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Abstract. We show, among other things, that for each integer n ≥ 3, there is a smooth

complex projective rational variety of dimension n, with discrete non-finitely generated

automorphism group and with infinitely many mutually non-isomorphic real forms. Our

result is inspired by the work of Lesieutre and the work of Dinh and Oguiso.

1. Introduction

It is quite recent that negative answers are given to the following long standing natural
questions (see eg. [BS64], [DIK00], [Kh02], [CF20] for positive directions):

Question 1.1. Let V be a smooth complex projective variety of dimension ≥ 2.

(1) Is the automorphism group Aut(V ) finitely generated if Aut(V ) is discrete?
(2) Are real forms of V , i.e., systems of homogeneous equations with real coefficients

defining V , finite up to isomorphisms over R?

The first negative answers to these questions are given by Lesieutre [Le18]. He constructs
a smooth complex projective variety V of dimension 6 with Kodaira dimension κ(V ) = −∞
denying both (1) and (2). This variety is not rationally connected. Expanding his idea,
Dinh and Oguiso ([DO19]) construct a smooth complex projective variety V of any dimen-
sion ≥ 2 with κ(V ) ≥ 0 again denying both (1) and (2). In somewhat different directions,
Dubouloz, Freudenburg, Moser-Jauslin construct smooth affine rational varieties for any
dimension ≥ 4 with infinitely many real forms ([?]). However, it is still completely open if
there are counterexamples among smooth complex projective rational varieties, the most
basic varieties in birational algebraic geometry.

The aim of this paper is to construct a smooth complex projective rational variety V of
any dimension ≥ 3 denying both (1) and (2) (Theorem 1.3 below).

Before stating our main results, we recall precise definitions of crucial notions relevant
to Question 1.1 and our main results.

Definition 1.2. (1) A variety of dimension n is called rational if it is birational to the
projective space Pn over the base field.

(2) An R-scheme W → SpecR is called a real form of a C-scheme V → SpecC if
W ×SpecR SpecC → SpecC is isomorphic to V → SpecC over SpecC. Two real
forms Wi → SpecR (i = 1, 2) are isomorphic if they are isomorphic over SpecR.
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By abuse of language, we sometimes say that a C-scheme V is defined over R when
a real form W of V is understood from the context. (See [Se02] and [CF20, Sect.2-4]
for more details about real forms.)

(3) Let V → SpecC be a complex projective variety. Then the automorphism group

Aut(V ) := Aut(V/SpecC)
of V over SpecC has a natural locally algebraic group structure with at most
countably many connected components, via the Hilbert scheme of V ×V . We denote
by Aut0(V ) the identity component of Aut(V ). It is of dimension dimH0(V, TV )
when V is smooth. Here, TV denotes the tangent bundle of V . So it is natural to
ask if the group Aut(V )/Aut0(V ) is always finitely generated or not. We say that
Aut(V ) is discrete if Aut0(V ) = {idV }. (See eg. [Br18], [Br19] for more details.)

(4) We denote by κ(V ) the Kodaira dimension of a smooth complex projective variety
V . Then κ(V ) ∈ {−∞, 0, 1, . . . , n−1, n}, where n = dimV . The Kodaira dimension
is a birational invariant in the sense that κ(V ) = κ(V ′) if V and V ′ are smooth
birational projective varieties. (See eg. [Ue75] for more details.)

The following is our main theorem:

Theorem 1.3. (1) For each integer n ≥ 3, there is a smooth complex projective ra-
tional variety V of dimension n, with discrete, not finitely generated Aut(V ), and
with infinitely many mutually non-isomorphic real forms.

(2) Let V be a smooth complex projective variety of dimension n ≥ 3. If Aut(V )/Aut0(V )
is not finitely generated, then κ(V ) ∈ {−∞, 0, 1, . . . , n− 2}.

(3) Conversely, for each pair of integers n ≥ 3 and κ ∈ {−∞, 0, 1, . . . , n− 2}, there is
a smooth complex projective variety V of dimension n and of Kodaira dimension
κ, with discrete, not finitely generated Aut(V ), and with infinitely many mutually
non-isomorphic real forms.

Our proof of Theorem 1.3 (1) and (3) is explicit and is based on the surfaces constructed
in [Le18] and [DO19]. As in [Le18] and [DO19], the most crucial part of the construction is
a realization of some non-finitely generated discrete subgroup G of Aut(S) of some special
surface S as a finite index subgroup of the automorphism group Aut(V ) of another variety
V via taking some products and suitable blowing-ups, so that V keeps the group G as
automorphisms but kills almost all Aut(S) \G and at the same time produces essentially
no new automorphisms. This process is, in general, hardest for rational varieties compared
with other varieties, especially because of the last requirement ”V produces essentially no
new automorphisms” (cf. [Le18, Page 198, Rem.4]).

