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Summary. We propose a projection-based cross-validation method for estimating a low-
dimensional parameter in the presence of a high-dimensional nuisance parameter in the Cox
regression model. We show that the proposed estimator is asymptotically normal, which
enables us to conduct hypothesis test for the parameter of interest with high-dimensional
nuisance parameters. Three decision rules are presented to avoid the influence of random
splitting of samples. Simulation studies indicate that our method is more powerful than
that of Fang et al. (2017, JRSSB) when the coefficients of predictors are high-dimensional
and not very sparse. As an illustrative example, we apply our procedure to a breast cancer

study.
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1 Introduction

Statistical analysis of censored survival data with high-dimensional covariates is of great prac-
tical importance. For example, in cancer genetic studies, an important problem is to identify
genetic elements that are potentially related to patient’s survival from high-throughput and
high-dimensional genomic data. A critical issue is how to estimate their effects on the survival
and make statistical inference about their significance. This problem can be formulated as
that of estimating treatment effects in the presence of a large number of nuisance parameters.

Here we interpret a treatment effect parameter broadly as any low-dimensional parameter
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in the model. Therefore, it is interesting to propose an approach to statistical inference in
high-dimensional Cox regression (Cox, 1972) because of its central role in the analysis of
censored survival data and its wide applications (Fleming and Harrington,1991; Kalbfleisch
and Prentice, 2002).

Several penalty-based variable selection approaches, including the lasso (Tibshirani, 1996)
and the smoothly clipped absolute deviation (SCAD; Fan and Li, 2001) methods, have been
adapted to survival models. For example, Tibshirani (1997) and Fan and Li (2002) applied
the lasso and SCAD methods to the partial likelihood for the Cox model. Zhang and Lu
(2007) and Zou (2008) considered the weighted lasso for low-dimensional Cox model. Huang
et al. (2013) and Kong and Nan (2014) derived error bounds for the lasso in sparse and
high-dimensional Cox model.

However, penalized procedures only yield point estimates but do not provide inferential
statements such as confidence interval and hypothesis testing about a parameter of interest.
To deal with this problem, Zhang and Zhang (2014) proposed a regularized projection ap-
proach for constructing asymptotically normal estimators of low-dimensional parameters in
high-dimensional linear models. van de Geer et al. (2014) extended the approach of Zhang
and Zhang (2014) and proposed a novel method by “inverting” the Karush-Kuhn-Tucker
conditions for the lasso to construct estimators of low-dimensional parameters in linear and
generalized linear models. Javanmard and Montanari (2014) constructed confidence intervals
and p-values for high-dimensional linear models based on a “de-biased” version of regularized
M-estimators. Wasserman and Roeder (2009) and Meinshausen et al. (2009) constructed
p-values for high-dimensional regression via sample-splitting based methods. However, these
authors did not consider the statistical inference problem in the high-dimensional Cox model.
In the context of survival analysis, Zhong et al. (2015) considered hypothesis testing for low-
dimensional coefficients in the high-dimensional additive hazards model, but it is unclear
how to extend their method to the Cox model. Another closely related work is Fang et al.
(2017), who have proposed a method for hypothesis test and confidence interval construction
for the high-dimensional Cox model based on projection of score functions. However, their
method is conservative and suffers from inefficiency when the coefficients of predictors are

high-dimensional and not very sparse (See page 24 of online supplementary materials of Fang



et al., 2017).

In this paper, we propose a projection-based cross-validation approach to inference about
a low-dimensional parameter of interest in the Cox model in the presence of a high-dimensional
nuisance parameter. There are three important aspects of our proposed approach that are
different from the above-mentioned methods. First, we use a weighted lasso estimator as the
initial estimator. With this estimator, we only penalize the nuisance parameters, but not
the parameter of interest. This is different from the methods of Zhang and Zhang (2014)
and Fang et al. (2017) in which they used a fully penalized estimator as an initial estimator.
Second, our method only needs to calculate the least favorable direction related to the scores
of the selected nuisance parameters rather than the whole set of the nuisance parameters as
in Fang et al. (2017). Third, our two-stage projection-based cross-validation technique is
different from the sample splitting method in Meinshausen et al. (2009). Roughly speaking,
we randomly split the sample into two halves, and obtain a weighted lasso estimator using
the first half of the sample. Then we fit the Cox model using the variables selected based on
the first half of the sample and use the second half of the data to estimate the parameter of
interest; and vice versa. The proposed estimator is then the average of these two estimators.
To avoid the influence of random splitting of samples, we further provide three decision rules
for the hypothesis test of interest.

The remainder of this article is organized as follows. In Section 2 we describe the Cox
model and propose a projection-based cross-validation estimator. In Section 3 we first state
an oracle inequality for the weighted lasso in the high-dimensional Cox model. We then
establish the asymptotic normality of the proposed estimator, which provides a theoretical
basis for making statistical inference. In Section 4 we conduct simulation studies and demon-
strate the proposed method on a breast cancer gene expression dataset. In Section 5 we give

concluding remarks. All proofs are deferred to the Appendix.



2 Model and method

2.1 Model

Consider an n-dimensional counting process N (t) = (Ny(t),---, N,(t)), t > 0 on a time
interval [0, 7] with 7 > 0, where N;(¢) counts the number of observed events for the ith
individual in the time interval [0,¢], i = 1,--- ,n. Let F; be the filtration representing all
the information available up to time ¢ > 0. Following Andersen and Gill (1982), we assume

that for {F;,t > 0}, N has a predictable compensator A™ = (A;,---  A,) with
dA;(t) = Y;(t) exp{STXi(t) + n" Z;(t) }dAo(t),1 = 1,...,n, (2.1)

where 3 € R? is a parameter vector of interest, n € R? is a vector of nuisance parameters,
Ao(t) = fot Ao(s)ds is an unknown baseline cumulative hazard function, and Y;(t) € {0,1} is
predictable. We assume the dimension d of the parameter vector of interest (3 is fixed and
small, but the dimension ¢ of the nuisance parameter 7 can be large or even larger than the
sample size.

