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Abstract—In recent years, the non-biological applications of
DNA molecules have made considerable progress; most of these
applications were performed in vitro, involving biochemical op-
erations such as synthesis, amplification and sequencing. Because
errors may occur with specific sequence patterns or experimental
instruments, these biochemical operations are not completely
reliable. Modeling errors in these biochemical procedures is an
interesting research topic. For example, researchers have pro-
posed several methods to avoid the known vulnerable sequence
patterns in the study of storing binary information in DNA
molecules. However, there are few end-to-end methods to evaluate
these biochemical errors with regard to the DNA sequences. In
this article, based on the data generated by a DNA storage
research, we use artificial neural networks to predict whether
a DNA sequence tends to cause errors in biochemical opera-
tions. Through comparative experiments and hyperparameter
optimization, we analyze the known and potential problems in the
research process. As a result, an end-to-end method to model the
biochemical errors of DNA molecules in vitro through a computer
system is proposed.

Index Terms—Sequence Analysis, DNA storage, Artificial Neu-
ral Network

I. INTRODUCTION

Since the structure of DNA molecules was revealed in [1],
many studies have been conducted in related fields. In the
past few decades, the non-biological applications of DNA
molecules have received extensive attention, to name a few,
DNA storage [2], DNA nanotechnology [3], etc.

Storing information, which is one of the most important jobs
of DNA molecules in vivo, has attracted much attention for
its advantages of high storage density, low maintenance cost,
and fast parallel replication [2], [4]. Storing binary information
through DNA molecules usually consists of five steps, which
are encoding binary data into four bases (A,T,G,C), DNA
synthesis, polymerase chain reaction (PCR) amplification,
molecular sequencing, and decoding the DNA sequences into
binary data [2]. During these steps, the biochemical processes
may produce several kinds of errors or noises. In practice,
some patterns are hard to be synthesized or sequenced and
some patterns are prone to vary in amplification [5].

Since the landmark works of Church and Goldman in the
field of large-scale DNA storage [6], [7], researchers have been
trying to alleviate or bypass the abovementioned problems. In
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[6], Church er al. mapped both two bases A, C (resp. G, T)
to one binary digit 0 (resp. 1), so the homopolynucleotides
can be avoided. At the same time, the author also used
about 3000-fold coverage and paired-end sequencing to reduce
errors in biochemical procedures. In [7], Goldman et al. en-
coded the information into bases depending on their previous
bases to avoid homopolynucleotides and used redundant DNA
molecules (each molecule has the last 75% bases overlapped
with another molecule) to increase the chance of retrieving
the corrected information from the sequencing data. Logical
redundancy has also been applied to correct or judge the errors
in the sequencing data. Grass ef al. introduced the Reed-
Solomon code to encode the information into bases that able
to do error correction [8]. In [9], Blawat et al. counted the
error rates of swap, insertion, and deletion from synthesis to
sequencing. Further, they designed the forward error correction
schemes to tackle these errors. In [10], Erlich ef al. designed a
DNA fountain along with the Reed-Solomon code. The DNA
fountain enables recovering data from enough droplets, which
are the encoded sequences, hence they were able to screen the
redundant weak droplets before synthesis. In their work, the
droplets were evaluated by the GC content and homopolymer
runs. Recently, Chen et al. [11] developed statistical models
for the copy unevenness problem and further explored the
trade-off between the bias and redundancy in DNA storage
research.

Accurately modeling the errors in the biochemical manipu-
lation of each given DNA sequence is very interesting to the
non-biological applications of DNA technology. It enables the
researchers to avoid using weak DNA molecules in their sub-
sequent work. In the field of DNA storage, a straightforward
application is to design more effective rules to screen out weak
sequences before synthesis. The aforementioned applications
alleviate the shortcomings caused by the biochemical errors.
However, the description of these biochemical errors with
regard to a specific DNA sequence is not clear enough. Re-
searchers usually consider rough characteristics of vulnerable
sequences and use imprecise general techniques to tackle these
issues. In the study of DNA storage, these settings usually
introduce considerable redundancy in the coding and reduce
the coding capacity.

Artificial neural networks (ANN) use computer systems to
simulate biological neurons to perform intelligent works. They
have made extraordinary achievements in many research fields,
such as object detection, natural language processing (NLP),
etc. [12]. In order to process sequence data such as text, audio,
etc., plenty of methods based on ANN have been studied.
Milestones include the recurrent neural network (RNN) [13]
and its variation long short-termed memory (LSTM) [14],



attention mechanism [15], [16], etc.. These methods are suc-
cessful in solving NLP problems, for the ANN-based models
can present not only the feature from the fixed position but
also the contextual features from the global data [16].

