
1

DMRO: A Deep Meta Reinforcement
Learning-based Task Offloading Framework

for Edge-Cloud Computing
Guanjin Qu, Huaming Wu, Member, IEEE, Ruidong Li, Senior Member, IEEE, and Pengfei Jiao

Abstract—With the explosive growth of mobile data and
the unprecedented demand for computing power, resource-
constrained edge devices cannot effectively meet the requirements
of Internet of Things (IoT) applications and Deep Neural Network
(DNN) computing. As a distributed computing paradigm, edge
offloading that migrates complex tasks from IoT devices to edge-
cloud servers can break through the resource limitation of IoT
devices, reduce the computing burden and improve the efficiency
of task processing. However, the problem of optimal offloading
decision-making is NP-hard, traditional optimization methods are
difficult to achieve results efficiently. Besides, there are still some
shortcomings in existing deep learning methods, e.g., the slow
learning speed and the weak adaptability to new environments. To
tackle these challenges, we propose a Deep Meta Reinforcement
Learning-based Offloading (DMRO) algorithm, which combines
multiple parallel DNNs with Q-learning to make fine-grained
offloading decisions. By aggregating the perceptive ability of
deep learning, the decision-making ability of reinforcement
learning, and the rapid environment learning ability of meta-
learning, it is possible to quickly and flexibly obtain the optimal
offloading strategy from a dynamic environment. We evaluate the
effectiveness of DMRO through several simulation experiments,
which demonstrate that when compared with traditional Deep
Reinforcement Learning (DRL) algorithms, the offloading effect
of DMRO can be improved by 17.6%. In addition, the model has
strong portability when making real-time offloading decisions,
and can fast adapt to a new MEC task environment.

Index Terms—Internet of Things, Edge Computing, Task
Offloading, Deep Neural Network, Meta Reinforcement Learning

I. INTRODUCTION

W ITH the rapid development of Internet of Things
(IoT) and communication technologies, a large number

of computation-intensive tasks need to be transferred from
IoT devices to the cloud server for execution [1]. However,
the task offloading process usually involves large amounts
of data transmission, which will result in high latency for
IoT applications. The emergence of Mobile Edge Computing
(MEC) can effectively alleviate this challenge. As a distributed
computing paradigm, edge offloading that migrates complex
tasks from IoT devices to edge-cloud servers can provide
computing services for edge caching, edge training, and edge

G. Qu and H. Wu are with the Center for Applied Mathematics, Tianjin Uni-
versity, Tianjin 300072, China (e-mail: {guanjinqu, whming}@tju.edu.cn).

R. Li is with the Institute of Science and Engineering, Kanazawa University,
Kanazawa 920-1192, Japan (e-mail: liruidong@ieee.org).

P. Jiao is with the Center of Biosafety Research and Strategy, Law School,
Tianjin University, Tianjin, 300350, China (e-mail: pjiao@tju.edu.cn).

(Corresponding author: Huaming Wu)

inference [2]. Before the IoT application being offloaded to the
cloud server, it needs to pass through the edge server, such as
the base station. The edge server is closer to the device than the
cloud server, so it has greater bandwidth and response time. By
utilizing the computing and decision-making capabilities of the
edge server, the task computing of the device can be offloaded
to different servers, thereby reducing computing latency and
energy consumption [3].

The process of task offloading is generally affected by a
variety of factors in different areas, e.g., user preferences,
wireless communication channels, network connection quality,
mobility of IoT devices device and availability of edge/cloud
servers. Therefore, making the optimal decision is the most
critical issue for edge offloading. It needs to dynamically
decide whether the task should be offloaded to the edge server
or cloud server. If a large number of tasks are offloaded to
the cloud server, the bandwidth will be occupied, which will
greatly increase the transmission delay. Therefore, we need to
have a reasonable offloading decision scheme so that it can
reasonably allocate each task to the processing server. On the
one hand, there are a large number of repetitive or similar tasks
in the IoT environment, which often need to be retrained from
scratch, resulting in inefficient offloading decision-making; on
the other hand, some IoT dynamic scenarios have strict time
constraints on task decision-making, and the slow learning
speed of Convolutional Neural Network (CNN) is not suitable
to meet the requirements of resource heterogeneity and real-
time in the MEC system.

Faced with the rapidly changing IoT application scenarios,
we cannot readjust the task offloading decision and wireless
resource allocation through recalculation every time the MEC
environment changes, otherwise, it will cause higher service
delay and cost [4]. Although some good results have been
achieved in offloading decision-making of MEC by intro-
ducing intelligent algorithms such as Reinforcement Learning
(DRL) [5], there are still challenges such as the slow learning
speed, and the failure of original network parameters when the
model environment changes. In practical dynamic scenarios,
the MEC environment is often affected by many factors
anytime and anywhere. Conventional intelligent algorithms are
usually based on neural networks. When the MEC environ-
ment changes, its original parameters will all fail and a large
amount of training data is required to train from scratch, which
makes the learning efficiency low. Such repeated training will
consume resources and weaken the performance of the MEC
system. At the same time, in order to improve efficiency, high

2

configuration equipment is also required to adapt to high-
intensity training.

Considering the delay and energy consumption of IoT,
offloading decisions can be made for a workflow with a
series of dependent tasks. However, this kind of problem
is generally NP-hard, traditional optimization methods are
difficult to achieve results efficiently. One promising way of
addressing the above issue is to bring deep learning techniques
(especially DRL methods) into the computing paradigm of
edge-cloud collaboration. Unfortunately, conventional DRL
algorithms have the disadvantage of slower learning speed,
which is mainly due to the weak inductive bias. A learning
procedure with weak inductive bias will be able to adapt
to a wide range of situations, however, it is generally less
efficient [6].

To tackle the above challenges, we design an edge-cloud
offloading framework in this paper, where IoT devices can
choose to shift their computing tasks either to edge servers
or cloud servers. Edge servers make offloading decisions
based on task information for each device, reducing latency
and energy consumption. We propose an efficient offloading
decision-making method based on deep meta reinforcement
learning [7] that takes advantage of DRL and meta-learning.
To solve the problem of poor neural network portability, we
introduce meta-learning to ensure that the offloading decision
model can fast adapt to the new environment by learning the
initial parameters of the neural network. The main contribu-
tions of this work are summarized as follows:

• We convert the dynamic computation offloading prob-
lem for dependent tasks under edge cloud computing
into a multi-objective optimization problem. To jointly
minimize the delay and energy consumption of IoT
devices, we propose an effective and efficient offloading
framework with intelligent decision-making capabilities.