We are primarily interested in smooth complex projective varieties. However, concerning
the base field of the non-finite generation part of Theorem 1.3, it might be worth mentioning
the following:

Remark 1.4. Let p be a prime number and k be an algebraically closed field containing the
rational function field Fp(t). In the proof of Theorem 1.3 (1), we will use a special rational
surface S defined over R constructed by Lesieutre [Le18]. (See Section 3.) Replacing S by
a rational surface defined over Fp(t) in [Le18, Page 203], we find that for each n ≥ 3 and
for each prime number p ≥ 3, there is a smooth projective rational variety V of dimension
n defined over k, with discrete, not finitely generated Aut(V ). Indeed, the construction
and proof of Section 3 is valid if we replace both R and C by k.
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By Theorem 1.3 and [DO19], the most major remaining open problem for Question 1.1
is now the following:

Question 1.5. (1) Is there a smooth complex projective rational surface V with dis-
crete, not finitely generated Aut(V )?

(2) Is there a smooth complex projective rational surface V with infinitely many mu-
tually non-isomorphic real forms?

Unfortunately, our method is not available to answer Question 1.5. See [Be16], [Be17]
for some constraint from complex dynamics.

As in [Le18] and [DO19], throughout this paper, we use the following three general facts
frequently. See eg. [Su82, Page 181, Cor.1] for Theorem 1.6, [Ue75, Th.14.10] for Theorem
1.7 and see [Le18, Lem.13] for Theorem 1.8.

Theorem 1.6. Let G be a group and let H be a subgroup of G such that [G : H] < ∞.
Then G is finitely generated if and only if H is finitely generated.

Theorem 1.7. Let V be a smooth complex projective variety and let Bir (V ) be the group
of the birational automorphisms of V . Then |Im (ρm)| < ∞ for all m ≥ 0, where ρm is the
(contravariant) group homomorphism

ρm : Bir (V ) → GL (H0(V,mKV )) ; f 7→ f ∗.

Throughout this paper, we denote by c the complex conjugate map. Then c is the
generator of the Galois group Gal (C/R) and Gal (C/R) = {id, c}.

Theorem 1.8. Let V be a smooth projective complex variety defined over R. Suppose that
there is a finite index subgroup G of Aut(V ) such that Gal (C/R) = {id, c} acts on G as
identity via g 7→ c ◦ g ◦ c and G has infinitely many conjugacy classes of involutions. Then
V has infinitely many mutually non-isomorphic real forms.

For a complex projective variety X and non-empty closed algebraic subsets Yi (i ∈ I) of
X, we define

Aut (X, Yi (i ∈ I)) :=
{
f ∈ Aut (X) | f(Yi) = Yi (i ∈ I)

}
.

This is a subgroup of Aut (X) and f|Yi
∈ Aut (Yi) (i ∈ I) if f ∈ Aut (X,Yi (i ∈ I)). For

simplicity, we denote the group Aut (X, {P}) by Aut (X,P ) if P is a closed point of X.
Whenever we consider a complex variety V with a natural real form (which will be

understood by the construction in our case), we denote it by VR. By abuse of notation, we
denote by the set of real points VR(R) of VR simply by V (R) and regard it as a subset of
the set of closed points of V . More precisely, if v is a closed point of V , i.e., if v ∈ V (C),
then we denote v ∈ V (R) exactly when c(v) = v under the complex conjugate map c of V
with respect to the real form VR.
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2. Lesieutre’s surface

In this section, we recall from [Le18] the core rational surface, which we call Lesieutre’s
surface. Lesieutre’s surface will play a crucial role in our proof of Theorem 1.3 (1).

Let L′
i (0 ≤ i ≤ 5) be six lines defined over R in P2 such that the intersection points

Pij := L′
i ∩ L′

j (0 ≤ i ̸= j ≤ 5) are mutually distinct and the points Pij, Pkl, Pmn are not
colinear for any partition

{0, 1, 2, 3, 4, 5} = {i, j} ∪ {k, l} ∪ {m,n}.

We choose such six lines so that

P10 = 0 , P20 = 1 , P30 = 2 , P40 = 3 , P50 = ∞

under a fixed affine coordinate x of L′
0 = P1. Let S → P2 be the blow-up of P2 at the 15

points Pij.
We denote by Eij ⊂ S the exceptional curve over Pij and by Li ⊂ S the proper transform

of L′
i. Set

C := L0 , Pi := C ∩ Ei0 (1 ≤ i ≤ 5).

