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1 Introduction

The main objective of this paper is to give two combinatorial interpretations of q-Kaplansky
numbers introduced by Chen and Rota [4] and to establish some properties of q-Kaplansky
numbers. Recall that the Kaplansky number K(n,m) is defined by

K(n,m) =
n

n−m

(
n−m
m

)
,

for n ≥ 2m ≥ 0. The combinatorial interpretation of K(n,m) was first given by Ka-
plansky [14], so we call K(n,m) the Kaplansky number. Kaplansky found that K(n,m)
counts the number of ways of choosing m nonadjacent elements arranged on a cycle,
which can also be interpreted as the number of dissections of type 1n−2k2k of an n-cycle
given by Chen, Lih and Yeh [5]. Kaplansky numbers appear in many classical polynomi-
als, such as Chebyshev polynomials of the first kind [17,18] and Lucas polynomials [15].

q-Kaplansky numbers were introduced by Chen and Rota [4]. For convenience, we
adopt the following definition: For n ≥ 1 and 0 ≤ m ≤ n,

Kq(n,m) =
1− qn+m

1− qn

[
n

m

]
, (1.1)
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where
[
n
m

]
is the Gaussian polynomial, also called the q-binomial coefficient, as given by[

n

m

]
=

(1− qn)(1− qn−1) · · · (1− qn−m+1)

(1− qm)(1− qm−1) · · · (1− q)
.

By the symmetric property of the Gaussian polynomial, it is not hard to show thatKq(n,m)
is a symmetric polynomial of degree m(n−m) +m with nonnegative coefficients.

The first result of this paper is to give two combinatorial interpretations of q-Kaplansky
numbers. Let w = w1w2 · · ·wn be a (0, 1)-sequence of length n, the number of inversions
of w, denoted inv(w), is the number of pairs (wi, wj) such that i < j and wi > wj , and
the major index of w, denoted maj(w), is the sum of indices i < n such that wi > wi+1.
For example, for w = 10010110, we have inv(w) = 8 and maj(w) = 1 + 4 + 7 = 12.

It can be shown that q-Kaplansky numbers are related to two sets K(m,n − m + 1)
and K(m,n−m+ 1) of (0, 1)-sequences. More precisely, for n ≥ m ≥ 0, let K(m,n−
m + 1) denote the set of (0, 1)-sequences w = w1w2 · · ·wn+1 of length n + 1 consisting
of m copies of 1’s and n −m + 1 copies of 0’s such that if wn+1 = 1, then w1 = 0. For
n ≥ m ≥ 0, let K(m,n−m+ 1) denote the set of (0, 1)-sequences w = w1w2 · · ·wn+1

of length n + 1 consisting of m copies of 1’s and n − m + 1 copies of 0’s such that if
wn+1 = 1 and t := max{i : wi = 0}, then t = 1 or wt−1 = 0 when t ≥ 2. We have the
following combinatorial interpretations.

Theorem 1.1. For n ≥ m ≥ 0,

Kq(n,m) =
∑

w∈K(m,n−m+1)

qinv(w) (1.2)

=
∑

w∈K(m,n−m+1)

qmaj(w). (1.3)

The second result of this paper is to establish the strong q-log-concavity of Kq(n,m).
Recall that a sequence of polynomials (fn(q))n≥0 over the field of real numbers is called
q-log-concave if the difference

fm(q)2 − fm+1(q)fm−1(q)

has nonnegative coefficients as a polynomial in q for all m ≥ 1. Sagan [20] also intro-
duced the notion of the strong q-log-concavity. We say that a sequence of polynomials
(fn(q))n≥0 is strongly q-log-concave if

fn(q)fm(q)− fn−1(q)fm+1(q)

has nonnegative coefficients as a polynomial in q for any m ≥ n ≥ 1.

It is known that q-analogues of many well-known combinatorial numbers are strongly
q-log-concave. Butler [2] and Krattenthaler [16] proved the strong q-log-concavity of q-
binomial coefficients, respectively. Leroux [12] and Sagan [20] studied the strong q-log-
concavity of q-Stirling numbers of the first kind and the second kind. Chen, Wang and
Yang [8] have shown that q-Narayana numbers are strongly q-log-concave.
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We obtain the following result which implies that q-Kaplansky numbers are strongly
q-log-concave.