Denote V;(t) = (X;(t), Z:(t)")" and let 0y = (B, n3)" € RP be the true values of the
regression coefficients, where p is possibly much bigger than n. Define Sy = {j : 6,0 # 0}
with its complement denoted by S§ = {j : ;0 = 0}. Let dy = |Sp| be the cardinality of S,
with dy < n.

To estimate the parameter # in the fixed-dimensional settings with p < n, Cox (1975)
proposed the partial likelihood method. The negative log-partial likelihood function for (2.1)

(€= [ | o [Soviesorvioy]avo -3 | T{eTvxt)}dNi(t)] SNCE)

where N = > i N;. The maximum partial likelihood estimator can be obtained by min-
imizing ¢(f). However, in high-dimensional settings with p > n, the maximum partial
likelihood estimator is not well defined. Thus statistical inference cannot be based on the
partial likelihood directly.
For any given set I C {1,--- ,n} and S C {1,--- ,p}, define
Bi(t,0:1,5) — ﬁzmgk(tm(w exp{0iVis(t)}, for k=0,1,2 (2.3)
iel
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. B (6,0, 1,8) [ ®(t,0:1,5)%
2(:1,5) = m;/[ (t.0:1,5) {@0(75,6;1,5)} ANi(1).
and
(0;1,5) = ‘}, [/ log[ZY ) exp{fsVis(t )}}dNtf Z/{Gs is( }dN(>] ,(2.4)

T: ag denotes the subvector of a

where for any vector a, a®® = 1, a®! = a and ¢®? = aa
with components whose indices are in S; |I| denotes the cardinality of set I, and N (¢;1) =
> icr Ni(t). Hereafter, for notational simplicity, we assume that |I| = n/2 if n is even and

|I| = (n+1)/2 if n is odd. We partition the matrix (6; 1, S) into

Y11(60;1,8) X12(60;1,8
2(6;1,5) = i ) ) : (2.5)

221(9;1, S) 222<0;], S)
where X1,(0;1,5) € R¥™4 ¥5,(0;1,5) € RUSIEDXd and ¥55(0;1,5) € RUSI=DxUSI=d) - Lot
Sp(0;1,S) = S11(0;1,S) — S12(0; 1, 9)%5, (051, 5)291(6; 1, S), we denote the population

versions of the quantities in (2.3) as

O(t,0;S) = EVS* ()Y (t) exp{0§Vs(t)}], for k=0,1,2;
e | $o(t,0; S) o1 (t,0;9) %
=(6:5) = E{/o [%(ta@; S) - {¢O(t,9; S)} ] dN(t)}'

We partition the matrix ¥£*(6; S) according to (2.5) as

35.(0;8) ¥1,(0; 8
S (6: ) = 11 ( ) Ta( ) ’ (2.6)
231(93 S) 232(& S)

and let 3, (0;.9) = 5, (0; S) — B, (0 8)5, " (0; S)%5,(6; 5).-

2.2 Projection-based cross-validation method.

In this section, we describe the proposed two-stage projection-based cross-validation ap-
proach to statistical inference for the high-dimensional Cox model. Our basic idea is to split
the data randomly into two halves I; and I, and perform model selection using the first
half of the data I;. Then we fit the Cox model on the basis of the variables selected in the

first stage, and calculate a projection-based estimator Bl using the second half of the data
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Is. We then switch the roles of I; and I, and use the same procedure to obtain an estimator
Bg. Below we describe the proposed method in details.
Stage 1. We split the data randomly into two halves Iy and I5. Using the first half of

the data I, we obtain a weighted lasso estimator, which is defined as

v

0= (5,1 :argmin{ (0; 1,5, +/\ij|7]] } (2.7)

B

where ((6; 1,,S,) is defined in (2.4), S, = {1,---,p}; A > 0 is a tuning parameter, and
w; > 0 are weights for the nuisance parameters n;, j = 1,--- ,¢. Let S; = {j : 5j # 0} be
the index set of the nonzero estimated coefficients. Our goal is to make statistical inference
about (3, we only penalize n while [ is not penalized. Thus, the estimator 0 can be referred
as a “semi-penalized” estimator.

Stage 2. Consider a sub-model based on the variables selected in the first stage (S1),
using the second half of the data Is,

AAL() = Yi(t) exp{0, Vis, () }dAo(t), i € I, (2.8)

where Y;(t) and Ag(t) are given in (2.1). The negative log-partial likelihood function based
n (2.8) is

(0:181) = 17 [/ log | > Vilt) exp{0, Vis, (1)} dN (1 1) Z/ {65, Visy }dN()]( 9)

i€la i€ly
where N(t; 1) = >, Ni(t). Let M;(t) fo exp{& Vis, (u)}dAo(u) be the
martingales with predictable variation processes (M,J, M;)( fo u) exp{03 Vis, (u) }dAo(u),

and (M;, M;) = 0 for i # j. The gradient of ¢(0; Iy, S1) is

0. _86(9,]2,51 .
U0: 1o, 1) = — 2= = ’]2’;]/{1451 V(t,0; I, S))}dNi(t),

and the Hessian matrix of ¢(0; I, S1) is

00n. . (1)2 t 0 ]Q,Sl) ¢1<t,9;12781) ©2 NI
6(0712751) - (6 -[2751 |I2| / [q)() t 0 ]2’31) {@0(2‘5,0, .[2,81) dN(t7 -[2)7

where V(t,0;15,5)) = ®.(t,0;15,51)/Po(t,0;I5,51), and ®y(t,0;1,9) is defined in (2.3),
k=0 and 1. For notational simplicity, we partition the gradient £(6; I, Sy) into £(6; I, Sy) =
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(05(0; 1, 51),0,(8; I, 51)™)", where (5(0;15,5;) € R? is the score function for the low-
dimensional parameter of interest 3, and én(H; I,,S;) € RI%1I=4 ig the score function of the
nuisance parameters.