ANN or deep learning methods have also been applied in
many works involving DNA sequences [17]. In [18], Anger-
mueller et al. used a deep learning method called DeepCpG to
predict methylation states in a single cell. In [19], Washburn
et al. proposed deep learning methods for predicting relative
transcript abundance from DNA sequence. In [20], Umarov
et al. applied deep learning models for promoter analysis
and prediction. Other works on genomic prediction or gene
function include [21]-[24].

In this article, we propose an ANN-based method that
models the biochemical errors in the DNA sequence during
synthesis, amplification, and sequencing. In order to explore
the capacity of the ANN-based methods on this task, We
conduct experiments with different ANN-based models and
hyperparameters. In addition, we analyze the advantages and
disadvantages of ANN-based methods in modeling the errors
from DNA sequences. To the best of our knowledge, such a
study has not been approached so far.

The remainder of this paper is structured as follows. Sec-
tion II clarifies the tasks and the data of DNA sequences
for training, validating, and testing. Section III introduces
the proposed ANN. Section IV shows the performance of
the proposed method, the effect of hyperparameters intro-
duced by the proposed method, and the comparison between
the proposed method and other popular ANN-based models.
Section V analyzes the issues that raises in this work and
the further research directions. Section VI provides some
concluding remarks.

II. EVALUATING TASK AND DATA PREPROCESSING

In this paper, we propose an ANN-based methods to dis-
tinguish the vulnerable positions from the stable ones in the
encoded sequences. It is assumed that the probability of a
biochemical error occurring at a particular position in the
nucleotide sequence is affected by its neighbors with distance-
related decay. Under this assumption, the evaluating task
can be mathematically expressed as finding an ANN-based
function f that maps a nucleotide fragment & with the proper
lengh to the probability of a biochemical error

y=[f(z) (D

occurring at its central position.

The data produced by a DNA storage research [25] was used
for training and testing. In their research, the isothermal DNA
amplification was recruited as a low-bias amplification of DNA
oligo pool for robust DNA storage. The binary data, which was
going to be stored in DNA molecules, was compressed by a
computer and then encoded into short sequences from alphabet
{A, T, G, C} of fixed length. Glued with functional sequences,
the result sequences were ready for synthesis. These sequences
to be synthesized are usually called the references. After
synthesis and amplification, the information was retrieved by
sequencing the DNA molecules. The retrieved sequences are

usually called the reads. To fulfill the procedure of DNA
storage, the stored binary data was obtained by decoding
the reads. Although the DNA molecules were amplificated
by the low-bias isothermal DNA amplification method, some
references still lead to noisy reads. In our work, we purposed to
model the errors in the reads based on the original references.

In the DNA storage research [25], where the experimental
data was acquired from, two files A and B were turned into
references with length 150nt, seperately. Let us use S = {s;}
to denote these references, where the s; € {A,T,G,C}'°.
After synthesis, amplification, and sequencing, the retrieved
reads, denoted by S = {5,}, were expected to meet the s;s.
However, three kinds of common errors, which are the swap
error, the insertion error, and the deletion error [9], had the
opportunity to occur at any position in any sequences from
S. In order to depict these errors in our work, the reads
were seperated into subsets S? = {§%}, where each subset
originated from a specific reference s;, by comparing the
reads and references via alignment algorithms [26], [27]. Later,
for each position of the reference s;, the rates of the three
kinds of errors were recorded by comparing each §§ with s;.
The pipeline of the data preprocessing, which assigned each
reference a position-wised error vector, is presented in Fig. 1.