Theorem 1.2. For 1 ≤ m ≤ l < n and 0 ≤ r ≤ 2l − 2m+ 2,

Kq(n,m)Kq(n, l)− qrKq(n,m− 1)Kq(n, l + 1) (1.4)

has nonnegative coefficients as a polynomial in q.

Corollary 1.3. Given a positive integer n, the sequence (Kq(n,m))0≤m≤n is strongly
q-log-concave.

It is easy to check that the degree ofKq(n,m)Kq(n, l) exceeds the degree ofKq(n,m−
1)Kq(n, l + 1) by 2l − 2m + 2, so if the difference (1.4) of these two polynomials has
nonnegative coefficients, then r ≤ 2l − 2m+ 2.

To conclude the introduction, let us say a few words about the unimodiality of q-
Kaplansky numbers. We find that q-Kaplansky numbers are connected to the following
symmetric differences of Gaussian polynomials introduced by Reiner and Stanton [19].

Fn,m(q) =

[
n+m

m

]
− qn

[
n+m− 2

m− 2

]
. (1.5)

The following theorem is due to Reiner and Stanton [19].

Theorem 1.4 (Reiner-Stanton). When m ≥ 2 and n is even, the polynomial Fn,m(q) is
symmetric and unimodal.

Recently, Chen and Jia [6] provided a simple proof of the unimodality of Fn,m(q) by
using semi-invariants. According to the following recursions of Gaussian polynomials [1,
p.35,Theorem 3.2 (3.3)], [

n

m

]
=

[
n− 1

m− 1

]
+ qm

[
n− 1

m

]
, (1.6)

[
n− 1

m

]
=

[
n

m

]
− qn−m

[
n− 1

m− 1

]
, (1.7)

we find that

Fn,m(q) =

[
n+m

m

]
− qn

[
n+m− 2

m− 2

]
(1.6)
=

[
n+m− 1

m− 1

]
− qn

[
n+m− 2

m− 2

]
+ qm

[
n+m− 1

m

]
(1.7)
=

[
n+m− 2

m− 1

]
+ qm

[
n+m− 1

m

]

=
1− qn+2m−1

1− qn+m−1

[
n+m− 1

m

]
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= Kq(n+m− 1,m). (1.8)

Combining Theorem 1.4 and (1.8), we have the following result.

Theorem 1.5. When n ≥ m ≥ 2 and n−m is odd, the q-Kaplansky number Kq(n,m) is
symmetric and unimodal.

It should be noted that Kq(n,m) is not always unimodal for any n ≥ m ≥ 2. For
example,

Kq(6, 2) = 1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 3q6 + 2q7 + 2q8 + q9 + q10

is not unimodal.

q-Kaplansky numbers are also related to q-Catalan polynomials Cn(q), defined by

Cn(q) =
1− q

1− qn+1

[
2n

n

]
=

1− q
1− q2n+1

[
2n+ 1

n

]
. (1.9)

It is well-known that Cn(q) is a polynomial in q with non-negative coefficients [10]. Com-
bining (1.1) and (1.9), it is readily seen that

(1− q)Kq(2n+ 1, n) = (1− q3n+1)Cn(q).

Hence, by Theorem 1.5, we obtain the following result.

Theorem 1.6. When n is even, the polynomial 1−q3n+1

1−q Cn(q) is symmetric and unimodal.

Finally, we would like to state a result of Stanley [22, p.523] about the unimodality
of the q-Catalan polynomials and two conjectures on the unimodality of the q-Catalan
polynomials due to Chen, Wang and Wang [7] and Xin and Zhong [24, Conjecture 1.2],
respectively. Apparently, Conjecture 1.8 implies Conjecture 1.9 when n ≥ 16.

Theorem 1.7 (Stanley). For n ≥ 1, the polynomial 1+q
1+qn

Cn(q) is symmetric and uni-
modal.

Conjecture 1.8 (Chen, Wang and Wang). For n ≥ 16, the q-Catalan polynomial Cn(q)
is unimodal.

Conjecture 1.9 (Xin and Zhong). For n ≥ 1, the polynomial (1 + q)Cn(q) is unimodal.