To remove the effects of the nuisance parameters, we project Zg(&; I, S1) onto the linear

span of the partial score function én(e ; I, S1) and consider the projected partial score function

for 3,
U(Q(), ho, ]2, Sl) = 65(90, ]2, Sl) - hg£n<90, ]2, Sl), (210)
where hy = arg ming, E{(3(00; I, S1) — h3l,(00; I, S1)}®2 with an explicit expression

ho = E{{,(00; I, Sl)é;(em Iy, $1)} " E{L,(00; I, S1){5(00; 12, S1) }
= 3551 (60; 51)%5, (60 S1). (2.11)

To better understand (2.10), we focus on the geometric interpretation for U(6y, ho; 2, S1)-
The linear space H spanned by the score function é(&; I3, S1) is the closure of {agéﬁ(e; I, S1)+
bgfn(ﬁ; I,,8)) : ap € RY, by € RIS1=4} Ag indicated by the notation, ag and by can depend on
0. By Small and McLeish (1994), the space H is a Hilbert space with an inner product given
by (91(0; I5,51), 92(0; I, S1)) = E{q1(0; I5, S1)g2(0; I5,51)} for any g1 € H and g, € H. We
further consider the linear space H  spanned by the nuisance score functions {bgén(é :15,51)}
with by € RI*1I=¢ and its orthogonal complement Hx = {g € H, (g, f) = 0,Vf € Hy}. Since
25(90;12,51) € H, and Hy is a closed space, the projection of éﬁ(&o;IQ,Sl) to Hy is well
defined and identical to U(0y, ho; I2, S1).

In what follows, we need an initial consistent estimator 6 for estimating hy. First, we

obtain a weighted lasso estimator

p
6 = argmgin {6(6,[2, Sp) + )\Zl'ij]‘} , (212)
]:

where S, = {1,--- ,p}, and £(6; I, S) is defined in (2.9); A > 0 is the penalty parameter, and
w; is a weight. In view of (2.11), we can estimate hy by its sample version and plug-in the

weighted lasso estimator 6 for 6. The resulting estimator has an explicit expression:

h = %5, (0; I, $1)01(0; I, S1), (2.13)



where ¥ and @ are defined in (2.5) and (2.12), respectively. We construct an estimated

projected partial score function

U(Byﬁ, ;l; I, Sl) = éﬁ(ﬁ;ﬁ; I, 51) - BTén(ﬁﬂﬁ I, 51)>

where 77 and £ are defined in (2.12) and (2.13), respectively. Note that U(S3, 7, hi Iy, S1) can
be regarded as an approximately unbiased estimating function for 5. We define an estimator
Bl as the solution to U(p, 7, hi I, S1) = 0, which can be solved by the Newton-Raphson
algorithm. In practice, we use the weighted lasso estimator 3 in (2.12) as the initial value
to start the algorithm.

Similarly, we first select variables using the second half of the data I, and denote the
active set as Sy = {j : éj # 0}. We then consider the sub-model based on the variables

whose indices are in Ss,
dA;i(t) = Yi(t) exp{0s, Vis, (t) }dAo(t), @€ 1. (2.14)

Based on (2.14), we obtain a projected partial score estimator Bg parallel to the estimation

procedure for Bl. The two-stage projection-based cross-validation (TPCV) estimator of [ is

defined as

~ ~

B+ B
5

g = (2.15)

We use a diagram to illustrate the above two-stage estimation procedure in Figure 1.
There are three attractive features of our method. First, it has effectively handled the
uncertainty due to variable selection via cross-validation, because we use one half of data
to do model selection, and fit the selected variables using another half of the data. In
addition, the martingale theory is still applicable in deriving the theoretical properties, since
the selection of active variables in Stage 1 is independent of the samples used in Stage 2.
Second, the TPCV estimator 3 makes use of all the information in the data by using cross
validation twice. Third, the estimated projection vector h has an explicit expression and its
dimension is much smaller than p. Therefore, our method is easy to implement for practical

applications.



3 Theoretical results

3.1 Non-asymptotic oracle inequality

For the two-stage projection-based cross-validated estimation procedure, we adopt the weighted
lasso to select active variables. Similar to Fang et al. (2017), we need to prove that the
weighted lasso estimator 6 has the convergence rate |6 —6p||; = Op(Ady), which ensures esti-
mation consistency under some regularity conditions. In addition, the non-asymptotic oracle
inequality for the weighted lasso has its independent interest. For example, the convergence
rate for penalty-based estimator plays an important role in establishing distributional re-
sults for confidence interval and hypothesis testing in high-dimensional models (Zhang and
Zhang, 2014; Fang et al., 2017; Ning and Liu, 2017; Neykov et al., 2018). Huang et al.
(2013) and Kong and Nan (2014) considered oracle inequalities for the lasso in the high-
dimensional Cox model. Zhang et al. (2017) studied oracle inequalities for weighted lasso
estimator in the high-dimensional additive hazards model. Below, we present some general
convergence results for weighted lasso estimator in the high-dimensional Cox model (2.1),
which are suitable for the estimator given by (2.12) in Stage 2. Let w € RP be a (possibly
estimated) weight vector with nonnegative elements w;, 1 < j < p and W = diag{w}. For
any vector a € R? and matrix A € RP*?, we define |la; = "5 |ail, |lallco = maxi<;<p |ail,

and ||Al|cc = maxi<; j<p |a;j|. The weighted L; loss function is
Q(8) = £(0) + AW,
where A > 0 is a penalty parameter, and ¢(-) is defined in (2.2). The weighted lasso estimator
is given by
0= argmgn Q(0). (3.1)
Note that if the variables in S C {1,--- ,p} are of primary interest, it is not necessary to
penalize 05, which leads to “semi-penalized” estimators with w; = 0 for j € S and w; # 0

for j € S°. In what follows, it is sufficient to require min{wge} > 0. A vector 0 is a global

minimizer of (3.1) if and only if it satisfies the Karush-Kuhn-Tucker (KKT) conditions
(5(0) = —Awssgn(d;), if 6; # 0,

