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Abstract

Snakes or active contour models are classical methods for boundary detection and segmenta-
tion, which deform an initial contour (for 2D image) or a surface (for 3D image) towards the
boundary of the desired object. Such snakes models are ideal choices for handling medical im-
age segmentation problems since they are very efficient and require fewer memories by solely
tracking the explicit curves or surfaces. However, traditional snakes models solved by the level
set method suffer from numerical instabilities and are usually difficult to deal with topological
changes. In this paper, we propose a learned snakes model for 3D medical image segmentation,
where both the initial and final surfaces are estimated using deep neural networks in end-to-end
regimes. The merit of our learned snakes model is that we can realize 3D segmentation by
finding a 2D surface based on 2D convolutional neural networks rather than using 3D network-
s or cutting the volume into 2D slices. Experiments on the Medical Segmentation Decathlon
spleen dataset against both 2D- and 3D-based networks demonstrate our model achieving the
state-of-the-art accuracy and efficiency, which not only enjoys a 1% higher DSC but also saves
more than 90% computational time compared to the well-established elastic boundary projec-
tion model [1].

Keywords: 3D segmentation, snakes, active contour, surface evolution, convolutional neural
network

1. Introduction

Accurate and automatic organ segmentation is an important prerequisite for computer-assisted
diagnosis (CAD), computer-aided surgery (CAS), and radiation therapy (RT), which has been
intensively studied in the last several decades [2, 3]. Segmentation aims to extract the or-
gan/object from the given image according to features such as intensities, edges, shape priors,
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etc. Various methods have been studied for image segmentation, which either find a partition of
the image [4, 5, 6] or detect contours of objects [7, 8, 9].

Mumford and Shah [4] proposed a pioneer segmentation model by finding a closed image of
the initial one compounded of several regions with nearly constant intensities. Let F : Ω→R be
a given image with Ω being a bounded open subset of Rn. The Mumford-Shah model searches
for a pair (U,Γ) by minimizing the following energy functional

JMS(U,Γ) =
λ

2

∫
Ω

(F−U)2dx+
∫

Ω\Γ
|∇U |2dx+α

∫
Γ

dσ , (1)

where α , λ are positive parameters, Γ is the set of discontinuities and
∫

Γ
dσ denotes the length

of Γ. Since the Mumford-Shah functional is non-convex, finding the minimizers may trap in-
to local minima. Besides, the Mumford-Shah model (1) needs to be calculated on the entire
image domain, the computational costs of which increase dramatically for 3D image segmen-
tation tasks. In Kass, Witkin, and Terzopoulos [7], boundary detection consists of matching a
deformable model to an image by considering an energy-minimizing spline guided by external
constraint forces and influenced by image forces, which is called snakes or active contours due
to the way of contour evolution. Let C(q) : [0,1]→ R2 be a parameterized planar curve. The
classical snakes model associated the curve C is to minimize the following energy

J(C)=
∫ 1

0
|C′(q)|2dq+α

∫ 1

0
|C′′(q)|dq︸ ︷︷ ︸

internal energy

−λ

∫ 1

0
|∇F(C(q))|dq︸ ︷︷ ︸

external energy

. (2)

The internal energy guarantees the smoothness of the curve while the external energy attracts
the curve toward the edge of the objects. However, the snakes (2) has significant drawbacks.
Firstly, it is not intrinsic, which means J(C) depends on the parametrization of C. Even with
the same initial curve, different solutions may be obtained by changing the parametrization.
Secondly, the energy model is not capable of handling changes of topology, where the final
contour has to be as the one of C0. Lastly, the minimization problem (2) is also numerically
problematic such that only a local minimum can be reached. Thus, the initial contour has to
been chosen closed enough to the boundary of the object to be detected.

Caselles, Kimmel and Sapiro [8] introduced an intrinsic model, called the geodesic active
contour. The evolving contours naturally split and merge, which allows detecting several object-
s and both interior and exterior boundaries simultaneously. Specifically, the energy functional
is formulated as follows

JGAC(C) =
∫ 1

0
g(|∇F(C(q))|)|C′(q)|dq, (3)

where g : [0,+∞]→R+ is an edge detection function. The steepest descent method was imple-
mented to solve the minimization problem (3) to deform the initial curve C(0) = C0 using the
following curve evolution equation

∂C(t)
∂ t

=
(

gκ− (∇g ·nnn)
)

nnn, (4)
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where κ is the Euclidean curvature and nnn is the unit normal vector. Note that if g≡ 1, the flow
(4) reduces to

∂C(t)
∂ t

= κnnn, (5)

which is the mean curvature motion. By regarding the contour as the zero level-set of a 3D
function, the geodesic curve computation is reduced to a geometric flow, the steady stage of
which gives the detected object. The level set method is the most popular method used to solve
the model (4) and (5). However, such kind of methods suffers from high computation burden
and numerical instability, requiring re-initialization or additional regularizations.

