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Abstract—Big data frameworks such as Apache Spark is becoming prominent to perform large-scale data analytics jobs in various
domains. However, due to limited resource availability, the local or on-premise computing resources are often not sufficient to run these
jobs. Therefore, public cloud resources can be hired on a pay-per-use basis from the cloud service providers to deploy a Spark cluster
entirely on the cloud. Nevertheless, using only cloud resources can be costly. Hence, both local and cloud resources nowadays are
used together to deploy a hybrid cloud computing cluster. However, scheduling jobs in a cluster deployed on hybrid clouds is
challenging in the presence of various Service-Level Agreement (SLA) demands such as cost minimization and job deadline
guarantee. Most of the existing works either consider a public or a locally deployed cluster and mainly focus on improving job
performance in the cluster. In this paper, we propose efficient scheduling algorithms that leverage from different VM instance pricing in
a hybrid cloud deployed cluster to optimize the Virtual Machine (VM) usage cost for both local and cloud resources and maximize the
job deadline met percentage. We have conducted extensive simulation-based experiments to compare our proposed algorithms with
the baseline approaches. In addition, we have developed a prototype system on top of Apache Mesos cluster manager and performed
real experiments to evaluate the applicability of our proposed approaches in a real platform with benchmark applications. The results
show that our proposed algorithms are highly scalable and reduce the cost of VM usage of a hybrid cluster for up to 20%.

Index Terms—Spark, Hybrid Cloud, Cluster-scheduling, SLA, Big Data Applications, Deadline, Cost-minimization

1 INTRODUCTION

ANALYSING data at a massive scale is becoming cru-
cial due to the availability of huge data in various
domains such as scientific research, social media, business.
Several prominent big data processing platforms such as
Hadoop [1], Spark [2] and Storm [3] are used to analyze
this enormous volume of data. A big data processing plat-
form can be deployed in local-premises using computing
resources owned by a company. Besides, as cloud service
providers offer flexible, scalable, and affordable computing
resources on-demand, it is also becoming popular to deploy
a big data processing cluster in the cloud. Although most
of the deployments of a big data computing cluster are
either local, or on the cloud, many organizations are also
using a hybrid setup where both local and cloud resources
are used together to form the cluster!. However, it is chal-
lenging to schedule jobs in a cluster deployed on hybrid
clouds while ensuring the SLA parameters such as monetary
cost minimization, and deadline. In this paper, we propose
scheduling algorithms that can satisfy the SLA requirements
of the jobs in a big data processing cluster deployed in a
hybrid-cloud.

o M. T Islam, S. Karunasekera and R. Buyya are with the Cloud Computing
and Distributed Systems (CLOUDS) Lab, School of Computing and
Information Systems, The University of Melbourne, Victoria, Australia.
E-mail: tawfiqul.islam@unimelb.edu.au, karus@unimelb.edu.au,
rbuyya@unimelb.edu.au

e H. Wu is with the Center for Applied Mathematics, Tianjin University,
Tianjin, China.

E-mail: whming@tju.edu.cn
(Corresponding author: Muhammed Tawfiqul Islam)

1. https:/ /www.marketsandmarkets.com /PressReleases /
hybrid-cloud.asp

We have chosen Apache Spark as our target big data
processing platform as it is vastly replacing traditional
Hadoop-based platforms. Spark can utilize memory to store
intermediate results to speed up the processing. Moreover,
it is more scalable than other platforms and more suitable
for running complex analytics jobs. Spark programs can be
written in many high-level programming languages, and it
also supports diverse data sources such as HDFS [4], Hbase
[5], Cassandra [6] and Amazon S3?. The data abstraction
of Spark is called Resilient Distributed Dataset (RDD) [7],
which is fault-tolerant. When a Spark job is launched, it
creates one or more executors that use a fixed chunk of
resources in any cluster nodes. These executors are used by
a job to run multiple tasks in parallel at different stages of
the data processing pipeline to work on various partitions
of the dataset.

The default scheduler of Spark is FIFO?, which sched-
ules the jobs on a first-come-first-serve basis. The executors
from a job are distributed in different nodes in a round-
robin fashion for balancing the cluster load and improve
performance. In addition, it can also consolidate the core
usages and minimize the total number of nodes used in
the cluster. However, if the nodes (VMs) are deployed in a
public cloud, distributing the executors across different VMs
can be costly as most of the VMs will be always turned on. In
addition, there will be free resources in these VMs in an off-
peak period when not many jobs are running in the cluster
at the same time. Furthermore, if a hybrid cloud setup is
considered, challenges within inter-cluster scheduling exist

2. https:/ /aws.amazon.com/s3/
3. https:/ /spark.apache.org/docs/latest/job-scheduling.html
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which include: design issues for federated multi-cluster,
latency issues between different regional sub-clusters, and
locality of the data. There are numerous works on inter-
cluster schedulers [8], [9], which focus on addressing these
challenges from a performance standpoint. However, these
schedulers do not consider the VM usage cost of the Spark
cluster deployed in a hybrid cloud setup. In this paper, we
complement these works and address two key objectives
for hybrid cloud scheduling: cost-minimization and dead-
line violation reduction. We propose scheduling algorithms
that work on the cluster-scheduling level, and utilize the
pricing of different VM instance types in a hybrid cloud to
effectively handle the following challenges:

e Performing cluster-level scheduling to make fine-
grained decisions for executor placements on a hy-
brid cloud environment.

e Minimizing the deadline violations for the jobs in the
cluster.

e Minimizing the monetary cost of using the Virtual
Machines (VMs) of the whole cluster.

In summary, our work makes the following key contri-
butions:

e« We formulate an optimization problem for SLA-
based scheduling of Spark jobs in a hybrid cloud.

o We propose two job scheduling algorithms. The first
algorithm is a modified version of the First-Fit (FF)
heuristic for solving bin packing problems. The sec-
ond algorithm uses a greedy approach to iteratively
find the cost-optimal placement for each executor of
ajob. Both algorithms can improve the cost-efficiency
of a hybrid Apache Spark cluster.

e We develop an event-based simulator in Java that can
be used to simulate, test, and compare different job
scheduling policies.

e We implement both of the proposed algorithms on
top of Apache Mesos [10] cluster manager with
separate extendable modules. Therefore, the imple-
mented system is pluggable to Mesos and can be
easily deployed in a hybrid cloud setup.

o We conduct extensive experiments in both simulated
and real environments. Furthermore, we use real
applications and workload traces under different sce-
narios to showcase the superiority of our proposed
algorithms over the existing approaches.

The rest of the paper is organized as follows. In section
2, we present the background to different frameworks and
also the architectural considerations for a hybrid cloud
deployment. In section 3, we discuss the existing works
related to this paper. In section 4, we show the system
model and formulate the scheduling problem. In section 5,
we present the proposed algorithms. In section 6, we show
the simulation experiment setup, baseline algorithms and
experimental results for simulation-based experiments. In
section 7, we showcase the implemented prototype system
in real platforms, discuss the benchmark applications and
real experimental cluster setup, and demonstrate the feasi-
bility of the proposed algorithms with performance evalua-
tion from real experimental results. Section 8 concludes the
paper and highlights future work.

2 BACKGROUND
2.1 Apache Spark

As compared to the disk-based MapReduce tasks of a
typical Hadoop system, Apache Spark allows most of the
computations to be performed in memory and provides
better performance for some applications such as iterative
algorithms. The intermediate results are written to the disk
only when they cannot be fitted into the memory. Spark uses
Resilient Distributed Datasets (RDD) to hold data in a fault-
tolerant way. Each job/application is divided into multiple
sets of tasks called stages which are inter-dependant. All
these stages form a directed acyclic graph (DAG) and each
stage is executed one after another. In a typical Apache
Spark cluster, applications are submitted through a cluster
manager to run in the cluster. Spark supports Apache Mesos,
or Hadoop Yarn, or Kubernetes as cluster managers to allocate
resources among applications. In addition, its own default
Standalone cluster manager is also sufficient to handle a
production cluster. All these cluster managers support both
static and dynamic allocation of resources.

