (intercept) and 3, (3;’s are
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similar to 3y and omitted, i = 3,4, 5), which include the estimated bias (BIAS) given by the
sample mean of the estimates minus the true value 8, , the sampling standard error (SSE)
of the estimates, the sample mean of the estimated standard errors (ESE), and the empirical
95% coverage probabilities (CP) towards the true value 3; based on normal approximation.
From the results in Tables 1-4 we can see that four subsample-based estimators seem to be
unbiased, the SSE and ESE are similar, and the coverage probabilities of confidence intervals
are satisfactory. Furthermore, these estimators become better as the subsample size r in-
creases. Moreover, the SSE and ESE of OSC-based estimator are much smaller than those of
other subsampling-based estimators. The performances of RL and IC are better than UNIF
for By, while the RL and IC are not uniformly better than the UNIF towards the intercept
term B3;. Similar conclusions are also found in the linear model (Wang et al., 2019; Zhang
and Wang, 2021).

To further investigate the superiority of our proposed subsampling method, we calculate
the MSEs of 3 from 500 subsamples using MSE = ﬁ 230:01 HBW — ,BtHz, where 3@ is from
the dth subsample. We present the MSEs of each method in Figures 1 and 2. It is clear to
see that the RL, IC and OSC always result in smaller MSEs than the UNIF. Furthermore,
the OSC leads to the smallest MSEs compared with other sampling probabilities. The MSEs
decrease as r increases, which confirms the consistency of our subsampling method. From

=12 To improve

Theorem 3, the convergence rate of the proposed subsample estimator is r
the estimation efficiency, we suggest to choose a subsample as large as possible according to
the available computing resources. As suggested by one reviewer, it is interesting to explore
the influence of the pilot subsample size ry. In Table 5, we present the estimation results for
case 1 with different sample size ry = 400, 500 and 600, respectively. As mentioned before,
the pilot subsample with size ry does not come into the estimation step in Algorithm 2.
The results for other cases are similar and omitted. The results in Table 5 indicate that the
performances of subsampling methods are similar if rq is relatively large (e.g. 79 = 400).
We conduct the second simulation to assess the computational efficiency of our proposed
subsampling method. We generate data using the same mechanism as the first simulation

with Case 1, except that B; = (0.5,...,0.5)7 with p = 5, 50 and 100, respectively. Table
6 reports the required CPU times (in seconds) to obtain B with ro = 500, » = 1000,
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n = 105 3 x 10%, 5 x 105 and 107, where the Algorithm 2 is implemented on a single
core. All computations are carried out on a laptop running R software with 16GB random-
access memory (RAM). The computing time for the full data method is also reported for
comparison. Of note, the results are the CPU time when implementing each method in the
RAM, while the time to generate data is not counted. Moreover, the results are the mean
CPU time of ten replications. The subsampling probabilities of RL and IC are approximated
by the fast algorithm in Drineas et al. (2012). It can be seen from the results that the UNIF
is much faster than the other methods. The main reason is that the UNIF does not require
an additional step to calculate the subsampling probability. It is clear that our proposed
OSC takes less computing time compared with the RL, IC and full data methods, and its

advantage is more significant as the full data size n increases.

5 Application

5.1 The Bike Sharing Data

In this section, we apply our proposed method to the bike sharing dataset, which contains
17,379 observations. We consider four covariates : a binary variable “workingday”(X;) to
indicate whether a certain day is a working day or not(1 = working day; 0 = non-working
day), three continuous variables: temperature(Xs), humidity(X3) and windspeed(Xy). The
square of the number of bikes rented hourly is used as the response. For comparison, we also
provide the full data LPRE estimator B prp = (2.2142, —0.0342, 1.4525, —1.1379,0.1816) %,
where the first term is an intercept. As we can see, the rented bikes in non-working days are
more than that of working days. The temperature and windspeed have a positive influence
on the number of rented bikes, and the humidity has a negative effect. The ry in step 1 of
Algorithm 2 is chosen as rg = 200, and we give the OSC, UNIF, RL and IC subsampling-
based estimators and calculate the SSE and ESE based on 1000 subsamples with » = 200, 400
and 600, respectively. The BIAS is given by the sample mean of the estimates minus the
full data LPRE estimator. The results in Table 7 indicate that four subsample estimators

are unbiased, and the SSE and ESE are similar. Moreover, we report the subsampling-based
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estimators and the 95% confidence intervals with one subsample in Table 8. As expected, the
confidence intervals constructed by our proposed method are shorter compared with other
subsampling method. For all subsampling methods, as r increases, the length of confidence
interval decreases. To further check the rationality of our method, We calculate MSEs
of 3 with MSE = ﬁ Zig)lo ||B(d) — BLPREHQ, where 8@ is a two-step subsampling-based
estimator from the dth subsample. In Figure 3, we present the MSEs of four subsampling-

based estimators. It is observed that the OSC results in the smallest MSE.