Convolutional neural networks (CNNs) based segmentation techniques have been extensive-
ly studied and gain great success in the last decade. Similar to traditional approaches, we can
roughly divide the existing CNNs-based segmentation methods into two categories, i.e., pixel-
wise [10, 11, 12, 13] and contour-based methods [14, 15]. Chen et al. [16] designed a deep
learning framework for 3D image segmentation based on a combination of a fully convolution-
al network (FCN) and a recurrent neural network (RNN), which are responsible for exploiting
the intra-slice and inter-slice contexts, respectively. Zhou et al. [17] developed a fixed-point
model to use a predicted segmentation mask to shrink the input region, which applied the 2D
FCN along three axes and fused the segmentation via majority voting. Yu et al. [18] present-
ed a recurrent saliency transformation network in a coarse-to-fine framework for small organ
segmentation, where three FCN models were trained separately to incorporate pseudo-3D infor-
mation into segmentation. Razzak et al. [19] developed a two-pathway-group CNN to embed
both local and global features without increasing the number of parameters. The aforemen-
tioned approaches cut the 3D volume into 2D slices and use a 2D network to deal with each
slice, which may lose rich spatial information along the third axis. Thus, 3D pixel-wise net-
works have also been developed to deal with volumetric data, such as the 3d U-net [20], V-net
[21], 3d deep supervised network [22], etc. However, dealing with volumetric data is not only
computationally expensive requiring much larger memory consumption, but also less stable to
be trained from scratch lacking a pre-trained model for medical purposes. To bridge the gap
between 2D and 3D organ segmentation, Xia et al. [23] used a 3D volumetric fusion net to fuse
the 2D segmentation results from different viewpoints, which still rely on 3D convolutions. Li
et al. [24] proposed a hybrid densely connected U-net, which consists of a 2D dense U-net
for efficiently extracting intra-slice features and a 3D counterpart for hierarchically aggregating
volumetric contexts. Liu et al. [25] designed a 3D anisotropic hybrid network for 3D medical
image segmentation, which can transfer convolutional features learned from 2D images to 3D
anisotropic volumes.

On the other hand, edge information has also been deployed in CNN models for medical
image segmentation. Chen et al. [26] proposed the deep contour-aware network for gland
segmentation, where both probability maps of glands and the contours are learned in a multi-
task framework. Duan et al. [27] used a single nested level set framework to segment cardiac
MR images with pulmonary hypertension, which incorporated the image features learned from
a deep neural network. Roy et al. [28] proposed a synergistic combination of deep learning and
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Table 1: The comparison of average time consuming (min) and storage space consuming (Gigabyte) between EBP
and LSM for processing one spleen data of the MSD dataset.

Step I Step II Step III Storage space

EBP
Shells evolution Pivots processing 3D reconstruction

20
51.41 4.62 4.27

LSM
Surface initialization Surface evolution 3D reconstruction

1.5
0.50 1.10 3.21

shape driven level sets for lung nodule segmentation, which achieved better accuracy than both
deep network and level set methods. In addition to medical image segmentation, contour-based
approaches have also been utilized for instance segmentation such as deep structured active
contour [29], curve-GCN [30], deep snakes [31], etc. Moreover, novel loss functions have been
studied based on classical active contour models, such as level set loss [32], Mumford-Shah loss
[33] and active contour loss [34, 35, 36], which can better combine the geometrical information
with region similarity.

At present, studies on 3D contour-based or surface evolution methods are still missing. Ni
et al. [1] developed the elastic boundary projection (EBP) for 3D medical image segmentation,
which places a number of pivot points in the 3D space and determines their corresponding dis-
tances to the object boundary along with a dense set of directions. The EBP model achieved
good accuracy by bridging the gaps between 2D and 3D approaches such that it can process
the 3D data as a whole rather than cutting it into slices. Besides, the EBP can deal with the
scenarios of limited data annotations by simply increasing the number of pivots in the training
process. However, it consumed an average of 20 Gigabyte disk storage space and 60 minutes
to process one spleen data of the Medical Segmentation Decathlon (MSD) dataset (website:
http://medicaldecathlon.com/) due to the large numbers of pivots required in training and test-
ing, which greatly limits its practical applications.

In this paper, we propose a novel, end-to-end trainable deep neural network architecture,
called the learned snakes model (LSM), to find the desired boundary of 3D objects. Followed
the classical snakes, our model contains two parts: 1) generate the initial surface with the similar
shape as the desired object; 2) deform the initial surface accurately to match with the object
boundaries. More specifically, we use 2D networks to realize both surface initialization and
evolution, after which a 3D reconstruction process is performed to recover the 3D volume.
Through an efficacious surface initialization, our model requires much fewer pivot points in
the surface evolution and 3D reconstruction. Thus, our LSM employs less storage space and
performs much faster than EBP, where more than 90% of the disk space and computational time
are saved; see Table 1. We evaluate our model on spleen segmentation tasks and demonstrate
its promising performance by comparing with the well established 2D and 3D segmentation
methods.

To sum up, the main contributions of this work are presented as follows:
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Figure 1: The pipeline of the learned snakes model including two basic modules, i.e., surface initialization and
surface evolution.

• We propose a novel segmentation framework based on surface evolution for dealing with
3D image segmentation problems, which is motivated by the classical snakes model to
predict the boundary of an object rather than every pixel inside it;

• We develop a surface initialization method by selecting equidistance points from a rough
segmented volume to possess similar topological shape as the desired surface, which can
guarantee a fast convergence in the surface evolution stage;

• Based on a two-stage surface initialization and evolution formulation, our learned snakes
model can realize the 3D segmentation efficiently through 2D deep networks, which can
incorporate rich spatial information by consuming much less memories than 3D convolu-
tional neural networks.

