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Abstract. We propose an efficient multi-grid domain decomposition method

for solving the total variation (TV) minimization problems. Our multi-grid
scheme is developed based on the piecewise constant function spanned sub-

space correction rather than the piecewise linear one in [16], which ensures the

calculation of the TV term only occurs on the boundaries of the support sets.
Besides, the domain decomposition method is implemented on each layer to

enable parallel computation. Comprehensive comparison results are presented

to demonstrate the improvement in CPU time and image quality of the pro-
posed method on medium and large-scale image denoising and reconstruction

problems.

1. Introduction. Rudin, Osher and, Fatemi [28] first introduced the total varia-
tion into image processing for dealing with denoising problems. The Rudin-Osher-
Fatemi model can restore a clean image from a noisy image f on a domain Ω in R2

by pursuing the minimizer of the following minimization problem

(1) min
u∈BV(Ω)

F (u) :=
{1

2
‖u− f‖22 + αTV(u)

}
,

where α is a positive regularization parameter, BV(Ω) is the space of functions of
bounded variation, and the total variation of u is defined as

TV(u) := sup
p∈Y

∫
Ω

udivpdx
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with

Y :=
{
p = (p1, p2) ∈ (C1

0 (Ω))2, ‖p‖∞ ≤ 1
}
.

Due to its abilities in removing noises as well as preserving sharp edges, TV has
been well studied for various image processing applications including image recon-
struction [33, 32], segmentation [12], inpainting [31], etc. Various methods have
been developed for solving the Rudin-Osher-Fatemi model, which can be roughly
divided into three categories according to the ways in constructing the minimization
problem

(i) Primal methods: It is straightforward to find the minimizer of (1) by com-
puting its Euler-Lagrange equation, which gives

(2) − α∇ · ( ∇u√
|∇u|2 + β

) + (u− f) = 0,

with β being a small positive parameter to avoid the singularity. Different numerical
methods have been used to solve the above nonlinear equation such as gradient de-
scent method [28, 26], lagged fixed point iteration [1, 36, 37], explicit Euler method
[26], etc. However, the aforementioned methods are slow in convergence due to
strict constraints on the time step size. Other numerical solvers include graph cuts
method [19], additive operator splitting scheme [27], etc.

(ii) Dual methods: Chambolle [5] solved the dual formulation of Rudin-Osher-
Fatemi model

(3) inf
p∈Y

∫
Ω

(αdivp− f)2dx,

where the semi-implicit gradient descent algorithm is used to solve the dual variable.
The dual algorithm has been further studied for color TV minimization problems
[3] and segmentation problem [21]. The dual algorithm for solving (3) is described
as Algorithm 1.

Algorithm 1: Dual algorithm for solving the Rudin-Osher-Fatemi model

Input: Choose p0 and τ > 0
Output: u = f − αdivp
for n = 1, 2, · · · , /* compute p */

do

(4) pn+1 =
pn + τ∇(divpn − f/α)

1 + τ |∇(divpn − f/α)|
;

if ‖pn+1 − pn‖2 < ε‖pn+1‖2 then
break;

end

end

(iii) Primal-dual methods: The primal-dual approaches aim to solve both the
primal and dual variables from a saddle-point problem, where the nonsmooth min-
imization problem (1) is decomposed into simpler subproblems. Chambolle and
Pock [6] formulated a saddle-point problem based on Legendre-Fenchel conjugate,
which reads

(5) min
u∈BV(Ω)

max
p
−〈u,divp〉+

1

2
‖u− f‖22 − δ‖·‖∞≤α(p),
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with

(6) δ‖·‖∞≤α(p) =

{
0, if max

i,j
|pi,j | ≤ α;

+∞, else.

The primal-dual algorithm for solving the Rudin-Osher-Fatemi model (1) is sum-
marized in Algorithm 2. Other ways to formulate the saddle-point problem include
the augmented Lagrangian type techniques [39], Douglas-Rachford splitting [18],
etc. We refer readers to the review work [7] and references therein for more primal-
dual algorithms for image processing problems. There are other variable splitting
techniques, fast algorithms have been developed based on the Bregman distance
[20] and penalty method [38].

Algorithm 2: Primal-dual method for solving the Rudin-Osher-Fatemi
model
Input: Choose τ , σ > 0, θ ∈ [0, 1]
Output: u
for n = 1, 2, · · · , /* update un+1, pn+1, and ūn+1 as follows */

do

(7)


pn+1 = pn+σ∇ūn

max(1,|pn+σ∇ūn|/α) ;

un+1 = (un + τdivpn+1 + τf)/(1 + τ);
ūn+1 = un+1 + θ(un+1 − un);

if ‖un+1 − un‖2 < ε‖un+1‖2 and ‖pn+1 − pn‖2 < ε‖pn+1‖2 then
break;

end

end

Although the aforementioned methods work well on small-scale and medium-
scale problems, they usually suffer from high computational cost on large-scale
problems. The multi-grid methods (MM) [40, 35] is a powerful numerical method
for solving large-scale linear and nonlinear optimization problems, which have been
successfully applied to image problems. The MM provides a hierarchical relaxation
method to develop efficient algorithms for solving the linear and nonlinear elliptic
equations. Some attempts have been made to develop MM for solving the curva-
ture equation (2) derived from Rudin-Osher-Fatemi model [2, 29, 15]. Savage and
Chen [30] presented a nonlinear multi-grid method based on the full approxima-
tion scheme for solving the nonlinear PDE (2). Chan and Chen [11] proposed a
fast multilevel method using primal relaxations for the total variation image de-
noising and analyzed its convergence. Chan and Chen [10] proposed a multilevel
method for the Rudin-Osher-Fatemi model based on piecewise constant refinements.
Chen and Tai [16] developed an efficient nonlinear multi-grid method for solving the
TV minimization model (1) using the piecewise linear function spanned subspace
correction method. Chan and Chen [9] presented a fast multi-level algorithm for
simultaneously denoising and deblurring image under the total variation regulariza-
tion. Besides, Brito-Loeza and Chen [4] developed an efficient nonlinear multi-grid
algorithm for solving the mean curvature based energy minimization model.