• We design a novel Deep Meta Reinforcement learning-
based Offloading (DMRO) framework that combines mul-
tiple parallel Deep Neural Networks (DNNs) and deep
Q-learning algorithms to make offloading decisions. It
includes an inner model and an outer model, where the
former uses distributed DRL to find the optimal decision
and the latter is trained with meta-learning to provide
warm-start initialization for the inner model.

• Aiming at the change of MEC environments, an initial
parameter training algorithm based on meta-learning is
proposed, where meta-learning is applied to solve the
problem of poor portability of DNNs. We conduct simu-
lation experiments when considering different MEC task
scenarios/environments, by learning the initial parame-
ters of DNNs under various network environments, the
offloading decision model achieves fast adaptation to a
new MEC task environment.

The rest of the paper is organized as follows. In Section
II, we review the related work. The system model and prob-
lem formulation are presented in Section III. The proposed
Deep Meta Reinforcement learning-based Offloading (DMRO)
framework is demonstrated in Section IV. Section V contains
the simulation and its results. Finally, Section VI concludes

the paper and draws future works.

II. RELATED WORK

MEC is an emerging computing paradigm, which can con-
nect IoT devices to cloud computing centers through edge
servers close to the device, thereby forming this task offloading
mode in the IoT-edge-cloud computing environment [8]. By
network functions virtualization and other means [9], the cloud
center is responsible for providing flexible and on-demand
computing resources for the execution of mobile applications,
and the edge server is responsible for deciding which comput-
ing tasks need to be offloaded and providing a limited amount
of computing resources. Thus, the energy consumption of the
device and computing delay of the application can be reduced.
In general, the task offloading process includes the following
key components:
• Application Partition: Since different tasks usually have

different amounts of computation and communication,
before performing task offloading operation, it is better
to divide the task into a workflow with multiple asso-
ciated subtasks or as a series of independent subtasks,
and then offload the subtasks separately. Among them,
some subtasks are executed on the IoT devices, the
others are executed on the relatively powerful server,
making full use of the server resources, thereby greatly
reducing the load of the IoT devices and improving their
endurance [10].

• Resource Allocation: After the offloading decision is
made, resources need to be allocated, including com-
puting power, communication bandwidth, and energy
consumption.

At present, task offloading algorithms related to decision-
making can be divided into traditional methods and intelligent
algorithms using artificial intelligence [4].

A. Traditional Offloading Decision-Making

Due to the NP-hardness of offloading decision problems
in MEC, when the number of tasks increases, it is easy
to encounter problems such as computational explosion. A
diversity of platforms and frameworks like [11]–[14] have
been proposed to solve the optimization problems of offloading
binary decisions in edge-cloud environments.

A Lyapunov optimization framework was proposed in [15]
to utilize open Jackson queuing network to formulate this
joint optimization problem. eTime [16] was a cloud-to-device
energy-efficient data transmission strategy based on Lyapunov-
optimization, with more focus on data transmission optimiza-
tion. Other studies using Lyapunov optimization for offloading
decision-making can be found in [15], [17]–[19]. Markov
processes and queueing models have been also widely applied
for making offloading decisions. The offloading approach
proposed in [20] supported two delayed offloading policies,
i.e., a partial offloading model where jobs can leave the slow
offloading to be executed locally, and a full offloading model
where jobs can be offloaded directly via the cellular net-
work. Besides, a computing offloading game theory has been
developed in [21], which proposed a fast Stackelberg game

3

algorithm called C-SGA and a complex Stackelberg game
algorithm called F-SGA to solve the decision problem of IoT-
enabled cloud-edge computing. However, these optimization-
based offloading algorithms can only obtain results after
multiple iterations, which often involve too many complex
calculation operations.

Conventional task offloading techniques usually apply some
heuristic algorithms. A particle swarm optimization-based
offloading decision algorithm was given in [22]. Xu et al. [23]
proposed a computation offloading method called COM to
solve the problem of computation offloading decisions in
IoT-enabled cloud-edge computing environments. Goudarzi
et al. [24] proposed a novel Memetic Algorithm (MA)-
based application placement technique that can solve the task
offloading problem in a multi-user multi-cloud multi-edge
environment. However, heuristic algorithms are still difficult to
solve complex problems that require a large amount of com-
putation, and additional computation is also introduced, which
results in high running time costs and energy consumption
spent on offloading decision-making.

B. Intelligent Offloading Decision-Making

With the rapid development of computer science and the
popularization of Artificial Intelligence (AI), deep learning
has begun to be applied to solve the problem of offloading
decision-making. Edge intelligence [2] or intelligent edge [25],
that is, the convergence of edge computing and AI, takes
advantage of both to achieve mutual benefit [26]. On the one
side, optimizing DNNs through task offloading has become
a new direction in edge intelligence research since edge
computing can offload complex computing tasks to edge/cloud
servers. On the other side, deep learning-driven approaches
can facilitate offloading decision making, dynamic resource
allocation and content caching, benefit in coping with the
growth in volumes of communication and computation for
emerging IoT applications [27].

Classic AI methods including deep learning and reinforce-
ment learning, can provide more reasonable and intelligent
solutions to solve the offloading decision problem in edge
computing. Deep learning methods refer to the classification
of the input task information through the multi-layer neural
network to determine the final offloading position. Huang
et al. [28] provided an algorithm that adopted distributed
deep learning to solve the offloading problem of mobile edge
networks. It used parallel and distributed DNNs to produce
offloading decisions and achieved good results. A hybrid
offloading model with the collaboration of Mobile Cloud
Computing (MCC) and MEC was established in [29], where
a distributed deep learning-driven task offloading (DDTO)
algorithm was proposed to generate near-optimal offloading
decisions over the IoT devices, edge cloud server, and central
cloud server. Besides, Neurosurgeon [30] was a fine-grained
partitioning method that can find the optimal dividing point
in DNNs according to different factors, and made full use
of the resources of cloud servers and mobile devices to
minimize the computational delays or energy consumption in
IoT environments.