The rest of the paper is organized as follows. We present different modules of the proposed
learned snakes model in Section 2, including surface initialization, surface evolution, the iter-
ation and inference in testing and 3D reconstruction. Section 3 is dedicated to providing the
implementation details of our learned snakes model. Evaluations and experimental results are
presented in Section 4. Finally, we conclude the paper and discuss possible future works in
Section 5.

2. Learned snakes model

2.1. The overall framework
We consider a 3D CT scan F with size Hx×Hy×Hz, where the intensity at a specified

position is denoted as F(x,y,z). The label data V shares the same dimension with F . Our goal
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is to segment a volumetric object U from the 3D image F through end-to-end networks. We
follow the traditional snakes model to first estimate an initial surface and then evolve the surface
to the desired boundary, both of which are done by deep convolutional neural networks. The
pipeline of the proposed learned snakes is illustrated in Figure 1, which contains two separate
modules.

2.2. Surface initialization
It is well-known that the initial surface (or contour) is important to the classical snakes

model. We propose a fully automatic surface initialization method based on a deep neural
network. Assume the initial surface to be S0, which is used to evolve the final surface.

Since the initial surface is composed of a set of 3D points rather than accurate segmenta-
tion, the down-sampled data can be used as inputs to reduce the computational costs in surface
initialization. To be specific, we cut down the sizes of 3D CT scans with a fixed step size
dx× dy× dz along the three dimensions, respectively. Then, we use the well-established seg-
mentation framework DeepLabv3+ [13] as our baseline net, the encoder-decoder structure with
atrous spatial pyramid pooling (ASPP) module of which can not only encode multi-scale con-
textual information but also capture sharper object boundaries. We adopt the ResNet-50 as the
network backbone with the output stride being 16, where the output stride denotes the ratio of
input image spatial resolution to the final output resolution. For dealing with small-scale im-
age segmentation problem, we modify the DeepLabv3+ by using stride=1 rather than stride=2
in the first convolution layer to keep more structural information; see Figure 1. Thus, the in-
put features of the ASPP module are with output stride=8. Accordingly, the encoder features
are upsampled by bilinear interpolation with a factor of 4, and then concatenated with the cor-
responding low-level features from the first block of the network backbone. Finally, another
bilinear upsampling is applied with a factor of 2 to recover the original image size. The whole
segmentation process can be expressed as follows

P = D-net[Fd;ΘI], (6)

where D-net[·;ΘI] denotes the DeepLabv3+ network with ΘI being network parameters, Fd
is the down-sampled data as input of network, and P denotes the probability map outputted by
DeepLabv3+. We can obtain the segmentation by binarizing P into W using a given threshold ε ,
i.e., W = I[P≥ ε], where the threshold can be estimated using the automatic clustering methods
such as K-means [37, 38]. Here, we simply set ε = 0.5 in numerical experiments, because there
is no obvious improvement of segmentation accuracy by varying the threshold.

Then, we estimate the initial surface by selecting equidistant points inside the object of W
such as

S0 = {xxx | min
yyy∈∂W

d(xxx,yyy) = do and W (xxx) = 1}, (7)

where d(xxx,yyy) denotes the Euclidean distance between the two three-dimensional points xxx and
yyy, and do represents the user-specified distance between the initial surface S0 and the estimated
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Figure 2: Estimation of normal directions. (a) Determination of the outward normal vector. (b) The estimated
initial surface S0 together with the point-wise normal vectors.

boundary ∂W. The initial surface obtained by (7) is a point cloud, i.e., S0 = {xxx1,xxx2, . . . ,xxxK}
with K denoting the total number of points. More importantly, the obtained initial surface S0 has
the similar topological shape as the organ to be segmented. Finally, the coordinates of xxxi ∈ S0,
i = 1, . . . ,K, are upsampled to the original resolution using the stepsize dx×dy×dz for surface
evolution.

2.3. Surface Evolution
Given an initial surface S0, we develop a learning-based surface evolution method to deform

S0 to match with the desired boundary, which is realized by a light-weighted U-net as follows.

2.3.1. Normal direction estimation
The normal direction of each point in S0 is estimated as the normal vector of the plane fitting

to its local neighborhood. To be specific, we denote the nearest 8 neighbors of xxxi as Neigh(xxxi),
∀xxxi ∈ S0, i = 1, . . .K. Then the fitting plane of xxxi can be defined as

ax+by+ cz+d = 0, s.t., a2 +b2 + c2 = 1, (8)

where a,b,c,d ∈ R are coefficients chosen to fit with Neigh(xxxi). The normal vector is then
given as nnni = [nx,ny,nz] = ±[a,b,c]. In order to obtain the outward normal vector, we select a
point ooo inside the surface S0 as the viewpoint to choose the normal vectors satisfying

oooxxxi ·nnni > 0,

as illustrated in Figure 2 (a). We also display the initial surface S0 associated with the normal
directions in Figure 2 (b).