The domain decomposition method (DDM) is another promising technique to
deal with large-scale problems, which divides the large problem into smaller prob-
lems for parallel computation. The DDM has also been successfully applied to
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the minimization problems modeling image denoising [22, 13, 24, 23], deblurring
[41, 25] and segmentation [34, 17]. Hintermüller and Langer [22] developed a
convergent nonoverlapping domain decomposition for the discrete dual problem of
Rudin-Osher-Fatemi model. Chang et al. [13] proposed a convergent overlapping
domain decomposition method for the dual problem (3) and estimated the rate
of the convergence. Lee and Nam [24] analytically proved the convergence of the
nonoverlapping domain decomposition methods to the minimizer of the global prob-
lem, which was later extended to the overlapping domain decomposition method
in the continuous setting in [23]. Chen et al [14] introduced a highly parallel al-
gorithm, which formulated the Rudin-Osher-Fatemi model as multiple overlapping,
but independent, optimization problems. To the best of our knowledge, the study
on the multi-grid domain decomposition method is still limited. In [42], the authors
introduced the coarse mesh correction into the overlapping domain decomposition
method for the Rudin-Osher-Fatemi model, where the smoother was required to
overcome the non-smoothness of the total variation.

In this paper, we propose an efficient multi-grid domain decomposition algorithm
for the Rudin-Osher-Fatemi model as well as general TV minimization image pro-
cessing models. The essential idea is to use the piecewise constant function spanned
subspaces correction method to construct the multi-grid algorithm by directly work-
ing on the primal variable to pursue its corrections over support sets/patches. The
complexity of the proposed MM is O(N) with N being the total pixels of images,
which is much less than O(N logN) of the nonlinear MM in [16]. We further im-
prove the efficiency of the proposed algorithm by applying the four-color domain
decomposition method on each layer such that subproblems in the same color can
be solved in parallel. Numerous numerical comparison experiments demonstrate
that our proposal can save much CPU time in dealing with medium and large-scale
image processing problems, which defeats both dual Algorithm 1 and primal-dual
Algorithm 2 under the same stopping criteria. To sum up, our contributions include
the following three aspects

1) We propose a novel multi-grid method based on the piecewise constant func-
tion spanned subspace correction and apply it to solve the TV minimization
problems;

2) We develop an efficient multi-grid domain decomposition algorithm by imple-
menting the non-overlapping domain decomposition on each layer for parallel
computation, in which the computation of the TV term only occurs on the
boundaries of the patches;

3) We discuss the applications of our multi-grid domain decomposition algorithm
for general TV minimization problems including image restoration (denoising
and deblurring problem) and image reconstruction (CT and MRI reconstruc-
tion).

The rest of the paper is organized as follows. Section 2 dedicates to review the
nonlinear multi-grid method based on piecewise linear spanned subspaces for solv-
ing the Rudin-Osher-Fatemi model. In Section 3, we detail our multi-grid algorithm
and multi-grid domain decomposition algorithm for image denoising problem. The
multi-grid domain decomposition algorithm is extended to general TV minimization
problems in Section 4. Numerical experiments are provided in Section 5 by com-
paring with state-of-the-art algorithms for solving image denoising and debluring
problems, and CT and MRI reconstructions. We conclude the paper in Section 6
with some remarks and future works.
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(a) The piecewise constant basis function

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

(b) The piecewise linear basis function

Figure 1. An illustration of the piecewise linear basic function
and piecewise constant basic function φij on τ̄ ij of the layer j = 4.
In (a), the � defines the weight of 1 for the piecewise constant
function and ♦ defines the weight of 0 for the outer boundary ∂τ̄ ij .
In (b), the weights of ◦, ∗, O and 4 are 1/8, 3/8, 5/8, 7/8 respec-
tively.

2. Preliminaries. Without loss of generality, a general convex minimization prob-
lem over a reflexive Banach space V can be given as follow

(8) min
u∈V

F (u).

Suppose the space V is decomposed into J subspaces, i.e.,

(9) V = V1 + V2 + · · ·+ VJ .

Thus, for any u ∈ V , there exists uj ∈ Vj such that u =
∑J
j=1 uj . The original min-

imization problem (8) can be reformulated as a series of the subspace minimization
problems over each Vj such as

(10) min
δuj∈Vj

F (u+ δuj), for j = 1, · · · , J,

where u denotes a current approximation and δuj is the correction on Vj . The
classical iterative algorithms for solving (10) include Jacobi-type-method and Gauss-
Seidel-type method [40], which are described as follows

- Jacobi-type-method: Choose an initial guess u0 ∈ V and relaxation param-

eters γj > 0 such that
∑J
j=1 γj ≤ 1. Assume that uk ∈ V has been obtained

and find δuj ∈ Vj in parallel for j = 1, · · · , J such that

(11) F (uk + δuj) ≤ F (uk + vj), ∀vj ∈ Vj .

Then uk+1 is defined by uk+1 = uk +
∑J
j=1 γjδuj .

- Gauss-Seidel-type-method: Let u0 ∈ V be given, and assume that uk ∈ V
has been obtained. Then uk+1 is defined by uk+j/J = uk+(j−1)/J + δuj ,
δuj ∈ Vj , j = 1, 2, · · · , J , such that

(12) F (uk+(j−1)/J + δuj) ≤ F (uk+(j−1)/J + vj),∀vj ∈ Vj .
Chen and Tai [16] designed a multi-grid method for solving Rudin-Osher-Fatemi

model by the subspace correction method using the piecewise linear function. More
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specially, for a given domain Ω ⊂ R2, we generate a nested sequence of uniform
Cartesian partition T of Ω by a successive refinement process. Assume T = TJ for
some J > 1, we refine each rectangular element into 4 rectangular sub-mesh to get
the next layer of fine mesh Tj for j < J , such that Tj = {τ ij} of mesh size 2j−1 and

Ω = ∪nj

i=1τ
i
j . Then, a finer partition is obtained by connecting the midpoints of the

edges of the coarser grid and this process is repeated until we reach T1, which are
the pixels of the image. For images whose sizes are not the power of 2, we prorogate
them before the above procedure using boundary conditions. It is straightforward
to define Vj as a finite element space

(13) Vj = {v : v|τ ∈ Pl(τ), ∀τ ∈ Tj};
where Pl denotes the space of piecewise linear functions, and the finite element
space Vj is equipped by a nodal basis {φij}

nj

i=1. An illustration of the basis function

φij on the coarse layer j = 4 is shown in Figure 1 (a). More details of the basis
functions in the piecewise linear function spaces can be found in [16]. Associated
with each nodal basic function, the one dimensional subspace can be defined by
V ij = span{φij}. Then the subspace Vj can be described as the direct sum of all

subspaces V ij , such that

Vj =

nj∑
i=1

V ij .