In some cases, however, it is still difficult to treat task
offloading decision-making as a classification problem to be
solved by using deep learning techniques, which are mostly
supervised learning. In addition, it is difficult to find labeled
training sets for training on offloading decision problems.
Reinforcement learning, as one of the paradigms of machine
learning, is used to solve the interaction between the agent
and the environment through learning, so as to achieve max-
imum return or specific goals. An edge-cloud task offloading
framework using Deep Imitation Learning (DIL) [31] was
proposed in [25], while training DNN model with DIL is still
computation-intensive. Deep Reinforcement Learning (DRL)
methods combined with neural network and reinforcement
learning can be used to solve the task offloading decision
problem in the MEC environment [32]. The final decision
is the maximum reward action under the interaction with
the environment. The premise of using DRL algorithms for
offloading decision-making is that it can be regarded as a
Markov process, in which three spaces named state, action, and
reward are established. Among them, the task information is
input into the state, and the offloading decision is located in the
action space. Zhang et al. [33] proposed an offloading decision
scheme based on the Actor-Critic algorithm. In [34] and [5],
task offloading decisions were made based on DRL algorithms,
e.g., Deep Q-Learning Network (DQN) and Double Deep
Q-learning Network (DDQN)-based algorithms, however, the
cloud server was not considered in the MEC environment
and they usually require to learn from scratch when the
environment changes.

Currently, the role of DRL is to choose an optimal edge
computing environment or location for the current task ac-
cording to its status and environment. However, each time the
IoT environment changes, the offloading decision has to be
recalculated, which leads to more service delays and higher
costs. In addition, DRL algorithms are still limited with slower
learning speed and are generally less efficient in solving the
offloading decision-making problem [6]. Table I shows the
comparison of the key parameters of the current relevant
unloading decision model. It can be seen that although it uses
different algorithms, it does not consider the adaptability of
the model when the scenario/environment varies. Therefore,
it is urgent to find an intelligent method that can learn
knowledge and quickly provide better offloading decisions
with the change of environment. Unlike traditional machine
learning that only trains a general learning model for edge
offloading, the goal of meta-learning is “learning to learn
fast”, that is, to make the model become a learner and fit a
new environment rapidly [35]–[37]. After completing multiple
learning tasks, it can quickly learn new tasks by learning
prior knowledge or exploring learning strategies only with
a few training examples [38], [39]. Therefore, it adapts to
complex and dynamic environments rapidly and can be used
to improve the robustness of task offloading decisions in IoT
environments.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we give an overview of the system model
and then define the delay model and energy consumption

4

TABLE I: The Qualitative Comparison of the Current Literature

Techniques

IoT Properties Architectural Properties Model Properties

Dependency Mode IoT Number Edge Number Cloud Number Network structure Algorithm Properties Theories
Decision Parameters

Fast AdaptabilityTime Energy

[11] Dependent Multiple Multiple Multiple MEC+MCC Traditional Coalition Game theory 7 3 7

[15] Dependent Multiple Multiple Multiple MEC+MCC Traditional Lyapunov Optimization 3 3 7

[16] Independent Multiple - Single MCC Traditional Lyapunov Optimization 3 3 7

[20] Independent Multiple - Multiple MCC Traditional Markov Chain 3 3 7

[21] Independent Multiple Multiple - MEC Traditional Stackelberg Game 3 7 7

[24] Dependent Multiple Multiple Multiple MEC+MCC Traditional Genetic Algorithm 3 3 7

[28] Independent Multiple Single - MEC Intelligent Deep Learning 3 3 7

[29] Independent Multiple Single Single MEC+MCC Intelligent Deep Learning 3 3 7

[33] Independent Single Multiple - MEC Intelligent Deep Reinforcement Learning 3 3 7

[5] Independent Multiple Single - MEC Intelligent Deep Reinforcement Learning 3 7 7

[34] Independent Multiple Single Single MEC+MCC Intelligent Deep Reinforcement Learning 3 3 7

Our Technique Dependent Multiple Single/Multiple Single/Multiple MEC+MCC Intelligent Deep Meta Reinforcement Learning 3 3 3

model. On this basis, the optimization problem of computation
offloading is formulated.

A. System Model

The system model for task offloading in IoT-edge-cloud
computing environments is shown in Fig. 1. The proposed
framework is composed of a cloud server, an edge server, and
multiple IoT devices, where the IoT devices can either execute
locally or offload their workflow to the cloud server or edge
server.

Fig. 1: System model of edge-cloud computing with multiple
IoT devices

In this framework, edge servers are distributed near the
devices and have high bandwidth. The edge server accepts
workflow information from the device and makes fine-grained
offloading decisions. The program for each device can be di-
vided into sequential workflows. We assume the x-th workflow
is defined as follows:

Rx = {e0,1, v1, e1,2, v2, · · · , vi, ei,j , vj , · · · , en−1,n, vn, en+1} ,
(1)

where vi denotes i-th task in the workflow, and ei,j illustrates
the set of data flows between tasks vi and vj .

Each workflow x can determine whether to offload its task
vi or not, and the offloading decision is denoted by a Matrix
variable:

bx,i ∈ (b0, b1, b2) , (2)

where b0 = [1 0 0]T , b1 = [0 1 0]T and b2 =
[0 0 1]T denote the decision that workflow x to execute
its i-th task locally, offload i-th task to the edge server, and
offload i-th task to the cloud server, respectively.

B. Delay Model

The delay caused by computation offloading includes com-
putation delay and transmission delay. We do not consider
the delay incurred in offloading decision-making because the
time required to make the decision is short. Therefore, the
computational delay of task vi is calculated by:

T c
i =


vi
C0
, bx,i = b0,

vi
C1
, bx,i = b1,

vi
C2
, bx,i = b2,

(3)

where C0, C1 and C2 stand for the computing power of
the IoT, the computing power of the edge server and the
computing power of the cloud server, respectively.

The transmission delay between tasks vi and vj is:

T t
i,j =


0, bx,i = bx,j ,
ei,j
B0,1

, bx,i = b0, bx,j = b1 or bx,i = b1, bx,j = b0,
ei,j
B1,2

, bx,i = b1, bx,j = b2 or bx,i = b2, bx,j = b1,
ei,j
B0,2

, bx,i = b0, bx,j = b2 or bx,i = b2, bx,j = b0,

(4)
where B0,1 denotes the allocated bandwidth between the IoT
device and the edge server. B1,2 is the allocated bandwidth
between the cloud server and the edge server. Similarly, we
denote B0,2 as the allocated bandwidth between the IoT device
and the cloud server.

The total delay for workflow x is calculated as:

Tx =

N∑
i=1

(
T c
i + T t

i,i+1

)
, (5)

where the workflow x has N associated tasks.

C. Energy Consumption Model

The energy consumption model of workflow x can be
expressed as:

Ex = Elocal
x + αEedge

x + βEcloud
x , (6)

5

where α and β are weights of the energy consumption at the
edge server and at the cloud server, respectively. When α =
β = 0, we only consider the energy consumption at the IoT
device. For simplicity, we ignore the energy consumed during
task transmission.