(3.2)



Theorem 1 Let 6 be the weighted lasso estimator defined in (3.1), and R = 6 — 6. Then

the following inequality holds:

(A = 20)[Wse Rse [l < D(8,60) + (A — 20)[[Wse Rse [l < (Allws oo + 20) [ Bs]l1,

where zy = max{|[£(00)sloe, W5 l(60)selloo}, and D(8,0) = (8 — )™ {£(G) — £(0)} is the
| < E||Rslly in the

Bregman divergence. Furthermore, for any € > ||ws||se, we have |[Wse Rge
event {zo < (£ — ||wsl|oo)/(§+ 1)A}, where Wse denotes the submatriz of W with components

mn S°€.

By Theorem 1, in the event {zy < (€ — ||ws|leo)/(§ + 1)A}, for any € > ||wgl|co, the

estimation error 6 — 6, belongs to the cone

G(é.,S) == {b € Rp . ||WSCbSc

1 < €|lbsll1}- (3.3)

To control estimation error of the weighted lasso in the Cox model, for the cone in (3.3)

and the Hessian matrix 5(90), we use a compatibility factor as Huang et al. (2013),

dy* {0 (60)0}'
0£bEG(E.5) s |I1 '

K(E,5) =

In fact, the x(&,S) is a direct extension of the compatibility factor in linear models (van
de Geer, 2007; van de Geer and Bithlmann, 2009; Huang and Zhang, 2012) by taking the
Hessian of the log-partial likelihood at the true 6.

We make the following assumptions:

(C.1) [y Ao(t)dt < oo.

(C.2) The covariates are uniformly bounded: sup max max [V;;(t)] = O(1), where Vj;(?) is
o<t<r 1<i<n 1<j<p

the jth component of V().

(C.3) The compatibility factor (¢, S) is strictly bounded away from zero.

Condition (C.1) has been similarly used by Andersen and Gill (1982) and Bradic et al.
(2011) in their analysis of the partial likelihood estimator in the Cox model. Condition (C.2)

was required by Huang et al. (2013) and Fang et al. (2017) in deriving the error bounds
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for the lasso in the Cox model, which is reasonable in most practical situations. Condition
(C.3) was provided by Huang et al. (2013) under some regular assumptions.

The following result provides an upper bound of the estimation error for the weighted
lasso estimator. For two positive sequences a,, and b, we write a,, < b, if ¢ < a,, /b, < ¢ for

some ¢, > 0.

Theorem 2 Assume that Conditions (C.1) — (C.8) hold, and A < \/{n~'log(p)}. Let
0 be the weighted lasso estimator defined in (3.1), K is some positive constant and p =
KMdo(1 + ||ws|leo) (€ + min{wge})?/[4 min{wge }x2(€,9) (€ + 1)] with p < 1/e. Then for
§ > |wsloo, in the event {20 < (§ — [Jwsllo)/(§ + 1A},

e®Ado(1 + ||ws]lo) (€ + min{wse})?

16— o[, < 4 min{wge }k2(£,5)(§ + 1) ’

(3.4)
where § < 1 is the smaller solution of fe™° = p.

By Huang et al. (2013) the term x(&,S) in (3.4) can be directly treated as a positive
constant. Moreover, since the oracle inequality in Theorem 2 holds only within the event
{z0 < (£ — ||ws||oo)/(€ + 1)A}, it is necessary to derive a probabilistic upper bound of z.
It follows from Lemma 3.3 of Huang et al. (2013) that P{z, > Kz} < 2pe """/, In order
to better interpret the upper bound of the estimation error in (3.4), the conclusion can be
simplified to the case that the convergence rate for the weighted lasso estimator is of order
Op(Ady), which is used to establish the asymptotic properties in Theorem 3. Moreover, for
the estimation error ||§ — 6o||; to be small with high probability, we need to ensure that
Ady — 0 as n — oo. This requires the condition p = exp{o(n/d3)}. For bounded dy, the
dimension p can be as high as e®™ which is in line with the lasso estimator of Huang et al.

(2013).

3.2 Asymptotic normality
Let

Sy = [211(0; I, 1) — $19(0; I, S1) 85, (0; I, 1) %01 (8; I, S1)] 7,

— -l

Bln(é; I, 51) (3.5)
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and

3, = (1100 1, S5) — S10(0; I, S2) X505 (0; 11, S2) 201 (8; 1, S5)] 2,
= E[}ﬁ,(é; I, Ss) (3.6)

where ¥;; is defined in (2.5) and 0 is the weighted lasso estimate in Stage 2. The following

theorem establishes the asymptotic normality of J3.

Theorem 3 Suppose that Conditions (C.1)—(C.3) hold, A < \/{n='log(p)} and n=/%dylog(p) =

o(1). Then as n — oo we have

VSTV2(3 = By) 25 N(0, 1),

where 1y is a d X d identity matriz, - (f]l + 22)/2 with 3y and 3, being defined in (3.5)
and (3.6), respectively.