2 Proof of Theorem 1.1

To prove Theorem 1.1, we first recall a result due to MacMahon [13]. For n ≥ m ≥ 0, let
M(m,n−m) be the set of (0, 1)-sequences of length n consisting of m copies of 1’s and
n−m copies of 0’s. The following well-known result is due to MacMahon (see [1, Chapter
3.4]).
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Theorem 2.1 (MacMahon). For n ≥ m ≥ 0,[
n

m

]
=

∑
w∈M(m,n−m)

qinv(w) (2.1)

=
∑

w∈M(m,n−m)

qmaj(w). (2.2)

Foata’s fundamental bijection [9] can be used to establish the equivalence of (2.1) and
(2.2). There are several ways to describe Foata’s fundamental bijection, see, for example,
Foata [9], Haglund [11, p.2] and Sagan and Savage [21]. Here we give a description due
to Sagan and Savage [21].

Proof of the equivalence between (2.1) and (2.2): Let w = w1w2 · · ·wn ∈M(m,n−m).
We aim to construct a (0, 1)-sequence w̃ = φ(w) = w̃1w̃2 · · · w̃n inM(m,n −m) such
that inv(w̃) = maj(w).

Let w be a (0, 1)-sequence with d descents, so that we can write

w = 0m01n00m11n10m2 · · · 1nd−10md1nd , (2.3)

where m0 ≥ 0 and mi ≥ 1 for 1 ≤ i ≤ d, ni ≥ 1 for 0 ≤ i ≤ d− 1 and nd ≥ 0.

Define

w̃ = φ(w) = 0md−110md−1−11 · · · 0m1−110m01n0−101n1−1 · · · 01nd−1−101nd . (2.4)

It has been shown in [21] that inv(w̃) = maj(w).

The inverse map φ−1 of φ can be described recursively. Let w̃ ∈ M(m,n − m), we
may write w̃ = 0a1u01b for a, b ≥ 0, define

w = φ−1(w̃) = φ−1(u)10a+11b. (2.5)

It has been proved in [21] that φ−1(φ(w)) = w and φ(φ−1(w̃)) = w̃. Furthermore,
inv(w̃) = maj(w). Hence the map φ is a bijection. This completes the proof of the e-
quivalence of (2.1) and (2.2).

For n ≥ m ≥ 0, letM0(m,n−m+ 1) be the set of (0, 1)-sequencesw = w1w2 · · ·wn+1

of length n+1 consisting ofm copies of 1’s and n−m+1 copies of 0’s such thatwn+1 = 0.
We have the following result.

Lemma 2.2. For n ≥ m ≥ 0,

qm
[
n

m

]
=

∑
w∈M0(m,n−m+1)

qinv(w) (2.6)

=
∑

w∈M0(m,n−m+1)

qmaj(w). (2.7)
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Proof. By Theorem 2.1, we see that[
n

m

]
=

∑
w∈M(m,n−m)

qinv(w).

To prove (2.6), it suffices to show that∑
w∈M(m,n−m)

qinv(w)+m =
∑

w∈M0(m,n−m+1)

qinv(w). (2.8)

We construct a bijection ψ between the setM(m,n−m) and the setM0(m,n−m+ 1)
such that for w ∈M(m,n−m) and ψ(w) ∈M0(m,n−m+ 1), we have

inv(w) +m = inv(ψ(w)). (2.9)

Let w = w1w2 · · ·wn. Define

ψ(w) = w1w2 · · ·wn0.

It is clear that ψ(w) ∈ M0(m,n−m+ 1) and (2.9) holds. Furthermore, it is easy to see
that ψ is reversible. Hence we have(2.8).

We proceed to show that (2.6) and (2.7) are equivalent by using Foata’s fundamental
bijection φ. Let w = w1w2 · · ·wn+1 be inM0(m,n−m+ 1), by definition, we see that
wn+1 = 0. Define

w̃ = φ−1(w) = w̃1w̃2 · · · w̃n+1,

where φ−1 is defined in (2.5). By (2.5), we see that w̃n+1 = 0 since wn+1 = 0. Hence
w̃ ∈M0(m,n−m+ 1). Furthermore φ−1 is reversible and inv(w) = maj(w̃). It follows
(2.6) and (2.7) are equivalent, and so (2.7) is valid.