5.2 The Electric Power Consumption Data

We apply our proposed method to an electric power consumption dataset, which contains
2,049,280 completed measurements for a house located at Sceaux between December 2006
and November 2010. For analysis, the minute-averaged current intensity(in ampere) is used
as the response. We consider three covariates: active electrical energy in the kitchen(Xj,
in watt-hour), active electrical energy in the laundry room(Xs, in watt-hour), and active
electrical energy for an electric water-heater and an air-conditioner(Xjs, in watt-hour). All
covariates are centered and scaled with mean 0 and variance 1. The full data LPRE estimator
is BrprE = (1.1162,0.2205, 0.2045,0.6326), where the first term is an intercept. The ry in
step 1 of Algorithm 2 is chosen as ry = 500, and we give the OSC, UNIF, RL and IC
subsampling-based estimators and calculate the corresponding SSE and ESE based on 1000
subsamples with » = 600,800 and 1000, respectively. Similar to section 5.1, we report
the BIAS, SSE and ESE in Table 9. Moreover the subsampling-based estimators and 95%
confidence intervals with one subsample are presented in Table 10. The corresponding MSEs
are reported in Figure 3. It is clear to see that the overall performance of OSC is much

better than those of the other three subsampling probabilities.

6 Conclusion

In this paper, we have studied the statistical properties of a general subsampling algorithm
for multiplicative regression model with big data. Based on the asymptotic property of

subsample estimator, we derived optimal subsampling probabilities under the L-optimality
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criterion. For practical implementation, a two-step algorithm was developed, for which we
also derived some theoretical properties. Simulation studies and two real data examples were
used to verify the effectiveness of our method. In recent years, many sampling methods have
been developed, such as Meng et al. (2021) and Ma et al. (2020). The two papers mainly
focused on subsampling methods in the context of linear models. As suggested by one
reviewer, it is desirable to consider the Randomized Numerical Linear Algebra algorithms
for the multiplicative regression model. Moreover, how to design optimal subsampling for

misspecified multiplicative regression is an interesting research topic.
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Appendix
In this Appendix, we give the proof details of Theorems 1-3.

Lemma 1 If the assumptions (H.1)-(H.5) hold, then conditionally on F,, we have

é* (ﬁt) = Op|]:n (T71/2) s (Al)

and

A —A=O0pg, (r'?), (A.2)
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where

. 1 -1 * *
(8) = =3 e8I + Y exn(BTX0) P X,

A [ > (ﬁ ) 1 1 * * 1 * * *
A=t (5t):—t:;z ; {Yz exp(— tTXz'>+Y; exp( tTXz)}Xz(Xz)T
Proof. Direct calculation yields that
. 1 —
E{ = —Y;exp(—B{ X;) + Y, [ X)X,
{17} = L Ne(-BIX) +3) exn(6]X)}
— Op (0. (A.3)
This is because for each element of ¢* (3;), say E; (By), for 1 < j < p, we have
E[E{ 81} =0, (A4)

and

1 < - )

i=1

Var [E {é;f (8,) \an —F

1 1 " T -1 T 2 2
< -E|- Zz; {Viexp(—B{ Xi) + Y, " exp(8{ Xi) } ™ [|X4]| ]
—0p(n ), (A.5)

where the last equality is from the assumption (H.3). Combining (A.4), (A.5) and Cheby-
shev’s inequality, we have F {E* (Be) ]Fn} = Op (n1/%).
By the assumption (H.4), for j = 1,...,p, we can derive that

: 1= 1
Var {65 (8)1F} =~ [ > —— {—Yiexp(=BIX) + Y, exp(B/ X))} X, X,
1 T

1=

n 2
N {% Z {~Yiexp(=B/Xi) + Y exp(B{ X,) } Xij} ]
i=1

1 1 B 9
=3 = {Viep(=87X) + Y, exp(B7X0) Y X
i=1 "

IA

OP (7"_1) . (AG)

15



From (A.3), (A.6) and the Markov’s inequality, we have

P

Var {6* (By) \fn}
(BET_I/Q)Q

i (B) — B{ (B} 2 Ba2|F, | <

where

Var {i* (8|7} v

-1

B. =

T €

This implies (* (B) — E{é* (Br)} =O0p (7‘*1/2)' Combining this and (A.3), we have 0 (B;) =
E{U" (B)} + Op (’”_1/2) =Op (n'?) + Op (7’_1/2) =0Op (7’—1/2).
To prove (A.2), direct calculation yields that

E (Am) — A (A7)
For any component A% of A with 1 < j; < jp, < p,

Var (Aj1j2|fn> =F <Aj1j2 _ Aj1j2|]:n>2
1 1 - . . 1P
= Z i | {Yiexp(=B8/ Xi) + Y, exp(B) Xi) } i, 215, — A2
i=1 ‘

—1 En 1 1 .
- n2r ;Z {Y; eXp(_IB,tTXZ') + Yi_l exp( ;‘FXz)}2 (xijl.flj'ij2)2 - (A]1]2)2
i=1

1 1 - )
< >0 — {Yiexp(=B87 X)) + Y, exp(B1X) ) X
i=1

1

=0p (r), (A-8)

where the last equality is from the assumption (H.4). The Markov’s inequality, (A.7) and
(A.8) imply (A.2). This ends the proof. [

Proof of Theorem 1. Note that

T

% 1 1 * * * * * 1 .
F(B) =3 — { o exn(-BIX) + Y e BIXD X =S Y6 (A9)
=1 g =1
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where