The conditions A < /{n—1log(p)} and n~/2dylog(p) = o(1) are also required in Fang

et al. (2017) to ensure the asymptotic properties of their estimators. As an application,
Theorem 3 provides a theoretical basis for conducting hypothesis test for a one-dimensional

parameter By € R in the high-dimensional Cox model. Consider
Hy: 8y =0 versus Hy: 5y # 0, (3.7)

we use the Wald statistic T% = /nS~2(3 — ), which is asymptotically distributed as
N(0,1) under Hy. We reject Hy if the p-value P, < 0.05, where

P, =2 {1 ~ (ﬁi—l/zym) } , (3.8)

and ®(z) is the cumulative distribution function of N(0,1). To remove the potential influence
of random splitting of samples, we repeat our proposed TPCV procedure B times. Denote
the resulting p-values in (3.8) as qujl), e ,P&B). For the hypothesis test (3.7), we propose
the following three decision rules:

e TPCV': Reject Hy if B2 Y2 | PP < 0.05.

e TPCV2: Reject Hy if the median of P\, -+, P is smaller than 0.05.

12



e TPCV?3: Reject Hyif B3, I(PS’) < 0.05) > 0.5, where I(+) is an indicator function.
Of note, the TPCV! is coming from the mean of B p-values, and it may be affected by
potential outliers. The TPCV? is based on the median, so it has the property of robustness.
The TPCV? is from the idea of “majority voting”, and it also owns the robustness. The

performances of these decision rules will be evaluated via numerical simulation.

4 Numerical studies

In this section, we conduct simulation studies to evaluate the finite-sample performance of
the proposed method. We also illustrate the application of the proposed method on a breast

cancer gene expression dataset.

4.1 Simulation studies

We generate failure times (77,---,7,) from the Cox model with an exponential hazards
function exp(6;V;), where 6y = (Bo,n5)", and V; = (Vir,---, Vi)™, ¢ = 1,--- ,n. First, we
assume that the parameter of interest [y is one-dimensional and the nuisance parameter

vector 1 is chosen as follows:

o Case [ Mo = (]-’ 71707"' 7O)T7
——
10 times
e Case I o =(1,---,1,0,---,0)",
——
15 times
where the dimension p =500 and 1000, respectively. The covariates V;; = min(Z;;, 10?), and
Zi = (Zy,- -+, Zy) are generated from multivariate normal distribution with mean zero and

covariance matrix ¥z = (0.1577). The censoring times C; are generated from the uniform
distribution on [0, 5], which leads to about 40% censoring rate. The results presented below
are based on 200 replications with sample size n = 300.

We use the R package glmnet (Simon et al., 2011) to compute the weighted lasso esti-
mator. The tuning parameter \ is determined by 10-folds cross-validation. For comparison,
we consider the decorrelated score (DS) method in Eq. (3.8) of Fang et al. (2017). The DS

method was implemented with R codes at http://www.personal.psu.edu/zzf13/Code/CoxHDInference. R.
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As suggested by a reviewer, we also consider the two-stage projection-based (TP) method
using the whole sample, i.e., I; = I, = [ in Stages 1 and 2 of our method. In Tables 1 and
2, we report the estimated bias (Bias) given by the sample mean of the estimates minus the
true value, the sample mean of the estimated standard errors (ESE), the sample standard
error (SSE) of the estimates, and the empirical coverage probability of the 95% confidence
interval (CP). Tables 1 and 2 indicate that the proposed TPCV estimator is unbiased, and
its ESE is close to SSE. The DS method leads to a biased estimator, especially for larger
parameters (8 = 0.5). Moreover, the ESE and SSE do not agree well for TP method, which
uses the same dataset twice in Stages 1 and 2. Hence, the overall performance of TPCV is
better than those of the DS and TP methods.

Tables 3 and 4 present the sizes and powers on testing Hy : 8y = 0vs. Ha : By # 0
under Cases I and II, respectively. We consider the performances of our methods (TPCV?,
TPCV? and TPCV?), the DS and TP methods. Due to the computation burden, we set the
times of splitting as B = 50 (the conclusions are similar for a larger B). It can be seen from
the tables that TPCV? and TPCV? have outstanding advantages over TPCV?!. One possible
explanation is that TPCV! is based on the mean of p-values, which could be affected by
potential outliers. The TPCV! still performs slightly better than the DS method. In brief,
the proposed TPCV? and TPCV? methods are more powerful than the DS method when
the coefficients of predictors are high-dimensional and not very sparse. Moreover, the TP
method has an inflated type I error, which could leads to higher false positive rate than the
prespecified nominal level.

We conduct the second simulation to assess the performance of the proposed estimation
method for a two-dimensional vector Sy = (10, F20)’. The data are generated as in the first
simulation, except that 5, = (0.15,0.30)’. In Table 5, we report the Bias, ESE, SSE and
CP for the estimates of 819 and Sy, respectively. It can be seen that the proposed method

works well for estimating multiple parameters of interest.

4.2 Breast cancer gene expression data

Breast cancer is one of the most commonly diagnosed malignancy for women. Biomedical

studies indicate that genomic measurements may have independent predictive power for

14



breast cancer prognosis (van’'t Veer et al., 2002; Cheang et al., 2008). We apply the proposed
method to a publicly available breast cancer gene expression data set (van’t Veer et al.,
2002). The data set consists of 295 tumor samples of breast cancer patients with expression
measurements for 4919 genes. Among these patients, 79 died during the follow-up time and
the remaining 216 observations are censored. We define the event time as the time from
diagnosis to death. We first use the marginal Cox model to select top 500 genes, which are
used as the covariates V; = (Vjy, -+, Vi) in model (2.1) with p = 500.