Workers are the physical/compute nodes of an Apache
Spark cluster where one or more application processes can
be created depending on the resource capacity. In cloud
deployments, one or more worker nodes can be created
inside each Virtual Machine (VM). A Spark cluster can
have one or more worker nodes but there is only a single
Master node that is responsible for managing the worker
nodes. Each application in Spark has a SparkContext object
in its main program (also called the Driver Program) which
creates and maintains Executor processes on worker nodes.
An application uses its own set of executors to run tasks in
parallel, in multiple threads and to keep data in memory
and storage. In addition, these executors live for the whole
duration of that application. All the executors of the same
application must be identical in size. Hence, they will have
the same amount of resources (CPU cores, memory, disk).
There are two benefits of isolating applications from each
other. First, a driver program can independently schedule
its own tasks in the acquired executors. Second, each worker
can have multiple executors from different applications
running in their own JVM processes.

2.2 Apache Mesos

Apache Mesos is considered to be a data-center level cluster
manager due to its capability of efficient resource isola-
tion and sharing across distributed applications. In Mesos,
jobs/applications are called frameworks and multiple ap-
plications from different data processing frameworks like
Spark, Storm, and Hadoop can run in parallel in the cluster.
Mesos introduces a novel two-level scheduling paradigm
where it decides a possible resource provisioning scheme
according to the weight, quota or role of a framework and
offers resources to it. The framework’s scheduler is respon-
sible for either rejecting or accepting those resources offered
by Mesos according to its scheduling policies. Mesos pro-
vides HTTP* APIs to control the resource provisioning and
scheduling of the whole cluster. Mesos supports dynamic

4. http:/ /mesos.apache.org/documentation/latest/
operator-http-api/
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resource reservations, thus resources can be dynamically
reserved in a set of nodes by using the APIs and then a
job/framework can be scheduled only on those resources.
When a job is completed, resources can be taken back and re-
served for any future job. It is a significant feature of Mesos
as any external scheduler implemented on top of Mesos can
have robust control over the cluster resources. Furthermore,
the external scheduler can perform fine-grained resource
allocation for a job in any set of nodes with any resource
requirement settings. Lastly, various policies can be incor-
porated into an external scheduler without modifying the
targeted big data processing platform or Mesos itself; so
the scheduler can be extended to work with other big data
processing platforms. For the benefits mentioned above, we
have built a prototype system on top of Mesos to implement
our proposed scheduling algorithms. The proposed schedul-
ing algorithms can be plugged to work with other modern
cluster managers, such as Kubernetes, which also supports
fine-grained resource allocation for containers (e.g, pods
from Kubernetes terms). Kubernetes provides a scheduling
framework, which adds new plugin APIs on top of the
default scheduler to implement new scheduling features.
Thus, by utilizing the plugin APIs, pods can be allocated
to a specific node by following a new scheduling policy.

2.3 Scheduling Levels

From the above discussion, we can observe that there are
two levels of scheduling in the cluster. These are (1) Cluster
Level: decision to select an appropriate VM to create an
executor for a Spark job. From the cluster manager perspec-
tive, a container can be created and allocated with a fixed
set of resources and then this container can be assigned to a
job’s executor. (2) Application Level: The Spark application
driver process is responsible for scheduling tasks in the pro-
visioned executors for a job. This scheduler should consider
the locality of the data to improve the performance of a
job. In this paper, we work on the cluster level to decide in
which VM each executor of a job should be created so that
we can optimize the overall cluster usage cost. In addition,
we also consider the deadline constraint to prioritize jobs
with tight deadlines. As our proposed approaches work on a
higher level, they can be applied to the Hadoop jobs as well.
For example, a cluster manager such as Mesos supports
jobs from different types of frameworks such as Hadoop
and Spark. Thus, the proposed scheduling algorithms can
be extended to support Hadoop jobs, where each Mesos
container should be provisioned for a map or a reduced
task.

2.4 Hybrid Cloud Deployment

There are different architectural considerations regarding
the deployment of a hybrid cloud. For example, in a true
multi-cluster setup, all the executors of a job should be
placed in the same cluster. However, in a multi-cluster
federation, there is a central point of control and the same
job’s executors can be distributed across multiple clusters.
The latter approach may result in locality and latency issues,
as the executors from the same job have to communicate
over different regional boundaries. However, in a multi-
cluster federation, there is only one cluster (although over

3

multiple regions) from the job’s perspective. In addition,
there is more room for cost-efficiency as it is possible to
squeeze out the free resources in the cheapest VMs across
multiple clusters. Thus, in this paper, we choose a federated
multi-cluster setup, where a central Mesos cluster manager
is responsible to manage all the VMs across two different
regions. The Mesos cluster manager is deployed in the local
region to work as the central point of control. In addi-
tion, the external scheduler and other resource reservation
modules are also run locally for faster communication with
the cluster manager. Although there can be latency and
performance issues caused by this setting, we try to capture
these issues in the system model by considering the increase
in job completion times caused by these issues.

3 RELATED WORK

The default framework scheduler for Spark is FIFO, which
places the executors of a job in a round-robin fashion to
balance the load in the cluster and improve performance. In
addition, it can also consolidate the core usage to minimize
the total nodes used in the cluster. However, it does not
consider the pricing of VM instances in either a single or a
hybrid cluster setup. Fair® and DRF [11] based schedulers
can be used to improve the fairness among multiple jobs in
a cluster, but they do not improve the cost-efficiency of the
cluster.

There is some existing research for SLA-based job
scheduling, which only focuses on Hadoop MapReduce-
based jobs. Hwang et al. [12] proposed a resource provi-
sioning model that can minimize the VM cost for deadline-
constrained MapReduce applications in cloud. Mashayekhy
et al. [13] proposed a greedy algorithm that finds the as-
signments of the map and the reduce tasks in machine slots
to minimize the energy consumption of a Hadoop cluster.
Nayak et al. [14] proposed a negotiation-based adaptive
scheduler for scheduling Hadoop jobs in cloud. Cheng
et al. [15] have considered future resource availability to
improve job performance and reduce job deadline viola-
tions. Zeng et al. [16] proposed a greedy algorithm that
reduces the monetary cost of using the public cloud while
satisfying job deadlines. ChEsS [17] is a Pareto-based job-to-
cluster assignment framework for cost-effective job schedul-
ing across multiple MapReduce clusters. However, most of
these works either consider a single cluster setup or tries to
improve job performance. Moreover, these approaches are
applicable to Hadoop jobs only as the architecture paradigm
of Hadoop is different from Spark.

There are a few works that tried to improve different
aspects of scheduling for Spark-based jobs. Sparrow [18]
tried to improve the performance of the default Spark
scheduling by using a decentralized, randomized sampling-
based scheduler. Wu et al. [19] proposed a framework that
provides the capability to perform large-scale data analytics
across multiple-clusters. Maroulis et al. [20] provided an
energy-efficient scheduler that uses the DVFS technique
to tune the CPU frequencies for the workloads to reduce
energy consumption. However, as our main target is cost-
effectiveness, this approach can not be applied to our

5. https:/ /hadoop.apache.org/docs/stable/hadoop-yarn/
hadoop-yarn-site/FairScheduler.html
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problem. Li et al. [21] also provided an energy-efficient
scheduler. However, it does not consider cost as an objective.
In addition, the algorithm assumes each job has the same
executor size, which is equal to the total resource capacity
of a VM. However, in reality, each job can have different
resource requirements, and the VM instance size can also
vary. Liu et al. [22] proposed a hierarchical multi-cluster big
data framework for Apache Spark, which only focuses on
improving job performance when the cluster is deployed
in a hybrid-cloud. However, they do not consider any cost-
efficiency in these clusters, and job deadlines. Sidhanta et
al. [23] provided a mathematical model to estimate job com-
pletion times of a Spark job given its input size, iteration,
and job type. In addition, they provide an optimal cluster
composition technique that utilizes the default FIFO sched-
uler. However, this work does not consider different VM
pricing in a hybrid-cloud setup. In addition, it is assumed
that each job has the same executor size, which is the total
resource capacity of a VM. However, we model the executor
sizes at a more fine-grained level, so that multiple executors
from one or more jobs can be co-located inside a single VM.

MCTE [24] is a cloud task scheduling strategy to min-
imize the task completion time and execution cost for the
smart grid cloud. However, this work did not consider a
hybrid cloud setup and cost minimization as an objective.
AsQ [25] is also a task scheduling algorithm that places
the task in either local or cloud VMs. Peldez et al. [26]
introduced the problem of managing virtual machines and
scheduling jobs in a cost-efficient way while meeting the
deadlines. In the bag of tasks model, the tasks are indepen-
dent of each other so the run-time of an individual task does
not depend on whether another task from the same bag is
placed in the cloud or local VM. However, in our work,
we focus on the cluster-level scheduling where an executor
runs one or more interdependent tasks that follows a DAG
model.