2.3.2. Initial surface encryption
Considering that the number of points in S0 is much smaller than the one of the desired

surface, we encrypt the initial surface in advance. Here, two different methods are adopted
using either a hemisphere or a plane to encrypt a point.
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• Hemisphere. To guarantee the target boundary can be smoothly covered after the evo-
lution, the encrypted points and the associated directions should be dispersed as much
as possible. Therefore, we use the spheres to encrypt the pivots. For each pivot xxxi ∈ S0,
i = 1,2, . . . ,K, we define a ball Bi := {bbbi, j,k} satisfying

bi, j,k(x) = xxxi(x)+ r sinα j cosβk,
bi, j,k(y) = xxxi(y)+ r sinα j sinβk,
bi, j,k(z) = xxxi(z)+ r cosα j,

(9)

where r denotes the radius of the sphere, α j ∈ [0,2π], βk ∈ [0,π] denote the azimuth
angle and elevation angle, and j = 0, . . . ,2h− 1, k = 0, . . . ,w− 1 with 2h and w being
the numbers of azimuth angles and elevation angles, respectively. In order to keep the
points uniformly distributed over the sphere, the 2h azimuth angles are uniformly dis-
tributed, while the w elevation angles have a denser distribution near the equator, i.e.,
α j = 2π j/(2h) and βk = cos−1(2k/(w+1)−1). Followed the idea of snakes, we deform
the surface along its outward normal direction. Therefore, we rotate the ball Bi to its nor-
mal direction nnni and keep the half of the points along the normal direction, which gives an
encrypted hemisphere. More specifically, the rotation angle is the angle between z-axis
and the normal of xxxi such as θ = arccos( zzz·nnn

|zzz||nnn|) with zzz = (0,0,1), and the rotation axis is
uuu = zzz×nnn. We can compute the Rodrigues’ rotation matrix R by

R=

 cosθ+uuu2
x(1−cosθ) −uuuz sinθ+uuuxuuuy(1−cosθ) uuuy sinθ+uuuxuuuz(1−cosθ)

uuuz sinθ+uuuxuuuy(1−cosθ) cosθ+uuu2
y(1−cosθ) −uuux sinθ+uuuyuuuz(1−cosθ)

−uuuy sinθ+uuuxuuuz(1−cosθ) uuux sinθ+uuuyuuuz(1−cosθ) cosθ+uuu2
z (1−cosθ)

 .

Then we rotate Bi by BT
i = {bbbT

i, j,k | bbbT
i, j,k = Rbbbi, j,k} and select the half of the points on BT

i

satisfying bbbT
i, j,k ·nnni ≥ 0. We further equip the encrypted points with the unique directions

dddi, j,k = bbbT
i, j,k− xxxi, (10)

for j = 0, . . . ,h−1, k = 0, . . . ,w−1.

• Tangent plane. We can also encrypt the pivot points using their tangent planes. That
is, for each point xxxi ∈ S0, i = 1,2, . . . ,K, we project the encrypted hemisphere onto its
tangent plane by carrying on their directions from the hemisphere.

After this process, each pivot point xxxi ∈ S0, i = 1, . . . ,K, is encrypted into a set of points,
which is denoted as Xi = {xxxi, j,k | j = 0, . . . ,h−1, k = 0, . . . ,w−1} associated with the directions
Di = {dddi, j,k | j = 0, . . . ,h−1, k = 0, . . . ,w−1}. Note that both Xi and Di are stored as matrixes
of the size h×w.

2.3.3. Learned snakes model
Now we develop our learned snakes model, which can deform the initial surface to the

desired surface by estimating the distances in between them through a deep neural network.
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Evolution distance. We employ the shortest distances in between the encrypted points
and the desired boundary to evolve the surface. Suppose Ω+ is the organ region, Ω− is the
background and ∂Ω is the interface. The signed distance function is used to estimate the shortest
distance of a point xxx to the boundary such as

Φ(xxx) =


d(xxx,∂Ω), if xxx ∈Ω+,

0, if xxx ∈ ∂Ω,

−d(xxx,∂Ω), if xxx ∈Ω−,

where the sign of Φ(xxx) indicates the position of point xxx relative to ∂Ω, i.e., positive values
indicating inside ∂Ω, negative values indicating outside ∂Ω, and 0 indicating on ∂Ω. We use
the KD-tree algorithm to estimate the distance map and multiply the distance map by -1 for
outside points.

Data generation. Given the initial point set Xi = Xi, i = 1, . . . ,K and the signed distance
function Φ(X0

i ), we can define an input-output data pair as follows

Ii = F(Xi), and Oi = Φ(Xi),

where the inputs are intensities of the points used to incorporate more image features in the
learning process. However, owing to the use of fixed directions (10), the initial surface can not
reach the desired position by evolving with the shortest distances. Therefore, we use an iterative
procedure to generate the input-output pairs to reduce the distances between the estimated and
desired surfaces. To be specific, let X0

i = Xi and Λ0
i = 0, i = 1, . . . ,K, be the initial positions

and offsets, respectively, and assume M be the maximal number of iterations. Then we use the
fixed directions and the signed distance function to evolve the points as follows

Xm
i = X0

i +Λ
m
i ◦Di, for m = 1, . . . ,M, (11)

where ◦ denotes the point-wise matrix multiplication and the total evolution distance Λm
i need

to satisfy
Λ

m
i = max

{
Λ

m−1
i +Φ(Xm−1

i ),0
}
,

to guarantee the points not moving towards the opposite directions. Consequently, we generate
a series of input-output pairs to train the network, which are{

Im
i = F(Xm

i ),
Om

i = Φ(Xm
i ).