1 _
§&i=— {—YZ-*GXP(— X))+ Y "exp( tTXf)}XZ‘, i=1,...,7
n;

For each element of §;, say &;;, for 1 < j <p. Given F,, &,...,§, are i.i.d with
1< _
B (€l F) = — S {-Viesn(—87X) + Y, exp(BX)} Xy
i=1
and

1 1 - )
Var (&;|F,) =r¥. = — Z — {—Yiexp(—B{ X;) + Y Texp(B! Xi) } XXy
i=1 "
1 n 2
5 Z {—Y; exp(—BI X;) + Y, exp(ﬁtTXz-)} Xij
i=1

1 1 B )
2 Z .y {—Yiexp(=B/X;) + Y exp(B{ X))} Xi;Xy5 + op(1)
i=1 """

1 1
<D — {Vexp(-B/ X+, exp(B7X,) ) X, )1% + op(1)
i=1 "
=0r(1), (A.10)

Meanwhile, for every 7 > 0,

S E{Ir 2l (28] > 1) 17 )
=1
=S B{Ir el (&) > r/r) |17 |
=1
Iy .l
<22 (16

1
< b (1&:]1°|F)

I 11 _ 3
= 5 0 5 - Yie(=BTX0) + Y, exp(B] X))} X
i=1 "

By the assumption (H.5), as r — oo we have

s B 9 - 1
;E {Ir &0’ 1 (17726 > 7) 1Fa} < 7 - Op(1) = 0p(1).
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This and (A.10) show that the Lindeberg-Feller conditions are satisfied in probability. From
(A.9) and (A.10), by the Lindeberg-Feller central limit theorem in Proposition 2.27 of Van der
Vaart (1998), conditionally on F,,

20_1/26* (ﬁ ) = 1/2 {V&T (Ez‘f _1/2 igz — N (07 I) <A11)
=1

in distribution.
Because the estimator B is the minimizer of *(B), \/F(B — ;) is the minimizer of
D* (A) =05 (B + A/y/1T) — £* (B¢), where A € RP. By Taylor’s expansion,

D*(N) = XTI (8) + 5 AT (B) A+ 0p(1)

\/F
1
=Nz + §>\TH*>\ +op(1), (A.12)

where Z* = 20" (8,) and H* = 1% (B,).
Due to D* (X) is convex, from the corollary in page 2 of Hjort and Pollard (2011), its
minimizer \/7(3 — 3;) satisfies

V(B —B)=—(H")"'Z" +op(1). (A.13)

Thus,

p-p——ref1E <ﬁt>}1 {00} + ot
= —A7W*(B) + op(1). (A.14)

From Lemma 1, A=' = Opjz, (1). Combining this with (A.1) and (A.14),
B-B = Op|7, (7“_1/2) +op(1),
which implies that
B—B = Opyr, (r 1/2) - (A.15)
From (A.2) of Lemma 1,

A=A =AY A= ANAT =0p5, (r7?). (A.16)



Based on (H.1) and (A.10), it is verified that
E=ATS AT =0pzF (r). (A.17)
In view of (A.14), (A.16) and (A.17), we can derive that
S2G - B) =512 {—Aflé* (8) + op(1)}
= —S72AY(B) — ZTVA(AT =AY (B)) + op(1)

= —E_l/zA_lEi/zEc_l/Qé* (,Bt) + OP\]—'n (7"1/2) Op|]:n (7“_1/2) OP|.7-'n (7"_1/2) + OP(l)

=~ WPACISS 20 () + Opys, (r2) + op(1). (A.18)

Due to the fact that X-/2A-15Y?(2-1/2A-15*)T = I, (A.11) and Slutsky’s Theorem,
we have 371/2(3 — 3,) converges to N(0,I) in distribution given JF, in probability. This

means that for any x € R?P,
P{ET(B - B) < a|F} = @ (), (A.19)

in probability, where ®(x) is the cumulative distribution function of standard multivariate
normal vector. Note that the (A.19) is a bounded random variable, convergence in probability

to a constant implies convergence to the mean. Therefore, the unconditional probability

P{s2(3-p) <a} = E[P{S(B-B) <alF}] - o).

This ends the proof. 0

Proof of Theorem 2. Note that

tr(X.) = % > tr H {—Yiexp(—B7X,) + ¥, exp(B7X,)} XiXiT]
i=1 ¢

1 < - 1
=2 Tt [; {~Yiexp(-87X) + Y exp(87X,)}’ Hxiuﬂ
i=1 i=1 v

i=1

n 2
> {Z |~ Yiexp(—B"Xy) +7; ! exp(ﬁTXmuXin} 7

where the last inequality is from Cauchy-Schwarz inequality and the equality holds if and
only if m; = C| — Yiexp(—BTX;) + Y, ' exp(87X;)|||X;]| for some constant C' > 0. This
completes the proof. [
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We first establish two lemmas that will be used in the proof of Theorem 3.