If a cluster is deployed in a hybrid cloud, some of the
VMs reside in the local premises/region and the rest of
the VMs are hired from a cloud service provider. Thus, the
cloud portion of the cluster can be considered to be in a
different region. Therefore, challenges within inter-cluster
scheduling exist which include: choosing a proper feder-
ated multi-cluster setup that determines how the clusters
should be managed, increased latency between different
executors deployed in different regions, and locality of the
data required for a job. There are numerous works on
inter-cluster schedulers, e.g., Yarn Federation®, Kubernetes
Federation’, Medea [8] and Hyrda [9], which focused on
addressing these challenges with objectives to improve the
overall performance of the production cluster. Because for
multiple regional clusters, it is more critical to focus on
performance improvement and load-balancing. However,
if a hybrid cloud setup is created with the use of public
cloud VMs, minimizing cluster resource usage cost should
be a key objective, along with maintaining an acceptable
performance for the applications.

6. https:/ /hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/Federation.html

7. https:/ /kubernetes.io/blog/2018/12/12/
kubernetes-federation-evolution/

TABLE 1: Definition of Symbols

Symbol | Definition
J The current job to be scheduled
E Total executors required for J
I3 The index set of all the executors of J, £ = {1,2,3, ..., E}
TL Profiled completion time for .J for local-only placement of executors
TH Profiled completion time for J for hybrid placement of executors
Tc Estimated completion time for J
Tp Deadline for J
Ta Arrival time for J
Ts Start time for J
Tw Ts — T, waiting time for J
M The total number of local VMs
N The total number of cloud VMs

oL The index set for all the local VMs; 6% = {1,2,..., M}
5¢ The index set for all the cloud VMs; §€ = {1,2,..., N}
PL The Price for a local VM; j € 6%

Pre The Price for a cloud VM; j € ¢

cL Available CPU in a local VM, j € 6%

o Available CPU in a cloud VM, j € §¢

ME Currently available Memory in a local VM, j € 6%
MC Currently available Memory in a cloud VM, j € 5¢

cr CPU demand of any executor of .J, i € £

M7 Memory demand of any executor of J, i € £

tJ[.‘ Remaining active time for a VM before placing executor(s) of J, j € 6©
tJC Remaining active time for a VM before placing executor(s) of J, j € €
AtJL Change in remaining active time after executor(s) of J is placed, j € 5%
At]c Change in remaining active time after executor(s) of .J is placed, j € 6¢

In summary, most of the existing approaches focus
mainly on performance improvement. In addition, they do
not consider a fine-grained level of executor placement
while scheduling jobs. In contrast, our approach guarantees
to launch a job on its required resources, tries to minimize
deadline violations, can handle different sizes of executors
of jobs and different VM instance sizes, and can reduce the
overall cost of VM usage of a hybrid cloud deployed cluster
by utilizing different pricing.

4 SLA-BASED JOB SCHEDULING

In this section, we describe the hybrid cloud model and
formulate the problem of dynamic job scheduling between
local VMs and cloud VMs. Major notations and descriptions
presented in this paper are listed in Table 1.

4.1 System Model

When a hybrid cloud setup is considered, both local and
cloud VM instances can be chosen to be identical in resource
capacity. However, when the target objective is to reduce
cost, having a setup with different types of VM instances
is more cost-effective, because jobs with fewer resource
requirements can be fitted into small VMs to optimize cost.
In addition, if the local part of the cluster is made with
commodity resources, it is not possible to create similar
VM instances with a set of heterogeneous physical hosts.
Therefore, to tackle the scheduling problem more efficiently,
the scheduler has to consider different VM instance sizes (as
depicted in Fig. 1) to optimize cost. We consider a federated
multi-cluster deployment where the cluster manager is the
central point of control. The cluster manager controls both
the local and the cloud VMs. The resource managers track
the resource availability of the cluster and dynamically feed
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the updated status of the cluster to the scheduler. Thus,
the scheduler has to match the resource requirement of
the jobs with the resource availability in the cluster while
trying to meet the target objectives. In our implemented
prototype, we deploy the external scheduler, both of the
resource managers, and the cluster manager in the local
cloud.

In an Apache Spark cluster, each job consists of a set of
executors with the same resource requirement. Furthermore,
each VM/worker node has a set of available resources
(e.g.,, CPU and memory) which can be used to place ex-
ecutors. However, executors from different jobs can have
different sizes. For example, suppose the CPU and memory
requirements of an executor of job-1 are 2 cores and 4GB,
respectively. Thus, if job-1 has 5 executors, all the executors
must follow this resource requirement (e.g., 2 cores and
4GB memory). However, job-2 can have different resource
requirements for its executors. For example, 4 cores, and
8GB of memory for each executor, which is different from
the size of the executors from job-1.

For each submitted job in the cluster, the main problem
is to find the mapping of all its executors to one or more
available VMs. Besides, the combined resource requirements
of all the placed executors in a VM are bound by its resource
capacity. Therefore, resource constraints in each VM must be
met while making any scheduling decisions. We consider a
multi-tenant case where multiple jobs from different users
can run on the cluster at the same time. Thus, if one or
more executors from different jobs are placed in the same
VM, then the resource capacity constraints of that VM
must be satisfied by considering all the different sizes of
executors from multiple jobs. This problem can be simplified
by tracking the resource availability of VMs dynamically.
Thus, the resource availability of the VMs can be presented
to the scheduler, instead of the resource capacity. Initially,
the resource capacity and resource availability of a VM
will be the same. Although the resource capacity of a VM
is always fixed, the resource availability of a VM will be
reduced over time if one or more executors from one or
more jobs are placed in it. In addition, if one or more jobs
complete execution that had executor(s) in this VM, then the
resource availability of the VM will be increased.

We consider the resource requirement of an executor in
two dimensions — CPU cores and memory. Suppose, we are
given a job with E executors where each executor has CPU
and memory requirements of 7,7 and 7,"¢"", respectively.
Furthermore, each job has a deadline that needs to be met
by the scheduler. After handling all the constraints, the
scheduler should try to reduce the resource (or VM) usage
cost of the cluster. In our case, we have a hybrid cloud
setup where some VMs are located in local-premises and
some VMs are hired from the cloud on a pay-per-use basis.
We assume that if the resource requirements are met, the
performance of all the executors from the same job is similar
regardless of whether they are placed on local or cloud VMs.

Suppose J is the current job to be scheduled in the
cluster. If one or more previous jobs are still running in the
cluster, the scheduler has to make a decision on whether
to utilize the spare resources on the already active VMs to
place one or more executors of J, or turn on new local/cloud
VMs. Therefore, to make a cost-optimal scheduling decision

Public Cloud
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Fig. 1: Proposed Hybrid Cloud Model. The resource man-
agers (cloud and local) are controlled by the scheduler
to create executors of job in VMs, turn on/off VMs, and
monitor the cluster states.

for each job, the scheduler should use a combination of both
local/cloud VMs.

In our proposed model, the scheduler uses a queue
which follows the EDF (earliest deadline first) order of jobs,
to reduce deadline violations. The scheduler iterates over
each job, dynamically observes the latest cluster resource
availability, and makes scheduling decisions to place the
executors for that job. For simplicity, we present the model
on a per-job basis, which means the model represents what
the scheduler observes for making decisions for the next job
in the scheduling queue. In the following subsections (4.2,
4.3), we model the cost and resource constraints for both
local and cloud VMs. Then in subsection 4.4, we combine the
resource models and constraints to formulate the scheduling
problem.

4.2 Local Resource Model

Definition-1 (Local VM Set): Consider a set 6 =
{1,2,--- , M}, where M is the total number of local VMs,
1 < j < M is the j** VM deployed locally.

The expression of local cost for the current job, J is
derived as follows:

Costl = Z Tj X PjL X Atf, D
jesr

where PjL is the unit price for a local VM and we define a
binary decision variable z; to indicate whether a local VM
is active or not, i.e.,

(Ej—

@

0 otherwise.