Note that Li = P1 and (Li, Li) = −4. Under the identification C = L′
0 via S → P2, we

may use the same affine coordinate x for C = P1 as L′
0. Then

P1 = 0 , P2 = 1 , P3 = 2 , P4 = 3 , P5 = ∞

with respect to the coordinate x.

Definition 2.1. We call this surface S Lesieutre’s surface. By construction, S is defined
over R, i.e.,

S = SR ×SpecR SpecC ,

where SR is the blow up of P2
R := ProjR[x0, x1, x2] at the R-rational points Pij ∈ P2

R(R).
In order to distinguish with other real forms, we call this SR the natural real form of S.

By definition, Lesieutre’s surface is a smooth projective rational surface defined over R.

Proposition 2.2. Let S be Lesieutre’s surface. Then:

(1) | − 2KS| = {
∑5

i=0 Li}.
(2) Aut(S) is discrete. More strongly, the contravariant group homomorphism

Aut(S) → Aut(Pic(S)) = Aut(NS(S)) ; f 7→ f ∗

is injective.
(3) Aut(S, P5) = Aut(S,C, P5).
(4) Every element of Aut(S) is defined over R with respect to the natural real form SR.

In particular, the Galois group Gal(C/R) acts on Aut(S) as identity.

Proof. The assertion (1) follows from the adjunction formula and (Li, Li) = −4 < 0. The
assertion (2) is proved by [Le18, Thm.3 (1)]. Note that Aut(S) preserves the divisor∑5

i=0 Li by (1). Then the assertion (3) is clear, because C = L0 is the unique irreducible

component of
∑5

i=0 Li containing P5. The first part of the assertion (4) is already explained.
The second assertion of (4) is proved in the course of proof of [Le18, Lem.19]. We shall
reproduce the proof here for the convenience of the readers. Since the curves Eij and Li

are defined over R and their classes generate Pic(S) = NS(S), it follows that Gal(C/R)
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acts on Pic (S) as identity. Thus Gal(C/R) acts on Aut(S) as identity by (2). Note that
the representation in (2) is equivariant under the Galois action. □

By Proposition 2.2 (3), we have a representation

rC : Aut(S, P5) = Aut(S,C, P5) → Aut(C,P5) = {f(x) = a+bx | a ∈ C, b ∈ C×} ; g 7→ g|C .

Note that {f(x) = a± x | a ∈ C}) is a subgroup of Aut(C,P5).

Definition 2.3.

G := r−1
C ({f(x) = a± x | a ∈ C}) = {φ ∈ Aut(S,C, P5) | d(φ|C)P5 = ±1} .

Here d(φ|C)P5 is the differential map of φ|C : C → C at P5.

The group G is the same group as G± in [Le18, Page 204]. Note that rC(G) is much
smaller than the group {f(x) = a± x | a ∈ C}.
Proposition 2.4. The group G satisfies:

(1) Im(rC) (resp. rC(G)) contains the following elements f1, f2, f3 (resp. f1, f3):

f1(x) = x+ 1 , f2(x) = 2x , f3(x) = −x .

(2) G is not finitely generated.
(3) G has infinitely many conjugacy classes of involutions.

Proof. The fact that f1, f2 ∈ Im(rC) follows from [Le18, Lem.4]. Set f4(x) = 3− x. Then
f4 ∈ rC(G) by [Le18, 2nd paragraph, Page 204]. Since f4 ◦ f 3

1 (x) = −x, it follows that
f3 ∈ rC(G). This proves the assertion (1).

We show the assertion (2). The group

G+ := r−1
C ({f(x) = a+ x | a ∈ C})

is a subgroup of index two of G. So, by Theorem 1.6, it suffices to show that G+ is not
finitely generated.

Observe that rC(G
+) is an abelian group, as it is a subgroup of the abelian group

{f(z) = z + a | a ∈ C} ≃ (C,+).

and

f−n
2 ◦ f1 ◦ fn

2 (x) = x+
1

2n
·

Hence rC(G
+) has a subgroup

⟨f−n
2 ◦ f1 ◦ fn

2 |n ∈ Z⟩ ≃ ⟨ 1
2n

|, n ∈ Z⟩.

This subgroup is not finitely generated. Thus the abelian group rC(G
+) is not finitely

generated, either. Hence G+ is not finitely generated.
We show the assertion (3). As in [Le18, Page 204], we consider the subgroup Gev of G

defined by

{f ∈ G | f(L0) = L0, f(L5) = L5, f(L1 ∪ L4) = L1 ∪ L4, f(L2 ∪ L3) = L2 ∪ L3} .