Lemma 2 If Assumptions (H.3), (H.6)-(H.7) hold, then for ky = 2,4,

i "1
:(Bo)

{Yiexp(—B"X;) + Y; ' exp(87X)) } 1X;]" = Op(1). (A.20)

Proof. From the expression of m;(3y),

n

1 1
n? = m,(Bo)
1~ {Yiesp(=B7X0) + Y exp(87X0) ) X
* S max {I — Yiexp(—BIX;) + ¥, eXp(BgXi)|||Xi||>U}

[V, exp(—B87X;) + Y Lexp(B7X,) ) X[

x Y- maa{| = Yiexp(=B1X:) + Y, exp(B X)X v}
=1
1 o - )
< > {Yiexp(=B7X) + ¥, exp(87X0) ) X"

n

x =3 {1 = Yiexp(=BTX:) + Y exp(BT X)Xl + v} (A.21)

=1
Note that
B | {Yiexp(=A"X,) + ¥, exp(87X0) } X"
< [B{Viexp(=B7X) + ¥, exp(87X0) } B (1)) oo (A.22)

where the last inequality is from (H.6) and (H.7).

By the assumption (H.3), we have

—Z{ Y; exp(— (:]FXi)—i-Yi_l eXp(~gXi)|HXi|| "‘U}

n

1 - - 3
< =3 {Wep(=BX0) + Y, exp(BEX0)| X + v

i=1

= Op(1).

Combining this with (A.21), (A.22) and using the law of large number, (A.20) follows.
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Lemma 3 If Assumptions (H.1), (H.3), (H.6) and (H.7) hold, then conditionally on F, in

probability,
5 (B) = Opiz, (r'7?), (A.23)
and
ABO —A= Op|]:n (T71/2> s <A24)
where
: 1

— {7 exp(- X)) + ¥ exp(B] X)) | XX
i=1 nﬂ-z*(BO)

Proof. Direct calculation yields that

B {is (B)|7.} = iZ{ ~Yiexp(—AIX,) + Y, exp(B1X)} X,

=Op (n7'?). (A.25)

This is because for the jth element of 62;0 (B:), say 62‘30 ; (B), 1 < j<p, we get

BlE{i; (817 }] =0 (A.26)

and

Var [E {g};o] (Br) ]FnH =

1< ~ )

i=1

% Z {Y exp(—B] X;) + Y, ! exp( ;[Xz)}Q HXz“Q]
=0p (n_l) . (A.27)

Combining (A.26), (A.27) and Chebyshev’s inequality, we have F { (Be) | Fn } =0p (n_l/Q).

By direct calculation,

1|« 1
VC““{ (B |f} ;[;m{—ﬁem(— TX,) + Y, exp(B7X,) ) XX
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n 2
- {% > {—Yiexp(—B/X;) + Y exp(B/Xi) } XU} ]
=1

1 1 2
S - — {Yiexp(—6/X;) + Y, exp(8/ Xi)} " | Xi?
n’r i=1 7Tz*(60) { ' ' }
—0p (rY). (A.28)

From (A.25), (A.28) and the Markov’s inequality, we have EEO (ﬂt)—E{égo (B)} = Op (r=/?).
Combining this and (A.25), we have ﬁ*ﬁo (B) = E{ﬁga (B)} + Op (r72) = Op (n72/2) +
Op (7”_1/2) =0Op (7”_1/2).

By direct calculation,
E (Aﬁom) = Eg, {E (Aﬁo|fm@0)} = Eg (A|F,) = A, (A.29)

where E5 means the expectation is taken with respect to the distribution of Bo given F,.

For any component AZ;O” of ABO with 1 < j; < j5 < p,

Var <A§52 | s Bo)

n

1 1 9 1 o
= — - }/; _ ,T:X'_2 Y—l TXZ i T 2 _ - A]1]2
n27" — 7Ti(,60) { eXp( ﬁt ) + i eXp(/Bt )} (.T ]1xz]2) r ( )
1 < 1 2
5 — {Viexp(—8/ X;) + Y, " exp(8/ X; X[
= w2 2 Gy {Yiexp(=B8;/ Xi) + Y, exp(8, X,) }~ X4l
=0p (), (A.30)

where the last equality is from Lemma 2. From (A.29) and (A.30) together with Markov’s

inequality, (A.24) follows.

Proof of Theorem 3. Note that

r

px _1 1 ok AT~ w1 T ~7 * * _1 . Bo
ggo (By) = - ; —nﬂ_;(éo) { Vi exp(—=B; X]) +Y"  exp(B, Xz)} Xi = ” ;51 , (A31)

where

Efo = R {—Y;* exp(—BL X)) + Yir1 eXp(BfX:‘)} X i=1,...,r
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For each element of 5?0, say 55". Given F, and Bo, 5?0, e ,5?0 are i.i.d with
~ _ 1 n B
B (€117 Bs) = — > {~Yiexp(=BX0) + ¥, exp(B/ X))} X,
i=1

and

n

Var (£§°|fn, BO) — %, = i (‘; | {—Yiexp(—B7X,) + Y L exp(87X:)} X, X
0

2
- [% Z {_Yi exp(—ﬁtTXi) + Y;_l eXP(IBtTXi)} Xij
i=1

n

= i Z ; {—Yz’ exp(—ﬁTX,») + Yi_l eXp(IBTXi)}2 XijXij +op(1)

n? i—1 7 (Bo)
< % w(Bo) {Yiexp(—8"X; + Y, eXp(ﬁTXi)}Q X1 + op(1)
=1 ?
— Op(1). (A.32)