{1 if Zie& Uij > 0;
where we define a binary decision variable u;; to indicate

whether executor ¢ is placed in a local VM j or not, ie.,
Vj € 6%, we have

if executor ¢ is placed in the local VM j;

1
ij = 3
i {0 otherwise. ®)
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At]L is the change in the remaining active time for a local
VM j if any executor of J is placed in it, which is calculated

by:

At;;: {Tct]L/ if T %tJL; (4)

0 otherwise.

Here, tJL is the remaining active time for a local VM before
placing any executor of the current job. T is the estimated
completion time of the current job, ]. We assume that the T
can be provided for each job, which is generally measured
from the job profile information. Now, the executors of the
job can be placed only on the local VMs, or in a hybrid man-
ner where both local and cloud VMs can be used. However,
if any cloud VMs are used for executor placements, Tc will
be higher than local-only placements, due to local to Cloud
data transmissions and network latency. Suppose, the job
is profiled in both settings, and T/ indicates the profiled
completion time for the job for local-only placement. In
addition, T# indicates the profiled job completion time for a
hybrid setting. Thus, for the local model, 7> can be defined

as:
TL
Te =15
C {Tg

if Zui,j ==F Vi €{,V) € (SL;
: ©)
otherwise.

Here, E is the total number of executors required by the
job, so if the summation of all the local placements equals F,
it indicates that the job will be running entirely in the local
VMs.

Furthermore, the total resource demands of all the ex-
ecutors placed in a VM should not exceed the total resource
capacity of that VM. Note that, this can be done simply
if the current resource availability of the VM is checked
against the resource demands of executor(s) of the current
job. Suppose, C] and M, are the CPU and memory resource
demands for each executor of the current job, respectively.
Thus, the resource constraints for local VMs must be satis-
fied as follows:

D (g xC]) < x;xCf, vjedt, (6
i€§
D (uig x MT) < xyx M, viest. @
€€

where CJ-L and M ]L are the currently available CPU and
memory resources in the local VM j, respectively. Therefore,
the scheduler can choose to place one or more executors
from the current job in the same VM if the current resource
availability permits.

4.3 Cloud Resource Model

Definition-2 (Cloud VM Set): Consider a set ¢¢ =
{1,2,---, N}, where N is the total number of cloud VMs,
1 <75 < Nisthe jth VM deployed on the cloud.

Similarly, the expression of cloud cost for the current job,
J is derived as follows:

Cost® = Y y; x P{ x At ®)
j€s°

6

where ch is the unit price for a cloud VM; we define a
binary decision variable y; to indicate whether a cloud VM

is active or not, i.e.,

if Zie{ Vij > 0;

1
- 9
Yi {O otherwise. ©

where we define a binary decision variable v;; to indicate
whether executor ¢ is placed in a cloud VM j or not, ie.,
Vj e 5¢, we have

if executor 7 is placed in the cloud VM j;

1
i = 10
Yig {0 otherwise. (10)

Atjc is the change in the remaining active time for a cloud
VM if any executor of the current job is placed in it, which
is calculated by

H C  iemH C.
A ¥ .
0 otherwise.

where T is the estimated completion time of the current
job, when one or more cloud VMs are used; and tf is the

remaining active time for a cloud VM before placing any
executor of the current job. Further, the resource constraints
for cloud VMs must be satisfied as follows:

D (v xC) <y xCF, Vjied® (12
€€
D (vij x MT) <y x MY, vjeds®  (13)
SIS

On the one hand, because the total number of the local
VMs might be limited, we can use the cloud VMs for com-
puting. Therefore, we can assume that M < N. On the other
hand, however, the usage cost of the VMs in local VMs is
usually lower than that on the cloud; hence we can assume
that ij < ch. Therefore, similar VM instances deployed in
local-premises cost lower than cloud VM instances.

4.4 Problem Formulation

Based on the system model, we now formulate the job
scheduling problem to minimize the cost of using the whole
cluster while scheduling the current job. The total cost is
modeled as the aggregated cost of using all the VMs from
both local and cloud.

Executor Placement Constraint: An executor can be
placed only in one of the VMs and this placement constraint
is denoted as:

ZuijJerij:l,

jESL jESC

Vi € €. (14)

Resource Capacity Constraints: The total resource de-
mands of all the executors placed in a VM should not exceed
the total resource capacity of that VM. These constraints are
described in (6), (7), (12) and (13).

Job Deadline Constraint: If the job deadline is con-
sidered, whether a job fails to complete before the given

deadline can be predicted by using Eq. 15.
Te <Tp —Tw, (15)

where Ty = T'g — T4 is the waiting time for the current job
to be scheduled. Note that, if the executors are not placed
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entirely in the local VMs, then T will be set to T in the
local resource model.

On the one hand, if the job deadlines are not considered
in the scheduling algorithm, a job that is predicted to fail
will be scheduled, only to waste resources which could be
used by any future job to successfully complete before their
deadlines. On the other hand, if a job is predicted to violate
its deadline, it can be discarded without passing to the
scheduling algorithms. Thus, more resources will be freed
to ensure that more jobs can be successfully finished before
the deadline. In the experiment section, we show the impact
on deadline violations by the scheduling algorithms for both
cases.

Therefore, the job scheduling problem can be formulated
as Cost-Min:

min : Cost?**® = Costl + Cost®,

sit. + (6),(7),(12), (13), (14), (15).

The above problem is mixed-integer linear programming
(MILP) [27] and non-convex [28], generally known as NP-

hard problem [29]. The computational complexity will sig-
nificantly increase due to the binary variables.

(16)

5 PROPOSED JOB SCHEDULING ALGORITHMS

N R S

© ® N o«

10

We try to maximize the deadline met percentage by two11
ways: (1) by following an Earliest Deadline First (EDF) order 12

to schedule jobs, so that if multiple jobs are waiting to be’

scheduled at the same time, jobs with tighter deadlines

3

14

will have higher priority, and (2) before passing the job ;5
specifications to the scheduler, we utilize a job’s completion 1
time estimate (I¢) to check whether the job has a chance1”
of violating the deadline. If so, we remove this job from the18

queue and do not schedule it. In this way, we keep some
resources free in the cluster for future jobs to increase the
overall deadline met numbers. The job queue is maintained
externally from the scheduling algorithm, along with the
cluster resource availability. Both the job queue and the
cluster states are updated dynamically. Only the current
job’s specification and the cluster states are passed to a
scheduling algorithm to make placement decisions. In this
way, we reduce the overhead on the scheduling algorithm.
If it is estimated that the job will be completed before the
deadline, it is passed to the scheduler to make cost-effective
executor placement decisions. We propose two algorithms
to solve the scheduling problem. The first algorithm is a
modified version of the First Fit (FF) heuristic algorithm
for the bin packing optimization problem. The second al-
gorithm has a greedy approach and iteratively places all the
executors of a job in the most cost-optimal position.

5.1 First Fit (FF) Heuristic-based Algorithm

In the bin packing problem, items of different volumes must
be packed into a finite number of bins or containers each of
a fixed given volume in a way that minimizes the number
of bins used. In our case, we have a similar problem where
the executors can be considered as the items which need
to be packed into a finite number of VMs (bins). Thus,
the scheduling problem formulated in Section 4.4 can be
thought of as a two-dimensional (2D) vector bin packing

7

problem, where each of the VM is a bin having two dimen-
sions, i.e., CPU cores and memory. Each executor from a job
has a fixed resource requirement in these two dimensions;
thus, an executor can be thought of as an item. Therefore,
the objective is to minimize the total number of bins (VMs)
used to pack (place) a given set of items (executors) for each
job. Algorithm 1 shows the modified version of the First Fit
(FF) heuristic [30] algorithm, which can be used for executor
placement in the scheduling process.