The subspace correction refers to find δuj =
∑nj

i=1 c
i
jφ
i
j for δu ∈ Vj , where cij is

estimated by the fixed point method [16]. The corresponding whole space V is
defined as

V =

J∑
j=1

nj∑
i=1

V ij .

If F is convex and continuous, uk obtained by both Jacobi and Gauss-Seidel method
is theoretically convergent to one minimizer of F . The convergence rate has also
been estimated when F is Lipschitz continuous and strongly convex. More details
of the convergence results can be found in [35].

3. The new multi-grid method. In this section, we consider developing an ef-
ficient multi-grid method for solving the discrete Rudin-Osher-Fatemi model as
follows

(14) F (u) :=
∑
x∈Ω

1

2
(u(x)− f(x))2 + α

∑
x∈Ω

√
|∇u(x)|2 + β,

where ∇u := (D+
x u,D

+
y u) with D+

x and D+
y being the standard forward finite

difference operator, and β > 0 is introduced to avoid the singularity.

3.1. The multi-grid method using piecewise constant basis functions. In
our method, we define Vj as space of the piecewise constant functions such as

(15) Vj = {v : v|τ ∈ Pc(τ), ∀τ ∈ Tj},
where Pc denotes the space of all piecewise constant functions. We equip the piece-
wise constant function space Vj with a set of basis functions {φij}

nj

i=1, which is
defined as

(16) φij(x) =

{
1, if x ∈ τ ij ;
0, if x /∈ τ ij ;

i = 1, · · · , nj .
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Figure 2. An illustration of ∂τ̄ i,lj , ∂τ̄ i,tj , ∂τ i,bj and ∂τ i,rj located

on τ̄ ij of the layer j = 4.

The illustration of the basis function (16) is shown in Figure 1 (b).
Let Ωij be the support set of φij and Ω̄ij be its closure. We define τ ij = {x ∈ Ωij∩Θ}

and τ̄ ij = {x ∈ Ω̄ij ∩Θ} with Θ being the set of the nodal points on the finest mesh.

Our target is to find the correction c ∈ R on subspaces V ij , for i = 1, . . . , nj ,

j = 1, . . . , J . As shown in Figure 2, for piecewise constant basis functions φij on

the coarse level j = 4, the computation of ∇φij(x) only occurs on boundaries of τ ij .

More specifically, D+
x φ

i
j(x) is computed on the set x ∈ {∂τ̄ i,lj , ∂τ

i,r
j } and D+

y φ
i
j(x)

is computed on the set x ∈ {∂τ̄ i,tj , ∂τ i,bj }, respectively. Then the energy problem

(14) can be simplified into the following form

F (u+ cφij) =
∑

x∈Ω\τ ij

1

2
(u(x)− f(x))2 + α

∑
x∈Ω\τ̄ ij

√
|∇u(x)|2 + β

+
∑
x∈τij

1

2
(u(x) + cφij(x)− f(x))2 + α

∑
x∈τ̄ij

√
|∇(u(x) + cφij(x))|2 + β

= F̃ ij (u) +
s

2
(c− f∗)2 + α

∑
x∈{∂τ̄ij ,∂τ

i
j}

√
(D+

x u+ cD+
x φij)

2 + (D+
y u+ cD+

y φij)
2 + β,

where F̃ ij (u) contains all terms without c, and

f∗ =
∑
x∈τ i

j

f̄(x)/s with f̄ = f − u,

and s =
∑
x∈τ i

j
φij is the number of elements contained in τ ij . Therefore, minimizing

the above energy functional is equivalent to solve

(17) min
c∈R

s

2

(
c− f∗

)2
+ α

∑
x∈{∂τ̄ i

j ,∂τ
i
j}

√
(D+

x u+ cD+
x φij)

2 + (D+
y u+ cD+

y φij)
2 + β,
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Figure 3. Illustration of the 4-color domain decomposition for a
domain of size 8×8, where each color has one element on the coarse
layer j = 3.

the minimizer of which can be obtained by the fixed point iteration as follows

(
α

∑
x∈{∂τ̄ i

j ,∂τ
i
j}

|D+
x φ

i
j(x)|2 + |D+

y φ
i
j(x)|2√

|D+
x (u(x) + c`φij(x))|2 + |D+

y (u(x) + c`φij(x))|2 + β
+ s

)
c`+1

= sf∗ − α
∑

x∈{∂τ̄ i
j ,∂τ

i
j}

D+
x u(x) ·D+

x φ
i
j(x) +D+

y u(x) ·D+
y φ

i
j(x)√

|D+
x (u(x) + c`φij(x))|2 + |D+

y (u(x) + c`φij(x))|2 + β
,

(18)

for ` = 0, 1, 2, . . .. Therefore, we can use the Gauss-Seidel-type of multi-grid method
to solve the Rudin-Osher-Fatemi model (14). The main difference between our MM
and [16] is that the computation on each subspace only happens on the boundaries
rather than the entirety of the support sets.

3.2. Domain decomposition on the multi-grid scheme. For implementation,
we find that much time is consumed due to the sequential computation of V ij ,
i = 1, . . . , nj . Therefore, the non-overlapping domain decomposition method is
applied on each layer to realize parallel computation for dealing with large-scale
problems.