Disregarding the reference s;, the swap errors, insertion
errors, and deletion errors globally happened in chances of
0.477%, 0.030%, and 0.146%, respectively. Note that these
numbers may vary with different equipments in biochemical
experiments. Among these three kinds of errors, the swap error
had the most cases and was simplest to depict. In view of this,
the swap error was chosen as the researching object. Regarding
to a reference s = (s1,82,...,5150), let e = (e1,€2,...,€150)
be the vector whose element e; recorded the ratio of swap
errors happened at s; in the related reads. Firstly, a threshold
hyperparameter K was used to separate the positive positions
from negative ones. To be precise, the positive positions had
error ratios larger than threshold e; > K, while the negative
positions had no errors happened, e; = 0. Secondly, the
reference s was truncated into fragments {x;} by windows
sliding of size L. Each fragment x; could be labeled positive
with y; = 1 or negative with y; = 0 according to its central
position’s label. In the end, the fragments and their labels
(z;,y;) were separated into training data, validation data, and
testing data. In order to avoid overlapping between training
data and testing data, both the training data and validation data
were related to the original binary file A, while the testing
data was related to the file B. The positive samples were
usually far less than the negative samples, we duplicated the
positive samples and randomly dropped some negative samples
to maintain label balance.

The two hyperparameters, which are the threshold K and
the window size L, affected the performance of the proposed
method. With a smaller threshold K, the difference between
positive samples and negative samples decreased, so the sep-
aration between positive and negative samples would be more
difficult. While with a larger threshold K, the number of
positive samples was declined and that may cause overfitting
issues. As for the window size L, a smaller L may omit
the key pattern that actually determines the stability of the
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Pipeline of data preprocessing. The reference s; was one of the references generated by encoding the binary data, while the set of reads 51 was

obtained by sequencing the stored DNA molecules, from the research [25]. In our work, the reads originated from reference s; were gathered into S* by
algorithm of sequence alignment [26], [27] with reference s;. Counting the fraction of errors that happened on each position of reference s;, a position-wise

error vector e; was assigned to the reference s; for the later research.

center position, while a larger L would cause computational
burden. All these issues may decline the performance of the
proposed model. We analyze the relationship between the
hyperparameters and the model performance in detail, and give
balanced values of K and L, in Section IV-B.

III. PROPOSED ARTIFICIAL NEURAL NETWORK

As a key part of the proposed method, the function f in
(1) takes the sequence of nucleotide & with length L as input
and outputs the predicted stability ¢ for . Among the various
choices of ANN-based models, a model based on the attention
mechanism was employed for the function f. For convenience,
notation f was used to denote the engaged neural network.
As shown in Fig. 2, the neural network f consisted of several
layers, and each layer used simple formulas to process the
input data to its output.

The arrows in Fig. 2 show how data flowed in the pro-
posed network. Firstly, five 1D convolutional operations were
independently performed on the input data with different
sizes of convolution kernels from 1 to 5. Different from
the conventional 2D convolutional neural networks [28], the
1D convolution is limited to the only free dimension in the
sequence data. Applying these convolutional operations, the
input data was transformed to hierarchical features which had
higher dimensions. For example, the convolution with kernel
size 1 outputs the information from each nucleotide in the
inputed sequence, while the convolution with kernel size 5
outputs the information from a window of length 5 sliding
along the inputed sequence. Similar structures called “group
convolution” were firstly introduced in [28] to accelerate the
model by deploying the convolutions on different GPUs. The
convoluted information regarding the same position of x was
concatenated before sent to the next operation. Secondly, the
data flowed through two kinds of multi-head attentions [15],
[16], which were the global attention and local attention.
The attentions helped to draw the dependencies between the
stability and the input sequences, both globally and locally.
The implementation of global attention followed [16], which
is also called Scaled Dot-Product Attention. Given queries
Q = (q;), values V = (v;) of the same length, and a key

k, the attention function uses the key k and the queries Q to
compute the weights of values V', and outputs the weighted
sum on the values V', which could be formulated as

{q; -k}
Vi

where dj, is the dimension of k. If we use K = (k;) to denote
a arrays of keys, the formula is written as

Attention(Q, k, V') = softmax < > -V, (@

T

Attention(Q, K, V') = softmax (QK

T

While applying the global attention in the proposed method,

the input data X of the attention layers was firstly transformed

to queries, keys and values by independent learnable matrices

WEe WE WYV, and the output of the attention was computed
by

) V. 3)

Attention( X WP, XWE xXwV). 4)