We first take V;; as the covariate of interest, and the remaining covariates Vjq,--- , V}, are
regared as confounding variables. We apply the TPCV method to make inference on the first
parameter of interest in the Cox model. We repeat this process for the other covariates and
conduct inference about each coefficient using the proposed method. In Table 6, we report
the estimated coefficient (Est), the corresponding standard error (SE), the 95% confidence
interval (CI) on five genes with Bonferroni adjusted p-value P4 < 0.05. Among these genes,
the NM_001168 was shown to be biologically related to breast cancer (Goeman, 2010), which

supports the effectiveness of our proposed approach.

5 Concluding remarks

We have considered the problem of statistical inference about a low-dimensional parameter
of interest in the Cox model when the number of nuisance parameters is possibly greater
than the sample size. A two-stage projection-based cross-validated estimation approach
was proposed. Simulations and a gene-expression data example from a breast cancer study
were used to illustrate the proposed method. Of note, we actually do not know beforehand
which is the parameter of interest in many practical applications. For example, in the breast
cancer gene expression data example, we are interested in finding the genes that are related
to cancer in clinical research (van’t Veer et al., 2002). In this setting, we need to conduct
statistical inference about all the regression coefficients in the model. We can apply the
proposed method to each coefficient in turn. This approach was also adopted in the real
data analysis of Fang et al. (2017).

There are several questions that are of interest to be considered in the future. First, the
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weighted lasso estimator in our proposed method can be replaced with the SCAD or the
minimax concave penalty estimator (Zhang, 2010). This usually involves a high dimensional
nonconvex optimization problem and is more difficult to implement. The theoretical and
computational aspects of using a concave penalty deserve further study. Second, a theoretical
analysis of the test in (3.7) is desirable, such as its local asymptotic power behavior. Third,
the proposed method can be extended to other survival models, such as the additive hazards

model (Lin and Ying, 1994) and the accelerated failure time model (Huang et al., 2006).
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6 Appendix

Proof of Theorem 1. Because ((0) is a convex function, it follows that D(0, 6y) = R*™{{(6,+
R) —{£(6y))} > 0, and the first inequality holds. Note that R; = 6, for j € S¢. By the KKT

condition (3.2), we have

R™{{(60 + R) — £(6)}
= N Rili00+ R)+ > Ryly(00 + R) + R™(—(6))

JEeSe jeS
< ) 0;(— Mwgsen(6)) + > 1Ry Aw; + R (—Lse(00)) + RE(—L5(00))
jeSse jEeS

= —A|WseRse|l1 + A|WsRsli + (WseRse)™ ( = Welse(6)) + RE(—(s(6o))

< (20 = N)[WseRsell + (20 + Mfws|loo) [ Bs -
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Due to Rj = éj — 0p; = 0 when j € 5S¢ and 9~j = 0, the first inequality above shows that
@(90 +R) = —)\szgn(éj) only in the set SN {7y : éj # 0}. This completes the proof. [

Proof of Theorem 2. Let R = 6—6, # 0 and b = R/||R||;. It follows from the convexity
of £(Byo+xb) (as a function of x) and Theorem 1 that in the event {zy < (§—||ws]|«)/(E+1)A},

A A flwsll)
E+1

where z € [0, ||R|1] and b € G(£,S). For any nonnegative z satisfying (6.1), due to &, =

< A0 [wslo)

b {L(Bo + xb) — £(6p)} + £+1

||WSchc

1bs ]l (6.1)

maxo<s<, max; ; |[zb"V;(s) — xb"V;(s)| < Kz|b]; = Kz and Lemma 3.2 in Huang, et al.

(2013),
b {00y + xb) — 1(00)} > a2 exp(—04)b"(00)b > 2% exp(—Kx)b" (o). (6.2)
The (6.2) together with x(&,S) and (6.1) yields

ze KTR2(€,9)|bs|?/do < xe ETBTE(6y)b

g)‘(l + HwSHoo) /\(1 + ”wSHoo)
< bslli — ——————=||Wgebge
< ) 1bs]]1 £ [[Wsebse|lx
EA A [Jwslc) AL+ [lwsllos) :
< — c c
< i1 1bs 1 1 [[bse [l min{wsge }
A(L + [Jws||o0) (€ + min{wse}) Ibslls — Amin{wge}(1 + |[ws]|o)
E+1 St E+1
o ML+ [[wslloo) (€ + min{ws:})* Ibs|?
= Amin{wge }(€ + 1) St
For any nonnegative x satisfying (6.1), we have
: 2

4min{wge}r2(&, 5)(§ +1)

Notice that b™{¢(fy+ xzb) — £(6y)} is an increasing function of . All nonnegative x satisfying
(6.1) are a closed interval [0, 2*] for some x* > 0. By (6.3), we know that Kz* < J, where o

is the smallest solution of Je=® = p. Thus,

5 (1 + ) (€ + mingug )
K 4min{wge }k2(€,9)(€ + 1)

IR <a* <

This completes the proof. [
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Proof of Theorem 3. The proof consists of three steps.
Step 1. Based on the second half sample I, and the active variables in S;, we fit a

sub-model as
dA;(t) = Yi(t) exp{0§1%51 (1) }dAo(t), i€ I, (6.4)

where S is the selected active index set using the first half sample I;. The projected partial

score function for [ is

U (6o, ho; I, S1) = €5(00; I2, 1) — hal,(6; I, Sy)
e (]., —hg>T€<90, ]2, Sl),

where
5(00712751 |I | Z/ {‘/;51 t (9 ]Q,Sl)}dM( )
2 i€l
and M() fo u) exp{0s, Vis, (u) }dAo(u) are martingales with (M, M;)(t) =