Since f(
∑5

i=0 Li) =
∑5

i=0 Li for any f ∈ Aut(S) by Proposition 2.2 (1), Gev is a finite
index normal subgroup of G. On the other hand, it is shown by [Le18, Cor.18] that Gev

contains infinitely many conjugacy classes of involutions. Then Gev has infinitely many
classes of involutions under the conjugate action of G on Gev, as Gev is a finite index normal
subgroup of G. Hence G has infinitely many conjugacy classes of involutions as well. □
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Definition 2.5. Let S be Lesieutre’s surface. We choose and fix τS ∈ G such that rC(τS) =
f3, that is, rC(τS)(x) = −x on C = P1.

3. Proof of Theorem 1.3 (1)

We shall prove Theorem 1.3 (1).
Construction 3.5 and Proposition 3.6 below will complete the proof of Theorem 1.3 (1).
We employ the same notations for Lesieutre’s surface as in Section 2.
In the rest, the following elementary lemmas will be used frequently.

Lemma 3.1. Let Y and Z be complex projective varieties and let G be a subgroup of
Aut(Y ×Z). Assume that Aut(Y ) is discrete and the projection Y ×Z → Z is equivariant
with respect to G. Then G ⊂ Aut(Y )× Aut(Z).

Proof. Let f ∈ G. By the second assumption, f is of the form

f(y, z) = (fz(y), fZ(z)),

where fZ ∈ Aut(Z) and fz ∈ Aut(Y ). Then we have the morphism

Z → Aut(Y ) ; z 7→ fz.

Since Aut(Y ) is discrete by the first assumption, it follows that fz does not depend on
z ∈ Z. Hence f = (fY , fZ) for some fY ∈ Aut(Y ). This implies the result. □
Lemma 3.2. Let f : Pm → X be a morphism where X is a projective variety of dimension
< m. Then f is constant.

Proof. Let H be a very ample divisor on X. Since (f ∗H)m = 0 and f ∗H is effective, it
follows that f ∗H = 0 in Pic (Pm) ≃ Z. This implies the result. □
Lemma 3.3. Let A be a finite subset of Pm containing m+2 points in general position in
the sense that no m+ 1 points among these m+ 2 points are contained in a hyperplane of
Pm. Then Aut(Pm, A) is finite.

Proof. The group G of all automorphisms which fix each point of A is a finite-index sub-
group of Aut(Pm, A). It is enough to show that G is trivial. This is true because if f is
an automorphism then it is given by a square matrix of size m+ 1. It has at most m+ 1
linearly independent eigenvectors. □

The following generalization has its own interest. We will also apply it for abelian varieies
in Section 5.

Lemma 3.4. Let X be any compact Kähler manifold of dimension n. There is a number
N such that if A is a finite subset of X containing N points in general position, then
Aut(X,A) is finite. In particular, when all morphisms Pn−1 → X are constant (e.g. X is

a complex torus), then Aut(X̂) is finite, where X̂ is the blow-up of X at the points in A.

Proof. The second assertion is a consequence of the first one because for such an X we
have

Aut(X̂) = Aut(X̂, EA) = Aut(X,A),

where EA is the set of exceptional divisors of X̂ → X.
The first assertion is a consequence of Fujiki-Lieberman’s theorem ([Fu78, Thm.4.8],

[Li78]). Indeed, since Aut(X) is a complex Lie group of finite dimension and Aut0(X) is



NON-FINITELY GENERATED DISCRETE AUTOMORPHISM GROUP 7

associated to holomorphic vector fields of X, if P1 ∈ X is a general point, then Aut(X,P1)
has dimension smaller than the one of Aut(X). By induction, there exists N such that for
general P1, . . . , PN−1, the group Aut(X,P1, . . . , PN−1) is discrete. It follows that the set
of points which are fixed by some non-trivial element of this group is a countable union
of proper analytic subsets of X. Choose PN ∈ X outside this set. Then we have that
Aut(X,P1, . . . , PN−1, PN) is finite. Hence so is Aut(X, {P1, . . . , PN−1, PN}), because

[Aut(X, {P1, . . . , PN−1, PN}) : Aut(X,P1, . . . , PN−1, PN)] ≤ N !.

□

Construction 3.5. Let n ≥ 3 and set m = n − 2. Let Pm
R = ProjR[x0, . . . , xm] be the

projective space defined over R and regard Pm
R as the natural real form of the complex

projective space Pm. We fix the affine coordinates zi = xi/x0 and denote by R0 := (0)mi=1 ∈
Pm(R) the origin with respect to the affine coordinates (zi)

m
i=1. (See the end of Introduction

for the precise meaning of Pm(R).) Let ι be the involution of Pm defined by ι((zi)
m
i=1) =

(−zi)
m
i=1. Note that ι is defined over R.