Considering the input data for the attentions was obtained
by the convolution layers with different receptive fields, the
attentions were expected to express the relations between
different subsequences. The local attention works similar to
the global ones, but only the local values are considered. In
the proposed model, the local attentions were realized by two
1D convolutional operations. We also employed shortcut con-
nections [29] to introduce low-level features before the final
prediction. In Fig. 2, the shortcut connections is illustrated
by the “Add & BN”, where the “Add” operation is element-
wised addition on two sources and “BN” implies the operation
of batch normalization [30] to improve the stability of the
model. Finally, the data flowed through several fully connected
layers. The first two of them were position-wised, which were
fulfilled by 1D convolutions with kernel-size 1, while the last
two of them were conventional fully connected layers. All
the convolutional and fully connected layers were followed
with activations ReLU, except for the last layer which used
softmax function to output the predicted distribution over
positive and negative labels of x. After setting a threshold T’
on the outputs of the last layer, the inputs & could be classified
into positive against negative.
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Fig. 2. Structure of the proposed model. Five 1D convolutions with different
kernel sizes were used as the first part of the proposed model. The different
convolutional kernel could output hierarchical features on the input sequence
by their different sized receptive fields. Later, these features were sent into a
attention module consisted of local attentions and global attentions. Finally,
the output of attention module flowed through two fully connected layers, and
a final prediction was given by the softmax function.

The structure in Fig. 2 indicates how the network f is built.
During this procedure, undetermined parameters 6, such as
the weights and biases, were introduced by the convolutional
operation, attention, and fully connected layers. To find proper
6 that enabled the function f fulfilling the proposed task, a
cost function £ was introduced on the outcome of f and the
groundtruth labels on training data. By minimizing the cost
function L, the parameters 8 were optimized to 6. 1f the neural
network f had good generalization ability, the optimized f
could predict the label 3’ of a new sample x’ well. The cross-
entropy cost between the groundtruth label y and f(x) is the
most commonly used in classification tasks. In this paper, the
parameters € were optimized by minimizing the cross-entropy
cost under the Adam [31] algorithm.

Different network architectures were also considered. We
performed ablation studies and comparative experiments by
replacing the attentions in Fig. 2 with identical mapping,
simple RNN, and LSTM, in Section IV-C.

IV. EXPERIMENTS
A. Evaluation metrics

As shown in Section II, most of the nucleotide fragments
were stable during synthesis, amplification, and sequencing.
In addition, after dividing the nucleotide fragments x into
positive samples and negative samples with a threshold K, the
imbalance between positive and negative samples was further
aggravated. Therefore, common metrics, such as accuracy, pre-
cision, or recall, may be skewed in evaluating the performance.

In the experiments, the balanced accuracy (BA) at threshold
T = 0.5 was engaged to evaluate the performance. The metric
BA is calculated by the average of true positive rate (TPR)
and true negative rate (TNR). It could also be interpreted
as the accuracy when the positive samples and the nega-
tive samples have the same cardinalities. Also, the receiver
operating characteristic (ROC) curve was used to show the
comparison between different settings. The ROC curve plots
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Fig. 3. The ROC curves and metrics BA and AUC with different thresholds
K. As shown in this figure, the performance of proposed model increased
when the thresold K was gained from a low value. The peak performance
was obtained when 0.06 < K < 0.08. When K was further increased, the
metrics BA and AUC of the model decreased sharply.

the TPR against false positive rate (FPR) at various thresholds
T's. An ROC curve starts from (0,0) and ends to (1,1), the
more north-west the curve locates, the better performance the
classifier has. Along with the ROC curve, the area under curve
(AUC) is another metric that is calculated by the area under
the ROC curve. In most cases, better classifiers have higher
AUC scores.

B. Hyperparameter optimization

In this subsection, we focus on how the hyperparameters K
and L affected the performance of the proposed method.

As mentioned in Section II, the nucleotide fragments whose
central position had error rates larger than threshold K were
marked positive. The threshold K controlled the number
of positive samples and also the discrimination of positive
samples from negative ones. Hence, it greatly affected the
performance of the model. After experiments with different K's
and fixed L = 15, the relation between the model performance
and the threshold K is shown in Fig. 3.

It can be seen that, when the threshold K was relatively
small, the performance will improve when K was increased.
When the threshold K was greater than 0.07, the performance
decreased when K was increased. As stated in Section II, K
was the criterion of error rates that positive samples had. A
higher K meant that the chosen positive samples had higher
error rates, which also meant the positive samples may have
more significant features that lead to errors. As a result,
classifying the samples with a larger K was easier to a model.
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Fig. 4. The number of positive samples with different thresholds K. Different
threshold on the error rates controlled the number of positive samples. As
shown in this figure, the number of positive samples with K = 0.01 was
hundreds times greater compared to the number with K = 0.1.