The energy consumption of task v is calculated as:

Ei =

 vi · dlocal, bx,i = b0,
vi · dedge, bx,i = b1,
vi · dcloud, bx,i = b2,

(7)

where dlocal, dedge and dcloud denote the local energy consump-
tion per data bit, the edge energy consumption per data bit
and the cloud energy consumption per data bit, respectively.

Therefore, the energy consumption model of workflow x
can be expressed by:

Ex =

N∑
i=1

[Ei, αEi, βEi] · bx,i. (8)

D. Problem Formulation

To minimize both the delay for completing all workflows
and the corresponding energy consumption simultaneously,
we first introduce a system utility Q(x, b), which is defined
as the weighted sum of energy consumption and workflow
completion delay, as follows:

Q(x, b) =

M∑
x=1

(Tx + δEx)

=

M∑
x=1

[N∑
i=1

(
T c
i + T t

i,i+1

)
+ δ

N∑
i=1

[Ei, αEi, βEi] bx,i

]
,

(9)

where there are M workflows in total, each workflow has
N associated tasks, and δ denotes the weight of energy
consumption and task completion time.

The optimization problem can be formulated as a minimiza-
tion problem P1 with a constraint, as follows:

(P1) : min
b

Q(x, b), (10)

s.t. : bx,i ∈

 1
0
0

 ,
 0

1
0

 ,
 0

0
1

 . (11)

IV. DEEP META REINFORCEMENT LEARNING-BASED
OFFLOADING FRAMEWORK

To effectively solve the optimization problem defined in
(10), we then propose a Deep Meta Reinforcement learning-
based Offloading (DMRO) framework as shown in Fig. 2,
where a series of dependent tasks are considered compre-
hensively, in order to give a specific offloading decision for
each task. The proposed learning-driven offloading framework
contains a task offloading decision model based on distributed
reinforcement learning algorithm and a training model based
on meta-learning, aiming to solve the problem of poor porta-
bility of neural networks.

The DMRO framework can be divided into two types of
models, i.e., an inner model and an outer model. The purpose

Fig. 2: The proposed deep meta reinforcement learning-based
offloading framework

of the framework using inner and outer models is to improve
the interaction between the model and the environment on the
traditional task offloading decision model. The inner model
focuses on making unloading decisions. The outer model
focuses on unloading changes in the environment and changes
the model parameters of the inner layer according to the
changes, so that the inner model can be adjusted more quickly.
Specifically, the inner model is an offloading decision model,
which is responsible for receiving the workflow and training
the model parameters to provide final offloading decisions for
different tasks. The outer model is responsible for training
the initial parameters to improve the portability of the model.
When the environment of the MEC system changes, e.g., the
performance of the edge server or the bandwidth between the
IoT device and the edge server, it can adjust the parameters of
the neural network in the inner model, so that the system can
quickly adapt to the new environment. When the workflow is
input into the edge offloading system, the outer model first
determines whether the external environment has changed, in
order to determine whether to adjust the initial parameters.
After that, the workflow will enter the inner model, which will
make the offloading decision, and store the state and action in
memory for the training of the neural network.

Furthermore, in order to increase the portability of the
model, speed up the decision-making process and reduce the
amount of computation, we design a deep meta-reinforcement
learning-based method, which also combines the function
of memory playback (replay memory), so that the decision-
making system can adapt to the new environment quickly and
give the optimal offloading decision when the environment
changes. In addition, the generated offloading decisions are
stored in the replay memory summary for further learning.

A. Inner Model

As shown in Fig. 3, the inner model is based on a parallel
Deep Reinforcement Learning (DRL) algorithm. We apply
a classic reinforcement learning method named Q-learning,
in which we input environmental parameters, labeled initial
parameters and workflow x into the inner model.

We use ai to represent the offloading decision of the i-th

6

Fig. 3: Illustration of the proposed distributed DRL-based offloading scheme

subtask of the workflow, which is defined as:

ai =

 0, if subtask i is executed on IoT device,
1, if subtask i is offloaded to edge server,
2, if subtask i is offloaded to cloud server,

(12)

where ai = 0, 1, and 2 indicate that the i-th subtask is executed
locally on the IoT device, the edge server, and the cloud server,
respectively.

We represent Si as the state when processing the i-th
subtask in the workflow:

Si = [ai−1, ei−1,i, vi, ei,i+1, vi+1, · · · , en−1,n, vn, en] , i ≥ 1,
(13)

where ai−1 represents the execution position of a subtask in
the workflow, which is set as 0 at the beginning. Then the
state Si is input to the neural network to find the Q value of
each action in this state.

Here we have s distributed neural network units. Each
neural network action unit is parallel, including two DNNs
with an identical structure, one of which is the target network
for parameter freezing. Parameter freezing means that the two
networks have the same structure, but the parameters of the
frozen network will not be iterated every time. When the other
network learns a certain number of times, the parameters are
copied to the frozen network. The purpose of using parameter
freezing is to reduce the relevance of learning [40]. Each neu-
ral network unit will give the selected action value according
to its own Q value calculated by the greedy algorithm. In
addition, we define a local objective function:

F (Si, a) = T c
i + T t

i−1,i + δEi, (14)

bx,i−1 = ai−1, (15)
bx,i = ai, (16)

where F (Si, a) can be interpreted as the weighted sum of
the delay and energy consumption for selecting action a in
state Si. We compare F (Si, a) values generated by the actions
selected by different DNNs as a measure of the effects of the
actions selected by different DNNs. The action with the lowest
F is set as the optimal solution in the state Si.

For the reward function R(Si, a) in DRL, if the action is
the action value of the optimal solution, the reward value
is the negative value of the minimum optimization function;
otherwise, the reward value is the negative value of the
maximum function. Then we choose the action of the optimal
solution as ai, and update the state Si as:

Si+1 = [ai, ei,i+1, vi+1, ei+1,i+2, vi+2, · · · , en−1,n, vn, en] .
(17)

The algorithmic process of the proposed parallel DRL
algorithm is as demonstrated in Algorithm 1.

1) Training Phase: In the training phase, we input
[Si, ai, R(Si, a), Si+1] calculated by the neural network into
the memory, and then continue to input the updated workflow
into the neural network for calculation until all subtasks of the
workflow have been processed.