Meanwhile, for every 7 > 0,
! s 2 5 .
S B { It (1) > 1) o
i=1
" 5 2 5 .
=SBl e T (18 > ) 17
i=1
1§ oz IEXN -
S ;ZE (H&?OHQ 1/2 "FnMBO
i=1

1

< 7 E(usf’ou?’\fméo)
_ 3
- 1/27'7132 { Y; exp(— ﬁt i)+, leXP( ?Xz)} HXZH3
STI/QTH?)Z {Yexp (—B7X,) + Y, exp(B7 X))} 1P
_ 3
_ mexp(_ﬁ?Xz’)Hfi texp(B7 Xa) T |IX )
N 7“1/2752

B N 2
=1 [maz {| - Yiexp(=BEXy) + ¥ exp(80X0)| 1K, v}

n 2
X [Zma:c{\ — Yiexp(—B) X;) + Y; " exp( ng’)|||Xz'||7U}]

| /\

z {Viexp(=BXy) + Y, exp(BX0) 11X
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n 2

x [ {IViexp(~BI%X) + ¥ exp(BIX) X + 0}
i=1

3|

= op(1),

where the last equality is from the assumption (H.3), (H.6) and (H.7). This and (A.32) show
that the Lindeberg-Feller conditions are satisfied in probability. From (A.31) and (A.32),
by the Lindeberg-Feller central limit theorem (Proposition 2.27 of Van der Vaart (1998)),
conditionally on F, and B,

50\ 1/2 e 1 - -1/2 L =
(S0, (8) = —5 {var€®|1 7)) Yo €P = N0 (A.33)
=1
in distribution.

Note that

n _ 2
v 1 lz {Yiexp(—BFX,) + Y, Lexp(BF X))} X, XTI
Pt n “~ max (| — Y; exp(—BFX;) + Y, exp(BFX,) ||| X |, v)

i=1

-~

Eq

1< _
X{Ezm%ﬂ—yﬁxp(— { Xi) + Y exp( tTXz')!HXz'HW)}»
=1

J/

B
and
s _ L1 {Yiexp(=B"X) + Y exp(BX0)} XXT
opt — |

r " max (| - Yiexo(=85X0) + Y exp(B7X0) Xl v)

J/

Es
1 & N B -
x {g >~ maa (| = Yiexp(=B]X) + Y, exp(B7 X)X, ) } .
=1
Eq

The distance between X, and 2?& can be described as
1B — Sopell < 7Y Ey — Es|| - [|Esll + || Ea — Eal| - || Bs]. (A.34)

By the assumption (H.3) and ||By — 3| = Op(ral/Q), we can deduce that

_ 11 & ~ 5 .,
r By — Bl < - > {Viexp(—BXi) + Y, exp(B7 X))} IIXal*| - 1180 — B
=1

r | nu? 4
K2
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= O0p(r~'ry %),

and

n

1 _
|22l < =D (Wiexp(=8Xi) + ;" exp(B X)X + )
i=1
= Op(1).
Similarly, we have r || Ey — Ey4|| = Op(rflro_l/g) and || Es|| = Op(1). Therefore,

||20pt - 2?&” =Op <T_17‘¢3_1/2> . (A.35)

The estimator B is the minimizer of %O (B), so \/F(B — (3¢) is the minimizer of D (A) =
3, (B + A/\r) — e (B:), where XA € RP. By Taylor’s expansion,
)k 1 T px 1 T px
v 1 o
=Tz + 5>\TH*>\ + op(1), (A.36)

where Z* = \}% (B,), and H* = %6;0 (B:). Since D* (A) is convex, from the corollary in

page 2 of Hjort and Pollard (2011), its minimizer /r(8 — 3;) satisfies
V(B —B)=—(H")"Z" +op(1). (A.37)
Thus,
g —— {1 ) (i 80} ont)
r Bo \/_

= —AZ0 (B:) +op(1). (A.38)

From Lemma 1, Aﬁtol = Op|z, (1). Combining this with (A.23) and (A.38)
B-B = Op|7, (7”_1/2) +op(1),

which implies that

B—Bi=0pz, (r'7?). (A.39)
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From (A.24) of Lemma 3,
A - AT =AY A — AAZ = Opiz, (1) (A.40)
From (A.38),(A.39) and (A.40),
STVHB - B) = =2 {AGl (B) +or(1)}
= —SPATE (B) - 2—1/2(11501 — A5 (Br) + op(1)
= —2_1/21\_1(Efﬁt)l/Q(Efﬁt)_l/zégo (Br) + Op7, (7’1/2) Op|z, (7"_1/2) Op\z, (7“_1/2) +op(1)
= =SS A (0 TR (B) + Opps, (r7?) + 0p(1).
The result in Theorem 3 follows from Slutsky’s Theorem and the fact that

271/2A71(2é§£t)1/2 {271/2A71(2[§0

opt

)1/2}T _ y-1/2pA 1380 A —152—1/2

opt
_ E—I/QA—IZOptA—12—1/2 + OP(T_ITO_I/Q)

=TI+ Op(?“’lral/Z),
which is obtained using (A.35). This means that for any & € RP
P{ST2(B - ) < alF fo} — 0(a), (A41)

in probability. Since the conditional probability is a bounded random variable, convergence
in probability to a constant implies convergence to the mean. Therefore, the unconditional

probability
O S SRR B

This ends the proof. O
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Table 1. Simulation results on the two-step subsample estimator 4, with log(e) ~ N(0,1).