However, the accuracy declined when K > 0.07. Another
effect on the training samples of K was that K also controlled
the number of positive samples. In Fig. 4, the relation between
the number of positive samples and the threshold K is shown.
It can be seen that, the number of positive samples with
K = 0.01 was hundred times larger than K = 0.1. Small
training data usually induces the overfitting issue on an ANN-
based model, which means the model fits the training data
well, but loses the generalization and fails in testing data.
The training loss and validation loss were recorded in Fig. 5
with K = 0.05 and K = 0.1 to verify our conjecture. The
validation loss was calculated at the end of each training
epoch on the validation data, which was chosen independently
from training data. Big validation loss and small training loss
usually means the model is overfitted. In Fig. 5, we could see
the model with K = 0.1 overfitted the training data at epoch
5, while the model K = 0.05 had less overfitting issue. Also,
a large K that sieved most of the interesting samples out of
the research contradicts the motivation of this work.

The size L of window sliding also played a key role in the
proposed method. It determined the amount of information
considered in the nucleotide fragment . The optimized L
was determined by both the biochemical properties of the in
vitro nucleotide sequence and the inherent ability of the pro-
posed method to model the relationships or features between
the nucleotide and its neighbors. It is straightforward that
increasing L enabled the model to acquire more information
for judging, which was verified by the experiments with L
floating from 3 to 25. In Fig. 6, the performance increased
along with the L from 3 to 9 and reached a plateau with L > 9.
These experiments indicated that under the circumstance of
the proposed method, a nucleotide fragment of length 9 had
already contained most of the reachable information that
determines the stability of its central position. More powerful
models may take advantage of the complicated features from
a larger neighborhood. However, the more complicated the
model is, the more overfitting issue it has on the same amount
of training samples. Regarding the quantity of data we got
from the biochemical experiments, the proposed method was a
good choice. Comparisons between different model structures
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Fig. 5. The trainning and validation loss when K = 0.05 and K = 0.10.
When K = 0.05, the validation loss was almost the same with training
loss after each run of epoch, which indicated the model fitted the data well.
When K = 0.10, the validation loss was significantly higher than the training
loss after 5 epochs training, which indicated that the model overfitted on the
training data.

could be found in Section IV-C.

C. Comparative experiments

In this subsection, we conducted comparative experiments
by replacing the attention part of the proposed model, which is
enclosed by the dashed lines in Fig. 2, with other well-known
network structures.

Firstly, the network structure that was obtained by deleting
the attention structure from the proposed model was con-
sidered. Notation Abs. (an abbreviation of absent) is used
to denote this model in the following text. Secondly, the
commonly-used network structures, which are plain RNN and
LSTM, were tested. These two kinds of network structures
perform well on time series data, for their ability to express
features along the time axis. In our experiments, the bidirec-
tional RNN and the bidirectional LSTM [32] were employed
to enable the network to express the features from both sides.
For fairness, the same experimental settings were applied on
all these experiments except for the difference in the model
structures. In detail, the hyperparameters were K = 0.05,
L = 15, the learning rate was 0.0001, the optimizer was
the Adam optimizer, and the experiments were early stopped
by monitoring the validation loss. All the experiments had 5
runs, whose results were recorded in TABLE I by their average
values and standard deviations in mean=std. The ROC curves
were plotted by a random single run of the experiment.
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Fig. 6. The ROC curves and metrics BA and AUC with different window
sizes L. The performance of the proposed model increased when the window
size L was increased from L = 3 to L = 9. With a L greater than L = 9,
the metrics reached a plateau. This indicated the extra information gained by
a larger L than L = 9 was weakly linked to the error rate of the central
position, or could not be captured and used by the proposed model.

In TABLE I and Fig. 7, we list the performance of the com-
parative experiments and the proposed model, which proposed
model was marked with Att.. One could see that different
network structures showed similar accuracies and AUCs. To
be precise, the proposed model performed the best among
the comparative experiments, while the model removed the
attention structure had the worst performance. Moreover, the
amount of parameters in each model is reported in the first
row of TABLE 1. The running time of each model is reported
by timing 10 epochs training in the second row of the same
figure, on a machine equipped with CPU of Intel Xeon Silver
4116 @2.1GHz and GPU of NVIDIA RTX2080ti.