Figure 3 displays the four-color decomposition on each layer from j = 1 to
j = 3. More specifically, we divide the basis function {φij}

nj

i=1 into four groups

∪4
k=1{φij : i ∈ Ik} to reduce the dependency on the order of basis functions and

improve the parallelism for subproblems on each layer, where Ik contains the indexes
with the same color. This decomposition guarantees that neighboring patches in a
4-connected neighborhood are in different subsets. We can see that the support of
the basic functions {φij : i ∈ Ik} is non-overlapping for each k = 1, 2, 3, 4, and the

minimization of F (u+ cφij) for i ∈ Ik can be solved in parallel. In particular, four
subproblems are solved in consecutive order

min
δu∈V (k)

j

F (u+ δu), for k = 1, 2, 3, 4,

where V
(k)
j = span{φij : i ∈ Ik} and Vj =

∑4
k=1 V

(k)
j . It is readily checked that

(19) min
δu∈V (k)

j

F (u+ δu) = min
δui∈V (k)

j

F (u+
∑
i∈Ik

δui) = min
c∈RNk

F (u+
∑
i∈Ik

cijφ
i
j),

where c = (c1j , c
2
j , · · · , c

Nk
j ) with Nk being the total number of elements in Ik.
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Since the supports of the basis functions {φij : i ∈ Ik} are non-overlapping, the
subproblems for all i ∈ Ik can be solved by the fixed point method in parallel, where
we are required to solve a system of equations as follows

(20)


d11 0 · · · 0 0
0 d22 · · · 0 0

...
0 0 · · · dNk−1,Nk−1 0
0 0 · · · 0 dNk,Nk




c1j
c2j
...

cNk−1
j

cNk
j

 =


b1j
b2j
...

bNk−1
j

bNk
j

 ,
where

di,i = s+ α
∑

x∈{∂τ̄ i
j ,∂τ

i
j}

|D+
x φ

i
j(x)|2 + |D+

y φ
i
j(x)|2√

|D+
x (u(x) + (cij)

`φij(x))|2 + |D+
y (u(x) + (cij)

`φij(x))|2 + β
,

bij = sf∗ − α
∑

x∈{∂τ̄ i
j ,∂τ

i
j}

D+
x u(x) ·D+

x φ
i
j(x) +D+

y u(x) ·D+
y φ

i
j(x)√

|D+
x (u(x) + (cij)

`φij(x))|2 + |D+
y (u(x) + (cij)

`φij(x))|2 + β
,

for i = 1, · · · , Nk. The parallel four-color subspace correction algorithm for solving
one layer Rudin-Osher-Fatemi model (14) is summarized in Algorithm 3.

Algorithm 3: Parallel four-color subspace correction

/* solve min
{c1j ,...,c

nj
j }∈R

nj

F (u+
∑nj

i=1 c
i
jφ
i
j) */

Input: {φij}
nj

i=1 = ∪4
k=1{φij : i ∈ Ik}, u0

Output: {c1j , . . . , c
nj

j }
for t = 0 to Nc, /* iterative process */

do
for k = 1 to 4, /* four-color iterations */

do
for ` = 0, 1, . . . , `max do

c`+1 = arg minc∈RNk F (ut+(k−1)/4 +
∑
i∈Ik(cij)

`φij);

if |c`+1 − c`|∞ < ε then
break;

end

end

ut+k/4 ← ut+(k−1)/4 +
∑
i∈Ik c

i
jφ
i
j ;

end

if ‖ut+1 − ut‖2 < εinner‖ut+1‖2 then
break;

end

end

3.3. V-cycle based multi-grid method for solving Rudin-Osher-Fatemi
model. In the multi-grid approach, V-cycle is a common method. That is the
solution to the minimization model is updated from coarsest layer VJ down to the
finest layer V1, then from the finest to the coarsest layer, which forms a complete
V-cycle. In practice, we find that half of the V-cycle is sufficient for the decrease of
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the energy functional F , while the other half of the V-cycle does little improvement.
Thus the fine to coarse subspace correction can be omitted.

Thus, the implementation of the algorithm to solve the minimization model (1)
is described in Algorithm 4.

Algorithm 4: Multi-grid method for solving Rudin-Osher-Fatemi model
(14)

/* solve min
{c11,...,c

n1
1 ,...,c1J ,...c

nJ
J }∈Rn1×...×nJ

F (u+
∑J
j=1

∑nj

i=1 c
i
jφ
i
j) */

Input: f , u0, α, ε, Nw, Nc
Output: u.
for t = 1 to Nw/* outer iterations */

do
for j = J to 1 /* coarse to fine */

do
/* four-color subspace correction */

{c1j , . . . , c
nj

j } = arg min
{c1j ,...,c

nj
j }∈R

nj

F (ut+(J−j)/J +
∑nj

i=1 c
i
jφ
i
j) by

Algorithm 3;

ut+(J−j+1)/J ← ut+(J−j)/J +
∑nj

i=1 c
i
jφ
i
j ;

end

if ‖ut+1 − ut‖2 < εouter‖ut+1‖2 then
break;

end

end

3.4. Convergence. In this subsection, we show that the Rudin-Osher-Fatemi en-
ergy functional F (u) is non-increasing in Algorithm 4.

Lemma 3.1. Let ut be the solution after t outer iteration in Algorithm 4, then
F (ut) ≤ F (ut−1).

Proof. By the construction of the solution in each iteration, for fixed level j, there
is

(21) ut = ut−1 +

4∑
k=1

∑
i∈Ik

cijφ
i
j ,

Suppose ũ is the current solution when u is updated on τ ij = supp(φij). Therefore,
we have

(22) F (ũ+ cijφ
i
j) ≤ F (ũ).

Because τ ij is non-overlapping for all i ∈ Ik, k = 1, 2, 3, 4, we have F (ut) ≤ F (ut−1).