After processing a certain number of workflows, e.g., five
times, we will randomly extract [Si, ai, R(Si, a), Si+1] from
the memory for empirical playback. The purpose of this step is
to eliminate the correlation generated by the associated states.
Then we update the parameters of the network as follows:

Q (Si, ai)← (1−θ)Q (Si, ai)+θ
[
R (Si, a)+µmax

a′∈A
Q (Si+1, a

′)
]

(18)
where Q (Si, ai) represents the Q value function, which is
calculated by the neural network, Q (Si, ai) represents the Q
part is calculated by the network with the latest parameters,

7

and maxa′∈AQ (Si+1, a
′) is calculated by the network with

the frozen parameters. The learning rate θ ∈ [0, 1] is the weight
of the current offloading experience. The discount factor µ ∈
[0, 1] denotes the short view of the IoT device regarding the
future reward.

2) Decision-Making Phase: In the decision-making phase,
we will make fine-grained offloading decisions for IoT devices.
First, we obtain the action value a generated by each DNN
and fill it into s action sets A. Then, we input the updated
state to the neural network, and continue to find the execution
method of the next subtask until all the subtasks are assigned.
At this time, Ai represents the offloading scheme given by the
i-th DNN network to the workflow x, and the scheme Ai with
the minimum Q(x, b) value is the final scheme A and output
to the device.

Algorithm 1 The distributed deep reinforcement learning
algorithm

Input: Workflow x, Environment: E, Meta-parameter: ψ
Output: Optimal offloading decision A

1: Initialize the s DNNs with meta-parameter ψ
2: Empty the memory pool
3: for i = 1, 2, 3, · · · , N do
4: Replicate state Si to all s DNNs
5: Generate s-th offloading action aji via ε-greedy policy
6: for j = 1, 2, 3, · · · , s do
7: Input aji to decision set Aj as: a1i , a2i , · · · , aji
8: Evaluate the local objective function F (Si, a

j
i), gen-

erate reward R(Si, a
j
i)

9: if train then
10: a1i = ai
11: else
12: ai is aji in turn
13: if i == n then
14: Select A according to argminAj Q(Si, A

j)
15: Output A as offloading decision
16: end if
17: Input [Si, ai, R(Si, ai), Si+1] to memory pool
18: end if
19: end for
20: if Add data to memory five times then
21: Extract [Si, ai, R(Si, ai), Si+1] from memory at ran-

dom
22: Replicate state Si to all s DNNs
23: Evaluate the local objective function F (Si, ai), gen-

erate reward R(Si, ai)
24: Update the s DNNs weights θ
25: end if
26: end for

B. Outer Model

In the outer model, we propose a meta algorithm to learn
the initial parameters.

Based on the original algorithm described in [38], i.e.,
an initial parameter algorithm for training different image
classification networks, we propose a novel algorithm for

learning initial parameters in order to adapt to the training
method of reinforcement learning. We train our decision-
making engine by leveraging the deep meta-learning method,
and then we make rapid offloading decisions through IoT-
edge-cloud computing environments. The algorithmic process
of the proposed meta algorithm is as listed in Algorithm 2.

The principle of our meta algorithm is to input the decision-
making and execution results of the workflow in different
environments into the training model. Each time the training
model randomly selects training samples in one environment
for learning, and randomly selects another environment after
learning. The purpose of training sample learning is to ensure
that the parameters trained by the model will not be too close
to the optimal solution in a specific environment. We use the
parameters trained in this way as the initial parameters of the
inner model.

Algorithm 2 The meta algorithm

Input: Workflow x, Environment: E
Output: Optimal offloading decision A

1: Initialize the DNNs with parameter θ0
2: Empty the memory pool
3: for i = 1, 2, 3, · · · , N do
4: Randomly select environment
5: Input state Si to DNN
6: Generate offloading action ai via ε-greedy policy
7: generate reward R(Si, ai) via Random Environment
8: Input [Si, ai, R(Si, ai), Si+1] to memory pool
9: if Add data to memory five times then

10: Randomly select environment
11: Extract [Si, ai, R(Si, ai), Si+1] from memory at ran-

dom
12: Replicate state Si to the DNNs
13: Evaluate the local objective function F (Si, ai), gen-

erate reward R(Si, ai)
14: Update the s DNNs weights θ
15: end if
16: end for
17: Output DNN parameter θ as meta-parameter ψ

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
DMRO framework for solving the optimization problem of of-
floading decision-making under different MEC environments.

A. Experimental Setup
In our simulation, we assume that there are four IoT users,

and each user has five workflows. The size of the first subtask
of each workflow is 50− 100 MB, and the size of subsequent
tasks is 10 − 50 MB. The amount of computation for each
subtask is 103−105 MHz randomly distributed. For the DNN
structure, we consider a fully connected DNN consisting of
one input layer, two hidden layers, and one output layer in the
proposed DMRO framework. Since this paper is not limited
to a special environment sensitive to power consumption, the
parameters α and β are both set to 1. In addition, we set the
environmental information as listed in Table II.

8

TABLE II: Environmental Information

Clocal 30 MHz B0,1 800 MB/s dlocal 0.3 J/MB
Cedge 70 MHz B1,2 200 MB/s dedge 0.15 J/MB
Ccloud 150 MHz B0,2 10 MB/s dcloud 0.1 J/MB

B. Convergence Performance

Figure 4 shows the convergence performance of our model
under different learning rates, where the abscissa is the number
of training steps and the ordinate is the value of the neural
network loss function. Due to the training methods of rein-
forcement learning, this is not a true loss function, so we use
“cost” instead. It can be found that when the learning rate is
too low, it will not be able to converge. However, when the
learning rate is 0.01, the convergence effect is the best, so we
will use a learning rate of 0.01 in the next experiment.

Fig. 4: Convergence performance under different learning rates

Figure 5 shows the convergence performance of our model
under different batch sizes, where the abscissa is the number
of training steps and the ordinate is the value of the neural
network loss function. It can be seen that the batch size has
less effect on the convergence, but as the batch size increases,
the volatility of the curve becomes smaller. It is worth noting
that there is a small fluctuation in the curve every 200 steps,
which is mainly due to the parameter freezing mechanism. In
the model, we set the network parameters to the target network
every 200 steps. As a result, the parameters will fluctuate every
200 steps, but it does not affect the convergence of the model.

C. Comparison with Related Work

To gain insight into the proposed DMRO scheme for edge
offloading decision, we have implemented many existing ap-
proaches in heterogeneous IoT-edge-cloud computing environ-
ments for comparison:
• Local-only scheme: In this method, all tasks of workflows

are executed locally on the IoT device. The results of this
method can be used as a benchmark to analyze the gain
of task offloading techniques.