Let us choose a finite set

R := {R0, R1, . . . , R2(m+1)} = {R0, R1, . . . , Rm+1 , ι(R1) , . . . , ι(Rm+1)} ⊂ Pm(R)

such that Ri (0 ≤ i ≤ m + 1) are in general position in the sense that no m + 1
points of them are contained in a hyperplane of Pm. Then R is invariant under ι and

ι ∈ Aut(Pm, R0, {Ri}2(m+1)
i=1 ). Let

X0 := S × Pm,

where S is Lesieutre’s surface. Then X0 is a smooth projective variety of dimension n =
m+ 2 defined over R with the natural real form X0,R = SR × Pm

R .
We will use the same notations of the points and curves on S as in Section 2.
Let

π1 : X1 → X0

be the blow-up of X0 at the points in {P5} × R ⊂ X0(R). (Once again, see the end of
Introduction for the precise meaning of X0(R).) We denote by T(P5,R0)X0 the tangent space
of X0 at (P5, R0). Denote also by

E0 = P(T(P5,R0)X0) = Pm+1 ⊂ X1

the exceptional divisor corresponding to the point (P5, R0) ∈ X0 and by Ei (1 ≤ i ≤
2(m + 1)) the remaining 2(m + 1) exceptional divisors. Then X1 and E0 are defined over
R with natural real forms X1,R and E0,R . We choose

0 ̸= v ∈ TP5C ⊂ TP5S , 0 ̸= w ∈ TR0Pm

such that the point (v, w) ∈ T(P5,R0)X0 defines the point

[(v, w)] ∈ E0(R) ⊂ X1(R).

Let

π2 : X2 → X1

be the blow-up at the point [(v, w)] in X1(R). Then X2 is defined over R with a natural
real form X2,R induced by X1,R. We denote the exceptional divisor of π2 by F .

Proposition 3.6. Let X2 be as in Construction 3.5. Then:
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(1) X2 is a smooth complex projective rational variety of dimension n = m + 2 ≥ 3
defined over R.

(2) Aut(X2) is discrete and not finitely generated.
(3) X2 has infinitely many mutually non-isomorphic real forms.

Proof. Set X = X2. We shall employ the same notation as in Construction 3.5.
The assertion (1) is clear by the construction.
We show the assertions (2) and (3) by dividing the argument into several steps.

Claim 3.7. Aut(X0) = Aut(S)× Aut(Pm).

Proof. Recall that X0 = S × Pm and H0(X0,−2KX0) = H0(S,−2KS) ⊗ H0(Pm,−2KPm)
by the Künneth formula. Since the linear system | − 2KS| consists of a single element by
Proposition 2.2 (1), while −2KPm is very ample, the anti-bicanonical map

Φ|−2KX0
| : X0 → Pm

coincides with the second projection p2 : X0 → Pm. Since the linear system | − 2KX0 | is
preserved by Aut(X0), it follows that the second projection p2 : X0 → Pm is Aut(X0)-
equivariant. Since Aut(S) is discrete by Proposition 2.2, the result follows from Lemma
3.1. □

Claim 3.8. (1) There is no non-constant morphism φ : Pm+1 → X0.
(2) Let φ : Pm+1 → X1 be a non-constant morphism. Then φ(Pm+1) is one of the

irreducible components of π−1
1 ({P5} × R), i.e., one of the exceptional divisors Ei

(0 ≤ i ≤ 2(m+ 1)).
(3) Let φ : Pm+1 → X2 be a non-constant morphism. Then φ(Pm+1) is one of the

following divisors:

F , π−1
2 (Ei) ≃ Ei (1 ≤ i ≤ 2(m+ 1)).

Proof. We show the assertion (1). Note that m+1 ≥ 2. Since the Picard number ρ(S) ≥ 2,
there is no surjective morphism Pm+1 → S if m+1 = 2. Therefore there is no non-constant
morphism Pm+1 → S or Pm+1 → Pm by Lemma 3.2. Hence the morphism pi ◦φ is constant
for the projections pi (i = 1, 2) from X0 = S × Pm to the i-th factor. Hence φ is constant.

Since π1 ◦ φ is constant by (1), the assertion (2) follows.
We show the assertion (3). Recall that the proper transform E ′

0 of E0 on X2 is the
blow-up of E0 = Pm+1 at the point [(v, w)]. Hence E ′

0 is of Picard number ρ(E ′
0) = 2.