3.5. Computational complexity. We briefly discuss the complexity of our MM
as follows. Suppose the size of the image is N = m × n and rectangular grids are
used on all coarse layers. The number of total patches on level j is mj×nj such that
mj = m/2j−1 and nj = n/2j−1. Let `max denote the number of fixed point iteration
for solving the correction c. Then the total cost for subspace problem is about
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32`max × 2j−1 ×mjnj = 32`maxN21−j floating point operations (FLO), where the
2j−1 means the number of ∂τ̄ ij . Computing f̄ requires N = mn FLO and the FLO

for computing f∗ is 2bjnjmj ≈ 2N since the size of the set τ̄ ij is bj = 2j−1 × 2j−1.

Then the number of FLO over all J levels isO(
∑J
j=1(1+2+32`max21−j)N) = O(N).

On the other hand, the cost of the fixed point iteration (18) in [16] is 32`max ×
bj×mjnj ≈ 32`maxN FLO, where bj = 2j−1×2j−1 is the size of the set Iij . Thus the

number of FLO over all J levels O(
∑J
j=1[1+2+32`max]N) ≈ O(NJ) ≈ O(NlogN)

FLO since max(J) ≤ log2 min(m,n) ≤ logN . Thus, our MM is more efficient than
the MM in [16], which will be further verified by the numerical experiments.

4. The multi-grid method for TV based image processing problems. In
this section, the multi-grid method is used to solve general image restoration and
image reconstruction problems. The task is to recover u ∈ R2 from the observed
data defined by

(23) b = Ku+ ν,

where ν is the random noise and K is a linear and bounded operator varying with
different image processing tasks. To be specific, K denotes a convolution operator
for image deblurring, K represents Radon transform and Fourier transform for CT
and MRI reconstruction, respectively. Then the TV regularization model for dealing
with the above general inverse problem can be formulated as follows

(24) F (u) :=
1

2
‖Ku− b‖22 + α

∑
x∈Ω

√
|∇u(x)|2 + β.

Similarly, we implement the non-overlapping domain decomposition method on each
layer to solve the subproblems of the same color simultaneously. For each color in
Vj , the corresponding minimization problem over the subspace is given as

(25) min
cj∈RNk

1

2
‖K(u+

∑
i∈Ik

cijφ
i
j)− b‖22 + α

∑
i∈Ik

∑
x∈τ̄ i

j

√
|∇(u(x) + cijφ

i
j(x))|2 + β,

which can be also solved by applying the fixed point method to its Euler-Lagrange
equation. The fixed point iteration is written as the following system of equations
(26)

d1,1 〈Kφ1
j ,Kφ

2
j 〉 · · · 〈Kφ1

j ,Kφ
Nk
j 〉

〈Kφ2
j ,Kφ

1
j 〉 d2,2 · · · 〈Kφ2

j ,Kφ
Nk
j 〉

...
...

...

〈KφNk−1
j ,Kφ1

j 〉 〈Kφ
Nk−1
j ,Kφ2

j 〉 · · · 〈Kφ
Nk−1

j ,Kφ
Nk
j 〉

〈KφNk
j ,Kφ1

j 〉 〈KφNk
j ,Kφ2

j 〉 · · · dNk,Nk




c1j
c2j
...

c
Nk−1
j

c
Nk
j

 =


b1j
b2j
...

b
Nk−1
j

b
Nk
j

 ,

where

di,i=〈Kφij ,Kφij〉+ α
∑

x∈{∂τ̄ij ,∂τ
i
j}

〈∇φij ,∇φij〉√
|D+
x (u(x) + (cij)

`φij(x))|2 + |D+
y (u(x) + (cij)

`φij(x))|2 + β
,

bij=〈b−Ku,Kφij〉− α
∑

x∈{∂τ̄ij ,∂τ
i
j}

〈∇φij ,∇u〉√
|D+
x (u(x) + (cij)

`φij(x))|2 + |D+
y (u(x) + (cij)

`φij(x))|2 + β
,

for i = 1, · · · , Nk. For such a symmetric linear system, we use the conjugate gradient
as a fast numerical solver.
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Figure 4. The test images with sizes and their identifiers.

5. Numerical experiments. In this section, we evaluate the performance of our
proposed multi-grid algorithm on image denoising, CT reconstruction, and MRI re-
construction problems. All of the experiments were performed in MATLAB R2016a
running on a desktop with an Intel Core i5 CPU at 3.3 GHz and 8 GB memory.
The quality of the reconstruction results are measured by the Peak Signal to Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM) defined as

PSNR(u, u) = 10 log10

u2
max ·mn
‖u− u‖2

dB,

SSIM(u, u) =
(2MuMu + C1) + (2σuu + C2)

(M2
u +M2

u + C1)(σ2
u + σ2

u + C2)
,

(27)

where u and u denote the restored and original images, respectively, umax represents
the possible maximum pixel value of the image, Mu and Mu are the mean value of
u and u, σu and σu are variance, σuu is the covariance of u and u, and C1, C2 are
two constants.

5.1. Image denoising. In this section, we evaluate our multi-grid Algorithm 4
(denoted by MMC) on image denoising problems by comparing it with the piecewise
linear multi-grid method (denoted by MML) in [16], the dual Algorithm 1, and the
primal-dual Algorithm 2. Note that the domain decomposition method has been
applied to MML for a fair comparison. The implementation details of each algorithm
are given as follows:

1) MMC/MML: The maximum level J is set to the same value for both MMC and
MML, which is selected to achieve best convergence. We set Nc = Nw = 100,
εinner = 10−2, εouter = 10−4. The iteration of the fixed point scheme is
terminated either the number of iterations reaching 10 or ‖c`− c`−1‖∞ < 0.1.
Besides, β is chosen as β = 10−6 for all experiments.

2) Dual method: The step size of the dual variable p is set as τ = 1/4. We use the
relative error of dual variable as the stopping criterion, which is ‖pt+1−pt‖2 <
ε‖pt+1‖2 with ε = 10−4.

3) Primal-dual method: The step sizes are set as τ = 1/4 and σ = 1/(8τ) for the
primal and dual variable, respectively. The iteration is terminated when both
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Table 1. The results on selected images (#1, #3, #5 and #7)
with different J for noise level σ = 20.