[ Yi(u) exp{0%, z51( )}dAo(u), and (M;, M;) = 0 for i # j. The martingale theory is
apphcable to model (6.4), due to the selection of S} is independent of /5. By Lemma G.3 of
Fang et al. (2017), we can obtain

VI - VTS (00; S VY20 I, S1) -2 N(0, 1), (6.5)

where v is similarly given in Lemma G.3 of Fang et al. (2017). Note that |lz| = n/2,
U(Qo, ho, ]2, Sl) = VT£<90, ]2, Sl) and VTZ*(G(], Sl) Bln(@o, Sl) Then,

\/g {25,,(00: S1)} 2U (o; I, S1) — N(0, ). (6.6)

Step 2. 1t follows from the mean value theorem that

U(Bbﬁ, B? I, 51) = U(Bo; 7, il; I, 51) + Uﬁ(ﬂ_, 7, B; I, 51)(31 - 50)7

where 3 is on a line segment between Bl and (). Because U(Bl,ﬁ, hi I, S1) =0,

By — By = —Ug (B, 7, b I, S1)U (Bo, 71, s I, Sh) (6.7)
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Bln

J/ J/
~ —~~

R1 R2

= _22\771(90; S1)U(Bo, 1, ﬁ; I, S1) + U(Bo, 1, B; I, Sl)[z*_l(‘%; S1) — Ug_l(@ﬁa il; I, 51)]

To derive the asymptotic distribution of Bl, we start with decomposing U (S, 7, hi Iy, S1) as

U(Bo, i, h; Ia, St) = (B0, 77; Iz, S1) — By (Bo, 7; 12, S1)
= (5(00; I, S1) + (71 — 10) Loy (Bo. 7; 12, S1) — W™, (6o; 12, S1)
= Wy (Bo, 7 12, 51) (71— 110)
= (g(00; 12, S1) — hiy(00; In, S1) + (ho — 7)™, (Bp; I, Sy)

B
+£77 — UO)T{Zﬂn(Boa n; 15, S1) — émv(ﬁo; ; 1o, 51)71}1
By
= U(by; 12, S1) + Eq + Es, (6.8)

where 7 = 1o + u(1] — 1) and 7 = 19 + u' (7 — ng) for some u, v’ € [0,1]. By Lemmas 1 and 4
of Fang et al. (2017), together with ||77 — no||1 = O,(Ady), we get

7 lo . lo
||h — h0||1 - OP (do g/';p)) and ||€n(90’[2’51)||oo — OP ( g(p>> )

n

Hence E; = Op{n~'dylog(p)}. For the term Fs,

Ey = (77 - TIO)T{éBn(ﬁm n; 1o, 51) - énn(ﬁoa TZI; I, Sl)ho} + (ho - E>T€.7m(ﬁ07 7:]; I, 51)(77 - 7]02-

. (.

Ex Ea2

From the Lemma E.4 in Fang et al. (2017) and ||) — no||1 = O,(Adp), we know that

Ea1 = (77— 10) "y (Bo, 7 I, S1) — (71 — 10) Loy (Bo. 5 I, S1)ho = Op{n~"dylog(p)}. (6.9)

By the Cauchy-Schwarz inequality and (A.6) of Fang et al. (2017),

1 - _ ~ 1, T3 _ -
| Es| < §(ho — h) "y (Bo, 05 Iz, S1)(ho — h) + 5(77 —10) Ly (Bo, 75 12, S1)(7) — 1)

= Op{n~tdylog(p)}. (6.10)
It follows from (6.9) and (6.10) that Ey = Op{n~'dylog(p)}. From (6.8),

U(Bo, 7, h; I, S1) = U6, ho; Iz, S1) + Op{n~'dylog(p)}
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= U(0, ho; Iy, S1) + op(n/?), (6.11)
where the last equality holds by the assumption that n~'/2dylog(p) = o(1). Thus,
Ry =-Y5, 1(90, S)U (0o, hoy 12, S1) + op(n='/?).

By (6.7), (6.11) and Lemma 2 of Fang et al. (2017), together with the assumption n~'/2dy log(p) =
o(1), we can deduce that Ry = op(n~"/?). Note that

B — o= =X (005 51)U (B, ho; I, S1) + op(n™"7?). (6.12)

Then,

\/g S50 (00: S1)(Br — fo) = \f {5, (60: S1)} 72U (66; I, S1) + op(1).

Based on (6.6), together with the Slutsky’s theorem, we obtain

2 S0 (By - Bo) 2 N(0, 1), (6.13)

where 3 is defined in (3.5).
Step 3. Based on the first half sample I; and the active variables with the index set Sy,

we can fit a sub-model as
dA;(t) = Y;(t) exp{0§2\/i52 (1) }dAo(t), i€ 1.

Following similar arguments as in Steps 1 and 2, we have

By — o = =35 1(00; 92)U (00, ho; Ty, Sa) + op(n™/?), (6.14)
and
n o oa_ N
55282 = o) 5 N(0. 1), (6.15)

where 3 is defined in (3.6).
Note that the selections of S; and Sy are determined by two independent datasets in I

and I, respectively. Then, ZEM(GO;Sl) and X% (6p; So) are independent. From (2.10), we

Bln
know that U (6, ho; I1, S2) and U (6, ho; I3, S1) are formulated with two independent datasets
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in I; and I, respectively. Under mild conditions on the weights for the weighted Lasso to
have the oracle property, for example, taking the weights to be the inverse of the an initial
Lasso estimate (Zhang and Lu, 2007 and Huang and Zhang, 2012), we have P(S; = Sp) — 1
and P(Sy = Sy) — 1, where S; and Sy are given in Stage 1 of our method, and Sy =
{1,---,dyu{j:0;0#0,j=d+1,---,p}. The U(By, ho; 1, 52) and U(by, ho; Iz, 51) are two
asymptotically independent terms. Moreover, 7, 77(90; S1) is independent of U(6y, ho; 11, S2),
and X% (6o; S2) is independent of U(6, ho; I2, 51). In view of (6.12) and (6.14), By and f,
can be regarded as asymptotically independent. Thus, it follows from (2.15), (6.13) and

(6.15) that

VSTV (B — B) 2 N(0, L)

This completes the proof. [
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Figure 1. A scenario of two-stage projection-based cross-validation procedure.
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Table 1. Estimation results on the parameter of interest 3 with Case I.