For n ≥ m ≥ 1, letM1(m,n−m+ 1) be the set of (0, 1)-sequencesw = w1w2 · · ·wn+1

of length n+1 consisting of m copies of 1’s and n−m+1 copies of 0’s such that w1 = 0
and wn+1 = 1. For n ≥ m ≥ 1, let M1(m,n−m+ 1) be the set of (0, 1)-sequences
w = w1w2 · · ·wn+1 of length n + 1 consisting of m copies of 1’s and n −m + 1 copies
of 0’s such that wn+1 = 1 , and if t := max{i : wi = 0}, then t = 1 or wt−1 = 0 when
t ≥ 2. To wit, for w ∈ M1(m,n−m+ 1), if m ≥ 1 and n > m, then w can be written
as u001n+1−t, where 2 ≤ t ≤ n and u ∈ M(m+ t− n− 1, n−m− 1), and if m ≥ 1
and n = m, then w can be written as 01m.

Lemma 2.3. For n ≥ m ≥ 1,[
n− 1

m− 1

]
=

∑
w∈M1(m,n−m+1)

qinv(w) (2.10)

=
∑

w∈M1(m,n−m+1)

qmaj(w). (2.11)
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Proof. By Theorem 2.1, we see that[
n− 1

m− 1

]
=

∑
w∈M(m−1,n−m)

qinv(w).

To prove (2.10), it suffices to show that∑
w∈M(m−1,n−m)

qinv(w) =
∑

w∈M1(m,n−m+1)

qinv(w). (2.12)

We now construct a bijection ϕ between the set M(m− 1, n−m) and the set
M1(m,n−m+ 1) such that forw ∈M(m− 1, n−m) andϕ(w) ∈M1(m,n−m+ 1),
we have

inv(w) = inv(ϕ(w)). (2.13)

Let w = w1w2 · · ·wn−1. Define

ϕ(w) = 0w1w2 · · ·wn−11.

It is clear that ϕ(w) ∈M1(m,n−m+ 1) and (2.13) holds. Furthermore, ψ is reversible.
Hence we have (2.12).

We proceed to show that (2.11) holds. By (2.2), it suffices to show that∑
w∈M(m−1,n−m)

qmaj(w) =
∑

w∈M1(m,n−m+1)

qmaj(w). (2.14)

We now construct a bijection τ between the set M(m− 1, n−m) and the set M1(m,
n−m+) such that for w ∈M(m− 1, n−m) and τ(w) ∈M1(m,n−m+ 1), we have

maj(w) = maj(τ(w)). (2.15)

Let w = w1w2 · · ·wn−1 ∈ M(m− 1, n−m). If n = m, then w = 1m−1, and so define
τ(w) = 01m. If n > m, then let t = max{i : wi = 0}, obviously, t ≥ 1. In this case, we
may write w = w1w2 · · ·wt−101n−t−1. Define

w̃ = τ(w) = w̃1w̃2 · · · w̃n+1

as follows: set w̃n+1 = 1, and set w̃j = wj for 1 ≤ j ≤ t, w̃t+1 = 0, and set w̃j+1 = wj =
1 for t+ 1 ≤ j ≤ n− 1.

From the above construction, it is easy to see that w̃ ∈M1(m,n−m+ 1) and (2.15)
holds. Furthermore, it can be checked that this construction is reversible, so (2.14) is valid.

We are now in a position to give a proof of Theorem 1.1 based on Lemma 2.2 and
Lemma 2.3.

Proof of Theorem 1.1: By the definition of K(m,n−m+ 1), we see that

K(m,n−m+ 1) =M0(m,n−m+ 1) ∪M1(m,n−m+ 1).
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Combining (2.6) and (2.10), we derive that for n ≥ m ≥ 1,∑
w∈K(m,n−m+1)

qinv(w) =
∑

w∈M0(m,n−m+1)

qinv(w) +
∑

w∈M1(m,n−m+1)

qinv(w)

= qm
[
n

m

]
+

[
n− 1

m− 1

]
=

1− qn+m

1− qn

[
n

m

]
= Kq(n,m).

Similarly, by definition, we see that

K(m,n−m+ 1) =M0(m,n−m+ 1) ∪M1(m,n−m+ 1).

By (2.7) and (2.11), we find that n ≥ m ≥ 1,∑
w∈K(m,n−m+1)

qmaj(w) =
∑

w∈M0(m,n−m+1)

qmaj(w) +
∑

w∈M1(m,n−m+1)

qmaj(w)

= qm
[
n

m

]
+

[
n− 1

m− 1

]
=

1− qn+m

1− qn

[
n

m

]
= Kq(n,m).