α 10 15 20

MML J Iter Energy CPU(s) Iter Energy CPU(s) Iter Energy CPU(s)

#1

1 54 2.32E7 1.10 86 3.12E7 2.05 128 3.80E7 3.12
2 23 2.31E7 1.21 50 3.05E7 2.54 80 3.62E7 3.49
3 24 2.29E7 1.48 40 3.03E7 2.46 31 3.53E7 3.67
4 22 2.29E7 1.53 32 3.03E7 3.35 29 3.52E7 3.21
5 24 2.29E7 1.85 32 3.03E7 4.88 29 3.52E7 4.51
6 22 2.29E7 2.08 23 3.03E7 5.73 29 3.52E7 5.71

#3

1 35 8.60E7 5.64 82 1.14E8 11.32 139 1.38E8 19.35
2 18 8.57E7 5.87 36 1.11E8 10.32 65 1.29E8 16.43
3 18 8.56E7 6.18 44 1.07E8 10.65 32 1.25E8 14.47
4 18 8.56E7 6.79 31 1.07E8 9.31 32 1.24E8 11.28
5 18 8.56E7 6.77 31 1.07E8 9.78 32 1.24E8 12.02
6 18 8.56E7 7.25 31 1.07E8 10.17 32 1.24E8 12.56

#5

1 49 3.54E8 27.32 71 4.72E8 42.35 198 5.63E8 79.56
2 31 3.54E8 31.47 53 4.60E8 50.61 70 5.34E8 71.35
3 28 3.53E8 32.06 43 4.59E8 49.35 54 5.24E8 60.21
4 21 3.53E8 33.37 36 4.59E8 48.35 52 5.22E8 52.13
5 21 3.53E8 34.25 36 4.59E8 50.22 52 5.22E8 66.32
6 21 3.53E8 38.24 36 4.59E8 51.78 52 5.22E8 75.21

#7

1 57 1.38E9 121.32 120 1.82E9 237.21 189 2.21E9 369.75
2 31 1.38E9 117.24 61 1.76E9 225.76 102 2.05E9 366.14
3 26 1.37E9 115.78 44 1.76E9 193.35 65 1.99E9 299.78
4 26 1.37E9 122.73 39 1.75E9 192.49 56 1.94E9 280.32
5 26 1.37E9 126.25 39 1.75E9 208.15 53 1.94E9 288.25
6 26 1.37E9 139.35 39 1.75E9 229.29 53 1.94E9 282.12

MMC J Iter Energy CPU(s) Iter Energy CPU(s) Iter Energy CPU(s)

#1

1 33 2.31E7 0.85 72 3.12E7 1.72 112 3.79E7 2.77
2 21 2.31E7 0.69 41 3.05E7 1.22 37 3.63E7 1.21
3 23 2.31E7 0.83 33 3.03E7 1.15 46 3.56E7 1.54
4 21 2.31E7 0.88 33 3.03E7 1.21 34 3.54E7 1.20
5 21 2.31E7 0.83 29 3.03E7 1.31 33 3.54E7 1.28
6 20 2.31E7 0.82 23 3.03E7 1.95 33 3.54E7 1.55

#3

1 39 8.59E7 4.96 80 1.14E8 9.65 134 1.39E8 15.84
2 28 8.58E7 4.07 36 1.11E8 5.13 54 1.31E8 7.54
3 27 8.58E7 4.25 42 1.07E8 6.41 46 1.26E8 6.99
4 27 8.58E7 4.27 37 1.07E8 5.97 34 1.24E8 5.75
5 27 8.58E7 4.73 33 1.07E8 5.68 38 1.24E8 6.56
6 26 8.58E7 4.56 30 1.07E8 5.93 32 1.24E8 6.73

#5

1 51 3.54E8 23.32 99 4.71E8 44.23 161 5.64E8 74.36
2 33 3.54E8 20.67 49 4.60E8 29.95 66 5.37E8 42.74
3 31 3.53E8 23.07 46 4.59E8 31.26 47 5.26E8 34.33
4 30 3.53E8 22.07 40 4.59E8 28.98 48 5.23E8 34.28
5 28 3.53E8 25.88 42 4.59E8 31.20 43 5.23E8 37.25
6 29 3.53E8 30.15 39 4.59E8 36.59 44 5.23E8 42.67

#7

1 57 1.38E9 121.96 120 1.82E9 237.88 189 2.21E9 369.02
2 36 1.38E9 100.06 56 1.76E9 124.64 84 2.05E9 183.47
3 34 1.38E9 86.18 44 1.75E9 110.30 62 1.99E9 150.35
4 34 1.36E9 81.35 43 1.74E9 105.42 43 1.95E9 114.78
5 37 1.36E9 90.06 43 1.74E9 109.73 39 1.95E9 117.75
6 36 1.36E9 98.81 43 1.74E9 115.06 40 1.95E9 123.42
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of the following criteria are met: ‖ut+1 − ut‖2 < ε‖ut+1‖2, ‖pt+1 − pt‖2 <
ε‖pt+1‖2 with ε = 10−4.

We test the aforementioned methods on eight images of different scales as shown
in Figure 4. The initial value is given as u0 = 0 for all methods unless otherwise
specified.

The most important parameter in the multi-grid scheme is the maximum level.
Thus, we compare the performance of both MMC and MML on test images with
different values of maximum levels in Table 1, where the regularization parameter
α is chosen as α = 10, 15, 20, respectively. Based on the experiments, we have the
following observations

◦ Both MML and MMC converge to similar numerical energies for different
combinations of images and parameters, i.e., α and J , which means the piece-
wise constant functions can be substituted for the piecewise linear functions
to span the subspaces for the multi-grid scheme;

◦ By comparing the efficiency of MML and MMC, we find out that much CPU
time can be saved using piecewise constant basis functions no matter how
many layers of meshes are used;

◦ By comparing the results of MMC/MML with one grid and multi-grid, we ob-
serve that introducing the coarse layers can greatly reduce the outer iterations.
As the regularization parameter α increases, the computational costs increase
and the advantages of the multi-grid structure become more significant;

◦ Much CPU time can be saved by increasing the maximum level from J = 1
to J = 4, while CPU time increases as the number of layers keep increasing.
Therefore, we set the maximum level as J = 4 for both MML and MMC in
the following experiments.