(12)

Because the encrypted points are identically determined by the two angles {α j}h−1
j=0 and {βk}w−1

k=0 ,
we can use 2D convolutional networks to estimate the evolution distances, which means 3D seg-
mentation tasks are realized by 2D networks. In addition, we introduce more channels to input
data followed the idea of [1] to enrich information for accurate prediction. Concretely, we
sample the boundary and inner volume as follows{

Xm
i,`A = X0

i +(Λm
i + `A)◦Di, `A ∈ {−2,−1,0,1,2},

Xm
i,`B = X0

i + `B

6 Λm
i ◦Di, `B ∈ {1,2,3,4,5}.

(13)
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Table 2: Configurations of the U-net architecture in surface evolution, where Conv-BN-ELU represents a sequence
of convolution, batch normalization and ELUS.

kernel size dilated factor stride padding feature size
Input 16×32×32

Conv-BN-ELU 7×7 1×1 3×3 16 ×32×32
Downtransition 3×3 2×2 1×1 64×16×16

Dilated Conv-BN-ELU 3×3 2×2 1×1 2×2 64×16×16
Dilated Conv-BN-ELU 3×3 2×2 1×1 2×2 64×16×16
Dilated Conv-BN-ELU 3×3 2×2 1×1 2×2 64×16×16

Downtransition 3×3 2×2 1×1 128×8×8
Dilated Conv-BN-ELU 3×3 2×2 1×1 2×2 128 ×8×8
Dilated Conv-BN-ELU 3×3 2×2 1×1 2×2 128×8×8
Dilated Conv-BN-ELU 3×3 2×2 1×1 2×2 128×8×8

Uptransition 4×4 2×2 1×1 64×16×16
Conv-BN-ELU 3×3 1×1 1×1 64×16×16
Conv-BN-ELU 3×3 1×1 1×1 64×16×16
Conv-BN-ELU 3×3 1×1 1×1 64×16×16

Uptransition 4×4 2×2 1×1 16×32×32
Conv-BN-ELU 3×3 1×1 1×1 16×32×32
Conv-BN-ELU 3×3 1×1 1×1 16×32×32
Conv-BN-ELU 3×3 1×1 1×1 16×32×32
Conv-BN-ELU 1×1 1×1 1×1 1×32×32

Besides, we also pull in the directions into the inputs by considering the following 16 channels
data

Im
i = [F(Xm

i,`A),Di,F(Xm
i,`B),Di],

which is a typical method used to encourage the 2D deep neural network to implicitly learn
more 3D spatial information. On the other hand, the number of the channel for the output Om

i
remains 1.

Optimization. After generating the training data pairs {Im
i ,O

m
i }, i = 1,2, . . . ,K, m =

0,1, . . . ,M, we use an encoder-decoder U-Net pathway with the concatenations of feature maps
to estimate the evolution distances (see Figure 1)

Qm
i = U-net[Im

i ;ΘII], (14)

where U-net[·;ΘII] denotes the U-Net with ΘII being network parameters, and Qm
i denotes

the estimated distance map. The detailed configuration of the CNN architecture is displayed
in Table 2, where each convolutional layer is associated with a batch normalization layer to
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speed up the convergence of the training process, and an exponential linear units (ELUS) layer
[39] is used as the activation function. Besides, we use the dilated convolutions to obtain a
larger receptive field and the identity short-cut connection to improve the network representation
ability. We configure the network to downsample along each axis until the feature map size for
that axis reaches 8 or the maximal number of down-sampling operation reaches 3.

In the training phase, we adopt the following Huber loss to train the U-net to guarantee the
better convergence

Lδ =


1
2 ∑

j,k
(Qm

i ( j,k)−Om
i ( j,k))2, if |Qm

i ( j,k)−Om
i ( j,k)|≤δ ,

δ ∑
j,k

(
|Qm

i ( j,k)−Om
i ( j,k)|− 1

2δ
)
, otherwise,

(15)

where δ is a hyper-parameter need to be selected through the cross-validation.

2.4. Iteration and inference in testing
The inference stage is similar to the training stage, which is summarized in Algorithm 1.

In the inference stage, we fix the parameters ΘI , ΘII and iteration number T to estimate the
offsets of Qt

i, i = 1,2, . . . ,K, t = 1,2, . . . ,T . By adding the total evolution distances along the
pre-defined directions, we obtain the ending point cloud ST .