ALGORITHM 1: First Fit (FF) Heuristic Algorithm

Input: Job {E,&,C], M, Tc}: The current job to be
scheduled, ActiveV M List: The list of all the active
VMs (includes both cloud and local VMs)
Output: PlacementList, a list of VMs where the executors
of Job will be placed
Procedure FF(Job, ActiveV M List)
PlacementList < ¢
forall vm € ActiveV M List do
while Placement of an executor in vm satisfies all the
resource constraints do

Update(vm)

PlacementList.add(vm)

if PlacementList.size = E then

| return PlacementList

end
end
end
if Cluster has unused VM(s) then
Turn on the cheapest vm,c., that satisfies all the

resource constraints of an executor

ActiveV M List <+ ActiveV M List U vmnew
goto step 3
end
return Failure
end

The input to this algorithm is the specification of the
current job (E,&,CT, M, T¢) to be scheduled, and a list of
currently active VMs (either in local or cloud) in the cluster.
The output is the PlacementList, which is a list of VMs
where the executors of the current job should be placed.
For each active VM, the algorithm first checks whether the
placement of an executor of the current job will satisfy the
resource constraints (lines 3-4). If so, the resource capacity
of the current VM is updated (line 5), and the current
VM is added to the PlacementList. The algorithm tries
to place as many executors as possible in the same VM
if the resource requirements are met. Otherwise, it tries
the next active VM. If the total number of added VMs to
the PlacementList reaches the total required number of
executors for the current job, the algorithm returns with the
placement list. If the currently active VMs are not sufficient
to place any executor, then the cheapest VM is turned on
(if available) and is added to the active VM list (lines 12-
14). Then, steps 3-10 are repeated again. If the cluster does
not have sufficient resources to place all the executors of the
current job, the algorithm returns failure (line 17).

5.2 Greedy lterative Optimization (GIO) Algorithm

The aforementioned MILP problem can be solved in polyno-
mial time if the problem is relaxed from a per-job basis (find-
ing the most cost-optimal placements of all the executors of
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the current job) to a per-executor basis (only find the most
cost-effective placement of one executor from the current
job). Although solving the relaxed problem will provide
near-optimal results as compared to the original problem,
it can be solved in polynomial time. We propose a greedy
iterative optimization (GIO) algorithm, which utilizes the
pricing model of different VM instances and the estimated
completion time of each job to find cost-efficient executor
placement (on a per-executor basis).

Suppose, the executor(s) from one or more jobs are
running in a vm (deployed either in the cloud or in the
local part of the cluster). Let T, be the active remaining
time of the vm. If any executor of the current job J is placed
in vm, the additional active remaining time of vm due to
this placement is AT},,,,, which can be found in Eq. 17.

ATy = max(0, Te — Tym)-

© ® 9 U s W N R

=
o

17) u

Now, if the cluster has sufficient local resources to place 12
all the executors from the current job, then Tx can be set
to T, otherwise it can be set to T (Eq. 5). Hence, we can ﬁ
calculate the cost incurred by placing an executor of J in vm 5
by using Eq. 18.

16

Cost! = ATy X Pom. (18)

Here, if vm is deployed locally, then P,,, = P]-L (j € o5). ;z
Otherwise, if vm is deployed on cloud, then P,,, = P]-C ”n
(j € 69). Suppose, vm is already in use and has some free2
resources to place one or more executors for the current job. 23
If placing the new job’s executor(s) in it does not make it
run longer than before (if Tc < T,,,), or only makes it run
further for a short period of time (I — 15, approaches 0),
we can save cost by placing the current job’s executor(s) in
it.

Algorithm 2 shows the proposed GIO algorithm. The
input to this algorithm is the current job to be scheduled,
and a list of all the local VMs, and the list of all the cloud
VMs. The output is the PlacementList, which is a list
of VMs where the executors of the current job should be
placed. At first, we check whether the current local resource
availability is sufficient to place all the executors of the
current job (line 3). If yes, we only utilize the local VMs
(line 4), otherwise all the VMs (line 5). Then, the V M List is
sorted in an increasing order of Cost/ values (line 10). If the
resource constraints are met, then the current vm is greedily
used to place as many executors as possible (lines 12-14). If
the currently chosen vm was inactive, it is turned on (lines
15-16). The steps for executor placement are repeated until
all the executors of the current job are placed (lines 18-19). If
the cluster does not have sufficient resources to place all the
executors for the current job, a failure is returned (line 23).

Note that, for both FF and GIO algorithms, if there
are not enough resources for the current job (a failure is
returned by the algorithms), the scheduler will wait until
more resources are freed so that it can schedule the current
job.

5.3 Complexity Analysis

To calculate the worst-case time complexity of the proposed
algorithms, we first assume that the total number of VMs
in the cluster is m, which includes both cloud and local

ALGORITHM 2: Greedy Iterative Optimization (GIO) Al-
gorithm

Input: Job {E,§,C7, M{,Tc}: The current job to be
scheduled, LocalV M List: The list of all the local
VMs, CloudV M List: The list of all the Cloud VMs
Output: PlacementList, a list of VMs where the executors
of Job will be placed
Procedure GIO(Job, LocalV M List, CloudV M List)
VMList < ¢
if Local Availability(Job, LocalV M List) == true then
| VM List + LocalV M List
end
else
‘ V' M List < LocalV M List U CloudV M List
end
PlacementList < ¢
Sort(VMList) // sort the VMs in an increasing
order of Cost! (Eq. 18)
forall vm € VM List do
while Placement of an executor in vm satisfies all the
resource constraints do
Update(vm)
PlacementList.add(vm)
if vm was unused then
| Turn on vm
end
if PlacementList.size == E then
| return PlacementList
end
end
end
return Failure
end

VMs. In the worst-case scenario, for every executor, the
scheduler has to iterate through each and every VM to find
its placement. Hence, if the current job’s total number of
executor requirements is e, the worst-case time complexity
of Algorithm 1 is O(me). For Algorithm 2, the time required
to check the local resource availability is m. In addition, the
time required to sort the V' M List (which may contain all the
m VMs in worst-case) is mlog(m). Therefore, the worst-case
time complexity of Algorithm 2 is O(m + mlog(m) + me).

6 PERFORMANCE EVALUATION - SIMULATION

We have used both simulation and real experiments to com-
pare our proposed scheduling algorithms with the baseline
algorithms. In this section, we discuss the experimental
setup for simulation experiments, baseline scheduling algo-
rithms used to compare our proposed algorithms, and the
results from the simulation experiments.

6.1

Table 2 shows the simulation cluster details. We have used
three types of VMs, each having different resource capaci-
ties. We have designed the clusters for both small-scale and
large-scale experiments. Generally, we have more resources
on the cloud than the local part of the cluster. Therefore,
the small-scale cluster contains 3 VMs from each type of
VM instance, where 1 VM is considered to be deployed
locally, and 2 VMs are considered to be deployed on cloud.
For the large-scale experiment, 60 VMs from each type of

Simulation Setup
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TABLE 2: Simulation Cluster Details

Instance Type | CPU Cores | Memory (GB) | Quantity (small-scale) | Quantity (large-scale)
ml.large 4 16 Local=1; Cloud=2 Local=10; Cloud=50
ml.xlarge 8 32 Local=1; Cloud=2 Local=10; Cloud=50
m2.xlarge 12 48 Local=1; Cloud=2 Local=10; Cloud=50

TABLE 3: VM Instance Pricing Models

Pricing Model 1 Pricing Model 2 Pricing Model 3 Pricing Model 4 Pricing Model (Real)
Price Price Price Price Price Price Price Price Price Price
Instance Type
(Cloud) (Local) (Cloud) (Local) (Cloud) | (Local) | (Cloud) (Local) (Cloud) (Local)
ml.large $0.004/s | $0.001/s | $0.002/s | $0.001/s | $0.002/s $0/s $0.002/s | $0.002/s | $0.24/h $0.12/h
ml.xlarge $0.008/s | $0.002/s | $0.004/s | $0.002/s | $0.004/s $0/s $0.004/s | $0.004/s | $0.48/h $0.24/h
m2.xlarge $0.012/s | $0.003/s | $0.006/s | $0.003/s | $0.006/s | $0/s | $0.006/s | $0.006/s | $0.72/h $0.36/h

VM instance are used, where 10 VMs are considered to be
deployed locally, and 50 VMs are considered to be deployed
on cloud.

The cloud VM pricing model is based on the time-based
pricing where a cloud service provider offers different VM
instances to their customers. For a hybrid cloud setting,
the public part of the cluster can be set up by using VMs
from any cloud service provider, so the prices may vary.
However, when optimizing cost for the whole cluster, we
need to differentiate between the price of a local or cloud
VM for a similar instance type. Thus, we have designed
different ‘pricing models’, where each model indicates how
close or far the price is for the same instance type in the
local and the cloud part of the cluster. As shown in Table
3, the price of the same instance type in cloud is four times
higher than local in pricing model 1, but only two times
higher in pricing model 2. In pricing model 3, the price of
using any local instance is 0. Lastly, in pricing model 4, the
price of using the same type of instance is equal regardless
of whether the instance is in cloud or locally deployed.