Next, we compare the performance of our MMC with other methods on noisy
images, where the Gaussian white noises of mean 0 and variance σ = 20 are used
to degrade the test images. Table 2 provides the PSNR, SSIM, CPU time, and
numerical energies obtained by MMC, MML, Algorithm 1 and Algorithm 2. As can
be seen, all methods converge to results with similar PSNR and numerical energies,
while much CPU time is saved by our MMC method. Especially, the advantage
of our multi-grid algorithm becomes more prominent for larger α, which is nearly
twice faster than MML and dual Algorithm 1. Indeed, our MMC is also faster than
the primal-dual Algorithm 2, which is recognized as a fast and effective algorithm
for solving the Rudin-Osher-Fatemi model.

Finally, we evaluate the performance of the proposed method on images with
different noise levels, i.e., white Gaussian noises of mean 0 and variance σ = 20,
30, 40, the results of which are provided in Table 3. Our MMC algorithm is robust
to noise levels and regularization parameters, which gives similar PSNR values and
numerical energies, but is much faster than MML. Moreover, the MMC performs
consistently better than the dual and primal-dual algorithms for different noise
levels. We display the denoised results and residual results of image ‘Baboon’ (#6)
with noise level σ = 20 and image ‘Building’ (#8) with noise level σ = 40 in Figure
5, where similar restoration results are obtained by different methods. Besides, we
record the decays of the relative errors and numerical energies of image ‘Baboon’
of noise level σ = 20, and image ‘Building’ of noise level σ = 40 in Figure 6, which
clearly show that both MM methods converge to similar numerical energies.



Multi-grid method for TV minimization 15

(a) MMC (b) MML (c) Dual (d) P-D

Figure 5. Denoised results and the residual images obtained by
different methods on image ‘Baboon’ (#6) of the noise level σ = 20
and α = 15, and image ‘Building’ (#8) of noise level σ = 40 and
α = 35.

5.2. Image deblurring. We also test the performance of our MMC method on
the deblurring problems, where K represents the blur kernels. Both the Gaussian
blur of size 5× 5 with standard deviation σ = 5 and motion blur of 20 pixels with
an angle of π/4 are used to degrade images. We compare our MMC with the best
performer of the comparison methods (PD method) on two test images ‘Boat’ and
‘Lena’ of size 512× 512. The implementation details are presented as follows

1) MMC method: We set Nc = Nw = 100, εinner = 10−2, εouter = 10−4, and the
stopping criteria of the fixed point scheme is the maximum iteration number
to be 10 and ‖c` − c`−1‖∞ < 10−2. The conjugate gradient is terminated as
maximum iteration of 10 and the tolerance of 10−5. Besides, β = 10−6 is used
for all experiments. The regularization parameter α is chosen as α = 5×10−3

for both test images.
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Table 2. The denoising results by MMC and MML methods for
Rudin-Osher-Fatemi model with α = 10, 15, 20 for noise level
σ = 20.
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=
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=
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=
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2) Primal-dual method: The step size is given as τ = 1/(2LF ) and σ = LF /L
2 for

the primal and dual variable, respectively, where LF is the Lipschitz constant
of F (u) = ‖Ku − f‖22 and L2 = ‖∇‖2. The iteration process is terminated
when both ‖ut+1 − ut‖2 < ε‖ut+1‖2 and ‖pt+1 − pt‖2 < ε‖pt+1‖2 with ε =
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Figure 6. The decay of relative error and numerical energy for
Baboon image (#6) of noise level σ = 20 with α = 15 and Building
image (#8) of noise level σ = 40 with α = 35. From left to right on
the first row is the relative error and numerical energy of Baboon
image (#6) while on the second row are relative error and numerical
energy of Building image (#8).

10−4. The regularization parameter α is set to the same value as the MMC
method.

Table 4 displays the PSNR, SSIM, CPU time, and numerical energies of the two
methods. As illustrated, our MMC produces similar PSNR and SSIM values but
saves much CPU time compared to the PD method. Besides, we also exhibit re-
constructed images degraded by the motion blur in Figure 7, where similar visual
results are obtained by the MMC and PD methods.

5.3. CT reconstruction. This subsection is devoted to the simulation of CT im-
age reconstruction, where K in (24) denotes the forward system matrix. Two
phantom images ‘Shepp-Logan’ and ‘Forbild-gen’ of size 256 × 256 and 512 × 512,
are used to evaluate the performance. We use the parallel-beam geometry for both
images in the experiments and set the projection numbers as Np = 18, 36 and 72,
respectively.
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Table 3. The denoising results for Rudin-Osher-Fatemi model
with different noise levels σ = 20, 30, 40.
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The implementation details for comparison are described as follows

1) MMC method: We set Nc = Nw = 100, εinner = 10−2, εouter = 10−4, and
the stopping criteria of the fixed point scheme is maximum iteration number
of 10 and ‖c` − c`−1‖∞ < 10−2. The conjugate gradient is terminated with
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Table 4. PSNR, SSIM values and CPUs for deblurring with dif-
ferent kernel.

Image
Gaussian Blur Motion Blur

CPU PSNR SSIM Energy CPU PSNR SSIM Energy
MMC

Lena
8.63 34.85 0.9207 1.4840 14.34 35.41 0.9401 1.5673

PD 16.22 34.82 0.9234 1.4713 19.41 35.36 0.9382 1.5610
MMC

Boat
16.69 33.83 0.9204 1.9612 18.98 33.43 0.9178 1.9549

PD 21.22 33.86 0.9222 1.9623 29.41 33.26 0.9166 1.9568

(a) Clean image (b) Blurry image (c) MMC (d) PD

Figure 7. Image deburring results obtained by our MMC and PD
method on ‘Boat’ and ‘Lena’ with motion blur.

maximum iteration 10 and error tolerance 10−5. Besides, β = 10−6 is fixed for
all experiments. The regularization parameter α is chosen as α = 3.5× 10−5

for projection number Np = 18 and α = 2× 10−5 for Np = 36 and 72.
2) Primal-dual method: The step size is given as τ = 1/(4LF ) and σ = LF /L

2

for the primal and dual variable [8], where LF is the Lipschitz constant of the
fidelity term F (u) = ‖Ku− f‖22 and L2 = ‖∇‖2. The iteration is terminated
when both of the following criteria are met: ‖ut+1 − ut‖2 < ε‖ut+1‖2 and
‖pt+1 − pt‖2 < ε‖pt+1‖2 with ε = 10−4. The regularization parameter α is
set the same as our MMC algorithm.