Hence there is no surjective morphism Pm+1 → E ′
0. Therefore, by Lemma 3.2, E ′

0 admits
no non-constant morphism from Pm+1. This together with the assertion (2) implies the
assertion (3) exactly for the same reason as in the proof of (2). □

From now, we regard the subgroups of Aut(X) and Aut(X1) as subgroups of Bir (X0) via
the birational morphisms π1 and π2. For instance, we say that G1 = G2 (resp. G1 ⊂ G2)
for a subgroup G1 ⊂ Aut(X) and a subgroup G2 ⊂ Aut(X1) if G1 = G2 (resp. G1 ⊂ G2)
in Bir (X0). We also identify Aut(X0) = Aut(S)× Aut(Pm) by Claim 3.7.

Claim 3.9. (1) Aut(X1) = Aut(X0, {P5} ×R) = Aut(S,C, P5)× Aut(Pm, R).

(2) Aut(X1, [(v, w)]) = Aut(X1, [(v, w)], E0) ⊂ Aut(S,C, P5)×Aut(Pm, R0, {Ri}2(m+1)
i=1 ).

Proof. The assertion (1) follow from Claim 3.8 (2). Since [(v, w)] ∈ E0 and [(v, w)] /∈ Ei

for i ≥ 1, the assertion (2) follows from the assertion (1). □
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From now, we use Aut(X1, [(v, w)]) ⊂ Aut(S,C, P5) × Aut(Pm, R0, {Ri}2(m+1)
i=1 ) and de-

note an element of Aut(X1, [(v, w)]) as in the form:

(φ, g) ∈ Aut(S,C, P5)× Aut(Pm, R0, {Ri}2(m+1)
i=1 ).

Let ϵ ∈ {0, 1}. We define

H := {(φ, ιϵ) ∈ Aut(S,C, P5)× Aut(Pm, R0, {Ri}2(m+1)
i=1 ) | d(φ|C)P5(v) = (−1)ϵv}.

Here ι is the involution defined in Construction 3.5 and d(φ|C)P5 is the differential map of
φ|C : C → C at P5. By definition, the index ϵ in (φ, ιϵ) ∈ H is uniquely determined by φ.

Claim 3.10. H is a finite index subgroup of Aut(X1, [(v, w)]) and H = G under the
identification (φ, ιϵ) = φ. Here G is the group in Definition 2.3.

Proof. Let

H ′ := {(φ, g) ∈ Aut(S,C, P5)× Aut(Pm, R0, {Ri}2(m+1)
i=1 ) | (φ, g)(C(v, w)) = C(v, w)}.

Here we recall that C(v, w) is the 1-dimensional linear space in T(P5,R0)X0 spanned by (v, w)
and the action of (φ, g) on C(v, w) is nothing but the differential map. Then, by Claim
3.9, we have

Aut(X1, [(v, w)]) = H ′.

Since ιϵ(w) = (−1)ϵw and w ̸= 0, the condition (φ, ιϵ)C(v, w) = C(v, w) is equivalent to the
condition that d(φ|C)P5(v) = (−1)ϵv. Then H is a subgroup of H ′. Since the m+ 2 points
{R0} ∪ {Ri}m+1

i=1 ⊂ Pm are in general position, by Lemma 3.3, Aut(Pm, {R0} ∪ {Ri}m+1
i=1 ) is

a finite group. Hence so is Aut(Pm, R0, {Ri}2(m+1)
i=1 ), because

Aut(Pm, R0, R1, ..., R2(m+1)) ⊂ Aut(Pm, R0, {Ri}m+1
i=1 ) ⊂ Aut(Pm, {R0} ∪ {Ri}m+1

i=1 )

and

[Aut(Pm, R0, {Ri}2(m+1)
i=1 ) : Aut(Pm, R0, R1, ..., R2(m+1))] < ∞.

In particular, the number of g’s in the definition of H ′ is at most finite. Thus [H ′ : H] < ∞.
The last assertion is clear by the definitions of G and H with the remark before Claim

3.10. This proves the claim. □

Claim 3.11. (1) Aut(X1, [(v, w)]) is a finite index subgroup of Aut(X).
(2) H is a finite index subgroup of Aut(X).

Proof. By Claim 3.8 (3), we have

Aut(X) = Aut(X, {π−1
2 (Ei), F | 1 ≤ i ≤ 2(m+ 1)}).

On the other hand, by construction, Aut(X1, [(v, w)]) = Aut(X,F ) ⊂ Aut(X). Since
{π−1

2 (Ei), F | 1 ≤ i ≤ 2(m + 1)} is a finite family, this implies the assertion (1). The
assertion (2) follows from (1) and Claim 3.10. □

Now we are ready to complete the proof of Proposition 3.6 (2), (3).
By Claims 3.10 and 3.11 (2), H ≃ G is a finite index subgroup of Aut(X). Since G is

not finitely generated by Proposition 2.4 (2), Aut(X) is not finitely generated as well by
Theorem 1.6. This proves Proposition 3.6 (2).