The job arrival times are generated from a Poisson distri-
bution. We have designed our experiment to simulate both
a high-load and a light-load period of the cluster. A Poisson
mean of 5 and 100 is used to generate the job arrival rates
for the high-load and light-load periods, respectively. These
mean values for Poisson distribution are chosen to reflect job
arrival rates in real clusters in both low-load and high-load
periods, which is observed in Facebook Hadoop workload
trace®. The estimated job completion time for each job is
generated using an exponential distribution with lambda
(A = 0.01). In addition, if a scheduler places the executors
in a hybrid setting, where one or more executors are placed
in the cloud VMs, then the simulation environment dynam-
ically increases the job completion times by 30%. This is
due to the fact that inter-cluster latency between executors
and data locality issues will cause performance degradation
for the jobs. A relaxed deadline for each job is generated by
adding the job’s estimated completion time with a threshold
value (1000 seconds for the light-load period, 5000 seconds
for the high-load period). All the resource requirements for

8. https:/ / github.com/SWIMProjectUCB/SWIM /wiki/
Workloads-repository

each job are generated randomly within a range of 1-6 (for
CPU cores), 1-10 (for memory in GB), and 1-8 (for total
executors). All the simulation experiments are repeated 5
times to accommodate the randomness while calculating the
statistics.

We have implemented an event-based simulator in Java
to simulate the job scheduling in a hybrid cloud setup. We
have implemented the proposed and baseline algorithms
in this simulator to evaluate and compare them regarding
different aspects. The simulator is open-source’, and can be
used to simulate new scheduling policies.

6.2 Baseline Schedulers

o First in First out (FIFO): It is used as a default
scheduler in many big data processing frameworks
including Apache Spark. Here, the executors of a
job are placed in a round-robin fashion. However,
as this default FIFO scheduler does not consider
pricing models or different instance types in the
hybrid cloud, resources are wasted if the cluster is
not fully loaded with jobs.

o First in First out Consolidate (FIFO-C): Another
round-robin approach used by the Spark scheduler to
minimize the total number of VMs used. Note that, it
works by packing executors on the already running
VMs to avoid choosing the unused VMs.

o AsQ [25]: This scheduler addresses the task schedul-
ing problem in hybrid cloud and has similar ob-
jectives as our work. AsQ considers the deadline
constraint and tries to minimize the cost of the public
cloud by maximizing the utilization of the private
cloud. In addition, to avoid network latency issues
between the public and private cloud, AsQ places the
tasks for a job either in a local-only or in a cloud-only
manner.

e Mixed-Integer Linear Programming (MILP): We
have designed a MILP-based scheduler that gener-
ates the optimal cost-efficient placements for all the
executors of each job. We have used SCP Solver
API" to solve the MILP problem in this scheduler.

9. https:/ / github.com/tawfiqul-islam /RM-Simulator
10. http:/ /scpsolver.org/
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SCP solver uses a revised branch-and-cut [31] based
approach for solving the MILP problem. However,
the solver can take a significantly long time to solve
the scheduling problem if the problem size is big
(large cluster with many VMs, or jobs with many
executors).

6.3 Simulation Results

In this subsection, we demonstrate the results from the
simulation experiments with both small-scale and large-
scale setups. However, as the MILP-based algorithm is not
scalable and becomes infeasible when the problem size
goes bigger, it is excluded from the large-scale simulation
experiments. The small-scale experiment is used to compare
the proposed algorithms with the baseline algorithms re-
garding cost-efficiency, scheduling overhead, and deadline
violation. Furthermore, the large-scale setup is used to show
the scalability of the proposed algorithms.

6.3.1 Evaluation of Cost Efficiency

In this evaluation, we have measured the cost of using the
whole cluster to calculate the cost incurred by a specific
scheduling algorithm. We save the turn-on or turn-off status
of every VM in each second. Then we use one of the pricing
models to calculate the cost incurred by using each VM
during the whole scheduling process. Lastly, the total cost is
calculated by summing up the cost of all the VMs. Note that,
the MILP-based algorithm sometimes take exponential time
to complete. Therefore, for fair cost comparison and to show
how close the proposed schedulers performed to the MILP-
based algorithm, the increased amount of VM usage cost
due to the scheduling overhead is excluded. Figs. 2 and 3
depict the comparison of cost between different scheduling
algorithms under different pricing models in both lightly
loaded and highly loaded clusters, respectively. It can be
observed that, under any pricing models, the proposed FF
and GIO scheduling algorithms significantly reduce the cost
usage of the cluster than the default FIFO and FIFO-C
scheduling algorithms. The GIO scheduling algorithm can
reduce the cost by up to 25%, whereas the FF scheduling
algorithm can reduce the cost up to 15% than the FIFO and
FIFO-C algorithms. Although FIFO-C utilizes a round-robin
approach, it tries to do so in the active VMs only. Thus,
this approach reduces the cost as compared to the naive
FIFO. The AsQ algorithm only places the executors from
the same job either in a local-only or cloud-only fashion.
However, the proposed FF and GIO algorithms utilize both
cloud and local VMs, thus, can reduce the cost further. The
FF algorithm starts the cheapest VM when the current set of
VMs do not have sufficient resource capacity to schedule a
new job. When placing executors, it does not consider VM
prices and job runtimes in VMs, but selects the first available
VM which satisfies the resource constraints. However, as the
GIO algorithm takes the job duration and pricing models
into consideration, it always performs slightly better than
the FF. In addition, it considers network latency and data
transmission issues into consideration, and only goes for a
hybrid placement if there are not sufficient local resources
available. However, even for hybrid placement, it uses the
spare resources from both local and cloud VMs to reduce
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cost significantly. As the MILP algorithm solves the schedul-
ing problem optimally before placing the executors of each
job, it provides the most cost-efficient solution. However,
both FF and GIO algorithm reduces the cost significantly
and operates very close to the ILP solution. Both algorithms
only incur 8%-10% more cost than the ILP algorithm under
different pricing models in both lightly loaded and highly
loaded clusters.

6.3.2 Evaluation of Job Deadline

This evaluation is done by taking the percentage of jobs that
finish before the given deadline. We have done experimen-
tation in two cases. In the first case, we have recorded the
deadline met percentage when all the algorithms do not
use the deadline as a constraint. In the second case, all
the algorithms consider the deadline as a constraint, and
if it can be predicted from the job estimation time that a
job is going to fail to meet its deadline, that job is not
scheduled. The reason to conduct experiments in both cases
is to observe the effects of freeing up resources from the
failed jobs (estimated), which creates more room for future
jobs so that they can meet the deadline.

Figs. 4a and 4b depict the deadline met percentage by
all the scheduling algorithms in light load and high load
clusters, respectively, when the deadline is not used as a
constraint. The deadline met percentage is lower in case of
high load scenarios as the cluster is over-utilized, and there
is a shortage of resources which causes many jobs to violate
the deadline. For the light load case, the deadline met per-
centage is higher as there are more resources to accommo-
date the jobs whenever they arrive. In both cases, the MILP
algorithm performs the best as it creates the least amount
of resource fragments by tightly packing the executors.
However, the FIFO algorithm distributively places executors
that create many resource fragments in the cluster, which
causes resource scarcity and more deadline violations. The
FIFO-C algorithm performs slightly better than FIFO due
to the consolidated approach. However, the AsQ algorithm
chooses either local-only or cloud-only mode for placement.
Thus, when the cluster is overloaded with many jobs at the
same time, there is an increase in deadline violations due
to resource scarcity. Both the proposed algorithms perform
closely to the MILP-based algorithm where the GIO and
FF algorithms are behind in the deadline met percentage
by 5% and 8%, respectively. Figs. 4c and 4d exhibit the
deadline met percentage by all the scheduling algorithms
in both light load and high load clusters when the deadline
constraint is used. It can be observed that, as many predicted
to be failed jobs are not scheduled in the cluster, the overall
deadline met percentage improved significantly for all the
scheduling algorithms. The MILP-based algorithm performs
the best in this case as well, followed by the GIO and FF
algorithm, while the AsQ performs the worst.