Furthermore, it is easy to check that (1.2) and (1.3) are valid when m = 0. This completes
the proof of Theorem 1.1.

3 Proof of Theorem 1.2

Before we prove Theorem 1.2, it is useful to preset the following result.

Lemma 3.1. For 1 ≤ m ≤ l < N and M −m ≥ N − l ≥ 1,

Dq(M,N,m, l) =

[
M

m

][
N

l

]
−
[

M

m− 1

][
N

l + 1

]
has nonnegative coefficients as a polynomial in q.

Lemma 3.1 reduces to the strong q-log-concavity of Gaussian polynomials whenM =
N . We prove Lemma 3.1 by generalizing Butler’s bijection [2]. To describe the proof,
we need to recall some notation and terminology on partitions as in [1, Chapter 1]. A
partition λ of a positive integer n is a finite nonincreasing sequence of positive integers
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(λ1, λ2, . . . , λr) such that
∑r

i=1 λi = n. Then λi are called the parts of λ and λ1 is its
largest part. The number of parts of λ is called the length of λ, denoted by l(λ). The
weight of λ is the sum of parts of λ, denoted |λ|. The conjugate λ′ = (λ′1, λ

′
2, . . . , λ

′
t) of

a partition λ is defined by setting λ′i to be the number of parts of λ that are greater than or
equal to i. Clearly, l(λ) = λ′1 and λ1 = l(λ′).

Let P(m,n−m) denote the set of partitions λ such that `(λ) ≤ m and λ1 ≤ n−m. It
is well-known that the Gaussian polynomial has the following partition interpretation [1,
Theorem 3.1]: [

n

m

]
=

∑
λ∈P(m,n−m)

q|λ|. (3.1)

We are now prepared for the proof of Lemma 3.1 based on (3.1).

Proof of Lemma 3.1: For 1 ≤ m ≤ l < N and M − m ≥ N − l ≥ 1, by (3.1), it
suffices to construct an injection Φ from P(m− 1,M −m+ 1) × P(l + 1, N − l − 1)
to P(m,M −m)× P(l, N − l) such that if Φ(λ, µ) = (η, ρ), then |λ|+ |µ| = |η|+ |ρ|.

Let
λ = (λ1, λ2, . . . , λm−1) ∈ P(m− 1,M −m+ 1)

and
µ = (µ1, µ2, . . . , µl+1) ∈ P(l + 1, N − l − 1),

where λ1 ≤M −m+ 1 and µ1 ≤ N − l − 1.

We aim to construct a pair of partitions

(η, ρ) ∈ P(m,M −m)× P(l, N − l).

Let I be the largest integer such that λI ≥ µI+1 + l−m+M −N + 1. If no such I exists,
then let I = 0. In this case, we see that λ1 < M −m and set γ = λ and τ = µ. Obviously,
γ1 < M −m and τ1 < N − l. We now assume that 1 ≤ I ≤ m− 1 and define

γ = (µ1 + (l−m+M −N + 1), . . . , µI + (l−m+M −N + 1), λI+1, . . . , λm−1) (3.2)

and

τ = (λ1− (l−m+M −N + 1), . . . , λI − (l−m+M −N + 1), µI+1, . . . , µl+1). (3.3)

Since I is the largest integer such that λI ≥ µI+1 + (l −m+M −N + 1), we get

λI+1 < µI+2 + (l −m+M −N + 1) ≤ µI + (l −m+M −N + 1).

It follows that γ defined in (3.2) and τ defined in (3.3) are partitions. Furthermore,

γ1 = µ1 + (l −m+M −N + 1) ≤M −m

and
τ1 = λ1 − (l −m+M −N + 1) ≤ N − l.
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Let γ′ and τ ′ be the conjugates of γ and τ , respectively. We see that

`(γ′) = γ1 ≤M −m and `(τ ′) = τ1 ≤ N − l,

so we can assume that
γ′ = (γ′1, γ

′
2, . . . , γ

′
M−m)

and
τ ′ = (τ ′1, τ

′
2, . . . , τ

′
N−l).

Then
γ′1 ≤ m− 1 and τ ′1 ≤ l + 1.