Algorithm 1: Learned snakes model
Input: The CT image F ;
/* Surface initialization */

1 Obtain Fd by down sampling the CT scan F ;
2 P← D-net[Fd;ΘI], W = I[P≥ 0.5];
3 Estimate the initial surface S0 using (7);
/* Surface evolution */

4 for xxxi ∈ S0, i = 1,2, . . . ,K do
5 Estimate the normal vector nnni;
6 Encrypt xxxi to Xi and define the directions Di;
7 for t = 0,1, . . . ,T −1 do
8 Estimate X t

i,`A and X t
i,`B using (13);

9 It
i = [F(X t

i,`A),Di,F(X t
i,`B),Di];

10 Qt
i← U-net[It

i;ΘII];
11 Λ

t+1
i = max{Λt

i +Qt
i,0};

12 X t+1
i = X0

i +Λ
t+1
i ·Di;

13 end
14 end

Output: The ending point clouds ST .
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Figure 3: The 3D reconstruction pipeline of our learned snakes model. We start with the initial point cloud and
point cloud encryption, then deform the point cloud to the true surface, and finally voxelize the point cloud.

2.5. 3D reconstruction
After the surface evolution, there are still some predicted ending points in ST that do not

converge to the true boundary. Because the initial surface contains outnumbered points after the
encryption, we directly use the kernel density estimation (KDE) to remove these isolated points.
Specifically, we use the Epanechnikov kernel with bandwidth 1 to estimate a log-likelihood
value, and preserve the integer points whose value are not smaller than -14. Then a three-step
graphics processing is conducted to reconstruct the 3D image volume from the point cloud. In
particular, we first build up the triangle mesh using the Delaunay triangulation and remove the
improper tetrahedrons with a circumradius larger than α . Here, α is a threshold used to filter out
the tetrahedrons of large sizes, the default value of which is set as α = 2 in our implementation.
Then we use the subdivide algorithm to obtain the surface using the alpha shape data and we
only keep the largest component. Finally, we fill the closed boundary to obtain the segmentation
result. The 3D pipeline of our model is illustrated in Figure 3, where the initial point cloud is
encrypted using the points locating on the associate tangent planes.

3. Implementation details

We use the spleen subset of the Medical Segmentation Decathlon (MSD) dataset for eval-
uation. Because the ground truths of the testing dataset are not publicly available, we solely
use the training dataset, which contains 41 volumetric CT data. More specifically, we randomly
split the 41 data into the training dataset (21 volumes) and testing dataset (20 volumes). The
number of slices containing the spleen varies between 31 and 168, and the images are of the
size 512×512. Similar to [1], we truncate the image intensities of all scans to the range of
[-125,275] and apply the min-max normalization for a fair comparison. Another popular way
is to clip the intensities to the [0.5, 99.5] percentiles of the foreground intensities in the training
dataset as done by nnU-Net in [40].

The Dice Similarity Coefficient (DSC) is used to evaluate the performance of our learned
snakes model and the competitive methods. The DSC measures the ratio between twice the
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Figure 4: The influences of the number of iteration in training phase and numerical convergence in the testing
stage. (a) The DSC and computational time versus the number of iterations M; (b) The distances between the
estimated surface and the desired surface in the testing stage. Here, each thin curve represents the distance (17)
of a randomly selected encrypted point set, while the thick orange curve is the averaged distance of 15 randomly
selected point sets.

number of elements common to two sets to the sum of number of elements in each set, i.e.,

DSC =
2 |U ∩V |
|U |∪ |V |

, (16)

where |U | and |V | denote the cardinalities of the segmentation and ground truth, respectively.
The value of the DSC is within the range [0,1] such that 1 indicates perfect overlap and 0
indicates no overlap between U and V .

In our implementation, we truncate the values of the distance maps in both training and
testing within the range [−τ,τ] for achieving better results, where τ is chosen as τ = 2 in all the
experiments. The value of δ in Huber loss (15) is selected by the cross-validation, the value of
which ranges from δ ∈ [0.5,2].

3.1. Model setup
In this subsection, we analyze the choices of the iteration number, the numerical conver-

gence and discuss the influences of the distance between the initial surface and target surface,
the radius of the hemisphere, and the number of encrypted points to the performance of our
learned snakes model.

3.1.1. The choices of the iteration number
On the first place, we discuss the influences of the number of iteration M in the training

phase to the performance of our model. In the experiment, the distance between the initial
surface and desired surface is chosen as do = 1, and the tangent plane encryption is used with
the radius of r = 1 and the size of h = w = 32. We compare the segmentation results obtained
by different models trained using input-output data pairs generated by M = 1 to M = 10. Both
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Figure 5: The topological shapes of the initial surfaces obtained using different distance do, which reduce as the
distance increasing.

the DSC and computational time are displayed in Figure 4 (a). Note that the number of iteration
in the testing phase satisfies T ≤M, which is chosen for achieving the best results. As can be
seen, the value of DSC first increases then becomes stable, while the computational time keeps
increasing as M goes from M = 1 to M = 10. Thus, to balance the efficiency and effectiveness,
we choose M = 3 unless otherwise specified.

3.1.2. Numerical convergence
For each pivot point xxxi ∈ S0, i = 1, . . . ,K, we use the average distances of the encrypted

point sets to measure the convergence in the testing phase, which is defined as

l =
1

h×w

h

∑
j=1

w

∑
k=1

∣∣Qt
i( j,k)

∣∣. (17)

We perform our model trained by M = 3 for T = 200 iterations in the testing phase and plot both
the point-wise distances and the average distance in Figure 4 (b). It is shown that the average
distance converges to 0 and remains stable as the iteration goes to 200 iterations, which means
the initial surface converges to the objective surface after sufficient iterations. Although more
than 50 iterations are required for a nice convergence, i.e., l < 0.1, we only evolute T ≤ M
iterations in our implementation. The reason is that the density of points on the boundary after
three evolutions is already enough for surface reconstruction. We can simply remove the non-
convergent isolated points during 3D reconstruction.