By the construction, X is defined over R. By Proposition 2.2 (4) and by the construction,
the Galois group Gal(C/R) acts trivially on H. Since G has infinitely many conjugacy
classes of involutions by Proposition 2.4 (3), the same holds for H because H ≃ G. Since
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H is a finite index subgroup of Aut(X), it follows from Theorem 1.8 ([Le18, Lem.13]) that
X has infinitely many mutually non-isomorphic real forms. This proves Proposition 3.6
(3). □

4. Proof of Theorem 1.3 (2)

In this section, we prove Theorem 1.3 (2). Let V be a smooth complex projective variety
of dimension n.

Consider the case where κ(V ) = n. Then the pluricanonical map Φ|mKV | for large
divisible m is a birational map onto the image. Thus Aut(V ) is a finite group by Theorem
1.7.

Next, consider the case where κ(V ) = n− 1 ≥ 1. Then the geometric generic fibre Vη of
the pluricanonical map

Φ|mKV | : V 99K B

for large divisible m is an elliptic curve defined over C(B), an algebraic closure of the
function field C(B). (See eg. [Ha77, Chap.IV, Sect.4] for basic properties of elliptic curves
over an algebraically closed field, which we will use from now on.) By Theorem 1.7, there
is a subgroup G of Aut(V ) such that

[Aut(V ) : G] < ∞ , Aut0(V ) ⊂ G ⊂ Aut(Vη/C(B)).

Set

A := Aut0(Vη/C(B)).

Since Vη is an elliptic curve over C(B), the group A is an abelian group consisting of

translations and Aut(Vη/C(B)) is a semi-direct product of A and some finite cyclic group

Z/aZ. Thus A is an abelian subgroup of Aut(Vη/C(B)) such that [Aut(Vη/C(B)) : A] < ∞.
Hence

A′ := A ∩G

is also an abelian group and [G : A′] < ∞. Then [Aut(V ) : A′] < ∞ as well. Consider the
contravariant group homomorphism

ρ : Aut(V ) → GL(NS (V )/(torsion)) ; f 7→ f ∗.

Since GL(NS (V )/(torsion)) ≃ GL (N,Z) for some N and A′ is an abelian group, the
group ρ(A′) is isomorphic to a solvable subgroup of GL (N,Z). In particular, ρ(A′) is
finitely generated by the famous theorem of Malcev (see eg. [Se83, Chap.2]).

Since [ρ(Aut(V )) : ρ(A′)] < ∞ by [Aut(V ) : A′] < ∞, the group ρ(Aut(V )) is
finitely generated as well by Theorem 1.6. Since ρ(Aut(V )) ≃ Aut(V )/Ker ρ, the group
Aut(V )/Ker (ρ) is also finitely generated. Since [Ker ρ : Aut0(V )] < ∞ by an algebraic
version of Fujiki-Lieberman’s theorem (see eg. [Br19, Thm.2.10]), Aut(V )/Aut0(V ) is also
finitely generated by the following exact sequence of groups:

1 → Ker ρ/Aut0(V ) → Aut(V )/Aut0(V ) → Aut(V )/Ker ρ → 1.

This proves Theorem 1.3 (2).
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5. Proof of Theorem 1.3 (3)

We prove Theorem 1.3 (3).
Note that κ(V ) = κ(Pn) = −∞ if V is a smooth complex projective rational variety.

Therefore, the case κ(V ) = −∞ follows from Theorem 1.3 (1).
From now, we consider the case where κ(V ) ≥ 0. For this, instead of Lesieutre’s surface,

we use the surface S2 constructed by [DO19, Sect.4] to construct the desired varieties.
In the rest, we denote M := S2. The surface M is constructed from a Kummer K3

surface of product type in [DO19, Sect.4]. Since, we will not use the explicit form of M , we
omit to repeat the detailed construction and just surmarize basic properties of the surface
M we will use. See [DO19, Sect.4] for the explicit form of M .

Proposition 5.1. There are a smooth projective complex surface M defined over R with
a natural real form MR and a subgroup H of Aut(M) such that

(1) M is birational to a smooth complex projective K3 surface, in particular, κ(M) = 0
and Aut(M) is discrete;

(2) [Aut(M) : H] < ∞ and H is not finitely generated. Moreover, there is a point
P ∈ M(R) such that h(P ) = P for all h ∈ H;

(3) c ◦ h ◦ c = h for every element of H under the Galois action of Gal (C/R) = {id, c}
with respect to the real form MR; and

(4) H has infinitely many conjugacy classes of involutions.