• Edge-only scheme: This is a full offloading scheme. In
this method, all tasks of workflows are fully offloaded to
the edge servers for further processing.

• Cloud-only scheme: This is a full offloading scheme. In
this method, all tasks of workflows are fully offloaded to
the cloud server for further processing.

• Deep Q-Network scheme: This is a partial offloading
scheme based on the Deep Q-Network (DQN) algo-
rithm [41], where it can be regarded as a simplified
DMRO algorithm with only one parallel network. As
one of the most classic algorithms in deep reinforcement
learning, DQN is frequently used in task offloading [42].
In this method, we use the Deep Q-Network in making
dynamic offloading decisions.

• Double DQN scheme: Double DQN is an improved algo-
rithm based on nature Deep Q-Network [43]. It uses two
identical neural networks to solve the correlation between
data samples and network before training. In [44], the
task offloading model uses Double DQN to improve the
processing capacity of the edge node and reduce the
packet loss rate and average delay.

• Dueling DQN scheme: Dueling DQN is another improved
algorithm based on nature Deep Q-Network [45], which
is achieved by optimizing the experience playback pool
and sampling by weight. There is also some work that
introduces Dueling DQN into task offloading [46].

• DMRO scheme: This is a partial offloading scheme based
on the proposed DMRO scheme. It is designed to find the
optimal offloading scheme that minimizes the weighted
delay and energy consumption.

In order to control the variables, several other deep rein-
forcement learning offloading schemes used in the experiment
are the same as the initial parameters of this scheme, including
the same state space and action space as well as the same
neural network structure. The comparison results are as shown
in Fig. 6, where the abscissa is the weight ratio of delay
to energy consumption, and the ordinate is the value of the
objective function. Since we used feature scaling, the value
of the objective function is dimensionless. The lower the total
cost, the smaller the resulting delay and energy consumption,
which indicates a better offloading effect. Especially, when
the weight value is 0, it means that only delay is considered.
The figure shows that the DMRO algorithm can achieve the
minimum total cost among the seven methods. The offloading
algorithm based on reinforcement learning is better than the
single offloading method. DMRO shows a similar curve trend
with DQN, and outperforms the Deep Q-Network scheme, the
Double DQN scheme, and the Dueling DQN scheme. As can
be seen from the figure, the DMRO algorithm is generally
better than other algorithms. For example, when the weight is
0.2, the DMRO algorithm improves the effect by more than
17.6% compared with other DRL algorithms. In addition, as
the weight ratio of energy consumption increases, the total
consumption of local execution increases rapidly, which also
meets our expectations, indicating that local devices are more
sensitive to energy consumption.

Apart from the scenario with one edge server and one

9

(a) Batch size 128 (b) Batch size 256 (c) Batch size 512 (d) Batch size 1024

Fig. 5: Convergence performance under different batch sizes

Fig. 6: Performance comparison of different offloading
schemes under different weights

Fig. 7: Performance comparison of different offloading
schemes in a multi-server environment

cloud server, the DMRO framework is highly scalable and can
be easily extended to other dynamic scenarios with multiple
edge servers or multiple cloud servers. Here, to examine
the effect of DMRO in a multi-cloud server and multi-edge
server environment, we simulate an environment with two
edge servers, and two cloud servers. Table III gives the de-
tailed parameter settings, where different servers have different

TABLE III: Multi-Server Environmental Information

Clocal 30 MHz B0,1 800 MB/s dlocal 0.3 J/MB
Cedge1 70 MHz B1,2 200 MB/s dedge1 0.15 J/MB
Cedge2 90 MHz B1,1 500 MB/s dedge2 0.18 J/MB
Ccloud1 150 MHz B0,2 10 MB/s dcloud1 0.1 J/MB
Ccloud2 180 MHz B2,2 150 MB/s dcloud2 0.08 J/MB

computing power and bandwidth. In this environment, we still
consider the offloaded energy consumption and latency as the
objective function. Figure 7 compares the effects of different
DRL algorithms in the multi-edge environment, where the
horizontal coordinate is the number of training steps and the
vertical coordinate is the average reward value in the DRL
algorithm. Since the reward value of this model is the negative
correlation of the objective function value, a higher average
reward represents a higher model offloading effect. From the
figure, we can see that all DRL algorithms improve with the
increase of training steps, which proves that we have set a
reasonable state space and reward function. Moreover, the
proposed DMRO scheme not only converges quickly, but also
achieves the highest average reward value, which demonstrates
that the offloading results using DMRO are significantly better
than other DRL algorithms such as Deep Q-Network scheme,
Double DQN scheme and Dueling DQN scheme.

D. Fast Learning

We show the effect of the proposed meta algorithm in fast
offloading decision learning under different MEC environ-
ments. We first set up two types of environments, i.e., the
training environment and the testing environment, as shown
in Table IV.

TABLE IV: Evaluation Parameters

Training Environment Testing Environment
Clocal 15− 25 MHz Clocal 30 MHz
Cedge 50− 60 MHz Cedge 70 MHz
Ccloud 160− 170 MHz Ccloud 150 MHz
B0,1 600− 700 MB/s B0,1 800 MB/s
B1,2 100− 150 MB/s B1,2 200 MB/s
B0,2 20− 30 MB/s B0,2 10 MB/s
dlocal 0.3 J/MB dlocal 0.3 J/MB
dedge 0.15 J/MB dedge 0.15 J/MB
dcloud 0.1 J/MB dcloud 0.1 J/MB

10

We input the trained meta parameters into the test environ-
ment. As depicted in Fig. 8, we compare the convergence of
the meta-parameters, the initialization parameters, and the pa-
rameters that have been trained in other similar environments.
The abscissa is the number of training steps, and the ordinate
is the value of the neural network loss function. It can be seen
that the convergence of the meta-parameters is significantly
better than that of the traditional initialization parameters and
similar to that of the trained parameters. This indicates that
both the meta-learning and the trained parameters have strong
convergence in the new MEC environment.

Fig. 8: Convergence performance under different parameters.

Fig. 9: Performance comparison under different parameters.

Figure 9 shows the comparison of the effect of the meta
parameters, initialization parameters and trained parameters
on the total cost. The abscissa is the weight ratio of delay
to energy consumption, and the ordinate is the value of the
objective function. It can be seen from the figure that the deci-
sion result of DNNs using the meta parameters is significantly
better than that of the traditional initialization parameters as
well as the trained parameters. After several rounds of training,
the optimal offloading decision can be achieved. Therefore,
when the environment of the model changes, although both
the meta parameters and the trained parameters are close

to convergence, using the meta parameters can obtain better
results than the original trained parameters.