Finally, a more complex network stacked LSTM and atten-
tions (LSTM+Att.) was tested. Stacking RNN and attentions
is common and effective in natural language processing [15].
In this paper, we performed experiments on LSTM+Att. to
show that a complex model may not further improve the
performance and was prone to overfit with the data from the
biochemical experiments. To reveal the overfitting issues on
complex models, the models were trained until 50 epochs.
The metrics of the models after training with 20 epochs
and 50 epochs are reported in TABLE II. These numbers
show that the performance of the simple structured model
Att. was slightly better than the complex structured model
LSTM+Att. Moreover, the comparison of the performance
between different training epochs shows that the simple model
was more stable than the complex one. The reason may be

TABLE I

PERFORMANCE OF ABLATION STUDY AND COMPARATIVE EXPERIMENTS.
(AVERAGED OVER 5 RUNS, REPORTED IN mean =+ std.)

Att. Abs. RNN LSTM
Params 105.63k 156.45k 154.53k 240.93k
Time(s) 107.1 + 3.4 315 £ 05 106.5 £24 2114 £+ 4.03
BA 67.40 £0.14 65.35£0.42 66.39+0.50 65.63 +£0.35
AUC 73.21+0.35 70.714+0.14 72.03+0.18 71.10£0.54
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Fig. 7. The ROC curves of comparative experiments. The comparative

methods resulted in similar ROC curves. Among these models, the proposed
model (Att.) showed the best performance, while the model (Abs.) obtained
by deleting the attention structure from the proposed model had the worst
performance.

that complex models usually have more overfitting issues and
hence result in a bad performance on testing data. The relations
between training loss and validation loss, shown in Fig. §,
confirm our conjecture. When the number of training epochs
was increased, the gap between the validation and training
loss was greater on LSTM+Att. than Att., which indicates the
overfitting happened.

V. KNOWN ISSUES AND RESEARCH DIRECTION

As one could see, a binary classifier with performance
ROC = 0.74,BA = 68% is not good enough. In Section IV,
different hyperparameters and several kinds of network struc-
tures were tried, but no further improvement was achieved.
Moreover, the model overfitted before improving performance
on complex model structures. We speculated that this was
mainly caused by the soft label [33] used in this work. Most
classification tasks are performed on hard labels, which label
the samples into the classes they belong to. However, the label
in our task was defined by the ratio of errors. How to define the
bad guy from good ones? In this paper, we brutely assigned the
positive labels on the position which had an error rate larger
than K = 5%. This setting retained most of the information
about vulnerable fragments in positive samples, but it would

TABLE II
PERFORMANCE OF PROPOSED METHOD AND LSTM+ATT..
(AVERAGED OVER 5 RUNS, REPORTED IN mean =+ std.)

Att. Att. LSTM+Att. LSTM+Att.

‘ (20 epochs) (50 epochs) (20 epochs) (50 epochs)
BA 67.12+0.44 66.25+0.37 65.99+0.58 64.32+0.73
AUC ‘ 73.57+0.09 7259+0.46 72.23+1.21 70.36 4+ 0.23
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Fig. 8. The training and validation loss of Att. and LSTM+Att.. By comparing
the curves of training loss and valication loss, it was indictated that the
complicate model LSTM+Att. had greater overfitting effect than the proposed
method Att..

also undoubtedly introduce considerable noises. Noise is one
of the most important negative factors that degrade the model
performance.

In order to overcome the aforementioned issues, a more
precise description of the errors that happened during syn-
thesis, amplification, and sequencing will be a good research
direction. However, instead of the coarse target, modeling fine
targets usually requires more data to support. In this paper, the
data was not big enough to support a precise description of the
errors, in view of the shortage of training samples shown in
Fig. 4 and the overfitting issues shown in Figs. 5 and 8. In our
opinion, fine researches on the errors, large scale sequencing
data, and corresponding complex network may further improve
the performance.

VI. CONCLUSION

Based on the sequencing data from a DNA storage research,
an ANN-based method was proposed to model errors in
biochemical manipulation of DNA molecules in vitro. The
nucleotide sequences were first cut into nucleotide fragments
by window sliding, each nucleotide fragment was labeled by
its central position’s error rate in the sequencing data. Later,
an ANN-based model with the attention mechanism was built
to fulfill a classification task that classifies the nucleotide
fragments into the vulnerable and the stable classes. In the
experimental part, we verified different hyperparameter values,
explored different network structures, and further analyzed the
effects of the complex model structures and overfitting issues.
Based on the experiments, the proposed method was proved

to be effective. By further analysis on the experiments and the
experimental data, the potential issues and further research
directions were talked.
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