Let J be the largest integer such that τ ′J ≥ γ′J+1 + l−m+1. If no such J exists, let J = 0,
then τ ′1 < l and set γ̃ = γ′, and τ̃ = τ ′. Obviously, γ̃1 < m and τ̃1 < l. We now assume
that 1 ≤ J ≤ N − l and define

γ̃ = (τ ′1 − (l−m+ 1), τ ′2 − (l−m+ 1), . . . , τ ′J − (l−m+ 1), γ′J+1, . . . , γ
′
M−m) (3.4)

and

τ̃ = (γ′1 + (l −m+ 1), γ′2 + (l −m+ 1), . . . , γ′J + (l −m+ 1), τ ′J+1, . . . , τ
′
N−l). (3.5)

Similarly, since J is the largest integer such that τ ′J ≥ γ′J+1 + l −m+ 1, we find that

τ ′J+1 < γ′J+2 + l −m+ 1 ≤ γ′J + l −m+ 1,

so γ̃ defined in (3.4) and τ̃ defined in (3.5) are partitions. By the constructions of γ̃ and τ̃ ,
we see that

γ̃1 = τ ′1 − (l −m+ 1) ≤ m

and
τ̃1 = γ′1 + (l −m+ 1) ≤ l.

Let η and ρ be the conjugates of γ̃ and τ̃ , respectively. It is easy to check that η ∈
P(m,M −m) and ρ ∈ P(l, N − l). Furthermore, this process is reversible. Thus, we
complete the proof of Lemma 3.1.

Combining Lemma 3.1 and the unimodality of Gaussian polynomials, we obtain the
following result.

Lemma 3.2. For 1 ≤ m ≤ l < N ,M−m ≥ N−l ≥ 1 and 0 ≤ r ≤M−N+2l−2m+2,

Dr
q(M,N,m, l) =

[
M

m

][
N

l

]
− qr

[
M

m− 1

][
N

l + 1

]
(3.6)

has nonnegative coefficients as a polynomial in q.

Proof. Let A denote the degree of the polynomial
[
M
m

][
N
l

]
and let B denote the degree

of the polynomial
[
M
m−1

][
N
l+1

]
such that we have

A = m(M −m) + l(N − l),
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B = (m− 1)(M −m+ 1) + (l + 1)(N − l − 1).

Note that
A−B = M −N + 2l − 2m+ 2.

Let [
M

m

][
N

l

]
=

A∑
i=0

aiq
i,

[
M

m− 1

][
N

l + 1

]
=

B∑
i=0

biq
i

and let

Dr
q(M,N,m, l) =

[
M

m

][
N

l

]
− qr

[
M

m− 1

][
N

l + 1

]
=

A∑
i=0

ciq
i,

where ci = ai for 0 ≤ i < r, ci = ai − bi−r for r ≤ i ≤ B + r and ci = ai for
B + r + 1 ≤ i ≤ A. It is easy to see that ci ≥ 0 for 0 ≤ i < r and B + r + 1 ≤ i ≤ A. It
remains to show that ci ≥ 0 for r ≤ i ≤ B + r.

It is known that the Gaussian polynomial
[
M
m

]
is symmetric and unimodal, see, for

example, [1, Theorem 3.10], so

ai = aA−i for 0 ≤ i ≤ A, and bi = bB−i for 0 ≤ i ≤ B, (3.7)

a0 ≤ a1 ≤ · · · ≤ abA/2c = adA/2e ≥ · · · ≥ aA−1 ≥ aA, (3.8)

and
b0 ≤ b1 ≤ · · · ≤ bbA/2c = bdA/2e ≥ · · · ≥ bB−1 ≥ bB. (3.9)

By Lemma 3.1, we see that for 0 ≤ i ≤ A,

ai − bi ≥ 0. (3.10)

We consider the following two cases:

Case 1. If r ≤ i ≤ A/2, then

ci = ai − bi−r = ai − ai−r + ai−r − bi−r,

which is nonnegative by (3.8) and (3.10).

Case 2. If A/2 ≤ i ≤ B + r, then

ci = ai − bi−r
(3.7)
= aA−i − bB−i+r = aA−i − aB−i+r + aB−i+r − bB−i+r,

which is nonnegative by (3.8) and (3.10). Thus, we complete the proof of Lemma 3.2.

We conclude this paper with a proof of Theorem 1.2 by using Lemma 3.2.