VI. CONCLUSION AND FUTURE WORK

To solve the challenge of poor portability of neural net-
works, this paper has proposed a novel DMRO framework
to deal with the task offloading decision-making problem in
heterogeneous edge and cloud collaborative computing envi-
ronments. It includes a task offloading decision model based
on distributed DRL and a training initial parameter model
based on deep meta-learning, which has the potential to fast
adapt to a dynamic MEC environment and solve the problem
of offloading decision-making for edge-cloud computing.

Experimental results show that DMRO has a better effect
on task offloading decisions than binary offloading schemes
and conventional DRL-based partial offloading schemes. In
addition, due to the use of meta parameters, the model has
stronger portability and rapid environment learning ability.
Once the MEC environment changes, the model can quickly
converge, and only a small number of learning steps are
required to find optimal offloading solutions with relatively
low costs.

In future work, we will continually improve the meta-
learning algorithm so that it can better adapt to task offloading
decisions in large-scale MEC environments, especially, the
initial parameters can be changed adaptively in response to
environmental parameters. In addition, we will also focus on
issues such as resource allocation and bandwidth adjustment
through serverless edge computing frameworks [47], [48]. Fur-
thermore, the offloading model can not only give the offloading
decision result of tasks, but also provide the corresponding
resource scheduling schemes.

ACKNOWLEDGMENT

This work was partly supported by the National Natural
Science Foundation of China under Grant No. 62071327 and
61801325, Natural Science Foundation of Tianjin City under
Grant No. 18JCQNJC00600 and JSPS KAKENHI under Grant
No. JP19H04105.

REFERENCES

[1] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for
internet of things: a primer,” Digital Communications and Networks,
vol. 4, no. 2, pp. 77–86, 2018.

[2] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, and P. Hui, “A survey on edge
intelligence,” ArXiv, vol. abs/2003.12172, 2020.

[3] H. Wu, Y. Sun, and K. Wolter, “Energy-efficient decision making for
mobile cloud offloading,” IEEE Transactions on Cloud Computing,
vol. 8, no. 2, pp. 570–584, Apr. 2020.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[5] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, 2019.

[6] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and
D. Hassabis, “Reinforcement learning, fast and slow,” Trends in cognitive
sciences, vol. 23, no. 5, pp. 408–422, 2019.

[7] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo,
R. Munos, C. Blundell, D. Kumaran, and M. Botvinick, “Learning to
reinforcement learn,” 2017.

11

[8] I. A. Elgendy, W.-Z. Zhang, Y. Zeng, H. He, Y.-C. Tian, and Y. Yang,
“Efficient and secure multi-user multi-task computation offloading for
mobile-edge computing in mobile IoT networks,” IEEE Transactions on
Network and Service Management, vol. 17, no. 4, pp. 2410–2422, Dec.
2020.

[9] P. P. Ray and N. Kumar, “SDN/NFV architectures for edge-cloud
oriented IoT: A systematic review,” Computer Communications, vol.
169, pp. 129–153, mar 2021.

[10] H. Wu, W. Knottenbelt, and K. Wolter, “An efficient application par-
titioning algorithm in mobile environments,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 7, pp. 1464–1480, 2019.

[11] N. Kumar, T. Dhand, A. Jindal, G. S. Aujla, H. Cao, and L. Yang, “An
edge-fog computing framework for cloud of things in vehicle to grid
environment,” in 2020 IEEE 21st International Symposium on ”A World
of Wireless, Mobile and Multimedia Networks” (WoWMoM), 2020, pp.
354–359.

[12] C. Liu, K. Li, J. Liang, and K. Li, “COOPER-SCHED: A cooperative
scheduling framework for mobile edge computing with expected dead-
line guarantee,” IEEE Transactions on Parallel and Distributed Systems,
pp. 1–1, 2020.

[13] A. Irshad, S. A. Chaudhry, O. A. Alomari, K. Yahya, and N. Kumar, “A
novel pairing-free lightweight authentication protocol for mobile cloud
computing framework,” IEEE Systems Journal, pp. 1–9, 2020.

[14] C. Liu, K. Li, J. Liang, and K. Li, “COOPER-MATCH: Job offloading
with a cooperative game for guaranteeing strict deadlines in MEC,” IEEE
Transactions on Mobile Computing, pp. 1–1, 2020.

[15] K. Peng, J. Nie, N. Kumar, C. Cai, J. Kang, Z. Xiong, and Y. Zhang,
“Joint optimization of service chain caching and task offloading in
mobile edge computing,” Applied Soft Computing, vol. 103, p. 107142,
May 2021.

[16] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, Y. Qu, and B. Li, “eTime:
Energy-efficient transmission between cloud and mobile devices,” in
2013 Proceedings IEEE INFOCOM. IEEE, 2013, pp. 195–199.

[17] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

[18] G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang, “Energy-delay
tradeoff for dynamic offloading in mobile-edge computing system with
energy harvesting devices,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 10, pp. 4642–4655, 2018.

[19] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO:
An energy-efficient dynamic task offloading algorithm for blockchain-
enabled IoT-edge-cloud orchestrated computing,” Internet of Things
Journal, vol. 8, no. 4, pp. 2163–2176, feb 2021.

[20] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile offloading
in heterogeneous networks,” IEEE Transactions on Mobile Computing,
vol. 17, no. 2, pp. 461–474, 2018.

[21] M. Li, Q. Wu, J. Zhu, R. Zheng, and M. Zhang, “A computing
offloading game for mobile devices and edge cloud servers,” Wireless
Communications and Mobile Computing, vol. 2018, 2018.

[22] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
optimized partial computation offloading in mobile-edge computing with
genetic simulated-annealing-based particle swarm optimization,” IEEE
Internet of Things Journal, vol. 8, no. 5, pp. 3774–3785, mar 2021.

[23] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and L. Qi, “A
computation offloading method over big data for IoT-enabled cloud-
edge computing,” Future Generation Computer Systems, vol. 95, pp.
522–533, 2019.

[24] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent iot applications in edge and fog
computing environments,” IEEE Transactions on Mobile Computing,
vol. 20, no. 4, pp. 1298–1311, 2021.

[25] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computation
offloading,” IEEE Wireless Communications, vol. 27, no. 1, pp. 92–99,
Feb. 2020.