0OSC UNIF
r BIAS SSE ESE CPp BIAS SSE ESE CPp
Case 1 600 —0.0012 0.0309 0.0302 0.942 —0.0027 0.0464 0.0428 0.932
800 —0.0012 0.0261 0.0260 0.944 —0.0004 0.0386 0.0374 0.944
1000 —0.0001 0.0210 0.0233 0.970 —0.0004 0.0354 0.0337 0.930

Case 2 600  0.0003 0.0308 0.0297 0.936 0.0009  0.0450 0.0429 0.948

800 —0.0013 0.0260 0.0257 0.940 —0.0003 0.0374 0.0375 0.938
1000 —0.0012 0.0235 0.0230 0.948 —0.0003 0.0337 0.0338 0.954
Case 3 600 —0.0025 0.0312 0.0313 0.952 —0.0011 0.0430 0.0431 0.956
800  0.0014 0.0285 0.0272 0.948 —0.0005 0.0374 0.0376 0.942
1000 0.0006  0.0256 0.0242 0.942 —0.0003 0.0337 0.0339 0.958
Case 4 600 —0.0022 0.0778 0.0764 0.948 —0.0013 0.1006 0.0955 0.928
800  0.0034 0.0666 0.0661 0.948 —0.0016 0.0798 0.0834 0.964
1000  0.0056  0.0593 0.0591 0.950 —0.0013 0.0754 0.0754 0.952
RL IC
r BIAS SSE ESE CP BIAS SSE ESE CPp
Case 1 600 —0.0002 0.0465 0.0447 0.928 0.0027  0.0477 0.0454 0.936
800 —0.0018 0.0378 0.0387 0.962 —0.0030 0.0403 0.0395 0.940
1000 —0.0001 0.0349 0.0350 0.944 —0.0002 0.0363 0.0356 0.944
Case 2 600 —0.0002 0.0452 0.0443 0.944 —0.0024 0.0476 0.0465 0.948
800  —0.0001 0.0390 0.0385 0.944 0.0021  0.0425 0.0408 0.942
1000 0.0006  0.0341 0.0346 0.960 —0.0001 0.0386 0.0368 0.938
Case 3 600  0.0002  0.0473 0.0458 0.940 —0.0031 0.0456 0.0455 0.948
800  0.0026  0.0408 0.0400 0.942 0.0009  0.0428 0.0400 0.928
1000 0.0012  0.0359 0.0359 0.956 —0.0024 0.0371 0.0359 0.950
Case4 600  0.0039 0.1040 0.0990 0.928 —0.0032 0.0898 0.0871 0.938
800  0.0053 0.0869 0.0865 0.946 —0.0007 0.0765 0.0759 0.954
1000 —0.0013 0.0769 0.0774 0.950 —0.0027 0.0704 0.0683 0.936
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Table 2. Simulation results on the two-step subsample estimator f, with log(e) ~ N(0,1).

0OSC UNIF
r BIAS SSE ESE CPp BIAS SSE ESE CPp
Case 1 600  0.0010 0.0313 0.0326 0.954 —0.0001 0.0499 0.0491 0.936
800  0.0003 0.0283 0.0281 0.944 0.0007  0.0424 0.0430 0.944
1000 —0.0004 0.0252 0.0250 0.946 —0.0016 0.0399 0.0387 0.942

Case 2 600 —0.0017 0.0667 0.0629 0.946 0.0032  0.0931 0.0902 0.952

800 —0.0012 0.0545 0.0545 0.948 —0.0021 0.0827 0.0794 0.942
1000  —0.0001 0.0492 0.0486 0.938 —0.0005 0.0767 0.0718 0.922
Case 3 600  0.0002 0.0248 0.0236 0.938 —0.0021 0.0376 0.0374 0.944
800 —0.0018 0.0201 0.0203 0.964 —0.0003 0.0347 0.0333 0.946
1000  —0.0009 0.0169 0.0180 0.972 —0.0011 0.0311 0.0299 0.942

Case 4 600 —0.0003 0.0257 0.0265 0.962 0.0012 0.0428 0.0418 0.940

800 —0.0004 0.0233 0.0229 0.954 —0.0006 0.0385 0.0368 0.936
1000 —0.0014 0.0203 0.0205 0.948 —0.0007 0.0345 0.0331 0.938
RL IC
r BIAS SSE ESE CP BIAS SSE ESE CPp
Case 1 600 —0.0010 0.0480 0.0466 0.948 —0.0009 0.0491 0.0466 0.934
800 —0.0022 0.0408 0.0408 0.950 —0.0012 0.0457 0.0408 0.926

