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Abstract

This note is devoted to a combinatorial proof of a Schmidt type theorem due to
Andrews and Paule. A four-variable refinement of Andrews and Paule’s theorem is
also obtained based on this combinatorial construction.

Mathematics Subject Classifications: 05A17, 11P81

The main objective of this note is to give a combinatorial proof of the following par-
tition theorem due to Andrews and Paule [2]. Sylvester’s bijection [3, 4, 5] for Euler’s
partition theorem and Wright’s bijection [1, 6, 7] for Jacobi’s triple product identity play
important roles in the combinatorial construction.

Theorem 1 (Andrews-Paule). Assume that n > 1. Let s(n) denote the number of parti-
tions a; + ag + az + - -+ satisfying a1 = as = az = --- andn = a; + a3 +as + ---. Let
t(n) denote the number of two-color partitions of n. Then

For example, let n = 3. There are ten partitions counted by s(3), which are

3,3+3,3+23+1,2+42+1,242+1+1,24+1+1,2+1+1+1,
14+14+1+14+1,1+1+1+1+1+1.

and there are also ten red and green partitions counted by #(3), which are
35,30, 2+ 1,2, 4+ 1,2, + 15,2, + 1o, L+ 1+ 1,1, + 1, + 1,

L4141 1,41, + 1,
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Proof of Theorem 1. Let S(n) denote the set of partitions counted by s(n) and let T (n)
denote the set of two-color partitions counted by t(n). We aim to construct a bijection ¢
between T (n) and S(n).

Let A be a two-color partition in 7 (n) with r red parts and [ green parts. Assume
that m = max{r,l}. We aim to define ¢(\) = v = (7,72, -, Y2m—1, Yom) such that
M ZV2 2= 2 Yome1 = Yom = 0and y + 93+ -+ Yom—1 = 1.

Let « be a partition consisting of all red parts in A and  be a partition consisting
of all green parts in A. First, add 0 at the end of a or 8 so that they are of the same
length depending on which is of smaller length. Assume that r < [, so m = [. Then
a=(ag,a9,...,0.,0,...,0) and 5= (B, B2, ..., [1)-

——

l—r
We next define a pair (@, 3) of partitions with distinct parts corresponding to («, ),
where @ = (a; +1 — lL,ao +1—2,...,a, +1—r,l —7r—1,...,1,0), and 3 = (B + [ —
1,8, +1—2,...,5). Obviously, |[a| + |B] = |a| + 8| + (I — 1).
We now apply Wright’s bijection to represent (@, B) as a Young diagram of an ordinary
partition Y (@, B): put [ squares on the diagonal, and then for j = 1,2, ..., [, put Qyj squares
in the j-th row to the right of the diagonal and Bj squares in the j-th column below the

diagonal. For example, Figure 1. gives the Young diagram of (@, 8), where @ = (3,2,0)
and § = (5,3,1).

The Young diagram 2-modular diagram
° 212121
° 212121
° 2121
2121
201
L 1]

Figure 1: The Young diagram of Y (@, 3) and 2-modular diagram.

For each row in the Young diagram of (@, 3), write 2 in each box and a 1 at the end
of the row to obtain the 2-modular diagram. Decompose the 2-modular diagram into
hooks H;, H,,... with the diagonal boxes as corners. Let p; be the number of squares
in Hy, let puo be the number of 2’s in Hy, let p3 be the number of squares in Hs, let juy
be the number of 2’s in Hs, and so on. Set u = (u1, pa, - .., tor—1, for), see Figure 2.
Then p is clearly a partition with distinct parts. Furthermore, py + ps + -+ + pg—1 =
|| + |B] + [?. Hence we may define v = (pg — (20 — 1), po — 20 — 2, ..., poy—y — 1, puy).
Clearly, v1 + v3 + -+ + y2-1 = |a| +|5], and so v € S(n). Furthermore, this process
is reversible since Sylvester’s bijection and Wright’s bijection are reversible. Thus, we
complete the proof of Theorem 1.

O
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2-Modular Diagram
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Figure 2: Sylvester’s bijection.

Applying the above bijection, we get the following correspondence between the set
7 (3) and the set S(3).

3> =343 3,53 2, +1,S2+24+1+1

2,+1,534+1 2,4+1,53+2 2,41, 52+1+1

L+, +1L,sS1+14+1+1+1+1 1, +1L +1,S2+1+1+1

L +1,+1,S524+2+1 ly+1,+1,S1+14+14+1+1
The following result immediately follows from the combinatorial construction of The-

orem 1.

Theorem 2. Assume that n > 1, r,l,p,q > 1. Let s,;,,(n) denote the number of
partitions a; + ag + az + -+ + Qamax{ryy SatISfying p+q = a1 2 az = -+ 2 aamaxiryy = 0
and n = a1 + ag + as + -+ + Gomax{riy—1- Let t,,4(n) denote the number of two-color
partitions of n such that there are r red parts and | blue parts with the largest red part
being not larger than p and the largest blue part being not larger than q. Then

Sripa(n) = tripq(n)
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