Proof. As mentioned, we choose the surface S2 in [DO19, Sect.4] as M . We choose the
group H in [DO19, Lem.4.6] as our H. Then M and H satisfy the required properties.
(1) is clearly satisfied. The first part of (2) follows from [DO19, Thm.2.8, Lem.4.6] and
Theorem 1.6. For the last part of (2), we may choose one of the two points P ′ or P ′′

in [DO19, Def.2.7] as P . (3) follows from [DO19, Lem.4.6] and (4) follows from [DO19,
Lem.4.5]. □

Now we are ready to complete the proof of Theorem 1.3 (3).
Let T be a complex abelian variety of dimension l, defined over R as an abstract variety.

Let A be a finite subset of T such that Aut(T,A) is finite and c(A) = A under the complex
conjugate map c of T with respect to TR. Such a subset A exists. Indeed, by Lemma
3.4, there is a finite subset A′ ⊂ T such that Aut(T,A′) is finite. Then we may take
A = c(A′) ∪ A′.

Let
π : Xl → M × T

be the blow-up at the points in {P} × A. Let Ei ≃ Pl+1 (1 ≤ i ≤ |A|) be the exceptional
divisors of π.

Claim 5.2. (1) Xl is a smooth complex projective variety defined over R and dimXl =
l + 2 and κ(Xl) = 0.

(2) Aut(Xl) is discrete and not finitely generated. Moreover, Xl has infinite many
mutually non-isomorphic real forms.

Proof. The assertion (1) is clear from the construction. We show the assertion (2). If
l = 0, then the result follows from Proposition 5.1. From now, we assume that l ≥ 1. Let
f ∈ Aut(Xl). Since T has no rational curve, it follows that

π(f(Ei)) ⊂ M × A.
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Since f(Ei) ≃ Pl+1 with l + 1 ≥ 2 and M is not covered by rational curves by κ(M) = 0,

it follows that π(f(Ei)) is a point. Thus f({Ei}|A|
i=1) = {Ei}|A|

i=1 and therefore

Aut(Xl) = Aut(Xl, {Ei}|A|
i=1) = Aut(M × T, {P} × A).

Since the Albanese morphism M × T → T is preserved by Aut(M × T ) and Aut(M) is
discrete, it follow from Lemma 3.1 that

Aut(M × T ) = Aut(M)× Aut(T ).

Hence

Aut(Xl) = Aut(M,P )× Aut(T,A).

Since Aut(T,A) is finite, Aut(M,P )×{idT} is a finite index subgroup of Aut(Xl). Hence
H × {idT} ≃ H, where H is the group in Proposition 5.1, is also a finite index subgroup
of Aut(Xl). Hence Aut(Xl) is discrete and is not finitely generated by Proposition 5.1 (2)
and Theorem 1.6. Then Xl has infinitely many mutually non-isomorphic real forms by
Proposition 5.1 (3), (4) and Theorem 1.8. □

Let Zm ⊂ Pm+1 (m ≥ 1) be a smooth complex hypersurface of degree m+3 defined over
R. Set

Yl+m := Xl × Zm.

Claim 5.3. (1) Ym+l is a smooth complex projective variety defined overR with dimYl+m =
2 + l +m and κ(Yl+m) = κ(Zm) = m.

(2) Aut(Yl+m) is discrete and not finitely generated. Moreover, Yl+m has infinite many
mutually non-isomorphic real forms.

Proof. Again, the assertion (1) is clear from the construction. We show the assertion (2).
Since |KXl

| consists of a single element and KZm is very ample, the canonical map

Φ|KYl+m
| : Yl+m = Xl × Zm → Zm

coincides with the second projection p2 : Yl+m → Zm for the same reason as in the proof of
Claim 3.7. In particular, the second projection p2 is Aut(Yl+m)-equivariant. Since Aut(Xl)
is discrete by Claim 5.2, it follows from Lemma 3.1 that

Aut(Yl+m) = Aut(Xl)× Aut(Zm).

Since Aut(Zm) is finite by Theorem 1.7, as before, the group

H × {idT} × {idZm},

where H is the group in Proposition 5.1, is a finite index subgroup of Aut(Yl+m) by Claim
5.2. The result now follows from the same reason as in the last part of the proof of Claim
5.2. □

Theorem 1.3 (3) now follows from Claim 5.2 with l ≥ 1 and Claim 5.3 with l ≥ 0 and
m ≥ 1.
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