1000  —0.0006 0.0361 0.0367 0.962 0.0003  0.0360 0.0366 0.946

Case 2 600 —0.0058 0.0879 0.0860 0.936 0.0006  0.0867 0.0850 0.950
800 —0.0029 0.0778 0.0750 0.934 0.0068 0.0771 0.0749 0.940
1000  0.0008  0.0674 0.0677 0.948 —0.0001 0.0695 0.0673 0.946

Case 3 600 —0.0027 0.0339 0.0336 0.942 —0.0020 0.0339 0.0335 0.944
800 —0.0012 0.0293 0.0294 0.954 0.0021  0.0297 0.0295 0.944
1000  —0.0003 0.0262 0.0264 0.948 0.0015 0.0282 0.0263 0.938

Case4 600 —0.0011 0.0366 0.0379 0.952 —0.0001 0.0406 0.0397 0.944
800  0.0001 0.0322 0.0331 0.950 0.0002  0.0368 0.0352 0.930
1000 0.0002  0.0285 0.0298 0.946 0.0004 0.0336 0.0313 0.936
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Table 3. Simulation results on the two-step subsample estimator 31 with

log(€) ~ Uniform(—2,2).

0OSC UNIF

r BIAS SSE ESE CPp BIAS SSE ESE CPp

Case1 600 —0.0015 0.0328 0.0332 0.964 0.0018 0.0386 0.0384 0.950
800  0.0022  0.0295 0.0287 0.950 0.0007  0.0318 0.0333 0.962

1000 —0.0014 0.0260 0.0256 0.958 —0.0017 0.0305 0.0298 0.938
Case 2 600 —0.0021 0.0337 0.0328 0.930 —0.0005 0.0393 0.0385 0.948
800  —0.0020 0.0287 0.0284 0.930 —0.0015 0.0337 0.0333 0.944
1000  —0.0019 0.0252 0.0254 0.944 —0.0002 0.0297 0.0298 0.956
Case 3 600  0.0004 0.0343 0.0346 0.956 —0.0004 0.0389 0.0385 0.948
800 —0.0026 0.0294 0.0299 0.956 —0.0013 0.0338 0.0333 0.944
1000 —0.0003 0.0262 0.0268 0.954 —0.0018 0.0306 0.0298 0.938
Case4 600 —0.0055 0.0823 0.0842 0.960 —0.0050 0.0855 0.0859 0.954

800 —0.0031 0.0680 0.0728 0.966 0.0006  0.0759 0.0744 0.948
1000 —0.0019 0.0630 0.0652 0.958 0.0017  0.0706 0.0664 0.934

RL IC
r BIAS SSE ESE CPp BIAS SSE ESE CPp
Case 1 600  0.0006 0.0396 0.0399 0.952 —0.0051 0.0395 0.0405 0.948
800  —0.0002 0.0359 0.0346 0.930 —0.0035 0.0353 0.0351 0.944

1000 —0.0012 0.0324 0.0309 0.936 0.0004 0.0328 0.0314 0.938

Case 2 600 —0.0015 0.0389 0.0396 0.954 0.0001  0.0426 0.0419 0.944
800 —0.0001 0.0336 0.0342 0.958 —0.0007 0.0368 0.0364 0.956
1000  0.0006  0.0313 0.0306 0.942 0.0008 0.0319 0.0325 0.952

Case 3 600 —0.0004 0.0411 0.0410 0.954 0.0003  0.0408 0.0410 0.952
800  0.0013 0.0353 0.0354 0.950 —0.0004 0.0364 0.0355 0.942
1000  —0.0019 0.0341 0.0317 0.938 —0.0001 0.0323 0.0317 0.942

Case4 600  0.0001  0.0906 0.0885 0.968 0.0024 0.0796 0.0776 0.942
800  0.0001  0.0748 0.0766 0.960 0.0050 0.0678 0.0673 0.944
1000  0.0073  0.0674 0.0685 0.948 0.0001  0.0608 0.0601 0.942
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Table 4. Simulation results on the two-step subsample estimator B} with

log(e) ~ Uniform(—2,2).

0OSC UNIF
r BIAS SSE ESE CPp BIAS SSE ESE CPp
Case1 600  0.0019 0.0378 0.0358 0.940 —0.0032 0.0440 0.0445 0.954
800  0.0027  0.0321 0.0309 0.938 0.0030 0.0374 0.0385 0.950
1000 —0.0009 0.0275 0.0275 0.952 —0.0011 0.0357 0.0344 0.954
Case 2 600 —0.0016 0.0667 0.0694 0.950 —0.0027 0.0811 0.0819 0.950
800  —0.0023 0.0593 0.0600 0.948 —0.0027 0.0707 0.0710 0.958
1000 0.0008  0.0522 0.0536 0.964 —0.0032 0.0647 0.0636 0.944
Case 3 600 —0.0003 0.0254 0.0257 0.942 0.0001  0.0355 0.0345 0.920
800  0.0001 0.0222 0.0223 0.964 —0.0005 0.0314 0.0299 0.942
1000  —0.0005 0.0198 0.0199 0.952 —0.0009 0.0275 0.0267 0.954
Case4 600  0.0025 0.0281 0.0292 0.964 —0.0014 0.0396 0.0387 0.936
800  0.0011 0.0246 0.0252 0.970 —0.0014 0.0353 0.0333 0.932
1000  0.0010 0.0225 0.0225 0.944 —0.0015 0.0301 0.0297 0.958