6.3.3 Evaluation of Scheduling Delay

The scheduling delay is the time an algorithm takes to make
scheduling decisions for all the executors of a job. We have
measured it by measuring the time it takes from calling
a particular scheduling algorithm up to the return from
the scheduling algorithm with all the executor placement
decisions for a job. The average scheduling delay for an
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Fig. 2: Cost comparison between the scheduling algorithms under different VM instance pricing models in a lightly loaded
cluster (the lower the better). The scheduling delay is omitted to show how close the schedulers perform to the MILP
solution regarding true cost calculation.
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Fig. 3: Cost comparison between the scheduling algorithms under different VM instance pricing models in a highly loaded
cluster (the lower the better). The scheduling delay is omitted to show how close the schedulers perform to the MILP
solution regarding true cost calculation.
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job queue.

algorithm is calculated by taking the average of the schedul-

ing delays for all the job

s scheduled by that algorithm.

TABLE 4: Average Scheduling Delay (small-scale)

Algorithm | Average Scheduling Delay
FIFO 0.18 pus
FIFO-C 0.20 us
AsQ 0.31 us
FirstFit 0.28 us
GIO 0.40 pus
ILP 1.85s

Table 4 shows the average scheduling delay by each
algorithm in the small-scale setup. As the FIFO and FIFO-
C algorithms follow a round-robin approach while placing

the executors, the decision time is the shortest. Thus these
algorithms have the lowest scheduling overheads. AsQ, FF
and GIO are heuristic-based approaches, so these algorithms
also showcase low scheduling delays which are closed to
the native schedulers (FIFO and FIFO-C). However, the
MILP-based solution takes as long as 10-minutes in the
worst-case even in the small-scale cluster setup and has an
average scheduling delay of 1.85 s. Therefore, even though
this algorithm can find the optimal cost-efficient executor
placements, it is not scalable. Thus, it is only applicable to
small-scale clusters.

6.3.4 Evaluation of Job Performance

We evaluate the job performance for the scheduling al-
gorithms by measuring the average job duration for each
scheduling algorithm during the whole scheduling process.
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As shown in Fig. 5, AsQ algorithm provides the lowest
average job duration as it places the executors from the
same job in the same regional boundary (either local or
cloud). However, FIFO and FIFO-C algorithms always dis-
tribute the executors, so most of the placements are hybrid
which causes the simulation environment to penalize these
decisions to simulate the latency issues caused by federated
scheduling. FF, GIO, and MILP algorithms have a slightly
higher average job duration than the AsQ algorithm. How-
ever, due to the tight packing of executors, sometimes these
algorithms also place executors within a single region, thus
the performance overhead negligible if compared with the
FIFO and FIFO-C.
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Fig. 5: Comparison of average job duration between the
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6.3.5 Evaluation of Scalability

We have performed simulation on a large-scale setup where
the cluster has 60 VMs (10 local VMs and 50 cloud VMs).
We simulated the scheduling of 10,000 jobs in one whole
day. As the MILP-based algorithm is not scalable, we only
conducted the experiments with FIFO, FIFO-C, AsQ, FF, and
GIO algorithms.
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Fig. 6: Cost comparison in large-scale simulation (the lower
the better). FIFO incurs a very high cost as round-robin
placements of executors lead to many active VMs simul-
taneously.

Fig. 6 shows the cost comparison results between the
scheduling algorithms in both light load and high load sce-
narios for the large-scale experiment. It can be seen that both
FF and GIO outperform the default FIFO and FIFO-C by a
significant margin and reduce the cost up to 80%. The AsQ
algorithm also tries to find cost-efficient placements in local-
only or cloud-only settings. However, as our approaches
leverage the hybrid setting to squeeze out spare resources
in all the VMs across the cluster, the FF and GIO algorithms
reduce the cost up to 15% as compared to the AsQ. Note
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that, for the small-scale setup, AsQ algorithm performed
poorly as compared to the FIFO-C, this is due to the fact
that there is limited resource availability in a small cluster,
so local-only or cloud-only mode of placement is heavily
punished in a higher load. However, for the large-scale
setup, both the local and cloud portions of the cluster have
sufficient resources, thus the AsQ outperforms the FIFO-C.

TABLE 5: Average Scheduling Delay (large-scale)

Algorithm | Average Scheduling Delay
FIFO 0.20 ps
FIFO-C 0.24 us
AsQ 0.0.47 us
FirstFit 0.33 us
GIO 0.83 us

Table 5 presents the average scheduling delay for all the
algorithms. It can be observed that even for a large-scale
setup with many jobs, all the algorithms have a scheduling
overhead at ps level thus making all of them extremely
scalable.

7 PERFORMANCE EVALUATION - REAL EXPERI-
MENTS

To show the applicability of the proposed algorithms in
a real scenario and to validate the results from the sim-
ulation experiments, we have conducted real experiments
on a Mesos cluster. This section presents the implemented
system, experimental setup, benchmark applications and ex-
perimental results regarding different aspects of job schedul-
ing.

7.1 System Implementation

We have developed a prototype system to evaluate the
performance of the proposed job scheduling algorithms in
a real hybrid cloud setup. Fig. 7 shows the architecture of
the system. To implement any scheduling policy, the capa-
bility of placing an executor in any VM is needed. Apache
Mesos [10] cluster manager provides this functionality by
dynamic resource reservations, where any type of resource
(e.g., CPU cores or memory) can be reserved in any VM
so that only the desired executor can run with the reserved
resources. Mesos provides HTTP APIs!! to control dynamic
resource reservation of a cluster. Therefore, a scheduler
can dynamically place executors in any VM during the
scheduling process. As we have a hybrid cluster comprising
of both local and cloud VMs, a Mesos cluster can be set up
using these VMs, where each VM works as a Mesos agent.
Here, each Spark executor runs inside a Mesos container in
a Mesos agent.

As shown in the system architecture, we have imple-
mented three additional modules (grey boxes) that work
in collaboration with the Mesos master. All these modules
are deployed into a local VM along with the Mesos master,
which works as a central point of control for both the local
and cloud VMs. Thus, from a job’s perspective, there is

11. http:/ /mesos.apache.org/documentation/latest/
operator-http-api/
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Fig. 7: System Architecture. The resource managers communicate with the Mesos cluster manager through the REST APIs.
The Mesos master is deployed in the local part of the cluster (local VM-1).

a single cluster. However, the local and cloud VMs are
deployed in different regions to exhibit a true hybrid cloud
setup. There are two resource managers in the implemented
system - Cloud and Local; for managing the VMs. Each
resource manager can communicate with the Mesos master
using the HTTP APIs for performing resource provisioning.
Furthermore, resource managers can fetch cluster states
(e.g., job and resource status) from the Mesos master. The
scheduling module controls the resource manager modules
to perform resource provisioning for any executor. More-
over, it can also instruct the resource managers to turn
on/off any VM. When the resources are reserved for all
the executors of a job, the scheduling module can directly
launch a Spark job in the cluster by using the SparkLauncher
API'2. The developed modules are not extended from the
default Spark’s framework scheduler. Therefore, it is plug-
gable to the Mesos cluster manager and can be extended to
work with any other Mesos-supported big data frameworks.
We have implemented our proposed and baseline schedul-
ing algorithms in the scheduler module. Java programming
language was used to implement the proposed modules
and scheduling algorithms. OpenStack Boto API'® was used
to automate the VM turn on/off mechanisms. The devel-
oped pluggable modules and the scheduling algorithms are
open source'* and can be used to implement and test new
scheduling policies.