Figure 8 displays both the reconstructed images and residual images from the sino-
gram observation with Np = 36 and 72 of the ‘Forbild-gen’ phantom. As shown,
both methods present similar visual results for both sparse reconstruction prob-
lems. The comparisons results of PSNR, SSIM, CPU time and numerical energies
are recorded in Table 5, where a noticeable advantage of our MMC method can be
observed such that much CPU time has been saved for both test images.

5.4. MRI reconstruction. We also test the performance of our MMC method
on the under-sampled MRI reconstruction problems, where K = PF is a compos-
ite operator of the selection operator P and Fourier transform F . We use brain
phantom of size 256 × 256 as the test image and apply both radial and random
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Table 5. PSNR values and CPUs for CT reconstruction with dif-
ferent projection numbers of MMC and PD method.

Image
Np 18 36 72
Size CPU(s) PSNR SSIM Energy CPU(s) PSNR SSIM Energy CPU(s) PSNR SSIM Energy

MMC
Shepp 256

15.64 39.28 0.9908 0.0508 20.01 50.19 0.9995 0.0292 33.21 58.30 0.9998 0.0292
PD 27.59 39.16 0.9901 0.0508 59.33 50.37 0.9995 0.0292 112.04 58.21 0.9998 0.0292
MMC

Fobild 256
21.33 27.96 0.9508 0.0595 24.15 37.66 0.9838 0.0421 40.21 45.06 0.9918 0.0423

PD 25.02 27.92 0.9500 0.0600 71.21 37.17 0.9828 0.0421 140.10 45.16 0.9917 0.0425
MMC

Shepp 512
96.62 35.79 0.9881 0.0991 103.54 43.22 0.9911 0.0587 129.91 50.60 0.9995 0.0585

PD 176.86 35.72 0.9879 0.0991 204.57 43.21 0.9911 0.0585 370.14 50.51 0.9995 0.0585
MMC

Fobild 512
130.01 31.29 0.9726 0.1501 153.52 37.90 0.9899 0.1557 179.58 48.88 0.9925 0.0861

PD 187.02 31.23 0.9726 0.1501 248.01 37.86 0.9896 0.1557 457.51 48.83 0.9925 0.0861

(a) Np = 36, MMC (b) Np = 36, PD (c) Np = 72, MMC (d) Np = 72, PD

Figure 8. Both CT reconstruction results (Row one) and residual
images (Row two) obtained by MMC and PD method for ‘Forbil-
gen’ phantom with Np = 36 and 72.

sampling patterns to generate the under-sampled data. The numbers of sampling
lines are set as Ns = 30 and 50, which are of sampling rate 12.65% and 20.06%,
respectively. Similarly, we compare the performance of our MMC with PD method,
the implementation details of which are presented as follows

1) MMC method: We set Nc = Nw = 100, εinner = 10−2, εouter = 10−4, and the
stopping criteria of the fixed point scheme is the maximum iteration number
to be 10 and ‖c` − c`−1‖∞ < 10−2. The conjugate gradient is terminated as
maximum iteration of 10 and the tolerance of 10−5. Besides, β = 10−6 is
used for all experiments. The regularization parameter α is 5× 10−3 for both
projection numbers Ns = 30 and 50.

2) Primal-dual method: The step size is given as τ = 1/(2LF ) and σ = LF /L
2 for

the primal and dual variable, respectively, where LF is the Lipschitz constant
of F (u) = ‖PFu−f‖22 and L = ‖∇‖. The iteration process is terminated when
both ‖ut+1 − ut‖2 < ε‖ut+1‖2 and ‖pt+1 − pt‖2 < ε‖pt+1‖2 with ε = 10−4.
The regularization parameter α is set to the same value as our MMC method.
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Table 6 displays the PSNR, SSIM, CPU time, and numerical energies of the two
methods. As illustrated, both MMC and PD algorithm converge to similar energy
values. More importantly, we can find that much computational cost is saved by our
MMC method due to the multi-grid structure and parallel computation. Besides,
we also exhibit reconstructed images and residual images in Figure 9, where less
structural information is presented in the residual images obtained by our MMC
method.

Table 6. PSNR values and CPUs for MRI reconstruction with
different numbers of sampling lines for the MMC and PD method.

Ns 30 50
Pattern CPU PSNR SSIM Energy CPU PSNR SSIM Energy

MMC
Radial

4.78 32.15 0.9711 1.8840 10.19 38.41 0.9847 1.1673
PD 13.22 32.08 0.9701 1.8840 19.41 38.36 0.9837 1.1675

MMC
Random

5.84 27.03 0.9500 2.0915 11.98 35.73 0.9812 2.0070
PD 15.34 27.01 0.9504 2.0913 25.65 35.72 0.9812 2.0070

(a) Ns = 30, MMC (b) Ns = 30, PD (c) Ns = 50, MMC (d) Ns = 50, PD

Figure 9. MRI reconstruction results (Row one) and residual im-
ages (Row two) obtained by our MMC and PD method on the brain
image with radial sampling patterns and sampling lines Ns = 30
and 50.

6. Conclusion. We proposed a fast and efficient multi-grid method for TV min-
imization problems, which is built up with the piecewise constant basis functions
over the multi-grid structure. In the new formulation, the computation of the
TV regularization occurs on the boundaries of small-scale minimization problems,
which means the computational complexity can be greatly reduced. Furthermore,
we implemented the non-overlapping domain decomposition method on each layer
to increase the parallelism. Numerical results on image restoration and medical
image reconstruction demonstrate that the proposed multi-grid method is of high
efficiency and wide-ranging application potential.
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