RL IC
T BIAS SSE ESE CPp BIAS SSE ESE CPp
Case 1 600 —0.0002 0.0423 0.0421 0.944 0.0009  0.0428 0.0419 0.952
800  0.0007  0.0363 0.0364 0.962 —0.0008 0.0349 0.0363 0.952

1000  0.0003  0.0326 0.0325 0.960 0.0012  0.0325 0.0324 0.964

Case 2 600  0.0022 0.0791 0.0774 0.948 0.0076  0.0758 0.0766 0.950
800  0.0005 0.0679 0.0671 0.942 0.0062 0.0671 0.0664 0.930

1000  0.0020  0.0601 0.0598 0.946 —0.0055 0.0578 0.0595 0.960
Case 3 600 —0.0008 0.0320 0.0301 0.936 0.0011  0.0313 0.0303 0.940
800  0.0014 0.0279 0.0261 0.928 —0.0001 0.0251 0.0262 0.954

1000  —0.0005 0.0241 0.0233 0.948 0.0008 0.0231 0.0234 0.938

Case4 600  0.0004 0.0359 0.0341 0.954 0.0011  0.0380 0.0360 0.944
800  0.0020 0.0300 0.0294 0.950 —0.0002 0.0334 0.0313 0.954
1000  0.0002  0.0264 0.0264 0.950 0.0009  0.0265 0.0280 0.960
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Table 5. Simulation results on the two-step subsample estimator 51 for case 1 with

log(e) ~ N(0,1).

0OSC UNIF
) BIAS SSE ESE CPp BIAS SSE ESE CPp
r=600 400 —0.0025 0.0310 0.0302 0.950 0.0005 0.0412 0.0429 0.952
500  0.0007  0.0303 0.0302 0.946 —0.0014 0.0446 0.0431 0.930
600 0.0023 0.0291 0.0302 0.948 —0.0001 0.0437 0.0430 0.934
r=2800 400 —0.0003 0.0250 0.0261 0.950 —0.0008 0.0387 0.0377 0.954
500  0.0007  0.0263 0.0261 0.948 —0.0008 0.0402 0.0375 0.936
600 —0.0005 0.0248 0.0260 0.950 —0.0004 0.0381 0.0375 0.948
r =1000 400 -—0.0015 0.0226 0.0233 0.956 —0.0006 0.0348 0.0337 0.948
500 —0.0001 0.0243 0.0232 0.942 —0.0013 0.0339 0.0337 0.952
600 —0.0005 0.0214 0.0232 0.972 0.0001  0.0334 0.0336 0.946
RL IC
o BIAS SSE ESE CPp BIAS SSE ESE CPp
r=600 400 —0.0032 0.0450 0.0447 0.952 —0.0003 0.0467 0.0455 0.948
500 —0.0048 0.0465 0.0446 0.936 0.0003  0.0453 0.0453 0.950
600 —0.0001 0.0448 0.0447 0.932 —0.0014 0.0458 0.0453 0.940
r=2800 400 —-0.0021 0.0377 0.0389 0.956 0.0021  0.0420 0.0395 0.926
500 —0.0025 0.0386 0.0390 0.952 0.0009  0.0403 0.0394 0.956
600 —0.0021 0.0377 0.0387 0.960 0.0009  0.0410 0.0395 0.940
r =1000 400 —0.0020 0.0350 0.0350 0.952 0.0015 0.0369 0.0355 0.940
500  0.0018  0.0369 0.0350 0.940 —0.0015 0.0357 0.0356 0.952
600 —0.0011 0.0347 0.0349 0.946 —0.0001 0.0333 0.0356 0.960
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Table 6. The CPU time for Case 1 with log(e) ~ N(0,1) and r = 1000 (seconds).

Methods n =105 n=3x105 n=5x10% n=10"
p=>5 UNIF 0.009 0.032 0.054 0.107
0SC 0.173 0.521 0.920 1.792
RL 1.647 5.281 9.385 19.288
IC 1.684 5.301 9.411 20.513
Full data  1.322 4.294 6.577 13.544
p=>50  UNIF 0.055 0.072 0.103 0.180
0SsC 0.752 2.116 3.728 7.565
RL 2.841 8.962 16.371 34.041
IC 2.893 9.115 16.814 35.356
Full data  53.594 171.255 275.725 597.980
p=100 UNIF 0.197 0.212 0.254 0.363
0SC 1.547 4.415 6.918 15.257
RL 3.742 13.700 22.343 46.529
IC 3.778 13.819 22.726 47.943
Full data 244.745  766.650 1353.470  2764.720
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Figure 1. The MSEs for different subsampling probabilities with log(g) ~ N(0, 1).
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Figure 2. The MSEs for different subsampling probabilities with log(e) ~ Uniform(—2,2).
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Figure 3. The results of MSEs in the real data analysis.
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