12. https:/ /spark.apache.org/docs/2.3.0/api/java/index.html?org/
apache/spark/launcher/package-summary.html

13. https:/ /pypi.org/project/boto/

14. https:/ / github.com/tawfiqul-islam /Hybrid-Cloud-Scheduler

7.2 Experimental Setup

We have used Nectar Cloud'?, a national cloud computing
infrastructure for research in Australia to deploy a Mesos
cluster. It is a cluster consisting of three different types of
VM instances. The detailed VM configurations and quantity
used from each type is the same as the small-scale setup
shown in Table 2. However, the pricing model is different
from the simulation pricing models. As shown in Table 3
(Pricing Model (Real)), the pricing of the real cloud instances
is similar to the VM instance pricing in Amazon AWS
(Sydney, Australia). Also, the price of a locally deployed
instance is set to be half of the same instance price deployed
in cloud. We set up a true hybrid cluster by deploying the
VMs in two different regions: Melbourne and Tasmania. We
have used the VMs deployed in Melbourne as the local VMs,
and the VMs deployed in Tasmania as the cloud VMs. The
end-to-end delay between VMs within the same regional
boundary is approximately 10ms, whereas, the end-to-end
delay between VMs from different regional boundaries
is approximately 40ms. In addition, we have performed
iperf testing to measure the bandwidth between the VMs.
Within the same regional boundary, the bandwidth between
the VMs is approximately 2Gbps, whereas, the bandwidth
between two VMs from different regional boundaries is
around 600Mbps. We store the input dataset in the local part
of the cluster with an NFS server. Thus, the worker nodes
(VMs) can mount the input data from the server and only
access the portion of the data which they need to process.
Our experimental cluster has 10 VMs with a total of 76
CPU (cores) and 304GB of memory. In each VM, we have
installed Apache Mesos (version 1.4.0) and Apache Spark
(version 2.3.1). One m1.large type VM instance was used as
the Mesos master while all the remaining VMs were used as

15. https:/ /nectar.org.au/research-cloud/
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Mesos Agents. The Mesos master node is deployed locally
in the Melbourne region. The implemented scheduler and
resource manager modules were plugged into the Mesos
master node.

7.3 Benchmarking Applications

We have used BigDataBench [32] benchmarking suite for
the real experiments. We have taken three types of ap-
plications from this benchmark, which are: WordCount
(compute-intensive), Sort (memory-intensive), and PageR-
ank (network-intensive). We have randomly mixed all these
three applications mentioned above to generate the work-
load. The job arrival times from the Facebook Hadoop
workload trace'® are extracted for an hour. Collecting job
profiles to estimate the completion times is a well-known
mechanism. In our experiments, each job is profiled in the
real cluster for 10 times, and the average job completion
time is taken to use as the estimated job completion time
(Tc). These estimated job completion times are used in
the problem model by the proposed scheduling algorithms
to make scheduling decisions. However, to determine the
schedulers performance regarding cost optimization in the
real experiment, we measure both the job completion time
and the use of VM resources in real-time during the schedul-
ing process for rigorous performance evaluation. The active
time remaining for either a cloud or local VM (AtJL for
local and At]C for cloud) can be calculated by using the job
completion time estimates (1) for the jobs which have one
or more executors placed in a particular VM. The maximum
estimated completion time is taken among these jobs and is
subtracted from the current clock time to get an estimate on
a VMs active remaining time.
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Fig. 8: Cost Comparison between different scheduling al-
gorithms (the lower the better). (a) shows the total cost
incurred over a scheduling period, (b) shows the cumulative
cost incurred over time.

7.4 Real Experiment Results

We have evaluated the proposed algorithm regarding cost
efficiency, job deadline, and average job completion time.
For these experiments, we have used Pricing Model (Real)
as shown in Table 3 for the VM pricing, which is similar to
the Amazon AWS pricing scheme for the cloud instances.
The price of the same instance type deployed locally is
considered to be half of the cloud instance price.

16. https:/ / github.com /SWIMProjectUCB/SWIM/wiki/
Workloads-repository
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7.4.1 Evaluation of Cost Efficiency

In this evaluation, we show the cost efficiency of different
scheduling algorithms in the real experimental setup. Both
the total cost and the cumulative cost is collected while
running 100 jobs (mix of WordCount, Sort, and PageRank)
for one hour. Fig. 8a exhibits the total cost incurred and
Fig. 8b shows the cumulative cost incurred by different
scheduling algorithms. It can be observed that the default
FIFO and FIFO-C algorithms have the highest VM usage
cost which increases linearly over time. However, the MILP
and the proposed FF and GIO algorithms reduce the cost
significantly as they utilize the pricing model of VMs and
uses the cheaper VMs for executor placement. Although
the AsQ algorithm utilizes the pricing model, it restricts
executor placements to local or cloud-only. Thus, in a peak
load where the cluster does not have sufficient resources,
AsQ algorithm fails to utilize the spare resources in VMs
by avoiding hybrid placement. The MILP algorithm finds
the most cost-optimal placement of executors for each job,
due to the scheduling overhead of MILP (computational
complexity in some cases), the GIO algorithm performs
slightly better and provides a lower cost. Furthermore, the
MILP algorithm is only applicable to a small cluster as it
is not scalable due to the exponential increase in decision-
making for a large cluster.
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Fig. 10: Comparison of average job duration between the
scheduling algorithms for different types of jobs (the lower
the better).

7.4.2 Evaluation of Job Deadline

In this evaluation, we compare the deadline met percentage
from different scheduling algorithms. As the FIFO and
FIFO-c algorithms do not consider the EDF strategy, they
have higher deadline violations as compared to the other
algorithms. Although AsQ gives a better deadline met
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percentage than the default algorithms, it shows a lower
deadline met percentage in a peak load, as jobs have to
wait longer for a local-only or a cloud-only placement. The
proposed FF and GIO algorithms show a higher deadline
met percentage due to tight packing of executors and utiliz-
ing spare resources in the hybrid setting. Although hybrid
placement increases job duration, the jobs do not have to
wait longer as the algorithms schedule the jobs as soon
as the combined resources (in both local and cloud VMs)
are sufficient to place all the executors. MILP algorithm
solves the executor placement in the most cost-efficient way.
However, in many cases, it takes a lot of time to find a
solution (high scheduling delay), which causes jobs to wait
longer and violate deadlines.

7.4.3 Effects on Job Performance

Although it is possible to minimize the cost of using a
hybrid cluster by packing more executors in fewer nodes,
it causes some performance overhead for CPU/memory-
bound jobs. However, when the executors from the same
job are distributed over multiple regional VMs, the job
completion time increases due to network latency and data
transmission delays. As shown in Fig. 10, the default FIFO
and FIFO-C algorithms always distribute the executors, so
most of the placements are hybrid which causes a high
average job duration. Network-bound jobs (PageRank) suf-
fer the most, where a lot of network communications take
place. The AsQ algorithm provides the lowest average job
duration for different types of jobs, as the data transmissions
between executors only occur within the same regional
boundary. Although the FF, GIO, and MILP algorithms
utilize hybrid placement to reduce cost, they have a slightly
higher average job duration than the AsQ algorithm. How-
ever, due to the tight packing of executors, sometimes these
algorithms also place executors in a single region, thus the
performance overhead is not as extreme as the FIFO and
FIFO-C. Nevertheless, this slight performance degradation
is negligible as compared to the cost-saving in the hybrid
cluster.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have formulated the SLA-based Spark job
scheduling problem in a hybrid cloud as an optimization
problem. We have proposed two greedy heuristics-based al-
gorithms to solve the scheduling problem. Besides, we have
implemented the proposed algorithms on top of Apache
Mesos to show the applicability in real environments. We
have compared the proposed approaches in both simulated
and real experiments to show the superiority of them over
the baseline approaches. The results show that our proposed
algorithms can significantly reduce VM usage costs in a hy-
brid cloud. Although there are performance overheads due
to data transmission delays caused by hybrid placements,
it is negligible as compared to the cost-saving benefits.
Moreover, the proposed approaches are highly scalable and
have low scheduling overhead, which is similar to the native
Spark schedulers.

This paper focuses more on the user’s perspective, and
when a user submits a Spark job, they do not provide
network or disk as resource constraints. Thus, we work on a
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higher level where we consider resource capacity /demand
constraints which are required at the executor creation stage.
However, we try to capture the network transmission issues
by considering the job duration increase in the problem
model. In the future, we plan to investigate more on the
performance impacts caused by hybrid placements. In ad-
dition, we plan to investigate the trade-offs between cost-
efficiency and job performance. A more sophisticated model
needs to be devised, which can consider both objectives
together to generate efficient job schedules. In addition, we
would like to explore deeper into the effects of VM turn-
on/off mechanisms on job performance and cost-efficiency.
We also plan to incorporate the proposed scheduling al-
gorithms in modern container orchestration systems such
as Kubernetes. As Fog computing and Edge computing
are becoming increasingly popular, we plan to extend the
scheduling algorithms to work with a multi-tier Fog-Edge-
Cloud deployed cluster.
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