3.1.3. The influences of the distance between the initial surface and target surface
With the rough segmentation obtained by DeepLabv3+, we generate an initial surface S0

by selecting equidistant points according to (7). Here, the distance do between selected points
and the object boundary is another important parameter need to be chosen. Thus, we examine
the performance of our LSM with initial surfaces generated by different d0 including do = 0,
1, 2, and 3, respectively. As shown in Figure 5, all the initial surfaces have similar shapes as
the true surface, and they shrink as the distance do increases by losing the structural details. We
also evaluate the segmentation accuracy in Table 3, where the distance do affects not only the
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Table 3: The influences of the initial distance to our learned snakes model, where the models are trained with
different numbers of iteration M to achieve the best segmentation accuracies.

Distance do 0 1 2 3
Number of pivots K 1814 1474 1233 1037
Evaluation metrics DSC M Time DSC M Time DSC M Time DSC M Time

Hemisphere 90.29 4 1.65 92.02 7 2.86 91.7 8 2.23 89.08 8 1.90
Tangent plane 91.8 2 1.21 92.84 3 1.10 91.79 4 0.89 89.27 5 0.78

number of the pivot points in the initial surface set but also the convergence of the model. In
particular, we summarize the principles to determine the distance do as follows:

• Our LSM requires more iterations to converge as the distance do increases for both hemi-
sphere and tangent plane encryption. On the other hand, the computational time is af-
fected by not only the number of pivot points contained in the initial surface but also the
number of iteration. On average, the distance do should not be too large, e.g., d0 ≥ 3.

• Because the segmentation of DeepLabv3+ on the boundaries is not as accurate as of the
interior region, it is unwise to choose a too small do, e.g., do = 0, which may result in an
inaccurate surface initialization.

• The models with encryption by either hemisphere or tangent plane perform in a similar
way. As can be seen, the model using tangent planes encryption gives better segmentation
accuracy and converges better during training. Therefore, we suggest to encrypt the pivot
points using their tangent planes.

To sum up, we let the distance be do = 1 and use the tangent plane to encrypt the initial surface
for the spleen segmentation task.

3.1.4. The influences of the number of points in encryption
We also evaluate the influences of the radius and the dimension of the encryption to the

performance of our LSM on the model trained with M = 3. Considering that the distance do
is fixed as do = 1, we increase the radius of the tangent plane from r = 0.5 to r = 3 with the
step size of 0.5 and increase the dimension of encryption from h = w = 32 to h = w = 128. We
perform our LSM and record the DSC values in Table 4. We observe that the best accuracy is
achieved by r = 2 and h = w = 32, which gives a DSC of 93.05. Besides, we also have the
following conclusions on the choices of the radius and the dimension of the encryption

• As the radius r increases, the DSC first increases and then decreases. When the radius
becomes larger and larger, more and more encrypted points lie outside the object resulting
in the decline of the DSC.

• By increasing the number of encryption points, the DSC almost remains the same, while
the computational time keeps increasing. Therefore, the dimension of the encryption
should not be too large.
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Table 4: The DSC comparison of encryptions with respect to different radius and number of points, where time is
recorded in minute (min).

HHH
HHHh×w

r
0.5 1 1.5 2 2.5 3 Time

32×32 92.49 92.84 92.86 93.05 92.52 91.8 4.82
64×64 92.49 92.85 92.86 92.61 92.02 91.84 8.66

128×128 92.53 92.60 92.92 92.2 91.97 91.79 24.13

Table 5: The comparison of DSCs on models trained by different numbers with iteration M and surface initializa-
tion methods.

XXXXXXXXXXXXInitialization
M

1 2 3 4 5 6 7 8 9 10

Equidistant 90.86 92.21 93.05 93.03 93.06 93.05 93.04 93.06 93.06 93.06
Random 89.25 90.41 91.47 91.65 91.58 91.64 91.6 91.53 91.69 91.67

• The accuracy may decrease when the dimension of the encryption increases. That is
because the difficulty to train the U-net in surface evolution increases to a certain extent
with more points.

Therefore, we set the radius r = 2 and the number of the encrypted points h = w = 32 for spleen
segmentation.

4. Experimental results

4.1. Comparison with random initialization
To illustrate the importance of the initialization, we compare the performance of our LSM

with respect to both equidistant initialization or random initialization. Here the random initial-
ization means to randomly select pivot points inside the spleen volumes obtained by DeepLab-
v3+. In this experiment, the same number of the pivot points, i.e., K = 1474, and the tangent
plane encryption with r = 2 and h = w = 32 are adopted for all models for a fair comparison.
In particular, we compare the two initializations on models trained by different numbers of it-
eration from M = 1 to M = 10. As shown in Table 5, the models with equidistant initialization
always produce higher DSCs. It is well-known that the classical snakes model is sensitive to the
initializations, which may be fail to converge to the desired boundaries for bad initializations.
As seen, our LSM works well with both initializations. And of course, the shape-preserving
initialization can help to improve the segmentation accuracy since it is easier for the U-net to
learn features through data with geometric similarities than the messy data. Besides, selective
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Figure 6: Selective 2D visualization of segmentation results by random initialization and shape-preserving initial-
ization, where red, green and blue indicate the ground truth, prediction and overlapped region, respectively.

visual comparison results are provided in Figure 6 to evaluate the different behaviors of the two
models. We observe that the random initialization may result in over-segmentation around the
boundaries, and the equidistant initialization can produce better segmentation results with more
accurate boundaries.