Proof of Theorem 1.2: Recall that

Kq(n,m) =
1− qn+m

1− qn

[
n

m

]
=

[
n

m

]
+ qn

[
n− 1

m− 1

]
.
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Hence

Kq(n,m)Kq(n, l)− qrKq(n,m− 1)Kq(n, l + 1)

=

([
n

m

]
+ qn

[
n− 1

m− 1

])([
n

l

]
+ qn

[
n− 1

l − 1

])
− qr

([
n

m− 1

]
+ qn

[
n− 1

m− 2

])([
n

l + 1

]
+ qn

[
n− 1

l

])
=

[
n

m

][
n

l

]
− qr

[
n

m− 1

][
n

l + 1

]
+ qn

([
n− 1

m− 1

][
n

l

]
− qr

[
n− 1

m− 2

][
n

l + 1

])
+ qn

([
n

m

][
n− 1

l − 1

]
− qr

[
n

m− 1

][
n− 1

l

])
+ q2n

([
n− 1

m− 1

][
n− 1

l − 1

]
− qr

[
n− 1

m− 2

][
n− 1

l

])
.

By Lemma 3.2, we see that

Kq(n,m)Kq(n, l)− qrKq(n,m− 1)Kq(n, l + 1)

= Dr
q(n, n,m, l) + qnDr

q(n− 1, n,m− 1, l) + qnDr
q(n, n− 1,m, l − 1)

+ q2nDr
q(n− 1, n− 1,m− 1, l − 1).

Furthermore, for 1 ≤ m ≤ l < n and 0 ≤ r ≤ 2l − 2m+ 2, then

Dr
q(n, n,m, l), D

r
q(n− 1, n,m− 1, l), and Dr

q(n− 1, n− 1,m− 1, l − 1)

have nonnegative coefficients as polynomials in q, and for 1 ≤ m ≤ l < n and 0 ≤ r ≤
2l − 2m+ 1,

Dr
q(n, n− 1,m, l − 1)

has nonnegative coefficients as a polynomial in q. It follows that for 1 ≤ m ≤ l < n,
0 ≤ r ≤ 2l − 2m+ 1,

Kq(n,m)Kq(n, l)− qrKq(n,m− 1)Kq(n, l + 1) (3.11)

has nonnegative coefficients as a polynomial in q. It remains to show that the difference
(3.11) has nonnegative coefficients as a polynomial in q when r = 2l−2m+ 2. It suffices
to show that

qnD2l−2m+2
q (n− 1, n− 1,m− 1, l − 1) +D2l−2m+2

q (n, n− 1,m, l − 1) (3.12)

has nonnegative coefficients as a polynomial in q. First, it is easy to check that

qnD2l−2m+2
q (n− 1, n− 1,m− 1, l − 1) +D2l−2m+2

q (n, n− 1,m, l − 1)

12



= Kq(n,m)

[
n− 1

l − 1

]
− q2l−2m+2Kq(n,m− 1)

[
n− 1

l

]
.

Using the following relation:

Kq(n,m) =
1− qn+m

1− qn

[
n

m

]
=

[
n− 1

m− 1

]
+ qm

[
n

m

]
,

we find that

qnD2l−2m+2
q (n− 1, n− 1,m− 1, l − 1) +D2l−2m+2

q (n, n− 1,m, l − 1)

=

([
n− 1

m− 1

]
+ qm

[
n

m

])[
n− 1

l − 1

]
− q2l−2m+2

([
n− 1

m− 2

]
+ qm−1

[
n

m− 1

])[
n− 1

l

]

=

[
n− 1

m− 1

][
n− 1

l − 1

]
− q2l−2m+2

[
n− 1

m− 2

][
n− 1

l

]

+qm
([

n

m

][
n− 1

l − 1

]
− q2l−2m+1

[
n

m− 1

][
n− 1

l

])
= D2l−2m+2

q (n− 1, n− 1,m− 1, l − 1) + qmD2l−2m+1
q (n, n− 1,m, l − 1).

From Lemma 3.2, we see that

D2l−2m+2
q (n− 1, n− 1,m− 1, l − 1), and D2l−2m+1

q (n, n− 1,m, l − 1)

have nonnegative coefficients as a polynomial in q, and so (3.12) has nonnegative coeffi-
cients as a polynomial in q. Thus, we complete the proof of Theorem 1.2.
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