[26] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys Tutorials, vol. 22, no. 2, pp.
869–904, 2020.

[27] B. Cao, L. Zhang, Y. Li, D. Feng, and W. Cao, “Intelligent offloading in
multi-access edge computing: A state-of-the-art review and framework,”
IEEE Communications Magazine, vol. 57, no. 3, pp. 56–62, 2019.

[28] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed
deep learning-based offloading for mobile edge computing networks,”
Mobile Networks and Applications, pp. 1–8, 2018.

[29] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city internet of
things,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8099–8110,
2020.

[30] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017.

[31] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and
P. Abbeel, “Deep imitation learning for complex manipulation tasks from
virtual reality teleoperation,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, May 2018.

[32] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Privacy-
preserved task offloading in mobile blockchain with deep reinforcement
learning,” IEEE Transactions on Network and Service Management,
vol. 17, no. 4, pp. 2536–2549, Dec. 2020.

[33] Z. Zhang, F. R. Yu, F. Fu, Q. Yan, and Z. Wang, “Joint offloading
and resource allocation in mobile edge computing systems: An actor-
critic approach,” in 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, Dec. 2018.

[34] L. Huang, X. Feng, L. Qian, and Y. Wu, “Deep reinforcement learning-
based task offloading and resource allocation for mobile edge comput-
ing,” in International Conference on Machine Learning and Intelligent
Communications. Springer, 2018, pp. 33–42.

[35] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, “Learning to learn by
gradient descent by gradient descent,” in Advances in neural information
processing systems, 2016, pp. 3981–3989.

[36] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine, “Meta-
reinforcement learning of structured exploration strategies,” in Advances
in Neural Information Processing Systems, 2018, pp. 5302–5311.

[37] L. Huang, L. Zhang, S. Yang, L. P. Qian, and Y. Wu, “Meta-learning
based dynamic computation task offloading for mobile edge computing
networks,” IEEE Communications Letters, vol. 25, no. 5, pp. 1568–1572,
may 2021.

[38] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1126–1135.

[39] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta reinforcement
learning,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 1, pp. 242–253, 2021.

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[41] V. Haghighi and N. S. Moayedian, “An offloading strategy in mobile
cloud computing considering energy and delay constraints,” IEEE Ac-
cess, vol. 6, pp. 11 849–11 861, 2018.

[42] D. Van Le and C.-K. Tham, “A deep reinforcement learning based
offloading scheme in ad-hoc mobile clouds,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2018, pp. 760–765.

[43] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, 2016.

[44] M. Tang and V. W. Wong, “Deep reinforcement learning for task
offloading in mobile edge computing systems,” IEEE Transactions on
Mobile Computing, 2020.

[45] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning. PMLR, 2016, pp. 1995–
2003.

[46] S. Song, Z. Fang, Z. Zhang, C.-L. Chen, and H. Sun, “Semi-online
computational offloading by dueling deep-q network for user behavior
prediction,” IEEE Access, vol. 8, pp. 118 192–118 204, 2020.

[47] S. S. Gill, “Quantum and blockchain based serverless edge computing:
A vision, model, new trends and future directions,” Internet Technology
Letters, feb 2021.

[48] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,
D. Taibi, M. Assuncao, S. S. Gill, R. Gaire, and S. Dustdar, “Serverless
edge computing: Vision and challenges,” in 2021 Australasian Computer
Science Week Multiconference. ACM, feb 2021.

12

Guanjin Qu received the bachelor’s degree from
Taiyuan University of Technology, China in 2019.
He is currently working towards the Master’s de-
gree at the Center for Applied Mathematics, Tianjin
University, China. His research interests include
distributed deep learning and edge computing.

Huaming Wu received the B.E. and M.S. de-
grees from Harbin Institute of Technology, China
in 2009 and 2011, respectively, both in electrical
engineering. He received the Ph.D. degree with the
highest honor in computer science at Freie Uni-
versität Berlin, Germany in 2015. He is currently
an associate professor at the Center for Applied
Mathematics, Tianjin University, China. His research
interests include internet of things, wireless and mo-
bile network systems, edge/cloud computing, deep
learning and complex networks.

Ruidong Li is an associate professor at Kanazawa
University, Japan. Before joining this university, he
was a senior researcher at the National Institute
of Information and Communications Technology
(NICT), Japan. He received the M.Sc. degree and
Ph.D. degree in computer science from the Univer-
sity of Tsukuba in 2005 and 2008, respectively. He
serves as the secretary of IEEE ComSoc Internet
Technical Committee (ITC), and are the founders
and chairs of IEEE SIG on Big Data Intelligent
Networking and IEEE SIG on Intelligent Internet

Edge. He is the associate editor of IEEE Internet of Things Journal, and also
served as the guest editors for a set of prestigious magazines, transactions,
and journals, such as IEEE communications magazine, IEEE network, IEEE
TNSE. He also served as chairs for several conferences and workshops, such
as the general co-chair for IEEE MSN 2021, AIVR2019, IEEE INFOCOM
2019/2020/2021 ICCN workshop, TPC co-chair for IWQoS 2021, IEEE MSN
2020, BRAINS 2020, IEEE ICDCS 2019/2020 NMIC workshop, and ICCSSE
2019. His research interests include future networks, big data, intelligent In-
ternet edge, Internet of things, network security, information-centric network,
artificial intelligence, quantum Internet, cyber-physical system, and wireless
networks. He is a senior member of IEEE and a member of IEICE.

Pengfei Jiao received the Ph.D. degree in computer
science from Tianjin University, Tianjin, China, in
2018. He is a lecturer with the Center of Biosafety
Research and Strategy of Tianjin University. His
current research interests include complex network
analysis, data mining and graph neural network,
and currently working on temporal community de-
tection, link predication, network embedding, rec-
ommender systems and applications of statistical
network model. He has published more than 50
international journals and conference papers.

	Introduction
	Related work
	Traditional Offloading Decision-Making
	Intelligent Offloading Decision-Making

	System Model and Problem Formulation
	System Model
	Delay Model
	Energy Consumption Model
	Problem Formulation

	Deep Meta Reinforcement Learning-based Offloading Framework
	Inner Model
	Training Phase
	Decision-Making Phase

	Outer Model

	Performance Evaluation
	Experimental Setup
	Convergence Performance
	Comparison with Related Work
	Fast Learning

	Conclusion and future work
	References
	Biographies
	Guanjin Qu
	Huaming Wu
	Ruidong Li
	Pengfei Jiao