4.2. Comparison with other methods
We evaluate the performance of our LSM by comparing it with three recently published

baseline models named RSTN [18], VNet [21], and EBP [1], which are representative methods
for 3D medical image segmentation. The RSTN is a typical 2D based network, which feeds
3 neighboring slices to the 2D network along each dimension and then fuses three views, i.e.,
coronal, sagittal, and axial view, by majority voting to obtain the final prediction. The VNet
is a classical 3D network, which randomly crops the 3D image into 128 × 128 × 64 patches
for training due to the limitation of GUP memory. The EBP bridges the gaps between 2D and
3D models, which processes the 3D data as a whole rather than cutting it into slices. In the
implementation, both the VNet and EBP need the region-of-interest (ROI) information, while
the RSTN and our LSM are realized based on the original raw data. We report the quantitative
results including the average DSC with the associated standard deviation, the best and worst
accuracies in Table 6. Note that the values of the RSTN, Vnet, and EBP are extracted from
[1] since the dataset and settings are all the same. As shown, our model achieves better seg-
mentation accuracy with 1% higher DSC than the EBP model. We also record the segmentation
accuracy in surface initialization for a comparison. It is clear that the evolution step is important
to increase the segmentation accuracy, both the best/worst and average DSC are significantly
improved in surface evolution. Thanks to the initialization, we can estimate the desired surface
through a light-weighted network on a point set with much fewer pivots. More importantly, the
convergence of our model is faster than EPB as well by saving much computational time. We
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Figure 7: An example of the visual results on the MSD spleen dataset, where three planar (coronal, sagittal, and
axial) views and the corresponding volumetric view are shown. In the figure, the red and green colors indicate the
prediction and ground truth, respectively.

also display a typical segmentation result of our method in Figure 7, the boundaries of which
well approximate the desired boundaries in three different views.

Table 6: Comparison of segmentation results on MSD spleen dataset, where the computational time of our initial-
ization and LSM include the time consumed by 3D reconstruction.

Approach Average DSC Max Min Parameters Time (min) Bounding box
RSTN 89.70±12.60 97.25 48.45 8.1e8 – N
VNet 92.94±3.58 97.35 81.96 4.6e7 – Y
EBP 92.01±4.50 96.48 77.07 2.3e6 59.87 Y

Initialization 89.87±2.20 92.94 82.67 4.0e7 2.83 N
LSM 93.05±2.26 96.14 88.12 5.3e5 4.75 N

To better understand the iterative process of our LSM in the testing stage, we further look
into the intermediate segmentation results, which are provided in Figure 8. In accord with our
formulation, the initial surfaces are chosen inside the 3D object and have a similar topological
shape as the desired ones. However, the boundaries of the initial contours may be not continuous
and smooth. Thanks to the iterative process in the surface evolution stage, the accuracy of the
segmentation is significantly improved, the estimated boundaries of which steadily approach to
the desired boundaries.

5. Conclusion

In this paper, we proposed a learned snakes model followed the classical snakes framework
to deal with 3D medical image segmentation tasks. To be specific, we used a 2D surface em-
bedded in the 3D space to approximate the surface of the object to be segmented. To overcome
the difficulties in surface initialization and evolution, we developed a two-stage segmentation
method, both stages of which are realized by deep neural networks. We first applied the mod-
ified segmentation network Deeplabv3+ on the down-sampled raw data to obtain coarse seg-
mentations. Then, we generated the initial surfaces by choosing equidistant points from the
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(a) Initialization (b) 1st iteration (c) 2nd iteration (d) 3rd iteration (e) Label image

Figure 8: Intermediate segmentation results of our LSM in the testing stage, which are displayed after 3D recon-
struction.

segmented volumes. The initial surfaces were further evolved to the final surfaces with the
distances estimated by the U-net. We realized the accurate segmentation based on 2D convolu-
tional neural networks without the 3D nets or 3D fusion. Compared to pioneer work EBP, our
model provided better accuracy on the MSD spleen segmentation dataset with less than 10% its
computational time and storage space.

Currently, most computational costs of our LSM were consumed by 3D reconstruction,
which was realized by engineering solutions. Thus, one possible future work is to develop a
fast method to achieve the 3D volumes directly from the point cloud data, e.g., the learning-
based method [41]. We also would like to improve the performance of the U-net in surface
evolution using advanced techniques such as squeeze-and-excitation block [42], convolutional
block attention module [43] etc. Alternatively, we may introduce more spatial information in
the surface evolution stage to obtain segmentation with smoother boundaries, e.g., curvature
regularization [44].
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