=0 B =05
Methods Bias ESE SSE CPp Bias ESE SSE CPp
p=>500 TPCV —0.0047 0.0866 0.0885 0.940 0.0232  0.0909 0.0930 0.940
DS 0.0098  0.0749 0.0503 0.990 —0.1475 0.0753 0.0771 0.520
TP —0.0023 0.0799 0.0839 0.935 0.0201  0.0839 0.0862 0.950
p=1000 TPCV 0.0031  0.0873 0.0994 0.925 0.0183  0.0924 0.1032 0.905
DS 0.0169 0.0746 0.0482 0.990 —0.1727 0.0754 0.0736 0.360
TP 0.0010  0.0803 0.0902 0.915 0.0229  0.0849 0.0980 0.895

T TPCV denotes our proposed method; “DS” denotes the decorrelated score method in Fang et al. (2017); “TP” denotes the two-stage

projection-based method with the whole sample.
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Table 2. Estimation results on the parameter of interest 3 with Case II.

68=0 8=0.5
Methods Bias ESE SSE CP Bias ESE SSE Ccp

p = 500 TPCV 0.0028 0.0941 0.1035 0.945 0.0147 0.0989 0.0974 0.955

DS 0.0134 0.0757 0.0492 0.990 —0.1898 0.0771 0.0719 0.335
TP 0.0067 0.0835 0.0910 0.950 0.0189  0.0883 0.0947 0.945
p=1000 TPCV 0.0065 0.0966 0.1059 0.905 0.0164 0.1009 0.1075 0.935
DS 0.0135 0.0756 0.0414 1 —0.2057 0.0767 0.0678 0.200
TP 0.0078 0.0842 0.0907 0.920 0.0303  0.0890 0.0988 0.935

T TPCV denotes our proposed method; “DS” denotes the decorrelated score method in Fang et al. (2017); “TP” denotes the two-stage

projection-based method with the whole sample.
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Table 3. Size/Power results with significance level a = 0.05 (Case I)T.

p =500 p = 1000

B TPCV! TPCV? TPCV? DS TP TPCV! TPCV? TPCV? DS TP
0 0.005 0.035 0.035 0  0.070 0.030  0.050  0.050 0.035 0.085
0.1 0.125 0.140  0.140 0.095 0.215 0.130  0.165 0.165  0.065 0.240
0.2 0.565 0.610  0.610 0.320 0.670 0.595 0.670  0.670  0.345 0.725
0.3 0.910  0.945 0.945  0.760 0.955 0.935 0.945 0.940  0.720 0.965
0.4 0.990  0.995 0.995  0.970 0.995 0.990  0.995 0.995 0945 1
0.5 1 1 1 1 1 1 1 1 1 1

T TPCVX denotes our proposed method, for k = 1,2,3; “DS” denotes the decorrelated score method in Fang et al. (2017); “TP” denotes the

two-stage projection-based method with the whole sample.
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Table 4. Size/Power results with significance level a = 0.05 (Case II)T.

p =500 p = 1000

B TPCV! TPCV? TPCV? DS TP TPCV! TPCV? TPCV? DS TP
0 0.025 0.040  0.035  0.020 0.060 0.025 0.055 0.055  0.015 0.085
0.1 0.115 0.215 0.215  0.075 0.305 0.115 0.190  0.190  0.060 0.300
0.2 0.565 0.685 0.670  0.350 0.735 0.515 0.625 0.620  0.255 0.685
0.3 0.825 0.890  0.890  0.650 0.925 0.855 0.920  0.920 0.550 0.945
0.4 0.985 0.990  0.990  0.930 0.990 0.980 1 1 0.870  0.990
0.5 1 1 1 1 1 1 1 1 0985 1

T TPCVX denotes our proposed method, for k = 1,2,3; “DS” denotes the decorrelated score method in Fang et al. (2017); “TP” denotes the

two-stage projection-based method with the whole sample.

30



Table 5. Estimation results on the parameters of interest 8 = (31, 52)".

Bias ESE SSE CP
p B B2 B B2 B B2 B B2
Casel p=500 0.0326 0.0312 0.0870 0.0891 0.0929 0.0892 0.925 0.935
p=1000 0.0309 0.0412 0.0884 0.0903 0.0936 0.0972 0.920 0.925
Case II p=500 0.0299 0.0204 0.0957 0.0962 0.1067 0.1009 0.930 0.930
p=1000 0.0259 0.0176 0.0975 0.0987 0.1094 0.1062 0.925 0.935
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Table 6. Summary of genes that are potentially related

with breast cancer survival datal.

Gene identifier Est SE CI Py

Contigh5111_RC 1.6400 0.4176 [0.8214, 2.4586] 0.0430
NM_006397 2.9614 0.7371 [1.5167, 4.4062] 0.0294
NM_006622 —2.1774 0.5040 [—3.1653, —1.1896] 0.0078
NM_016448 3.0523 0.7598 [1.5630, 4.5415] 0.0295
NM_001168 1.9191 0.3840 [1.1664, 2.6717] 0.0003

1“Est” denotes our TPCV-based estimator; “SE” denotes the corresponding standard error; “CI” denotes

the 95% confidence interval; P,q; denotes the Bonferroni adjusted p-value.
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